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Abstract

Power analysis is essential to optimize the design of RNA-seq experiments and to assess

and compare the power to detect differentially expressed genes in RNA-seq data.

PowsimR is a flexible tool to simulate and evaluate differential expression from bulk and

especially single-cell RNA-seq data making it suitable for a priori and posterior power

analyses.

Introduction

RNA-sequencing (RNA-seq) is an established method to quantify levels of gene

expression genome-wide [17]. Furthermore, the recent development of very sensitive

RNA-seq protocols, such as Smart-seq2 and CEL-seq [7, 18] allows transcriptional

profiling at single-cell resolution and droplet devices make single cell transcriptomics

high-throughput, allowing to characterize thousands or even millions of single

cells [9, 15,28].

Even though technical possibilities are vast, scarcity of sample material and financial

consideration are still limiting factors [29], so that a rigorous assessment of experimental

design plans remains a necessity [1, 3]. The number of replicates required to achieve the

desired statistical power is mainly determined by technical noise and biological

variability [3] and both are considerably larger if the biological replicates are single cells.

Crucially, it is common that genes are detected in only a subset of cells and such

dropout events are thought to be rooted in the stochasticity of single-cell library

preparation [8]. Thus dropouts in single-cell RNA-seq are not a pure sampling problem
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that can be solved by deeper sequencing [2]. In order to model dropout-rates it is

absolutely necessary to model the mean-variance relationship inherent in RNA-seq data

and this is not done in current power assessment tools that were developed for bulk

RNA-seq (reviewed in [19]).

In powsimR, we have implemented a flexible tool to assess power and sample size

requirements for differential expression (DE) analysis of single cell and bulk RNA-seq

experiments. For our read count simulations, we (1) reliably model the mean, dispersion

and dropout distributions as well as the relationship between those factors from the

data. (2) Simulate read counts from the empirical mean-variance- and dropout relations,

while offering flexible choices of the number of differentially expressed genes, effect sizes

and DE testing method. (3) Finally, we evaluate the power over various sample sizes.

We will use the embryonic stem cell data from [10] to illustrate powsimR’s utility to

plan and evaluate RNA-seq experiments.

Figure 1. PowsimR schematic overview.

A The mean-dispersion relationship is estimated from RNA-seq data, which can be either single cell or bulk data.

The users can provide their own count tables or one of our five example data sets. The plot shows the mean-dispersion

estimated, assuming a negative binomial for the Kolodziejczyk-data, the red line is the loess fit, that we later use for

the simulations. B These distribution parameters are then used to set-up the simulations. For better comparability, the

parameters for the simulation of differential expression are set separately. C Finally, the TPR and FDR are calculated.

Both can be either returned as marginal estimates per sample configuration (top), or stratified according to the estimates

of mean expression, dispersion or dropout-rate (bottom).
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powsimR

Estimation of RNA-seq Characteristics

An important step in the simulation framework is the reliable representation of the

characteristics of the observed data. In agreement with others [5,14,16], we find that the

read distribution for most genes is sufficiently captured by the negative binomial. In the

Kolodziejczyk data, the negative binomial provides an adequate fit for 60% of the genes,

while the zero-inflated negative binomial was only adequate for 12%. Furthermore,

when comparing the fit of the other commonly used distributions, the negative binomial

was most often the best fitting one (55%), while the zero inflated negative binomial

improves the fit for only 22% (Supplementary Figure S1). Therefore we only

implemented negative binomial sampling in our simulation framework (Figure 1).

Simulation of Read Counts and Differential Expression

Simulations in powsimR can be based on provided data or on user-specified parameters.

We first draw the mean expression for each gene. The expected dispersion given the

mean is then determined using a locally weighted polynomial regression fit of the

observed mean-dispersion relationship and to capture the variability of the observed

dispersion estimates, a local variability prediction band (σ = 1.96) is applied to the fit

(Figure 1A). With this simulation scheme, we reproduce the mean-variance as well as

mean-dropout relationship observed in the Kolodziejczyk data (Supplementary Figure

S2).

To simulate DE genes, the user can specify the number of genes as well as the

fraction of DE genes as log2 fold changes (LFC). For the Kolodziejczyk data, we found

that a narrow gamma distribution mimicked the observed LFC distribution well

(Supplementary Figure S3). The set-up for the expression levels and differential

expression can be re-used for different simulation instances, allowing an easier

comparison of experimental designs.

Finally, the user can specify the number of samples per group as well as their

relative sequencing depth and the number of simulations. The simulated count tables

are then directly used for DE analysis. In powsimR, we have integrated 8 R-packages

for DE analysis for bulk and single cell data (limma [20], edgeR [21], DESeq2 [13],

ROTS [23], baySeq [6], DSS [27], NOISeq [24], EBSeq [12]) and four packages that were

specifically developed for single-cell RNA-seq (MAST [4], scde [8], BPSC [25],

scDD [11]). For a review on choosing an appropriate method for bulk data, we refer to

the work of others e.g. [22]. Based on our analysis of the single-cell data from [10], using

standard settings for each tool we found that MAST performed best for the same

simulations as compared to results of other DE-tools.
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Evaluating Statistical Power

Finally, powsimR integrates estimated and simulated expression differences to calculate

marginal and conditional error matrices. To calculate these matrices, the user can

specify nominal significance levels, methods for multiple testing correction and gene

filtering schemes. Amongst the error matrix statistics, the power (True Positive Rate;

TPR) and the False Discovery Rate (FDR) are the most informative for questions of

experimental design. For easy comparison, powsimR plots power and FDR for a list of

sample size choices either conditional on the mean expression [26] or simply as marginal

values (Figure 1). For example for the Kolodziejczyk data, 384 single cells for each

condition would be sufficient to detect > 80% of the DE genes with a well controlled

FDR of 5%. Given the lower sample sizes actually used in [10], our power analysis

suggests that only 60% of all DE genes could be detected.

In summary, powsimR can not only estimate sample sizes necessary to achieve a

certain power, but also informs about the power to detect DE in a data set at hand. We

believe that this type of posterior analysis will become more and more important, if

results from different studies are compared. Often enough researchers are left to wonder

why there is a lack of overlap in DE-genes when comparing similar experiments.

Powsim will allow the researcher to distinguish between actual discrepancies and

incongruities due to lack of power.

Availability

The R package and associated tutorial are freely available at

https://github.com/bvieth/powsim.
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