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Abstract  

Environmental factors relating to soil pH are widely known to be important in structuring 
soil bacterial communities, yet the relationship between taxonomic community composition 
and functional diversity remains to be determined. Here, we analyze geographically 
distributed soils spanning a wide pH gradient and assess the functional gene capacity within 
those communities using whole genome metagenomics. Low pH soils consistently had fewer 
taxa (lower alpha and gamma diversity), but only marginal reductions in functional alpha 
diversity and equivalent functional gamma diversity. However, coherent changes in the 
relative abundances of annotated genes between pH classes were identified; with functional 
profiles clustering according to pH independent of geography. Differences in gene abundances 
were found to reflect survival and nutrient acquisition strategies, with organic-rich acidic soils 
harboring a greater abundance of cation efflux pumps, C and N direct fixation systems and 
fermentation pathways indicative of anaerobiosis. Conversely, high pH soils possessed more 
direct transporter-mediated mechanisms for organic C and N substrate acquisition. These 
findings show that bacterial functional versatility may not be constrained by taxonomy, and 
we further identify the range of physiological adaptations required to exist in soils of varying 
nutrient availability and edaphic conditions. 

 

Introduction  

Understanding the key drivers and distributions 
of microbial biodiversity from both taxonomic 
and functional perspectives is critical to 
understand element cycling processes under 
different land management and geo-climatic 
scenarios. Distributed soil surveys have shown 
strong effects of soil properties on the taxonomic 
biodiversity of bacterial communities (1–5), and 
to a lesser degree for other soil microbes such as 
the fungi and protozoa  (6, 7). Particularly for 
bacteria, soil pH often appears as a strong single  
 

correlate of biodiversity patterns. This is either 
due to the direct effects of acidity, or soil pH 
representing a proxy for a variety of other factors 
across soil environmental gradients. Acidic soils 
generally harbor reduced phylogenetic diversity 
and are usually dominated by acidophilic  
Acidobacterial lineages.  Intermediate pH soils 
(pH 5-7) are generally composed of larger 
numbers of taxa, often with a few dominant 
lineages; whereas at neutral pH  (typically 
intensive agricultural soils) a more even 
distribution of a multitude of taxa is typically 
observed (1, 2, 8). A fundamental issue to be 
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resolved is whether these differences in 
taxonomic diversity reflect changes in functional 
genetic potential. Many dominating organisms, 
particularly in the more oligotrophic habitats are 
difficult to culture, so we know little of the 
functional characteristics of these organisms at 
either the phenotypic or genomic level. These 
knowledge gaps ultimately limit the utility of 
taxonomic methods (e.g rRNA based) for further 
understanding ecosystem function.  

Whole genome shotgun sequencing has 
been applied to elucidate the functional diversity 
of communities from a range of ecosystems (8–
12), and its application provides novel insights 
into the genetic diversity of biochemical 
processes occurring in soils as well as permitting 
ecological investigations of microbes within a 
functional trait based context. The established 
relationships between edaphic conditions and 
taxonomic biodiversity can now be 
complemented with a concurrent understanding 
of altered environmental microbial physiology 
and metabolism, which can provide better 
understanding of the cycling of elements in soils. 
In the first instance, we need to identify the 
range of functional genes present in soils to 
better elucidate the genetic determinants of 
relevant environmental processes (for example 
determining the dominant biochemical pathways 
most likely to be contributing to fluxes). Second, 
we need to identify the ecological mechanisms 
determining how genetic pathways are altered 
according to environmental change. Addressing 
these knowledge gaps will lead to a better 
understanding of how soil bacterial diversity 
relates to functional potential, and importantly 
will elucidate how environmental change can 
impair or enhance soil functionality. 

Here we seek to test whether known 
differences in taxonomic diversity and 
composition are reflected in functional gene 
profiles, by implementing metagenomic 
sequencing of geographically dispersed soils at 
opposing ends of a temperate bacterial diversity 
gradient. We chose to sequence 4 low and 4 high 
pH soils which had previously been collected as 
part of a national survey of Britain (figure 1) and 
were known to comprise low and high taxonomic  
 

diversity respectively (7). In addition to 
assessing richness effects, we seek to explore 
change in specific functional gene abundances in 
order to elucidate the physiological constraints 
acting on different soil systems and identify 
variance in functional pathways of relevance to 
soil biogeochemical cycling.  

 

Results and discussion  

Differences in taxonomic richness are not 
reflected in functional richness 

Four geographically distributed soils exhibiting 
similar pH were selected to represent each of the 
low and high pH classes based on our previous 
work. These encompassed a variety of different 
habitats (table 1), with the low pH soils typically 
being found at higher altitude and possessing 
higher organic matter and moisture content 
consistent with broader patterns across Britain. 
Amplicon sequencing confirmed that the 
microbial taxonomic richness differed between 
the two soil pH groups, with both alpha and 
gamma diversity being higher in the high pH soil 
communities (figure 2a). We then sought to 
examine whether the richness of annotated genes 
from metagenomic sequencing was also reduced 
in low pH soils. Metagenomic sequencing using 
the Roche 454 platform resulted in a total of 4.9 
million quality filtered reads across all samples; 
with 0.4 to 0.7 million reads per sample (table 
1). An average of 8.3±0.4 % of sequences failed 
to pass the MG-RAST QC pipeline. Following 
gene annotation using MG-RAST using default 
stringency criteria, the percentage of reads 
annotated to predicted proteins ranged from 63.3 
to 73.7 % across samples (average=68.9 %). The 
majority of annotations were assigned to 
bacterial taxa (94.7±1.6% in low pH soils, 
96.6±0.3% in high pH soils); with only a small 
proportion being eukaryotic (3±1.2% in low pH 
soils, 1.8±0.1% in high pH soils) and archaeal 
(2.2±1.4% in low pH soils, 1.4±0.3% in high pH 
soils). The marked low proportion of fungi 
contributing to the soil DNA pool was also 
reflected in the RDP annotation of ribosomal 
RNA reads (not shown). The metagenomic  
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guanine plus cytosine content (GC%) was lower  
in acidic anaerobic soils (table 1), corroborating 
previous evidence suggesting a link between 
aerobiosis and GC% in prokaryotes (13).  

Mean richness (alpha diversity) of 
functional genes was 4153 and 3915 in high and 
low pH soils, respectively (figure 2b); though this  
difference was not statistically significant (t-test, 
p=0.12). This was in contrast to the amplicon 
data, where richness was consistently higher 
across all samples at high pH (t-test, p<0.05). 
No correlative associations were observed 
between functional and taxonomic richness, in 
contrast to one previous study across a range of 
prairie grasslands (8). Importantly however, we 
found that whilst the accumulation of taxon 
richness over sites accentuated the differences in 
taxonomic diversity, this was not true for 
functional richness where 4 low pH soils 
possessed equivalent total functional diversity to 
4 high pH soils. Thus, it is clear that whilst 
taxonomic diversity may be restricted by low pH 
related factors, functional diversity across 
multiple samples can be maintained through 
higher between-site variance (beta diversity) 
possibly mediated through enhanced metabolic 
versatility within acidophilic taxa. 

Large differences in relative gene abundance 
between low and high pH soils 

Since a lack of difference in functional richness 
does not mean that soils are functionally similar 
across the pH gradient, we next sought to assess 
differences in relative abundances of functional 
genes. Figure 3 shows the overall abundance of 
genes classified at the broadest level (level 1 
subsystems classification). Despite similarities in 
the abundance ranked order of hierarchically 
classified genes, a number of notable differences 
between soils of different pH were immediately 
apparent for several relevant functional 
categories, such as amino acid cycling, 
respiration, membrane transport, stress and 
virulence-disease-defense. However, a lack of 
difference at this level (notable for carbohydrate 
and nitrogen metabolism) could be due to 
significant differences within higher level 
functional categories. To address this, we 
performed a multivariate assessment of gene 

composition classified at the level of function. 
This revealed large differences between soils of 
different pH; indicating that the pH defined 
communities shared more similar functional gene 
profiles independent of their geographical origin 
(figure 4a, anosim p<0.05). The analyses based 
on relative abundance therefore shows that 
functional genes were differentially abundant in 
opposing soil pH classes; and in combination 
with higher functional beta diversity at low pH 
explains the equivalence of alpha diversity 
metrics.    

Indicator gene analysis (Indval) was then 
used to define and explore the characteristic 
genes contributing to the differences between the 
pH defined soils. Of a total of 6194 annotated 
genes, 206 and 322 significant functional 
indicators were found for the low and high pH 
soils, respectively. A network depicting only 
strong positive correlations (>0.9) between genes 
across all samples revealed an expected lack of 
connectedness between opposing indicators, and 
in general low pH indicator genes were less 
correlated than high pH indicators reflecting the 
greater magnitude of functional beta diversity 
across low pH soils (figure 4b). To examine the 
functional identity of indicators, we constructed 
a circular plot (figure 5) at the functional gene 
level of classification, omitting rarer genes for 
ease of presentation (<50 reads across all 
samples), and labelling the indicators using the 
respective level 3 classification. A full table of all 
gene abundances, their classification and 
indicator designation are provided in the 
supplementary material (file S1). The following 
subsections discuss some relevant indicators of 
low and high pH soils. Whilst this discussion is 
by no means exhaustive, we divide the discussion 
into two sections based on physiological 
processes for survival and nutrient capture; and 
metabolism. 

Variable physiological strategies for survival and 
nutrient acquisition  

The indicator analysis reveals an array of 
interlinked physiological adaptations to life at 
opposing ends of the soil environmental 
spectrum (figure 5). Firstly, with respect to 
cellular physiology, the high pH soils possessed a 
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greater abundance of ABC transporters relatable 
to nutrient acquisition (14). In addition to the 
abundant amino acid, peptide and tricarboxylate 
transporter indicators (level 1 classification: 
membrane transport), numerous other 
transporters were significantly enriched at high 
pH though under different subsystems 
classifications. These included the majority of 
carbohydrate indicators for mono and 
disaccharide uptake, as well as other transporters 
for inorganic sulphate, cofactors, polyamines, 
ammonia/nitrate, potassium uptake proteins, 
and high affinity phosphate transporters (15). 
Interestingly, transporters for iron acquisition as 
well as osmoprotection were also evident at high 
pH, possibly reflecting low moisture and iron 
availability in the selected high pH soils. 
Together these findings indicate that the high 
pH soils can be distinguished functionally from 
low pH soils on the basis of a greater abundance 
of transporters for the direct uptake of available 
substrates and cofactors required for growth.  

The membrane transport related 
indicators of low pH soils included only two low 
abundance genes related to nutrient acquisition 
(phosphate and glucose, not indicated in figure 5 
due to low abundance), but a number of genes 
linked to metal acquisition (ybh, MntH, 
HoxN/HupN/NixA) and protein secretion 
(siderophores and extracellular enzymes). 
Relatedly a number of membrane proteins 
(mainly proton antiporters) for the efflux of 
antibiotics and toxic compounds were 
characteristic of low pH soils (ACR3, 
BlaR1/MecR1, CusA, CzcC, MerR, MacB, 
NodT, MdtB, MdtC), but annotated under 
“Virulence, Disease and Defense”. Indeed, the 
gene for cation efflux protein cusA related to 
cobalt-cadmium-zinc resistance was one of the 
more abundant genes across all metagenomes 
but was significantly enriched in low pH soils. 
Given the nature and location of the low pH soils 
examined it is unlikely these represent 
adaptations to either severe metal contamination 
or anthropogenic sources of antibiotics, but 
rather are related to pH enhanced reactivity of 
toxicants (e.g. metal ion solubility generally 
increases with decreasing pH) and the alleviation 
of acid stress through membrane efflux (16–20). 

It is also conceivable that they may be required 
for metal import for a variety of metal 
necessitating enzymes (see below) since many are 
proton/cation antiporters. Supporting this, 
another strong indicator of low pH was a 
potassium transporting ATPase gene (level 3 
class: potassium homeostasis) coding for a 
membrane protein responsible for exchange of 
H+ and K+ ions across the plasma membrane, 
suggesting the coupling of acid stress response 
with elemental acquisition.  As an aside, we were 
unable to find any studies that have examined 
acid soils for their potential as a source of 
antibiotic resistance, but our findings implicate 
adaptation to acidity or anaerobiosis as a 
possible factor underlying natural resistance to 
antibiotics (21, 22). Other notable indicators of 
low pH included chemotaxis and motility genes, 
plausible given the higher moisture contents of 
these soils (18). In total, these results identify 
that in the acidic soils considerable energy 
investments must be made in cellular processes 
to survive in an acid stressed, oxygen limited and 
low nutrient environment.  

Metabolic potential of contrasting pH soil 
communities  

Carbohydrate processing was one of the most 
abundant broad classes of annotated functional 
processes and within this level 2 class serine-
glyoxylate cycle, sugar utilization and TCA cycle 
genes were identified as the most abundant. 
Despite the expected conservation of many key 
metabolic functions, a number of notable 
indicators were found (figure 5). Several genes 
differed for the processing of mono and 
oligosaccharides, with a number of genes for L-
rhamnose and fructose utilization being of 
greater abundance at high pH; whereas several 
extracellular enzyme coding genes for 
glucosidase, beta galactosidase, mannosidase and 
hexosamidase were elevated at low pH. With 
respect to the central carbon metabolism, certain 
components of the Entner-Doudoroff pathway 
were reduced in abundance in low pH soils 
(gluconate dehydratase, gluconolactonase); but 
by far the most abundant and significant low pH 
indicator was the xylulose 5-phosphate 
phosphoketolase gene. This gene along with  
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another strong low pH indicator – transketolase 
– is part of the pentose phosphate pathway, a 
metabolic pathway parallel to glycolysis yielding 
pentose sugars and reducing agents. Though not 
previously considered largely with respect to soil 
functionality, this gene was generally of high 
abundance across all soils. However, novel 
position-specific isotope tracing experiments 
have recently provided functional evidence of the 
significance of the pentose phosphate pathway in 
soil C cycling (23). Its significance here in low 
pH organic soils remains to be questioned, 
although we note it is involved in fermentative 
processes and therefore would be expected to 
occur more frequently in these more anaerobic 
soils (24). Further evidence of an increase in 
fermentative processes in low pH soils was seen 
with a number of indicator genes for 
pyruvate:ferredoxin oxidoreductase, lactate 
fermentation (carbohydrate metabolism) and a 
wide range of hydrogenases (25, 26). Several 
recent studies have demonstrated that these 
hydrogenases are widespread in soil 
microorganisms (25, 27, 28), and they may also 
represent another means of consuming protons 
(29). Among these were cytoplasmic NAD-
reducing hydrogenases that may be linked to 
respiration and fermentation through their 
NADH generation capabilities (30, 31). The 
nickel transporters (HoxN/HupN/NixA family), 
identified earlier may also be linked to this 
process since nickel is required for the metal 
center of NiFe hydrogenases (32, 33). Together, 
the metagenomic data suggest that low pH soil 
communities harbor adaptive physiological 
strategies of using molecular hydrogen oxidation 
and coupling it with respiration and 
fermentation to generate energy (34).  

Whilst representing only a small 
proportion of these metagenomes, a number of 
nitrogen metabolism associated genes differed 
significantly between the soils of different pH. 
Nitrogen fixation genes were consistently strong 
indicators of low pH soils, with a number of 
genes found for molybdenum dependent 
nitrogenases (figure 5). Indeed, some of the 
nitrogenase indicators were unique in being 
universally present at low pH but entirely absent 
in the high pH soils. These findings indicate that 

microbial N input into soils either through 
symbiotic or non-symbiotic routes may be 
relatively larger in acidic soils, and there was 
evidence from the taxonomic assignments that 
the Bradyrhizobia may play a key role in this 
process (not shown). Low pH soils are 
characterized by decreased decomposition rates 
that could reduce the available N in soils 
necessitating microbial N fixation (35–37). The 
coupling of N fixation with abundant 
hydrogenases may also represents an efficient 
system for recycling the H2 produced in N2 
fixation, minimizing the loss of energy (32, 38). 
High pH soils showed significantly more genes 
linked to nitrate/nitrite ammonification, 
ammonia assimilation, and denitrification (figure 
5). The dominant pathways appeared to be 
related to ammonification (nitrate reduction to 
ammonia) and ammonia assimilation, and these 
were more abundant in high pH soils (39). 
Relatedly, a number of notable indicators of high 
pH soils were for the degradation of amino acids 
and derivatives, such as arginine, ornithine, 
polyamines, urea and creatine. Coupled with 
greater abundance of amino acid and peptide 
transporters, these observations infer an 
increased reliance on scavenging N enriched 
compounds originating from biotic inputs in high 
pH soils (20, 40, 41). Conversely, the lower 
abundance of these genes at low pH may indicate 
reduced bioavailability of these compounds 
possibly due to increased soil adsorption with 
greater cation exchange capacity (42).  

 

Conclusions  

Our study shows that despite large differences in 
the taxonomic diversity of bacteria known to 
exist across soil environmental gradients, there 
was little evidence to suggest this results in large 
differences in the diversity of functional genes. 
Rather, low and high pH soils differed in the 
relative abundance of specific functional genes, 
and these indicator genes reflected differences in 
survival and nutrient acquisition strategies 
caused through adaptation to different 
environments. For the low pH soils, there were a 
number of abundant functional genes that  
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highlight the importance of varied biochemical 
and physiological processes which we infer to be 
important adaptations to life in acidic, wet and 
oxygen limited environments. Indeed our results 
highlight the coupled action of acidity and 
anaerobiosis in mediating bacterial functional 
responses (22). In such soils a considerable 
investment of energy must be made into complex 
processes for capturing nutrients and energy, as 
well as stress responses caused by both the 
exterior environment and cellular metabolism. In 
combination, this is reflected by a greater 
abundance of cation efflux pumps, C and N 
acquiring systems such as direct fixation, and 
fermentation (figure 6). Higher pH soils 
conversely possessed more direct transporter 
mediated mechanisms for C substrate acquisition 
together with numerous indicators of organic N 
acquisition and consequent cycling (figure 6).   

In identifying specific indicators across 
the gradient, we acknowledge some limitations 
to the metagenomic approach. Firstly, the 
analyses are reliant on accurate functional 
assignment of reads, and there are recognized 
issues with respect to both bioinformatic 
annotation and the experimental assignment of 
a sequence to a single function (43). For this 
reason, we have focused our discussion on the 
more prevalent indicators represented by a 
variety of individual functional gene categories. 
An additional concern is that observed changes 
in relative gene abundance could be simply due 
to change in an unrelated gene (44). Whilst 
various methods for standardizing reads have 
been applied (such as relating abundances to 
rRNA genes, or calculating proportions within 
discrete subsystems) these approaches are not 
entirely without scrutiny. We prefer to consider 
the analyses akin to a mass balance – whereby 
the relative abundances of genes reflect the 
proportion of investment made for a given 
amount of nutrient into different proteins. The 
relevance for function at the ecosystem scale is a 
separate line of enquiry necessitating process 
measurement and assessment of biomass size, 
and we envisage metagenomic studies will 
provide more relevant functional targets.  

In conclusion, we identify that 
considerable metabolic diversity and variability 

can exist within communities of environmentally 
constrained taxonomic diversity. Our intent at 
focusing analyses at broad ends of the pH 
spectrum was inspired to encompass an 
assessment at the extremes of soil functionality. 
In doing so, we make available sequence datasets 
which may be useful to others looking to assess 
the diversity of specific functional genes for a 
wide range of soil processes across a range of 
soils.  Furthermore, we envisage that the 
indicators identified here, whilst being from an 
extreme soil contrast, may also be relevant at 
local scales for understanding more subtle 
alterations in soil function. For example, more 
“natural” soils in temperate climates typically 
store more carbon, tend towards acidity, and 
have increased moisture retention; whereas 
human agriculture forces soils to neutrality and 
depletes soil carbon and moisture. Our results 
may therefore be relevant in understanding the 
balance of energy and C storage mechanisms 
under altered land management; as well as 
permitting future design of smarter systems for 
efficient soil nutrient capture and recycling.  

 

Materials and Methods 

Characteristics of soil examined and location of 
sampling sites are shown in Table 1 and Fig. 1, 
and full details of the sampling, nucleic acid 
extraction and taxonomic analyses are provided 
in our previous manuscripts (2, 7). Eight soils 
were selected for detailed metagenomic analysis 
on the basis of soil pH alone and are 
representative of the extremes of both the soil 
environmental conditions and bacterial diversity 
range encountered across Britain. Bacterial 
communities were characterized using tagged 
amplicon sequencing as previously described (7) 
using primers 28F / 519R, and sequencing on the 
454 pyrosequencing platform through a 
commercial provider. Raw sequences from 
amplicon sequencing were analyzed using 
QIIME, using UCLUST to generate OTU’s at 
97% sequence similarity. For whole genome 
metagenomic sequencing, three µg of total DNA 
from each sample was submitted to the NERC 
Biomolecular Analyses Facility (Liverpool, UK) 
with two samples per run on the 454 platform 
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(sequencing statistics in Table 1). Resulting 
sequences from metagenomic analysis were 
annotated with the Metagenomics Rapid 
Annotation using Subsystems Technology (MG-
RAST) server version 4.0 (45). Functional 
classification was performed using the SEED 
Subsystems database with a maximum e-value 
cut-off of 10-5, minimum identity cut-off of 60% 
and minimum length of sequence alignment of 15 
nucleotides. Gene abundance tables derived from 
MG-RAST were imported into R for 
downstream analyses. Rarefaction, species 
diversity accumulation, ordinations, and 
statistical analyses were performed using the 
vegan package (46) under the R environment 
software 2.14.0 (R Development Core Team 
2011).  
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Table 1: Summary of soil and metagenomic characteristics. Functional annotations are available on 
MG-RAST under the following sample IDs. 

Sample pH Land use type Organic 
matter 

(%) 

Moisture 
(%) 

No. reads G:C 
content 

4475877 4.5 Heath 21.2 56 400965 60 
4475885 4.3 Acid grassland 70.4 82 612521 62 

4475892 4.1 Acid grassland 47.8 72 647598 61 

4475897 4.4 Coniferous woodland 88.8 90 645976 59 

4475881 8.3 Hedgerow 24.1 48 556279 63 

4475888 8.4 Improved grassland 6.4 25 621879 63 

4475891 8 Arable 5.1 21 679130 64 

4475893 8.5 Improved grassland 8.9 33 722025 63 
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Figure legends  

Figure 1: Geographically distributed soils from a range of habitats sampled at opposing ends of a 
landscape pH gradient. The sampling locations are displayed over a soil pH map of Britain derived 
from the UK Soils portal (ukso.org) 

Figure 2: Within site and across site taxonomic and functional richness represented by site based 
accumulation curves. Standard deviations are calculated from random permutations of the data, with 
red lines representing low pH and blue lines high pH. (a) Taxonomic richness determined by 16S 
rRNA sequencing is higher at high pH, both within individual sites (alpha diversity) and accumulated 
across sites (gamma diversity); (b) richness of annotated functional genes following whole genome 
sequencing is only marginally lower in low pH at individual sites, and converges across all sites. 

Figure 3: Abundances of annotated functional genes classified at the broadest level (level 1 subsystems 
classification), with total reads standardised across samples to 92442 reads.  

Figure 4: (a) Ordination of functional genes (classified at the level of function) using two dimensional 
NMDS reveals strong clustering of sites by pH irrespective of geographical sampling origin. (b) 
Network depicting strong (>0.9) positive correlations between annotated functional genes. For clarity, 
rare genes with less than 10 instances across all samples were omitted. Significant indicators are 
coloured according to pH class following indicator (indval) analyses. 

Figure 5: (a) Bar plot showing the frequency of indicator genes at the broad level 1 classification. (b) 
Circular plot displaying the identity and abundances of indicator genes for low and high pH soils. 
Nodes represent individual functional indicators, though are labelled with the more descriptive 
subsystems level 3 classification, i.e. repeated node labels indicate different functional indicators within 
the same level 3 subsystems classification. Node labels are coloured red and blue for particular genes 
that are significantly more abundant in low or high pH soils, respectively. Line plots represent total 
abundances of the indicators within the rarefied datasets, and are filled according to pH (red=low, 
blue=high). The tree depicts the hierarchical subsystems classification, with level 1 classifications 
being labelled on the internal nodes.  

Figure 6: Schematic summarising some of the main physiological differences for survival, nutrient 
acquisitions and substrate metabolism across the pH gradient, as identified from the indicator analyses. 
We note that inclusion of a gene in either schematic is based on differences in abundances and does 
not implicate the presence/absence of a particular pathway across the gradient (refer to figure 5b). 
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