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Abstract 20 

Breathlessness debilitates millions of people with chronic illness. Mismatch between 21 
breathlessness severity and objective disease markers is common and poorly 22 
understood. Traditionally, sensory perception was conceptualised as a stimulus-23 
response relationship, although this cannot explain how conditioned symptoms may 24 
occur in the absence of physiological signals from the lungs or airways. A Bayesian 25 
model is now proposed in which the brain generates sensations based on expectations 26 
learned from past experiences (priors), which are then checked against incoming 27 
afferent signals. In this model, psychological factors may act as moderators. They may 28 
either alter priors, or change the relative attention towards incoming sensory 29 
information, leading to more variable interpretation of an equivalent afferent input.  30 
 In the present study we conducted a preliminary test of this model in a 31 
supplementary analysis of previously published data (Hayen 2017). We hypothesised 32 
that individual differences in psychological traits (anxiety, depression, anxiety sensitivity) 33 
would correlate with the variability of subjective evaluation of equivalent breathlessness 34 
challenges. To better understand the resulting inferential leap in the brain, we explored 35 
whether these behavioural measures correlated with activity in areas governing either 36 
prior generation or sensory afferent input.  37 
 Behaviorally, anxiety sensitivity was found to positively correlate with each 38 
subject's variability of intensity and unpleasantness during mild breathlessness, and 39 
with unpleasantness during strong breathlessness. In the brain, anxiety sensitivity was 40 
found to positively correlate with activity in the anterior insula during mild 41 
breathlessness, and negatively correlate with parietal sensorimotor areas during strong 42 
breathlessness.  43 
 Our findings suggest that anxiety sensitivity may reduce the robustness of this 44 
Bayesian sensory perception system, increasing the variability of breathlessness 45 
perception and possibly susceptibility to symptom misinterpretation. These preliminary 46 
findings in healthy individuals demonstrate how differences in psychological function 47 
influence the way we experience bodily sensations, which might direct us towards better 48 
understanding of symptom mismatch in clinical populations.  49 
 50 

Key words: fMRI, breathlessness, symptoms, anxiety  51 
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Introduction 52 

 53 

“If the doors of perception were cleansed everything would appear to man as it is, 54 

infinite. 55 

For man has closed himself up till he sees all things thro’ narrow chinks of his cavern.” 56 

WILLIAM BLAKE, The Marriage of Heaven and Hell 57 

 58 

The perception of bodily sensation is integral to the management of self within the 59 

environment. One frightening and debilitating perception is that of breathlessness, when 60 

breathing is perceived as inadequate and a threat to life. Breathlessness is experienced 61 

across a range of illnesses 1,2, including lung disease, heart disease and cancer. 62 

Breathlessness is notorious in that symptoms often are out of proportion to objective 63 

markers of disease 3-7. While perceptual systems have traditionally been considered to 64 

encompass a stimulus followed by the brain’s response, this relationship cannot explain 65 

the often-observed dissociation between perception and symptom extent, with extreme 66 

cases manifesting as medically unexplained symptoms 8,9. As it is the perception of 67 

symptoms that leads to their debilitating consequences, an overhaul is required in the 68 

way we consider the brain’s interaction with incoming sensory information. This would 69 

lead to better ways to understand and then treat unpleasant perceptions such as 70 

breathlessness. 71 

 With a launch into the Bayesian tidal wave of modern neuroscience 10-15, recent 72 

theories have proposed a comprehensive model of symptom perception 16,17. An 73 

important development of this model is the inclusion of a set of perceptual expectations, 74 

or ‘doors of perception’ in the words of William Blake. These perceptual ‘priors’ are 75 

neural representations of a distribution of expected values, which may be separated 76 

from the afferent neural inputs. Both priors and afferent sensory information can 77 

influence perception, which encompasses a range of probable perceptions (posterior 78 

distribution). Enhanced confidence in expectations (narrow, sharp priors) can increase 79 

their weight in the model, pulling the resulting perception away from the physiology and 80 

towards the prior. Furthermore, perceptual moderators exist within this system, such as 81 
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anxiety 18-20, attention 21-23 or interoceptive ability 24-27, which may adjust either the prior 82 

expectations or incoming sensory information to influence perception. For instance, 83 

perception may be shifted to be higher or lower than the sensation, or there may be a 84 

greater range of possible perception values (widened distribution), which increases their 85 

ambiguity and susceptibility to misinterpretation and misclassification as a potential 86 

threat. 87 

 The ‘inferential leap’ to reconcile expectation and neural sensory information and 88 

form conscious perception occurs in the brain 17. One seductive theory consists of a 89 

division between agranular cortices (such as the anterior cingulate cortex and anterior 90 

insula) that generate prediction signals, and granular cortices (such as the primary 91 

sensory cortex and posterior insula), which compare afferent signals with predictions to 92 

generate prediction errors 16,28,29. It is hypothesized that behavioural factors such as 93 

decreased or redirected attention could also reduce the gain of sensory information 94 

within granular cortices 30, thereby diminishing the prediction error by increasing the 95 

relative weight of the priors in the model 16,30. Alternatively, behavioural influences may 96 

reduce the gain of the prior within agranular cortices 16 to reduce prediction errors and 97 

influence perception. 98 

 In this short report we have firstly investigated whether behavioural scores of 99 

anxiety, depression and anxiety sensitivity relate to the distribution of subjective scores 100 

(posterior perceptual distribution) of experimentally induced breathlessness. Mild and 101 

strong breathlessness were indicated by a conditioned stimulus (a shape presented on 102 

a screen), and implemented after a short anticipation period. Both levels of 103 

breathlessness were considered, as sensory afferents may be more vague or indefinite 104 

during mild breathlessness stimuli and might thus rely more heavily on priors. To do this 105 

we have undertaken a supplementary analysis on previously unreported aspects of a 106 

recently published study 31, to explore where in the brain these perceptual moderators 107 

act to alter perception. 108 

 109 

 110 

 111 
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Materials and Methods 112 

This study aimed to characterise functional brain activity during perception of a 113 

conditioned mild and strong breathlessness stimuli in 19 healthy participants (10 114 

females, mean age ± SD, 24 ± 7 years). An account of conditioned responses to strong 115 

breathlessness has been published previously31, while the mild breathlessness stimulus 116 

was not considered due to its large between-subject variability. In the current report we 117 

have undertaken a more detailed evaluation of how behavioural measures relate to 118 

subjective stimulus perceptions in the mild condition, and where in the brain these 119 

perceptions may be modulated. Please see Hayen et al. (2017) 31 for a complete 120 

description of data acquisition and the lower level functional magnetic resonance 121 

imaging (fMRI) analysis. The study of Hayen et al. was a double-blinded placebo-122 

controlled study of the effect of an opioid (remifentanil) on breathlessness, but in the 123 

present paper we are only considering the placebo condition (infusion of 0.9% saline). 124 

 125 

Behavioural questionnaires 126 

The Center for Epidemiologic Studies Depression Scale (CES-D 32) was used to identify 127 

(and exclude) participants with clinical depression.  The trait scale of the Spielberger 128 

State-Trait Anxiety Inventory (STAI 33) was used to characterize general participant 129 

anxiety. The Anxiety Sensitivity Index (ASI 34) was used to differentiate sensitivity to 130 

symptoms of anxiety in the form of bodily perceptions.  131 

 132 

Conditioned breathlessness and functional brain scanning 133 

Scanning was conducted using a 3 Tesla Siemens Trio scanner, with physiological 134 

monitoring and control of end-tidal gases (see Hayen et al., 2017 31). Briefly, an 135 

aversive delay-conditioning session was performed outside of the scanner, followed by 136 

two fMRI sessions on consecutive days (remifentanil or saline placebo, counterbalanced 137 

across participants). Participants learned associations between three visual cues and 138 

three respiratory sensations during the conditioning session, which were mild 139 

breathlessness, strong breathlessness or no breathlessness (unloaded breathing). The 140 

breathlessness stimulus used in this study was intermittent resistive inspiratory loading 141 
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for 30 to 60 seconds, administered via an MRI compatible breathing system 31. 142 

Expiration was unrestricted via a one-way valve (Hans Rudolph, Shawnee, Kansas, 143 

USA). The stimuli were each presented four times during the scanning session in a 144 

semi-randomised, counterbalanced order, with a preceding anticipation period followed 145 

by a resistive loading stimulus (where appropriate). Immediately following each 146 

stimulus, participants were asked to rate both the intensity and unpleasantness of the 147 

preceding load on a visual analogue scale (VAS: 0-100%). 148 

 149 

Behavioural and fMRI analysis 150 

In this short report we will only consider the fMRI session with the saline infusion. Full 151 

details on analysis procedures have been previously reported 31, and involved robust 152 

physiological noise correction of fMRI images. Whilst former analyses examined mean 153 

brain responses to anticipation and breathlessness (and the changes induced by 154 

remifentanil), the focus of this analysis was to explore how behavioural measures relate 155 

to the mean and variability of breathlessness perceptions in each subject, and to any 156 

corresponding changes in brain activity. 157 

 Mean and variability (standard deviation) of mouth pressure, subjective intensity 158 

and unpleasantness during scanning for both mild and strong loading were calculated 159 

for each subject. A full correlation matrix was then created on all behavioural and 160 

physiological variables, including questionnaires, mouth pressure and subjective 161 

breathlessness scores for each level of loading. As the behavioural variable of ASI 162 

score was shown to significantly correlate with trial-by-trial variation (standard deviation) 163 

of subjective scores, the group fMRI analysis previously reported 31 was adjusted to 164 

include a group mean and ASI score regressor. This analysis aimed to identify where 165 

functional brain activity correlates with differences in ASI score and thus extent of 166 

perceptual variability across subjects during saline administration, using whole-brain 167 

correction for multiple comparisons in FSL (FMRIB's Software Library, 168 

www.fmrib.ox.ac.uk/fsl). 169 

 170 

 171 
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Results 172 

 173 

Behavioural correlation matrix 174 

Trait anxiety and depression were highly correlated across subjects, but neither 175 

correlated with ASI score (Figure 1). No behavioural scores (depression, trait anxiety or 176 

anxiety sensitivity) were found to significantly correlate with mean inspiratory pressure 177 

or subjective breathlessness VAS scores of intensity or unpleasantness for either mild 178 

or strong breathlessness conditions (Figure 1). When behavioural scores were 179 

compared to variability (standard deviation) in physiology and subjective scores, ASI 180 

was found to significantly correlate with variation in unpleasantness during both mild 181 

and strong breathlessness, and intensity with mild breathlessness (Figures 1 and 3). 182 

Both trait anxiety and depression were strongly correlated with the variation in pressure 183 

trace during strong (but not mild) breathlessness, but not subjective scores. 184 

When mean subjective breathlessness scores and physiology were compared, 185 

average pressure, subjective intensity and unpleasantness were all strongly correlated 186 

during mild breathlessness (Figure 1). However, during strong breathlessness, intensity 187 

and unpleasantness scores became even more strongly correlated while ‘de-coupling’ 188 

from measures of inspiratory pressure. Lastly, while variation in intensity and 189 

unpleasantness scores were correlated during mild breathlessness, neither was 190 

reflective of variation in inspiratory pressure for either level of breathlessness. 191 

 192 

Average brain activity during anticipation and breathlessness 193 

Conditioned associations between visual stimuli and breathlessness stimuli were 194 

confirmed prior to scanning in all subjects. Group mean brain activity during strong 195 

anticipation and breathlessness have been previously reported 31. No significant mean 196 

activity was observed during anticipation of mild breathlessness, and brain activity 197 

during mild and strong breathlessness is illustrated in Figure 2. 198 

 199 

Perceptual variation during mild breathlessness 200 
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During mild breathlessness, the extent of perceptual variation in subjective scores of 201 

both breathlessness intensity (r = 0.406, p = 0.048) and unpleasantness (r = 0.547, p = 202 

0.010) were correlated with ASI score. When ASI score was subsequently investigated 203 

as a modulator of brain activity during mild breathlessness, it was found to correlate with 204 

brain activity in the left anterior insula only (Figure 3). No significant activity was found to 205 

correlate with ASI score during anticipation of mild breathlessness. 206 

 207 

Perceptual variation during strong breathlessness 208 

During strong breathlessness, the extent of perceptual variation in subjective scores of 209 

breathlessness unpleasantness was correlated with ASI score (r = 0.528, p = 0.012). 210 

Variation in breathlessness intensity no longer correlated with ASI score (r = 0.001, p = 211 

0.443). ASI score was found to negatively correlate with activity in the posterior insula 212 

cortex, primary and secondary somatosensory cortices, primary motor cortex, dorsal 213 

anterior cingulate cortex, lateral occipital cortex and the precuneus cortex (Figure 3). No 214 

significant brain activity was found to correlate with ASI score during anticipation of 215 

strong breathlessness. 216 

 217 

Discussion 218 

In this study we have shown that the greater an individual’s anxiety sensitivity index 219 

(ASI) score, the greater the variability in breathlessness scores to a set of standardised 220 

breathlessness challenges. Furthermore, during mild breathlessness, ASI score was 221 

found to correlate with brain activity in the anterior insula. Conversely, during strong 222 

breathlessness, ASI score was inversely correlated with activity in parietal primary 223 

sensorimotor cortices. 224 

 The extent of negative emotions such as anxiety and depression have long been 225 

considered potential modulators of perception 18,19,21,23,25,35. However, in healthy 226 

populations these scores may not be sensitive enough to identify a potential role in the 227 

interoceptive sensations of breathlessness. In contrast, anxiety sensitivity is a measure 228 

of alertness or sensitivity to bodily sensations of anxiety, and worry about the 229 

consequences of those sensations 34. Interestingly, in this report we have shown that it 230 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/117408doi: bioRxiv preprint 

https://doi.org/10.1101/117408
http://creativecommons.org/licenses/by/4.0/


9	
  
	
  

is an individual’s anxiety sensitivity that correlates with the extent of their variability in 231 

perceived breathlessness, and not generalized trait anxiety or depression. This attention 232 

and vigilance towards bodily sensations might thus render symptoms more ambiguous 233 

and susceptible to misinterpretation. Comparatively, trait anxiety and depression instead 234 

correlated with mouth pressure variability during strong breathlessness, indicating that 235 

participants with high trait anxiety might have modulated their breathing to avert 236 

negative sensations, and actively mediate the relationship between symptoms and 237 

expected perception. 238 

 Numerous previous studies have used a range of breathlessness stimuli to 239 

investigate where breathlessness symptoms are processed in the brain 31,36-41. What we 240 

have learned is that an extensive network of sensorimotor, affective and stimulus 241 

valuation areas are all highly active during breathlessness, as it is such a multi-242 

dimensional experience 6,7,42,43. Moving forward, the challenge involves teasing apart 243 

where expectations (priors) and neural sensory information meet within this network to 244 

allow inference and perception. While studies using conditioned breathlessness cues 245 

can help us to understand the generation of priors 44, in this report we additionally 246 

investigated the perceptual variability around a repeated stimulus to probe how 247 

behavioural measures of anxiety, depression and anxiety sensitivity may be influencing 248 

the distribution of breathlessness scores, and where in the brain this may occur. 249 

 Within the Bayesian framework, the final perception of symptoms such as 250 

breathlessness is represented by a set of probable breathlessness values (posterior 251 

distribution). Psychological traits such as anxiety sensitivity could either interact with 252 

expectations, or with incoming sensory information to alter this posterior distribution 17. 253 

As this Bayesian system strives for efficiency, it aims to minimize the differences 254 

between prior expectations and afferent sensory information (prediction errors) 28. This 255 

could occur either by changing prior expectations, or reducing the importance (gain) of 256 

sensory neural information to lessen prediction errors. It has been elegantly 257 

hypothesized that aspects of this Bayesian framework may be somewhat anatomically 258 

distinct within the brain. Specifically, prior generation and predictions occur within the 259 

deep layers of agranular cortices such as anterior cingulate cortex and anterior insula 260 
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16,17,28,29, which are comprised of many projection neurons connected to granular 261 

cortices 29,45-47. Granular cortices, such as the primary sensory cortex and posterior 262 

insula, consist of well-differentiated layers including granule cells in layer IV that amplify 263 

thalamic sensory inputs 48-50.  264 

 In the current study, participants were conditioned to associate an abstract cue 265 

with upcoming mild or strong breathlessness. This learnt association allows the 266 

generation of breathlessness expectations, and we were then able to investigate where 267 

in the brain the behavioural anxiety sensitivity interacts with brain activity. During mild 268 

breathlessness, we observed a correlation with activity in the anterior insula (agranular), 269 

which has been previously implicated in prior generation within an interoceptive 270 

prediction system 16. Conversely, during strong breathlessness, anxiety sensitivity was 271 

inversely correlated with granular cortices such as the posterior insula and primary 272 

sensory cortex 29,51,52. Therefore, it is possible that anxiety sensitivity interacts within 273 

this Bayesian framework at either the level of the prior or at the level of receiving 274 

afferent inputs to the system, depending on the level of intensity of the stimulus. As 275 

anxiety sensitivity represents attention towards bodily sensations, it is possible that 276 

down-weighting priors and concentrating attention towards afferent sensation makes 277 

this system less robust, and as a result creates a wider posterior perceptual distribution. 278 

Comparatively, during stronger (and less ambiguous) breathlessness, anxiety sensitivity 279 

correlates only with perceptual variation of unpleasantness, but no longer intensity. The 280 

corresponding changes in granular cortex may represent modulation of the gain of 281 

afferent information, attempting to bring sensations closer to priors to reduce prediction 282 

errors.  283 

 284 

Clinical Relevance 285 

The current study has been carried out in healthy volunteers with no history of 286 

respiratory disease. Studying healthy populations can aid us in understanding normal 287 

variants in physiology, psychology and perception. Still, the challenge remains to apply 288 

these concepts to clinical populations. If an individual suffers from chronic 289 

breathlessness, they may (over time) alter their priors and thus change their perception. 290 
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This may result in a shift of the prior further from the neural sensory information (a 291 

leftward or rightward shift of the prior illustration in Figure 4). It remains to be 292 

investigated how this change in expectation within the course of chronic disease may be 293 

influenced by pre-existing behavioural levels of anxiety, depression and anxiety 294 

sensitivity. This could help to explain how treatment options such as pulmonary 295 

rehabilitation for chronic obstructive pulmonary disease (COPD) may be addressing 296 

these expectations of breathlessness 53 and determine in which populations and under 297 

what conditions such measures would be expected to work best. Using the Bayesian 298 

framework to link relevant baseline measures of anxiety and interoceptive sensitivity to 299 

neural activation within clinical populations could also help to understand and address 300 

maladaptive perceptual differences, e.g. dangerous ‘under-’ and ‘over-’ perception of 301 

symptoms in asthma sufferers.   302 

 303 

 304 

Limitations 305 

This study is a supplementary analysis of previously published work, representing 306 

preliminary pilot data in healthy volunteers with small study numbers (n = 19) and 307 

limited stimulus repetitions (n = 4 each for mild and strong breathlessness). Whilst 308 

previously published research has demonstrated both improved 54 and worsened 55 309 

respiratory perceptual accuracy with greater anxiety, the current results showed no 310 

effect of trait anxiety on perception. Rather, we have observed a relationship between 311 

anxiety sensitivity and perceptual variation. While anxiety sensitivity represents a 312 

separate facet of anxiety constrained to bodily sensations 34, numerous other variables 313 

may also contribute to differences with previously published results. These factors may 314 

include the continuous ratings used in this study compared to categorical ratings used 315 

previously 56, the relatively low trait anxiety values of the study subjects (mean 34 ± 9 316 

(SD), compared to previous classifications of low (29) and high (55) trait anxiety 57), 317 

and/or the small subject numbers and repeats employed. 318 

 This study was also unable to determine the location and shape of the prior in 319 

relation to both the sensory observation and resulting perceptual (posterior) distribution. 320 
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It is possible that anxiety sensitivity, anxiety and / or depression induce a lateral shift of 321 

the prior, and our assumed changes in prior shape are inferred from the resulting 322 

changes in perceptual variation. It is clear that further work is required to explore the 323 

relationship between anxiety sensitivity and prior generation, and how this may change 324 

across a broad spectrum of generalized anxiety, to determine its place within the 325 

Bayesian symptom perception framework. 326 

 327 

 328 

 329 

Conclusions and future directions 330 

This short report is a preliminary insight into potential mechanisms of perceptual 331 

modulation of breathlessness within the Bayesian framework. Within this framework, the 332 

brain integrates prior expectations with afferent sensory information to create 333 

breathlessness perception. Behavioral modulators could potentially alter this 334 

relationship and influence subsequent perceptual distributions. Here, we have shown 335 

that level of anxiety sensitivity explains variations in breathlessness perception between 336 

healthy volunteers, possibly modifying both priors and afferent sensations, which are 337 

processed in distinct brain areas. Therefore, attention to bodily sensations (ASI) may 338 

reduce the robustness of this system in healthy individuals, and increase susceptibility 339 

to misinterpretation of breathlessness. Future work on larger cohorts needs to address 340 

the relationship between anxiety sensitivity, interoceptive accuracy/confidence and 341 

breathlessness perceptions, to investigate how both attention to bodily sensations and 342 

interoceptive abilities may interact to adjust the doors of symptom perception. 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 
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Figures 533 
 534 
 535 

 536 
Figure 1. Full correlation matrix of all measured behavioural and physiological 537 
variables.  Behavioural scores consisted of measures of depression, trait anxiety and 538 
anxiety sensitivity index (ASI). Mean and standard deviation measures of mouth 539 
pressure, intensity and unpleasantness scores are included for mild and strong resistive 540 
loading (breathlessness). 541 
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 543 
 544 

 545 
Figure 2. Mean BOLD changes identified during mild and strong breathlessness stimuli. 546 
The images consist of a colour-rendered statistical map superimposed on a standard 547 
(MNI 2x2x2 mm) brain. Significant regions are displayed with a threshold Z > 2.3, with a 548 
cluster probability threshold of p < 0.05 (corrected for multiple comparisons). 549 
Abbreviations: vmPFC, ventromedial prefrontal cortex; dlPFC, dorsolateral prefrontal 550 
cortex; SCC, subcingulate cortex; Ins, insula; IFG, inferior frontal gyrus; SFG, superior 551 
frontal gyrus; M1, primary motor cortex; S2, secondary somatosensory cortex; PC, 552 
precuneus; Th, thalamus; LOC, lateral occipital cortex; PAG, periaqueductal gray. 553 
 554 
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 556 
 557 
 558 
 559 

 560 
 561 
Figure 3. Relationship between perceptual variation, behavioural ASI score and brain 562 
activity. Left: (Top) Brain activity in the anterior insula that correlates with ASI score, and 563 
(bottom) significant correlations between ASI score and variation (standard deviation) in 564 
both intensity and unpleasantness during mild breathlessness. Right: (Top) Brain 565 
activity in the posterior insula, primary motor and sensory cortices, precuneus and 566 
posterior cingulate cortex that negatively correlates with ASI score, and (bottom) 567 
significant correlation between ASI score and unpleasantness, but not intensity during 568 
strong breathlessness. 569 
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 572 
 573 
Figure 4. Theoretical possible relationships between ASI and posterior distribution of 574 
breathlessness perception using a Bayesian framework. Top two panels: Minimal 575 
influence of priors and sensory input (observation) on posterior distribution with low ASI, 576 
but flattened prior may widen posterior perceptual distribution with high ASI during mild 577 
breathlessness. Bottom two panels: Minimal influence of priors and sensory input 578 
(observation) on posterior distribution with low ASI, but flattened observation may widen 579 
posterior perceptual distribution with high ASI during strong breathlessness. Figure 580 
adapted from Van den Bergh et al. (2017). 581 
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Table 1. Effects of loading on respiratory parameters. PETCO2=partial pressure of end-583 
tidal carbon dioxide. PETO2=partial pressure of end-tidal oxygen. Values are presented 584 
as mean (SD). N=19. Complete heart rate data in each epoch only available for 15 585 
subjects. 586 
* = significantly different from saline unloaded breathing at p<0.001. 587 

¶ = significantly different from saline anticipation unloaded breathing at p<0.05 588 

Variable Anticipation 
unloaded 

Unloaded 
breathing 

Anticipation 
mild 

Mild 
loading 

Anticipation 
strong 

Strong 
loading 

Mouth pressure 
amplitude 
[cmH2O] 

2.7 
(0.7) 

2.4 
(0.5) 2.6 (0.7) 4.0 (0.8) 3.5 

(1.7)¶ 
12.7 
(4.1)* 

PETCO2 [kPa] 5.5 (0.6) 5.6 (0.6) 5.6 (0.5) 5.5 (0.5) 5.5 (0.5) 5.5 (0.6) 

PETO2 [kPa] 20.0 (0.9) 19.8 (0.8) 19.8 (0.7) 20.2 (0.9) 19.9 (0.7) 20.2 (0.8) 

Intensity rating 
[%VAS]  12 

(16)  32 (21)  71 (20)* 

Unpleasantness 
rating [%VAS]  10 

(18)  25 (25)  61 (32)* 

Heart rate 
[min-1] (N=15) 

68 
(11) 

67 
(10) 69 (9) 67 (12) 68 

(11) 
69 

(11) 
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