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Abstract

We propose that a breakpoint specific alignment procedure would improve breakpoint predic-
tion. Our method, deStruct, uses multiple stages of realignment and clustering to progressively
refine breakpoint prediction quality and accuracy. We show using simulated data that deStruct
predicts breakpoints with higher sensitivity and specificity than existing breakpoint prediction
tools.

1 Introduction

Improvements to high-throughput whole genome sequencing technologies have resulted in in-
creased read length with no corresponding increase in fragment length. As a result, reads
produced from fragments that span breakpoints are more likely to interrupt read sequences,
complicating alignment and breakpoint prediction. The primary goal of general read alignment
tools [7, 8, 5] is accurate alignment of concordant reads. Many existing breakpoint discovery
methods then search for evidence in the alignments produced by a general read alignment tool
[6, 11, 1]. We propose that a breakpoint specific realignment strategy may increase accuracy for
breakpoint prediction.

The deStruct breakpoint prediction method uses a series of realignment and clustering steps
to progressively refine breakpoint prediction quality and accuracy. In brief, we first assume that
a significant number of reads supporting real breakpoints will be split by those breakpoints.
As we do not know, a-priori, the location of the split in each read, the first step will be to
identify the optimal prefix alignment of each read. Pairs of read prefix alignments with low
alignment probability are filtered, with split read alignment attempted based on the remaining
prefix alignments. Read prefix alignments are clustered, and each read in a cluster is realigned
to the breakpoints nominated by the top scoring split read alignments in that cluster. The final
output of the realignment and clustering step is a set of paired end read alignment clusters,
and alignment likelihoods per read per cluster. We then solve an optimization problem to select
the most likely set of clusters, and the most likely set of read to cluster assignments. Below we
detail the overall objective of the method followed by the specifics of each step.

2 Method

2.1 Objective

The objective of deStruct is to identify breakpoints, and assign read alignments to those break-
points. Herein we describe the specific objective we attempt to (approximately) maximize with
the deStruct method. Let bk be a binary indicator that breakpoint k exists, and let zi ∈ {1..K}
be a per read indicator that read i is assigned to breakpoint k. Let ri represent the observed

sequence of read i, where r
(j)
i represents end j of read i.
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Calculate a prior over all B as given by Equation 1, where P (bk = 1) is assumed small as
any randomly selected breakpoint in the genome is assumed rare.

P (B) =
∏
k

P (bk) (1)

Calculate the probability of read to breakpoint assignments as given by Equation 2, where
the probability of assigning a read to a breakpoint k is fixed at 0 if bk indicates the breakpoint
does not exist (Equation 3).

P (Z|B) =
∏
i

P (zi = k|bk) (2)

P (zi = k|bk) =

{
πk bk = 1

0 bk = 0
(3)

We approximate the probability of observing the sequence of read i given its assignment
to breakpoint k (Equation 4) as the argmax over possible alignments a (Equation 5), a more
tractable calculation that marginalizing over a.

P (R|Z) =
∏
i

P (ri|zi) (4)

P (ri|zi) ≈ argmax
a

P (ri|zi, a)P (a) (5)

Finally, model the likelihood of read i as a product of the probability of the inferred template

length tl(a, k) and the alignment score sc(r
(j)
i , a(j)) of each end (Equation 6).

P (ri|zi, a) = P (tl(a, k))
∏

j∈{1,2}

P (sc(r
(j)
i , a(j))) (6)

Our objective is then to infer the Z and B that maximize the likelihood given by Equation 7.

Zopt, Bopt = argmax
Z,B

P (R|Z)P (Z|B)P (B) (7)

2.2 Algorithm overview

Discordant read alignment uses a seed and extend strategy to independently align discordant
read pairs to the reference genome. Read alignments, including partial alignments, are filtered
according to mapping specificity as given by an approximate calculation of the alignment poste-
rior (Section 2.3.1). An optimal split alignment is calculated for each remaining alignment pair,
allowing for insertions at the breakpoint, and normalized to remove ambiguity resulting from
sequence homology at the breakpoint (Section 2.3.2).

Paired alignments are clustered according to the likelihood they originate from the same
unknown breakpoint (Section 2.4). For each cluster, a set of potential breakpoints are se-
lected, including breakpoints supported by high numbers of split alignments and breakpoints
constructed from partial alignments. Reads are realigned to potential breakpoints of associated
clusters to provide a more accurate alignment score sc(r(j), a(j)).

The result of the alignment and clustering steps are a set of potential breakpoints, potential
assignments of reads to breakpoints, and a likelihood for each assignment. Our choice of proce-
dure for inference is motivated by the belief that P (bk) is infinitesimally small, and dominates
the likelihood given by Equation 7. Thus, the first step in our optimization procedure is to iden-
tify the mapping of reads to breakpoints that minimizes the number of events. Formulated as an
instance of setcover, this subproblem can be solved approximately with the well known greedy
approximation algorithm [4]. Finally, each read is assigned to the position and breakpoint that
maximizes the likelihood (Equation 4) of that read.

To summarize, the algorithm involves the following steps:
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1. breakpoint specific alignment to produce spanning and split alignments

2. clustering of spanning alignments, enumerating potential breakpoints, and realignment of
reads to potential breakpoints

3. assignment of reads to breakpoints to minimize number of breakpoints

4. assignment of reads to positions/breakpoints to maximize likelihood

More detail is provided in the following sections.

2.3 Breakpoint specific alignment of discordant reads

exact breakpoint

5’ seeds

mate search region

3’ seed

1. Align 5’ seeds (bowtie/mrsfast) 

2. Optimal prefix match

3. Align 3’ seed to mate region

4. Split alignment based on
    optimal seed match

(sandwich DP, Wu et al., 2005)

(SSE2 DP)

(SSE2 DP)

Figure 1: Breakpoint specific read alignment. 1) 5-prime seeds are aligned to the
genome to obtain the top n alignments within a stratum of alignment scores. 2)
5-prime seed alignments are extended using SSE2 optimized banded dynamic pro-
gramming. 3) 16 nt 3-prime mate seeds are aligned within m nt of the 5-prime seed
matches where m depends on the length of the fragments. 4) 3-prime mate seed
alignments are extended and combined witih 5-prime mate alignments to identify
an optimal split.

2.3.1 Probabilistic partial alignment for identification of potential split
reads

We propose a seed and extend alignment strategy. For each read, a comprehensive set of
alignment positions is identified for 5-prime seeds (first k nt of each read). Seed alignments are
extended to a length that optimizes an alignment score (with linear gap penalty). Extension
uses SSE2 optimized dynamic programming (DP) to calculate DP matrix for the alignment,
to be potentially used in the subsequent split alignment step. For reads with extensions of
different optimal lengths, the score for each extension is taken at the maximum of the optimal
lengths, minus q nucleotides to account for spurious matches. The resulting partial alignments
are filtered according to their specificity as given by an alignment posterior, in addition to the
posterior probability the read is in fact concordant.

We adopt a strategy for calculation of alignment posteriors similar to [12]. Let x(1), x(2)

be alignment locations of paired ends r(1), r(2) respectively. Let C be the set of alignment
location pairs that are concordant, and let d be the prior probability that the true alignment
locations are discordant. Calculate the prior probability of observing alignment pair x(1), x(2)

as given by Equation 8. Note that [12] use a prior that assumes pairs of discordant alignments
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are drawn independently from the genome length, resulting in an infinitesimally small prior for
all discordant alignments. By contrast, we assume that discordant status and one alignment
location in the pair is sufficient to fully specify a prior on the pair, since a true tumour genome
will not contain all possible pairs of positions as breakpoints. The posterior probability of one
location of a pair is calculated as given by Equation 9. The numerator N and denominator Z
can be calculated efficiently as given by Equations

p(x(1), x(2)) =

{
d
2g x(1), x(2) 6∈ C
1−d
2g x(1), x(2) ∈ C

(8)

p(x(1)|r(1), r(2)) =

∑
x(2) p(r(1), r(2)|x(1), x(2))p(x(1), x(2))∑

x(1)

∑
x(2) p(r(1), r(2)|x(1), x(2))p(x(1), x(2))

(9)

Z =
∑
x(1)

∑
x(2)

p(r(1), r(2)|x(1), x(2))p(x(1), x(2))

=
d

2g

∑
x(1)

p(r(1)|x(1))
∑
x(2)

p(r(2)|x(2)) +

1− 2d

2g

∑
(x(1),x(2))∈C

p(r(1)|x(1))p(r(2)|x(2)) (10)

N =
∑
x(2)

p(r(1), r(2)|x(1), x(2))p(x(1), x(2))

=
d

2g
p(r(1)|x(1))

∑
x(2)

p(r(2)|x(2)) +

1− 2d

2g

∑
x(2):(x(1),x(2))∈C

p(r(1)|x(1))p(r(2)|x(2)) (11)

Also calculate the probability that any of the concordant alignments of r(1) and r(2) are true
(Equation 12). Alignments exceeding a threshold probability of concordance are filtered.

p(C|r(1), r(2)) =

∑
(x(1),x(2))∈C p(r

(1), r(2)|x(1), x(2))p(x(1), x(2))∑
x(1)

∑
x(2) p(r(1), r(2)|x(1), x(2))p(x(1), x(2))

(12)

We model the probability p(r(1)|x(1)) as the likelihood of observing read r(1) with origin
x(1) in the genome (p(r(2)|x(2)) is defined similarly). Let sc(r(1), x(1)) denote the score for
the optimal alignment of r(1) to x(1). We calculate p(r(1)|x(1)) ≈ p(sc(r(1), x(1))) using the
distribution of alignment scores of concordantly aligning reads. In brief, we align a subset of the
reads to the genome using an aligner configured for maximum sensitivity. We then calculate the
distribution of alignment scores for all concordant reads and use this density as an estimate for
p(sc(r(1), x(1))). We calculate p(sc(r(1), x(1))) for all substrings of x(1) to allow us to calculate
p(r(1)|x(1)) for partial alignments of any length.

2.3.2 SSE2 optimized split alignment

Filtered partial alignments obtained as specified in Section 2.3.1 represent the starting point
for split read alignment and subsequent identification of breakpoints. For a read whose mate is
split by a breakpoint, the 3-prime end of the mate should align within m nucleotides of the read
where m is the length of the sequenced DNA fragment. For each read alignment, we calculate
the optimal alignment of a 3-prime seed of the reads mate to a window adjacent to the read
alignment. For efficiency, the 3-prime seed is taken to be the last 16 nt of the mate read, since
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this is the size of a single SSE2 register. Alignment uses dynamic programming implemented
with SSE2 instructions. Seed matches that exceed a threshold are extended similarly to 5-prime
seed matches to produce a DP matrix for the alignment.

An optimal split alignment can be calculated efficiently from two DP matrices: one created
for alignment to the 3-prime seed match location, and one created for the (reverse) alignment to
the 5-prime seed match location. Let A1[i, j] and A2[i, j] be these two DP matrices respectively,
with rows corresponding to read sequence positions and columns to locus positions. Let I
be the length of the read sequence and q the linear penalty for insertion at the breakpoint.
Our objective is to find i1, i2, j1, j2 such that i1 + i2 ≤ I to maximize SPLIT OBJ defined in
Equation 13. Note that the requirement that i1 + i2 ≤ I is required since we assume that each
segment of the read has a single origin: locus 1, locus 2, or novel inserted sequence.

SPLIT OBJ = max
i1,i2,j1,j2

A1[i1, j1] +A2[i2, j2] + q · (I − i1 − i2)

Let B1[i] and B2[i] be the max score for each read sequence length aligned to locus 1 and
2 respectively. Let C1[i] be the max score including potential insertion for the read sequence
aligned to locus 1. Let CX1[i] be the last aligned read position before introduction of inserted
nucleotides that produces maximum scores for C1[i].

B1[i] = max
j
A1[i, j]

B2[i] = max
j
A2[i, j]

C1[i] = max (B1[i], C1[i− 1] + q)

CX1[i] =

{
i B1[i] > C1[i− 1] + q

CX1[i− 1] B1[i] ≤ C1[i− 1] + q

We can calculate an optimal i1, i2 by maximizing C1[i] +B2[I − i].

k = argmax
i

C1[i] +B2[I − i]

i1 = CX1[k]

i2 = I − k
j1 = argmax

j
A1[i1, j]

j2 = argmax
j

A2[i2, j]

The solution i1, i2, j1, j2 is not guaranteed to be unique. Of particular interest is ambiguity
due to homologous sequence at the breakpoint. Homologous breakpoint sequences will produce
solutions of the form {(i1, i2, j1, j2), (i1 + 1, i2−1, j1 + 1, j2−1), ..., (i1 +h, i2−h, j1 +h, j2−h)}
with i1 + i2 = I, and where h is the number of homologous nucleotides. To unambiguously
represent a breakpoint predicted by such an alignment, we select the breakpoint positions j1
and j2 such that j1 < j2 and j1 is minimal. Thus, the triple (j1, j2, h) represents breakpoints
(j1, j2) and (j1 + h, j2 − h) but not (j1 − 1, j2 + 1) or (j1 + h+ 1, j2 − h− 1)

2.4 Clustering paired alignments

Let A be the set of all paired end alignments of a paired end read library (or libraries). The
objective of the clustering process is to determine, from A, the most likely set of breakpoints
and the most likely assignment of alignments in A to those breakpoints. We cluster A using a
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two step process. We first perform a minimum spanning tree based clustering step to quickly
separate the data, followed by a more refined clustering step using a mixture model.

Consider a paired end alignment an = (a
(1)
n , a

(2)
n ). Let xn = start(a

(1)
n ) and yn = start(a

(2)
n )

be the positions in the genome to which the first nucleotide of each read aligns. Let µn and σn
be estimates of the mean and standard deviation for fragment n. The values of µn and σn are
estimated per input sequencing dataset, allowing our clustering algorithm to be used to cluster
reads from multiple datasets simultaneously.

2.4.1 Minimum Spanning Tree Clustering

We begin by applying a transformation to the paired end alignment data that will desegregate
paired end alignments resulting from the same breakpoint. Let B = (s, t) be a breakpoint
joining genomic positions s and t. A set of paired end alignments resulting from B and having
similar µn will have xn and yn values near the diagonal line s−xn+ t−yn−µn = 0. Paired end
alignments with different µn will segregate each on their own line defined similarly (Figure ??).
Thus we apply a transform to ‘subtract out’ µn such that the transformed xn, yn all lie on the
same diagonal line. An additional scale ensures that the transformed positions vn, wn from
the same breakpoint will lie approximately within a unit square. The full transformation is
given by Equation 15. We use q = 3, since 99% of the fragments will have a length within 3
standard deviations of the mean for those fragments. The increased separation between clusters
is illustrated in Figure ??.

α =
1

2qmax
n

σn
(13)

β =
1

2 max
n

µn
(14)

[
vn
wn

]
=

[
α 0
0 β

]([
1 1
1 −1

] [
xn
yn

]
+

[
µn
0

])
(15)
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Figure 2: Transformation of simulated paired end alignments. Points are coloured
according to µn. (a) Positions of mate pairs derived from 3 simulated breakpoints,
showing the tendency of alignments with similar µn to segregate along lines given
by s − xn + t − yn − µn = 0. (b) Transformation of mate pair positions showing
increased separation between clusters.

Next we apply a minimum spanning tree based clustering to the vn and wn values to provide
an initial clustering. To do this we first calculate the Delaunay triangulation of all (vn, wn)
points, which can be done efficiently in O(n log n) time. Next we cut all edges in the Delaunay
triangulation with length greater than h, and take the connected components of the resulting
graph as the initial clusters. The euclidean minimum spanning tree for a set of points in the
2D plane is a subgraph of every Delaunay triangulation of those points. Thus points (vn, wn)
and (vm, wm) are in different initial cluster only if the euclidean distance between (vn, wn) and
(vm, wm) is greater than h. We use h = 2.

2.4.2 Mixture Model Clustering

Each initial cluster produced by the previous step is refined into a set of smaller clusters using
collapsed gibbs sampling of a dirichlet process mixture model. Given a breakpoint formed by
joining the sequence to the left (upstream) of position s in chromosome X to the sequence to
the left (upstream) of position t in chromosome Y , we can write the likelihood of alignment
A = (x, y) given breakpoint B = (s, t) as given by Equation 16.

P (A,B) ∝

{
N (s− x+ t− y|µ, σ) x ≤ s and y ≤ t
0 x > s or y > t

Note that for breakpoints that involve sequence downstream of position s and or t, Equa-
tion 16 can be used by reversing the chromosome sequence and associated alignments, which is
mathematically equivalent to negating the alignment and break-end positions.

Given a set of read alignments, we would like to assign each alignment to a single cluster
so as to maximize the likelihood. As we don’t know a-priori the number of required clusters,
we use a Dirichlet Process mixture model to learn the number of clusters from the data. The
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Dirichlet Process prior can be written as given by Equation 16 with concentration parameter ζ.

π ∼ GEM(ζ)

zi ∼ π

sk, tk ∼ Unif

We used collapsed Gibbs sampling to efficiently sample from the posterior over read alignment
clusters, or equivalently, breakpoints. Specifically, we use ”algorithm 3” from [10], as given by
Equation 16. Let Ak be the alignments in cluster k, and let An be an unassigned alignment.
At each step in the sampling process, alignment n is removed from the cluster to which it is
assigned and reassigned at random according to a probability calculated by Equation 16.

p(zn = k|z−n, α) ∝


Nk,−n

α+N − 1
p(An|Ak) existing cluster k

α

α+N − 1
p(An) new cluster k∗

(16)

Collapsed Gibbs requires efficient calculation of the predictive probability of a cluster p(An|Ak),
evaluated at the new datapoint An. Fortunately, the likelihood given by Equation 16 contains
symmetry that can be leveraged for producing a near closed form solution for the marginal
probability of a cluster of alignments. First consider the case of calculating P (A), the marginal
probability of a single alignment, required for normalizing P (A|B). By inspection P (A) is in
fact independent of the value of A = (x, y), thus we can assume x = y = 0. Next, we observe
that the value of P (A,B) is equal on the diagonal line v = s + t for v constant, given s, t ≥ 0.

The length of this diagonal line is
√

2v and it is u =
√
2
2 v along the perpendicular diagonal.

The area of a vanishingly small rectangle surrounding v = s + t : s, t ≥ 0 can be calculated as√
2vdu = vdv, and the value of P (A) for all points in that rectangle is N (v|µ, σ2). Thus we can

calculate P (A) as given by Equation 17, where we have substituted v = σw + µ in the third
step.

p(A) =
1

Z

∫ ∞
0

vN (v|µ, σ2) dv

=
1

Z
√

2πσ

∫ ∞
0

v e−(v−µ)
2/2σ2

dv

=
1

Z
√

2π

∫ ∞
−µσ

(σw + µ) e−w
2/2 dw

=
1

Z
√

2π

(
σ
[
−e−w

2/2
]∞
−µσ

+ µ

∫ ∞
−µσ

e−w
2/2 dw

)

=
1

Z
√

2π

(
σe−µ

2/2σ2

+ µ
√

2πΦ(
µ

σ
)
)

(17)

We leverage the same symmetry to calculate the marginal likelihood of a cluster of align-
ments. For a cluster of alignments A, the region of positive likelihood is u ≥ maxxn∈A, v ≥
maxyn∈A, thus v = 0 at the point u = maxxn∈A and v = maxyn∈A. We will calculate p(A) as
given by Equation 18.

p(A) =

∫ ∞
0

v
N∏
n=1

1

Zn
N (v + max

xn∈A
−xn + max

yn∈A
−yn|µn, σ2

n) dv

=

(
N∏
n=1

1

Zn
√

2πσn

)∫ ∞
0

v eQ dv (18)

Define wn as given by Equation 19 and calculate the exponent Q as given by Equation 20,
where we have subsumed some of the calculations based on σn and wn into variables α, β, and
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γ.

wn(A) = µn − max
xn∈A

xn − xn + max
yn∈A

yn − yn (19)

Q = −1

2

N∑
n=1

(v − wn)2

σ2
n

= −1

2

(
N∑
n=1

1

σ2
n

v2 − 2
N∑
n=1

wn
σ2
n

v +
N∑
n=1

w2
n

σ2
n

)

= −1

2

(
αv2 − 2βv + γ

)
= −1

2

(
αv2 − 2βv +

β2

α
+ γ − β2

α

)
= −1

2

((√
αv − β√

α

)2

+ γ − β2

α

)
(20)

Substitute u for v with Equations 21 and 22.

v =
u+ β√

α√
α

(21)

dv =
1√
α

du (22)

Finally, calculate p(A) in terms of on α, β, and γ as given by Equation 23.

p(A) =

(
N∏
n=1

1

Zn
√

2πσn

)(
1

α

)(
e−

γ
2

)(
e
β2

2f

)∫ ∞
− β√

α

(u+
β√
α

) e−
u2

2 du

=

(
N∏
n=1

1

Zn
√

2πσn

)(
1

α

)(
e−

γ
2

)(
e
β2

2f

)([
−e−u

2

2

]∞
− β√

α

+
β
√

2π√
α

Φ(
β√
α

)

)

=

(
N∏
n=1

1

Zn
√

2πσn

)(
1

α

)(
e−

γ
2

)(
e
β2

2f

)(
e−

β2

2f +
β
√

2π√
α

Φ(
β√
α

)

)

=

(
N∏
n=1

1

Zn
√

2πσn

)(
1

α

)(
e−

γ
2

)(
1 +

β√
α

Φ( β√
α

)

φ( β√
α

)

)
(23)

To perform collapsed Gibbs sampling efficiently, we require the ability to calculate p(An|Ak) =
p(A∪{A′})/p(A) efficiently based on sufficient statistics of each member of Ak. Define r(A, A′)
as given by Equation 24.

r(A, A′) = max
xn∈A

xn − max
xn∈A∪{A′}

xn + max
yn∈A

yn − max
yn∈A∪{A′}

yn (24)

Updates to α are given by Equation 26.

α(A) =
N∑
n=1

1

σ2
n

(25)

α(A ∪ {A′}) =
N+1∑
n=1

1

σ2
n

= α(A) +
1

σ2
N+1

(26)
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Updates to β are given by Equation 28.

β(A) =
N∑
n=1

wn(A)

σ2
n

(27)

β(A ∪ {A′}) =
N+1∑
n=1

wn(A ∪ {A′})
σ2
n

=
N∑
n=1

wn(A)

σ2
n

+
N∑
n=1

r(A, A′)

σ2
n

+
wN+1(A ∪ {A′})

σ2
N+1

= β(A) + r(A, A′)α(A) +
wN+1(A ∪ {A′})

σ2
N+1

(28)

Updates to γ are given by Equation 30.

γ(A) =
N∑
n=1

w2
n(A)

σ2
n

(29)

γ(A ∪ {A′}) =
N+1∑
n=1

w2
n(A ∪ {A′})

σ2
n

=
N∑
n=1

w2
n(A) + r(A, A′)

σ2
n

+
w2
N+1(A ∪ {A′})

σ2
N+1

=
N∑
n=1

w2
n(A)

σ2
n

+ 2 r(A, A′)
N∑
n=1

wn(A)

σ2
n

+ r2(A, A′)
N∑
n=1

1

σ2
n

+
w2
N+1(A ∪ {A′})

σ2
N+1

= γ(A) + 2 r(A, A′)β(A) + r2(A, A′)α(A) +
w2
N+1(A ∪ {A′})

σ2
N+1

(30)

The algorithm proceeds as follows. Read pair alignments are shuffled. For each read pair
alignment, remove the alignment from the cluster to which it is currently assigned if it exists,
calculate Equation 16, normalize, and randomly assign the alignment to a new cluster based on
the calculated probability. Calculating Equation 16 can be done in constant time by updating
α, β, and γ and recalculating p(A) using Equation 23. Adding and removing from a cluster can
be done in constant time providing read alignment positions are maintained in a priority queue,
allowing for efficient updates of maxxn∈A and maxyn∈A. Finally, at each step we keep track
of the joint marginal probability of the full set of alignments, which can be calculated as given
by Equation 31, and select the clustering that maximizes the joint marginal after a specified
number of iterations.

p(A) =
ζK
∏
k(|Ak| − 1)∏N

n=1(n− 1 + ζ)

∏
k

p(Ak) (31)

2.5 Selecting the optimal set of breakpoints

The optimization procedure for selecting the most likely set of real align works in two stages.
First, we select the most parsimonious set of read alignment clusters, and assignments of reads
to those clusters. We assume that the prior probability of any individual breakpoint is suffi-
ciently low, that minimizing the number of alignment clusters (thus minimizing the number of
breakpoints) will always maximize Equation 7. The subproblem of minimizing the number of
clusters can be solved approximately in polynomial time using a reduction to an instance of
setcover, as previously described[4].

We now have an assignment of read alignments to clusters, a set of breakpoints per cluster
nominated by analysis of split read alignments, and a set of refined read alignment likelihoods
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calculated from the realignments to those breakpoints. Per read alignment cluster, we calculate
a likelihood for each breakpoint at the product of individual breakpoint specific read alignment
likelihoods. Finally, we take the maximum likelihood breakpoint for each cluster.

2.6 Identification of balanced rearrangements using breakpoint graphs

To identify balanced rearrangements, we propose the following optimization problem. We wish
to identify the set of balanced rearrangement breakpoints that simultaneously maximize the
number of breakpoints assigned to balanced rearrangements, and minimize the length of loss
and gain edges, or a weighted combination thereof. Our solution uses a similar combinatorial
formulation to that used by ReMiXT[9]. The problem can be solved by identifying the minimum
cost set of edge disjoint alternating cycles (corresponding to balanced rearrangements) for a
Genome Modification Graph with appropriate edge weights: ‘+’ and ‘-’ segment edges are given
a positive weight scaled by length, ‘+’ breakpoint edge weights are given a negative weight,
‘-’ breakpoint edge weights are given infinite weight, telomere edges are removed and reference
bond edges are given weight 0. Minimum cost perfect matching could then be used to identify
all balanced rearrangement breakpoints simultaneously.

3 Results

3.1 Simulating Realistic Datasets

We used a novel approach for simulating genome sequence data to benchmark the performance
of deStruct against existing breakpoint prediction software. Our approach starts with real
sequencing data from a normal sample (we used HCC1395BL [3]). Similar to BamSurgeon[2],
we split the normal sample into a a set of reads that will be used for the simulated normal
sequencing dataset, and a set of reads that will be used for a tumour sequencing dataset. We
then spike in breakpoint reads into the tumour sequencing dataset.

Spiking the tumour dataset with breakpoint reads works as follows. We first select random
break-ends such that the resulting breakpoint has the desired breakpoint sequence homology.
Next we create the breakpoint sequences, adding inserted sequence at the breakpoint where
specified in the simulation. Finally, we simulate genome sequence reads produced by each
breakpoint.

Our objective is for the breakpoint reads to be as similar to background of concordant reads
as possible. Thus we use the following approach to simulate breakpoint reads. First, we pick
a random location in the original genome that has sufficient read depth. Next, we virtually
transplant the reads onto the breakpoint sequence template, and modify the sequence of the
read to match the breakpoint sequence. Specifically, for each matched nucleotide in the original
alignment of the read, we generate a match with the breakpoint sequence by modifying the
nucleotide at the matched position in the read. For each mismatched nucleotide we generate a
mismatch at the mismatched position in the read. We generate mismatches in a deterministic
way so as to preserve consistent mismatches of the same nucleotide at the same position as would
happen for single nucletotide polymorphisms. For small insertions, we preserve the inserted
sequence in the read, and for small deletions, we ensure the read is remapped to the breakpoint
sequence so as to preserve the deletion.

3.2 Benchmarking Results

We simulated 10000 breakpoints on a reference genome consisting of chromosomes 20 and 21 of
hg19. For each breakpoint, we randomly selected a target homology uniformly from the range 0
to 4. For 10% of the breakpoints with homology 0, we randomly selected an inserted sequence
with maximum length 5. Breakpoint sequence reads were simulated and spiked in as described
above, with 25% of the original coverage in HCC1395BL. We then ran deStruct, LumpySV[6]
and Delly[11] on the simulated datasets and identified correctly predicted breakpoints as those

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 18, 2017. ; https://doi.org/10.1101/117523doi: bioRxiv preprint 

https://doi.org/10.1101/117523
http://creativecommons.org/licenses/by-nc-nd/4.0/


for which the break-ends were within 200nt of the simulated break-ends. For each tool, we
calculated the number of true positives, and false positives for a series of thresholds on a set
of features that included the number of spanning reads, the number of split reads, and for
deStruct the breakpoint log likelihood. We then selected the feature/threshold combination
that maximizes prediction accuracy (calculated as TP + TN /(P + N)).

Accuracy for each tool is shown in Table 1, showing deStruct with higher accuracy than
either delly or lumpy. Figure 3 shows the number of breakpoints with correct and incorrect
prediction of breakpoint sequence, homology, and inserted sequence, in addition to the number
of breakpoint for each tool that were missed entirely. deStruct outperforms the other tools with
respect to calculation of breakpoint features, primarily because it is able to recover split reads
for a higher proportion of breakpoints (Figure 4).

correct incorrect missing
value

0

2000

4000

6000

8000

10000

co
un

t

check = breakpoint

correct incorrect missing
value

check = homology

correct incorrect missing
value

check = inserted

tool_name
destruct
lumpysv
delly

Figure 3: Accuracy of exact breakpoint position (left), breakpoint homology (mid-
dle), and sequence inserted at the breakpoint (right) evaluated for destruct, delly,
and lumpysv based on simulated breakpoints.
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Figure 4: Boxplots of the log of number of split reads recovered for breakpoints
for breakpoints with at least 1 split read (left) and proportion of breakpoints with
at least 1 split read (right) for destruct, delly, and lumpysv based on simulated
breakpoints.

Finally, Figure 5 shows as plot of the true positive and false positive counts for a series of
thresholds on the best feature by accuracy for each tool. DeStruct shows considerably higher
sensitivity on the simulated data, recovering a significantly higher proportion of true breakpoints.
However, deStruct also predicts a higher number of false positives.
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Table 1: Accuracy per tool for an optimal feature/threshold combination

tool feature accuracy
destruct num. spanning 0.978
lumpysv num. spanning 0.954
delly num. spanning 0.921
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Figure 5: False positive versus true positive counts for a range of thresholds for
destruct, delly, and lumpysv based on simulated breakpoints.

4 Availability

The deStruct source code including benchmarking scripts are available from
http://bitbucket.org/dranew/destruct.
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