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ABSTRACT 

The success of marker-based approaches for dissecting haematopoiesis in mouse and 

human is reliant on the presence of well-defined cell-surface markers specific for diverse 

progenitor populations. An inherent problem with this approach is that the presence of 

specific cell surface markers does not directly reflect the transcriptional state of a cell. Here 

we used a marker-free approach to computationally reconstruct the blood lineage tree in 

zebrafish and order cells along their differentiation trajectory, based on their global 

transcriptional differences. Within the population of transcriptionally similar stem and 

progenitor cells our analysis revealed considerable cell-to-cell differences in their probability 

to transition to another, committed state. Once fate decision was executed, the suppression 

of transcription of ribosomal genes and up-regulation of lineage specific factors coordinately 

controlled lineage differentiation. Evolutionary analysis further demonstrated that this 

haematopoietic program was highly conserved between zebrafish and higher vertebrates. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 3, 2017. ; https://doi.org/10.1101/117960doi: bioRxiv preprint 

https://doi.org/10.1101/117960


 

2 

INTRODUCTION 

Mammalian blood formation is the most intensely studied system of stem cell biology, with 

the ultimate aim to obtain a comprehensive understanding of the molecular mechanisms 

controlling fate-determining events. A single cell type, the haematopoietic stem cell (HSC), is 

responsible for generating more than 10 different blood cell types throughout the lifetime of 

an organism1. This diversity in the lineage output of HSCs is traditionally presented as a 

stepwise progression of distinct, transcriptionally homogeneous populations of cells along a 

hierarchical differentiation tree2–6. However, most of the data used to explain the molecular 

basis of lineage differentiation and commitment were derived from populations of cells 

isolated based on well-defined cell surface markers7. One drawback of this approach is that 

a limited number of markers is used simultaneously to define the blood cell identity. 

Consequently, only a subpopulation of the overall cellular pool is examined and isolated 

cells, although homogeneous for the selected markers, show considerable transcriptional 

and functional heterogeneity8–12. This led to the development of various refined sorting 

strategies in which new combinations of marker genes were considered to better “match” the 

transcriptional and functional properties of the cells of interest. 

  

The traditional model of haematopoiesis assumes a stepwise set of binary choices with early 

and irreversible segregation of lymphoid and myeloid differentiation pathways2,3. However, 

the identification of lymphoid-primed multipotent progenitors (LMPP)4, which have 

granulocytic, monocytic and lymphoid potential but low potential to form megakaryocyte and 

erythroid lineages prompted development of alternative models of haematopoiesis. More 

recently, it has been demonstrated that megakaryocyte-erythroid progenitors can progress 

directly from HSC without going through a common myeloid intermediate (CMP)13; or that 

the stem cell compartment is multipotent, while the progenitors are unipotent6. Clear 

consensus on the lineage branching map, however, is still lacking. 

  

Recent advances in single-cell transcriptional methods have made it possible to investigate 

cellular states and their transitions during differentiation, allowing elucidation of cell fate 

decision mechanisms in greater detail.  Computational ordering methods have proved to be 

particularly useful in reconstructing the differentiation process based on the transcriptional 

changes of cells at different stages of lineage progression14–16. 

  

Here we created a comprehensive atlas of single cell gene expression in adult zebrafish 

blood cells and computationally reconstructed the blood lineage tree in vivo. Conceptually, 

our approach differs from the marker based method in that the identity of the cell type/state 

is determined in an unbiased way i.e. without prior knowledge of surface markers. The 
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transcriptome of each cell was projected on the reconstructed differentiation path giving 

complete insight into the cell state transitions occurring during blood differentiation. 

Importantly, development of this strategy allowed us, for the first time, to asses 

haematopoiesis in a vertebrate species in which surface marker genes/antibodies are not 

readily available. Finally, this study provides unique insight into the regulation of 

haematopoiesis in zebrafish and also, along with complementary data from mouse and 

human, addresses the question of interspecies similarities of haematopoiesis in vertebrates. 

  

RESULTS 

Single cell RNA-Sequencing analysis of 1,422 zebrafish haematopoietic cells 

As an alternative to marker-based cellular dissection of haematopoietic hierarchy, we have 

set out to classify haematopoietic cells based on their unique transcriptional state. We 

started by combining FACS index sorting with single cell RNA-Seq to reveal the cellular 

properties and gene expression of a large number of blood cells simultaneously. To cover 

the entire differentiation continuum, kidney derived blood cells from eight different zebrafish 

transgenic reporter lines and one non-transgenic line were FACS sorted (Fig. 1a, 

Supplementary Table 1). Each blood cell was collected in a single well of a 96-well plate. At 

the same time, information about the cell size (FSC) and granularity (SSC), as well as the 

level of the fluorescence, were recorded. 

  

RNA from each cell was isolated and used to construct a single mRNA-Seq library per cell, 

which was then sequenced to a depth of around 1x106 reads per library. Following quality 

control (QC) 1,422 cells were used for further analysis and for benchmarking of different 

alignment methods (Supplementary Fig. 1, 2 and 3). Importantly, the average single-cell 

profiles showed good correlation with independent bulk samples (PCC=0.7-0.9, 

Supplementary Fig. 3e). In addition, PCA, ICA and Diffusion maps (Supplementary Fig. 4a) 

showed that cells were intermixed irrespective of the fish or the plate they originated from. 

This confirmed that the cells were separated in the analyses based on their biological 

differences rather than batch induced biases. 

 

 

HSPC can reach specific cell fates through a single path in the “state-space” 

A dynamic repertoire of gene expression in thousands of cells during differentiation could be 

used to infer a single branched differentiation trajectory.  Due to the unsynchronised nature 

of haematopoiesis each single cell exhibits a different degree of differentiation along the 

differentiation continuum. Therefore, the generated trajectory could be used to infer the 

differentiation path of a single cell. To examine the transcriptional transition undergone by 
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differentiating cells, we identified the 1,845 most highly variable genes (Supplementary Fig. 

4b) and performed expression based ordering using Monocle215. Based on global gene 

expression profiles of the cells, we identified five (1-5) distinct cell “states” (Fig. 1b). To 

ensure the robustness of this approach, we verified computationally that changes in the 

highly variable genes and Monocle2 settings only lead to minor differences in the trajectory, 

mainly around the branching points (Supplementary Fig. 5). 

  

Differential expression analysis of each state versus all other states, followed by gene 

ontology (GO) enrichment analysis (see methods), provided clear insights into the cell types 

in each state (Fig. 1c). Specifically, state 1 contains GO terms relating to antigen processing, 

including genes that are highly expressed in the monocyte lineage, such as cd74a/b17, 

ctss2.218 and mhc2dab19 (Supplementary Table 2). The functionality of state 2 relates to 

leukocyte migration, including genes specific to neutrophils (e.g. cxcr4b20, rac221 and 

wasb22,23 (Supplementary Table 2). State 3 is highly enriched for genes that are involved in 

ribosome biogenesis, including fbl (Fibrillarin) and pes (Pescadilo), both of which are critical 

for stem cell survival24,25 (Supplementary Table 2). Since there is also enrichment for HSC 

homeostasis, this state is most likely to be haematopoietic stem/progenitor cells (HSPCs). 

With GO terms that include gas exchange and erythrocyte differentiation involving the adult 

haemoglobins, ba1, ba1l and hbaa126 together with the erythroid-specific aquaporin gene, 

aqp1a26,27 (Supplementary Table 2), state 4 can be assigned to the erythroid lineage. Finally, 

state 5 has functionality that is relevant for circulatory system development and blood 

coagulation, both of which include itga2b (also known as cd41) together with its heterodimer 

itgb3b28 (Supplementary Table 2). Since these gene lists include other genes that interact 

with this platelet integrin receptor complex, as well as additional genes relevant for platelet 

function, we assigned this cell state to thrombocytes. Mature lymphocytes could not be 

detected, most likely as T-cells mature in the thymus and B-cells are comparatively rare and 

were not enriched for. 

  

To experimentally confirm our computational predictions, we sorted cells from transgenic 

lines that were the most abundant in each of the five states (Fig. 2) and stained them using 

May-Grünwald Giemsa staining. Indeed, the morphological properties of the sorted cells 

(Fig. 1c, Supplementary Fig. 6-7) matched the assigned cell types, therefore adding 

confidence to these cell type assignations. As expected, the signature genes such as marco, 

lyzC, hhex, alas2 and itga2b were within the most differentially expressed genes in 

monocytes, neutrophils, HSPC, erythrocytes and thrombocytes respectively (Fig. 1d). 
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Taken together, the reconstructed branched tree revealed a gradual transition of myeloid 

cells from immature to more differentiated cells. Within this tree, HSPCs assumed a new 

committed state through a single path, suggesting that during steady state haematopoiesis, 

HSPCs can reach a specific cell fate through only one type of intermediate progenitor. 

 

Cells within distinct states differ in their repopulation potential 

Functional in vivo transplantation assays have been traditionally used to assess the 

differentiation potential of different haematopoietic populations. To examine the repopulation 

and lineage potential of the cells within different states we sorted cells from 

Tg(mpx:EGFP)29, Tg(gata1:EGFP)30 and Tg(runx1:mCherry)31 fish to enrich for neutrophil, 

erythroid and HSPC cell state respectively. We next injected 500 donor cells into sub-lethally 

irradiated, immunocompromised rag2E450fs-/- zebrafish32 and assessed their engraftment at 

one day, four- and fourteen weeks post injection (PI) (Fig. 3a). 

  

Analysis of kidney repopulation revealed that mpx+, gata1+ and runx1+ cells were able to 

home to the kidney one day PI (Fig. 3b). However, only progeny of runx1+ cells were 

detectable at four weeks PI in all examined recipients (Fig. 3b). No progeny of mpx+ and 

gata1+ cells were evident at the same time point. To examine the lineage output of runx1+ 

cells following transplantation we sorted engrafted runx1+ kidney cells four and 14 weeks PI 

and processed them for scRNA-Seq analysis. The scRNA-Seq data from 302 engrafted 

runx1+ cells projected onto a Monocle trajectory revealed the multilineage potential of donor 

runx1 cells at both four and fourteen weeks PI (Fig. 3c). These data strongly suggested  that 

at least some of these cells were HSCs. 

  

According to transplantation assays, cytospins and transcriptional profiling of cells prior and 

following transplantation, cells located in the branches of the Monocle tree show progression 

of lineage restricted progenitors to mature blood cells with no repopulation potential. 

However, cells in the middle of the Monocle tree (state 3) are a mixture of progenitors and 

HSCs with long term multilineage potential. 

 

Resolving the heterogeneity within the HSPC branch of the lineage tree 

To increase the number of HSCs in our data set and the resolution in the HSPC branch of 

the Monocle trajectory, we added the 302 transplanted runx1+ cells to our 1,422 previously 

sequenced cells. We re-analysed the whole data set (1,724 cells in total), and generated a 

new Monocle trajectory (Fig. 4a).  
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Next, we considered the frequency of potential HSCs in this data set. To do so, we 

computed the stemness Srel index33, using the Kullback–Leibler distance of the predicted 

probabilities compared to the expected one, for each of the four different branches (Fig. 4a 

and b). The lower the “stemness” factor, the higher the confidence that a particular cell is a 

stem cell. Using the threshold of 3 sigma over the mean stemness  value (0.05), our analysis 

predicted that 35 out of 214 cells in the middle part of the tree are potential HSCs. The 

majority of cells that were identified as stem cells originated from the cd41 (13 cells) and 

runx1 (14 cells) transgenic lines (Fig. 4c). It should be noted that both these lines have been 

previously identified to contain transplantable HSCs31,34, lending further confidence to our 

computational prediction. This suggests that, although both stem and progenitor cells are 

intermixed on the trajectory due to their overall similar transcriptomes, their lineage 

potentials (and thus stemness scores) are distinct. 

  

Suppression of transcription of ribosomal genes and up-regulation of lineage specific 

factors coordinately control lineage differentiation 

Differentiation generally involves specific regulated changes in gene expression. To 

understand the dynamics of transcriptional changes during the differentiation of myeloid 

cells, we examined trends in gene expression in each of the four branches (Fig. 5). 

Dynamically expressed genes within each of the branches showed two main trends (see 

methods). These included genes gradually upregulated through pseudotime and genes 

gradually downregulated (Fig. 5a-b). 

  

Genes upregulated in pseudotime included well known genes related to the specific function 

of the relevant cell type (Fig. 5b). The majority of cells characterised as erythroid dynamically 

expressed genes such as alas2, aqp1a.1, ba1, ba1l, cahz and hbaa1. Similarly, cells in the 

monocyte branch dynamically expressed genes like c1qa, cd74a, ifngr1, marco, myod1 and 

spi1a; among other genes the cebpb, cfl1, cxcr4b, illr4, mpx and ncf1 were upregulated in 

pseudotime in the neutrophil branch and thrombocytes dynamically expressed fn1b, gp1bb, 

itga2b, mpl, pbx1a and thbs1b. A complete list of all genes that were dynamically expressed 

across pseudotime can be found in Supplementary Table 2.  

 

Interestingly, genes downregulated through pseudotime (Fig. 5b) in each of the four  

branches were consistently enriched for genes involved in ribosome biosynthesis, as 

revealed by GO terms “biosynthetic process”, “ribosome” and “translation” (Supplementary 

Table 2). This is an interesting finding, because previous studies suggested that HSCs have 

significantly lower rates of protein synthesis than other haematopoietic cells35. Therefore, we 
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went on to investigate the expression of ribosomal proteins in pseudotime in greater depth 

(Fig. 5c). 

  

Out of 168 genes annotated as “ribosomal proteins” on Ensembl BioMart database 

(Supplementary Table 2), 89 genes had low, random expression in our dataset (Fig. 5c). 

These genes encoded mainly mitochondrial ribosomal proteins (Fig. 5c). In contrast, 79 

genes that showed high expression across all cells encoded cytoplasmic ribosomal proteins 

and were downregulated in pseudotime in all four branches (Fig 5c). Importantly, the 

observed downregulation of ribosomal genes in pseudotime was not correlated with the cell 

cycle state of the cell, apart from a weak correlation in the erythrocytic lineage 

(Supplementary Fig. 8). These findings further indicate that there is a common 

developmental event in which suppression of transcription of ribosomal genes and up-

regulation of lineage specific factors direct lineage commitment and terminal differentiation. 

 

A previous study showed that the rate of protein synthesis  in murine HSCs is considerably 

lower than that of progenitor populations (i.e. CMPs, GMPs and MEPs)35. This is not in line 

with our transcriptional analysis, which showed a decrease in ribosomal gene expression 

during differentiation. In order to address this discrepancy, we considered the correlation in 

ribosomal gene expression between human phenotypic HSCs (CD34+ CD38- CD45RA- 

CD90+ CD49f+) and the different progenitor fractions (for details please see Methods). We 

used a publicly available scRNA-Seq data set from bone marrow derived HSPCs and 

analysed the expression of genes that encode cytosolic ribosomal proteins. After calculating 

average log10 expression profiles for each of the six different cell types (HSC, MPP, MLP, 

CMP, GMP and MEP), we calculated the pairwise Pearson correlation. The analysis 

revealed very strong correlations (0.92-0.99) between the the ribosomal gene expression in 

HSCs and all five progenitor populations (Supplementary Fig. 9). Therefore, even though 

HSCs have 10-fold higher de novo protein synthesis35, their level of expression of genes that 

encode ribosomal proteins is similar (highly correlated) to that of the progenitor populations. 

Our results described above suggested that there is a poor correlation between the level of 

transcription of ribosomal genes and de novo protein synthesis. As this was observed in both 

human and zebrafish cells, it is likely that the lack of correlation has been evolutionarily 

conserved. 

 

Zebrafish have a highly conserved HSPC transcriptome compared to mouse and 

human 

Zebrafish are an important model system in biomedical research and has been extensively 

used for the study of haematopoiesis. Although it has been demonstrated that many 
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transcription factors and signaling molecules in haematopoiesis are well conserved between 

zebrafish and mammals36, comparative analysis of the whole transcriptome was lacking. 

  

In order to explore the evolution of blood cell type specific genes, we performed 

conservation analysis between zebrafish and other vertebrate species (see Methods). For 

this analysis, we enriched our initial dataset with 81 natural killer (NK) and 109 T-cells 

derived from the spleen of two adult zebrafish37. Our analysis revealed particularly high 

conservation of the HSPC transcriptome. For example, 90% of HSPC specific genes in 

zebrafish had an ortholog in human and mouse compared to 70-80% of erythrocyte-, 

monocyte-, neutrophil- and thrombocyte-specific genes (Fig. 6a). The lowest conservation 

was observed for T-cells (59%) and NK cells (68%), possibly reflecting their adaptation to  

fish specific pathogens and virulence factors (Fig. 6a). 

  

Gene duplication is the major process of gene divergence during the molecular evolution of 

species38. We therefore analysed duplications that occurred exclusively before (referenced 

hereafter as pre-speciation genes) or after speciation (referenced hereafter as post-

speciation genes) of the last common ancestor between fish (Actinopterygii) and mammals 

(Sarcopterygii)37,39, (see methods section). Out of 7,424 paralogs that were expressed in our 

data set (see Methods) around 79% were duplicated pre- and 21% were duplicated post-

speciation (Fig. 6b). Following ray-finned specific duplication, the paralogs were more likely 

to functionally diverge (88%) and show expression in different cell types than to remain 

expressed in the same cell type (conserved expression), 12% (Fig. 6b and c). Interestingly, 

HSPCs had the highest percentage of paralogs (19%) with a conserved expression pattern 

(Fig. 6c). This number was lowest for duplicated genes in innate (0% for the neutrophils and 

6% in monocytes) and adaptive immune cells (8% for the NK and 6% for the T-cells). 

Altogether our findings further underline the relevance of the zebrafish model system in 

advancing our understanding of the genetic regulation of haematopoiesis in both normal and 

pathological states. 

  

BASiCz - Blood Atlas of Single Cells in zebrafish 

The characterisation of mouse and human haematopoietic cells is dependent on the 

presence of cell-surface markers and availability of antibodies specific for diverse progenitor 

populations. The antibodies for these cell surface markers are thus used to isolate relatively 

homogeneous cell populations by flow cytometry. Transcriptional profiling of isolated cell 

populations40–42 and more recently single cells43, have further allowed genome-wide 

identification of cell-type specific genes. However, beyond mouse and human, less is known 

about the transcriptome of blood cell types, mainly due to the lack of suitable antibodies. 
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To overcome this knowledge gap, we have generated a user-friendly cloud repository, 

BASiCz (Blood Atlas of Single Cells in zebrafish) for interactive exploration and visualisation 

of 31,953 zebrafish genes in 1,422 haematopoietic cells across five different cell types. The 

generated database (http://www.sanger.ac.uk/science/tools/basicz) allows easy access and 

retrieval of sequencing data from zebrafish blood cells. 

  

DISCUSSION 

Cell differentiation during normal blood formation is considered to be an irreversible process 

with a clear directionality of progression from HSCs to more than 10 different blood cell 

types. It is, however, widely debated to what extent the process is gradual or direct6,13 on the 

cellular level; and in the case of the gradual model, what the intermediates of the 

increasingly restricted differentiation output of progenitor cells are2–5,33. Although these 

models are very different in the way that they describe lineage progression, the identity of 

haematopoietic cells is determined based on the cell surface markers and the progression of 

cells during differentiation is defined on a cellular rather than transcriptional level. 

  

Here we used a marker free approach to order cells along their differentiation trajectory 

based on the transcriptional changes detected in the single cell RNA-Seq dataset. Our 

analysis showed a gradual transition of cells on a global transcriptional level from multipotent 

to lineage restricted. The computationally reconstructed tree further revealed that 

differentiating cells moved along a single path in the “state-space”. This path included an 

early split of cells towards thrombocyte-erythrocyte and monocyte-neutrophil trajectories. 

However, cells in the “middle” of the tree (HSPC state) showed considerable cell-to-cell 

variability in their probability to transition to any of the four cell types. This suggested that 

although global transcriptional changes before and after the branching point were 

continuous, the probability of a cell transitioning to any of the four committed states was 

determined only by a subset of highly relevant genes. Therefore, cells that were 

transcriptionally similar overall could have a high probability of differentiation to distinct cell 

types. 

  

Interestingly, once the cell fate decision was executed, suppression of transcription of 

ribosomal genes and up-regulation of genes which are relevant for the function of each cell 

type coordinately controlled lineage differentiation. Of all genes that were annotated as 

“ribosomal proteins” on the Ensembl BioMart database, only those that encoded cytoplasmic 

ribosomal proteins showed dynamic expression in pseudotime in our dataset. Importantly, 

this change was not linked to the expression of cell cycle specific genes, excluding 
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proliferation rates as a potential reason for these data. These findings are not in line with 

previous studies, which suggested that HSCs have significantly lower rates of protein 

synthesis compared to other haematopoietic cells. It should be noted, however, that in this 

study we measured the transcription of genes that encoded ribosomal proteins rather than 

de novo protein synthesis like in35. Furthermore, our analysis of data obtained from human 

HSCs and progenitors revealed that ribosomal gene expression levels are highly similar 

between the different progenitor types and stem cells, despite their significantly different 

protein synthesis rates35. Thus, one plausible explanation for the observed discrepancies is 

a low correlation between transcription of the ribosomal genes and protein production and 

that these two processes are to some extent uncoupled during blood differentiation.  

  

Our comparative analysis between zebrafish, mouse and human across seven different 

haematopoietic cell types revealed a high overall conservation of blood cell type specific 

genes. Together with BASiCz, a user-friendly cloud repository, we generated a 

comprehensive atlas of single-cell gene expression in adult zebrafish blood. Data-driven 

classification of cell types provided high-resolution transcriptional maps of cellular states 

during differentiation. This allowed us to define the haematopoietic lineage branching map, 

for the first time, in zebrafish in vivo. 

 

METHODS 

Zebrafish Strains and Maintenance 

The maintenance of wild-type (Tubingen Long Fin) and transgenic zebrafish lines29–31,44–48 

(Supplementary Table 1) was performed in accordance with EU regulations on laboratory 

animals, as previously described49. 

  

Single-Cell Sorting 

A single kidney from heterozygote transgenic or wild-type fish was dissected and placed in 

ice cold PBS/5% fetal bovine serum. At the same time, testes were dissected from the same 

fish. Single cell suspensions were generated by first passing through a 40 µm strainer using 

the plunger of a 1 ml syringe as a pestle. These were then passed through a 20 µm strainer 

before adding 4',6-diamidino-2-phenylindole (DAPI, Beckman Coulter, cat no B30437) for 

mCherry/dsRed2, or propidium iodide (PI, Sigma cat no P4864) for GFP/EGFP. Individual 

cells were index sorted into wells of a 96 well plate using a BD Influx Index Sorter. Kidneys 

from a non-transgenic line were used as a control for gating16. 
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Whole Transcriptome Amplification 

The Smart-seq2 protocol50,51 was used for whole transcriptome amplification and library 

preparation as described previously16 using 92 External RNA Controls Consortium (ERCC) 

spike-ins52 at a final dilution of 1:10. These were sequenced on the Illumina Hi-Seq2500 or 

Hi-Seq4000 platforms. 

  

Cytology 

Sorted transgene-positive or gated wild type cells were concentrated by cytocentrifugation at 

350 rpm for 5 minutes onto SuperFrostPlus slides using a Shandon Cytospin 3 

cytocentrifuge. Slides were fixed for 3 minutes in -20°C methanol and stained with May-

Grünwald Giemsa (Sigma) as described elsewhere53. Images were captured as described 

elsewhere49. 

  

Transplantation experiments 

Adult rag2E450fs-/- mutant fish32 were irradiated in an IBL 437 irradiator using a 10 Gy dose 

from a Caesium 137 source. After 1-2 days of recovery, donor cells were prepared from 

kidneys of transgenic fish as described above. Using the same gating strategy as employed 

for the single cell sorting, fluorescent cells were collected by flow cytometry into microtubes 

containing 20 µl ice cold PBS/5% fetal bovine serum. Using a volume of 10 µl, 500 cells 

were transplanted into the anaesthetised (0.02% tricaine, Sigma A5040) rag2E450fs-/- 

recipients via intraperitoneal injection. As described above, engraftment into the whole 

kidney marrow was analysed by FACS at one day, four- and fourteen weeks post 

transplantation. The engrafted cells at four and fourteen weeks post transplantation were 

single cell index sorted and processed for single cell RNA-Seq as described above. 

 

Benchmarking single-cell RNA sequencing methods 

One of the most important components that contributes to errors during the alignment and 

quantification of single-cell RNA-Sequencing data is the presence of multi-mapped (or ambiguous) 

reads54. Currently, there are many different bioinformatic strategies that can be used to align (e.g. 

STAR55, Tophat56, Bowtie57, Salmon58, Sailfish59, Kallisto60 etc.) and quantify scRNA-seq data (e.g. 

htseq61, cufflinks62, Salmon58, Sailfish59, Kallisto).  

 

However, independent of the method applied, one of two possible strategies can be used to align 

reads, namely unique and multi-mapped. A comprehensive comparative analysis across many 

different scRNA-seq approaches has recently been published. It suggests that both setups (i.e. 

single and multi-mapped reads) are able to cope with ambiguous reads effectively54.  
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In order to assess the impact of using a unique versus multi-mapped reads alignment strategy on 

our data set, we re-analysed our raw data using STAR55 in uniquely aligned reads mode. 

Salmon58 was used next to quantify the transcripts.  The Pearson correlation of the average gene 

expressions between Salmon and Sailfish at single cell level ranged from 0.81 to 0.91, suggesting 

a strong correlation between alignments that included uniquely-mapped reads and those that did 

not (Supplementary Fig. 1a). As expected, the number of detected genes (TPM > 1) was lower for 

Salmon compared to Sailfish (Supplementary Fig. 1b). However, the genes’ variability distribution 

(Coefficient of Variation CV) across single cells for each plate was comparable between the two 

methods (Supplementary Fig. 1c). 

 

Extended analysis of the reconstructed lineage tree in zebrafish 

To further investigate how robust our computational reconstruction of the lineage tree is, we 

applied different cutoffs to define variable genes. We next reconstructed the lineage tree using 

Monocle215. Specifically, the highly variable genes were calculated using: 5% biological variation, 

25%- (default analysis) and 95%  biological variation (three components). We then analysed the 

overall structure of the tree and the percentage of the misclassified cells as compared to the 

default setting that we used in the initial submission. 

 

Single cell RNAseq processing and Quality Control 

Reads were aligned to the zebrafish reference genome (Ensemble BioMart version 83) 

combined with the EGFP, mCherry, tdTomato and ERCC spike-ins sequences. 

Quantification was performed using Sailfish59 version 0.9.0 with the default parameters using 

paired-end mode (parameter –l IU). 

  

Transcript Per Million (TPM) values reported by Sailfish were used for the quality control 

(QC) of the samples. Wells with fewer than 1,000 expressed genes (TPM>1), or more than 

60% of ERCC or Mitochondrial content were initially annotated as poor quality cells 

(Supplementary Fig. 1). However, due to the lower number of expressed genes in erythroid 

cells, we further investigated the expression levels of adult globin genes, ba1 and hbaa126, in 

all erythroid cells. Based on comparison with the empty wells, samples that expressed both 

ba1 (> 40,000 TPM) and hbaa1 (> 9000 TPM) were considered to pass QC (Supplementary 

Fig. 2). Therefore, a total of 1,422 single cells were selected for further analysis. 

  

Average single-cell profiles compared to corresponding bulk wells revealed strong 

correlations (Pearson’s Correlation Coefficient) ranging from 0.7 to 0.9 as illustrated in 
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Supplementary Fig. 2, suggesting that the single cell expression profiles were effectively 

quantified. 

  

For each of the 1,422 single cells, both gene and ERCC counts reported by Sailfish, were 

transformed into normalised counts per million (CPM). To do this, we divided the number of 

counts for each gene by the total number of counts (i.e. sum of all counts per cell) in each 

cell followed by multiplication of the resulting number by 1,000,000. The library size and cell-

specific biases were removed (e.g. differences during amplification, ERCC concentration, 

batch effects etc.) using the scran R package (version 1.3.0)63. Out of 31,953 genes, we 

retained those that were expressed in at least 1% of all cells (CPM>1). Thus, a total of 

20,960 genes were used for further analysis. 

  

Technical noise fit and identification of highly variable genes 

To distinguish biological variability from the technical noise in our single-cell experiments we 

inferred the most highly variable genes using ERCCs as spike-in in all 1,422 blood cells64. 

We used the scLVM65 R package (version 0.99.2) to identify the 1,845 most highly variable 

genes (Supplementary Fig. 3). 

  

Principal Component Analysis (pcaMethods66 (version 1.64.0)), Independent Component 

Analysis (FastICA67 (version 1.2) and Diffusion Maps (destiny68 (version 1.3.4)), were used 

to verify that all cells were intermixed in the reconstructed 3D component space based on 

their transcriptional properties and not based on the fish or a plate they originated from.   

  

Pseudotime ordering of zebrafish haematopoietic cell, differential expression analysis 

and the analysis of dynamically expressed genes 

The set of 1,845 most highly variable genes was used to order the 1,422 single cells along a 

trajectory using the Monocle215 R package (version 1.99.0). The “tobit” expression family 

and “DDRTree” reduction method were used with the default parameters. As illustrated in 

Fig. 1, cells ordered in the pseudotime created five distinct states. To assign identity to each 

of the five states, we performed differential expression (DE) analysis between each state 

versus the remaining four using the “differentialGeneTest” Monocle2 function. We modeled 

expression profiles of each state using a Tobit family generalized linear model (GLM) as 

described previously15. For each state, statistically significant genes that scored P < 0.01, q 

< 0.1 (False Discovery Rate) and were expressed in more than 50% of the cells were further 

used to perform Gene Ontology (GO) analysis. 
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To enrich for HSPCs, we added 302 transplanted runx1+ cells to our previous data set for a 

total of 1,724 cells. We re-analysed the data the same way as described above and used the 

1,871 most variable genes for the calculation of a new Monocle trajectory.  

 

Finally, we identified genes that change as a function of pseudotime across each of the four 

branches by setting the “fullModelFormulaStr” parameter equal to "~sm.ns(Pseudotime)". 

Genes whose expression changed dynamically in pseudotime were selected using the same 

statistical criteria as described for DE genes. For each branch we clustered dynamically 

expressed genes using the “plot_pseudotime_heatmap” function with the default 

parameters. The number of clusters (trends) in each branch was determined by its silhouette 

plot score (cluster R package version 2.0.5)69. To generate the trend lines across different 

states (see Fig. 3b), we used the average expression pattern of the dynamically expressed 

genes that follow the same trend across pseudotime and fit them using ggplot270 R package 

(version 2.2.1) stat_smooth() parameter. We used the Gaussian linear model and formula 

the “y ~ poly(x,2)” at 0.95 of standard error (gray area of the plot). 

  

For the analysis of ribosomal genes, we used the Ensembl BioMart version 83 and selected 

all genes annotated with the term “ribosomal protein”. We performed clustering using the 

pheatmap function (R pheatmap package version 1.0.8)71 using Euclidean distance and 

ward.D2 linkage. 

 

To investigate the correlation between ribosomal and cell cycle gene expression, we 

identified a total of 342 zebrafish genes annotated as “GO:0007049”  i.e. “cell cycle” using 

BioMart (version 83). Next, we performed clustering between a subset of the cell cycle 

genes expressed in more than 10% of cells in each of the branches of the Monocle trajectory 

and dynamically expressed ribosomal genes using the tools described above. 

 

Analysis of human cells 

In order to show the generalisability of our findings from zebrafish to humans, we used a 

publicly available human single-cell RNA-Seq data set33 (deposited in the Gene Expression 

Omnibus (GEO) under accession code GSE75478. This set contained data from 1,344 

single cells, which we aligned to the latest human reference genome (GRCh38p10 version 

88) and quantified gene expression using Sailfish (version : 0.9.0). Following quality control, 

we were left with 891 single cells, which included HSCs and various progenitor fractions 

(Supplementary Table 3). We next identified 341 genes that were annotated as “Ribosomal” 

using the BioMart database (GRCh38p10 version 88) and were expressed in more than 1% 

of all cells. Of these, 250 were expressed at a very low level in this data set (add cut off to 
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define this). GO term enrichment analysis revealed that these genes encode mitochondrial 

ribosomes. In contrast, 91 genes that were expressed at a high level, encoded cytosolic 

ribosomal genes, as suggested by GO term enrichment analysis. Since our initial analysis 

using  zebrafish cells focused only on genes that encode cytosolic ribosomes, we focused 

on the same population of genes in the human data set. Finally, we calculated the pairwise 

Pearson correlation between the cytosolic ribosomal genes for each progenitor population. 

 

Gene Ontology (GO) analysis 

DE genes were ranked for each of the five states based on the mean log10 counts. Genes 

with average lower than 2 and those expressed in more than one state were not included in 

the GO analysis. GO analysis was performed using the gProfileR72 package (Version 0.6.1) 

using the gprofiler command with the following parameters: organism = ‘drerio’, hier_filtering 

=’moderate’, correction_method=’fdr’ and max_p_value = 0.05. 

  

Conservation analysis of the cell type specific genes in zebrafish 

In order to perform the conservation analysis, we identified the orthologous genes (BioMart 

Ensembl Version 83) between the zebrafish and other vertebrate species, including cave 

fish, tilapia, amazon molly, tetraodon, fugu, cod, human, chimpanzee, mouse, rat, dolphin, 

wallaby, chicken, lizard, Xenopus, coelacanth and lamprey. For this analysis, we enriched 

our initial dataset with 81 natural killer (NK) and 109 T-cells derived from the spleen of two 

adult zebrafish37. Following the same computational approach as we did with the initial 

dataset, we re-calculated the DE genes for each of the seven different clusters. We only 

considered “protein_coding” genes that were expressed in more than 50% of cells within 

each cluster and scored more than mean log10 counts. This resulted in 41 erythrocyte-, 113 

monocyte-, 102 neutrophil-, 212 thrombocyte-, 60 HSPC-, 34 NK- and 34 T- specific genes 

that were used for the further analysis. For the case of the non-DE genes, we included only 

“protein_coding” annotated genes that were expressed in more than 1% of all cells (CPM>1) 

and with average gene expression higher than the global mean of 0.10. The final list of the 

non-DE genes included 8,127 genes. 

  

Analysis of duplicated genes in zebrafish 

In order to analyse duplicated genes37, we first identified all zebrafish “protein_coding” 

paralog genes listed in Ensembl (BioMart Ensembl Version 83) and split them into two 

groups: 1) 17,158 pre ray-finned fish duplicated genes, including Euteleostomi, Bilateria, 

Chordata, Vertebrata and Opisthokonta parent taxa, and 2) 11,806 post ray-finned fish 

duplicated genes, including Neopterygii, Otophysa, Clupeocephala and Danio rerio children 

taxa. We next removed duplicated genes that were found in common between the two 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 3, 2017. ; https://doi.org/10.1101/117960doi: bioRxiv preprint 

https://doi.org/10.1101/117960


 

16 

groups. This resulted in 8,601 pre-, and 3,249 post-ray-finned fish genes that we used in 

further analysis. 

  

For the analysis of the expression pattern divergence, we focused on genes that were 

expressed in our data set. We analyzed expression pattern of all paralogs of DE genes (i.e. 

erythrocytes, monocytes, neutrophils, thrombocytes, HSPCs, NK- and T cells) that were 

expressed in more than 10% of cell in each of the branches (cell states). The expression 

pattern was considered to be conserved if duplicated genes and their annotated paralogs 

were all expressed in the same cell type. However, if at least one of the paralogs was 

expressed in a different cell type, this was considered as an example of potential functional 

divergence. 

  

Deep Neural Network (DNN) Classifier 

To generate the DNN model we used Keras73, a Python based Deep Learning Library for 

Theano74 and Tensorflow75. We worked with the Keras functional API, which allows the 

definition of complex systems, such as multi-output models. 

 

The DNN was used to predict the probabilities of a specific Gene Expression profile to be 

classified into one of the four differentiated cell types. We used the entire set of genes for all 

differentiated cells in the branches (1,724 cells in total) i.e. erythrocytes, thrombocytes, 

neutrophils and monocytes. The input was therefore formed by 20,960 nodes (genes) which 

were normalized using z-values or standard scores. For the hyper-parametric fine tuning of 

the DNN, we generated and evaluated models with different number of hidden layers, hidden 

nodes, network initializations, regularizations and batch normalization. The final hyper 

parameters were chosen according to the optimal performance and convergence of the 

accuracy and loss values. 

  

The model was comprised of 2 hidden layers with 100 and 50 nodes, using a weight decay 

regularisation with a  λ-value of 0.001, and Gaussian Dropout of 0.8 between them. The 

chosen activation functions were ‘relu’ for the hidden layers, and ‘softmax’ for the output. 

The validation was performed over 20% of the initial dataset, using ‘categorical cross-

entropy’ loss. The average classification accuracy after convergence was 0.998 ± 0.002, and 

cross entropy loss of 0.03± 0.004, validation accuracy of 0.964± 0.003 and cross entropy 

validation loss 0.15± 0.008. 
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The Neural Network output returns the probability of a Gene Expression input vector (cell) to 

be classified as each one of the differentiated cell types. We can use these probabilities and 

their distributions to generate a value that determines the “Stemness” of the cells according 

to the NN output. The “Stemness value” is a measure of similarity between the input vector 

and the average distributions for each output class, which can be then used to indicate the  

cell differentiation state of the input. 

  

This measure has been previously33 used for similar purposes. It is based on the Kullback-

Leibler distance between probabilities, and the “Stemness value” (!") of cell “i” is determined 

by the equation: 

!" = $"%&'(
$"%
$%

)*

%+,
 

Where -. is the number of classes, and $"% is the probability of cell i to belong to class j. 

  

Cloud Repository 

We have generated a cloud repository to enable research community to access single cell 

gene expression profiles of 1,422 zebrafish blood cells across all the 31,953 zebrafish 

genes. The implementation of the cloud service was performed using shiny76 (version 

0.14.2) https://shiny.rstudio.com, and plotly77 (version 4.5.6) https://plot.ly R packages. 

  

Statistics and reproducibility of experiments 

Statistical tests were carried out using R software packages as indicated in the figure 

legends and the Methods section. No statistical method was used to predetermine sample 

sizes. Pearson Correlation Coefficient was used to compare the average profiles of single 

cells against the bulk. Significance of Differentially Expressed genes was calculated with an 

approximate likelihood ratio test (Monocle2 differentialGeneTest() function) of the full model 

“~state” cells against the reduced model “~1”. For the Dynamically expressed genes, the full 

model “~sm.ns(Pseudotime)” was tested against the reduced model of no pseudotime 

dependence. In both cases, P values were normalised using the the Benjamini-Hochberg 

FDR (False Discovery Rate), selecting statistically significant genes with P < 0.01 and FDR 

< 0.1. For the GO analysis, the Hypergeometric Test (equivalent to the one tailed Fisher’s 

exact test) was used to evaluate the significant terms, while P values were corrected for 

multiple testing using the FDR approach, with FDR < 0.05 considered statistically significant, 

using the gProfiler R72 package. 
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DATA AVAILABILITY 

Raw data can be found under the accession number E-MTAB-5530 on ArrayExpress 

(https://www.ebi.ac.uk/arrayexpress/). Additional Zebrafish related RNAseq data that were 

used in the present study can be found in E-MTAB-4617, E-MTAB-3947 while Human 

related data were collected from the Gene Expression Omnibus (GEO https://www.ncbi.nlm. 

nih.gov/geo/) under accession code GSE75478.  
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FIGURE LEGENDS 

Figure 1. Pseudotime ordering reveals a gradual transition of cells from immature to 

more differentiated within the myeloid branch 

a) Experimental strategy for sorting single cells from transgenic zebrafish lines. Cells were 

harvested from a single kidney of each line and sorted for expression of the fluorescent 

transgene. Index sorting was used to dispense single cells into a 96 well plate and these 

were subsequently processed for RNA-seq analyses. b) Five cell states were predicted 

using the Monocle2 algorithm for temporal analyses of single cell transcriptomes. c) Analysis 

of genes that are differentially expressed across the five states (given the same colour code 

used in b) reveals GO terms (inner circle) that are highly pertinent to specific cell types. The 

outer circle shows examples of May-Grünwald Giemsa stained cells from kidneys of 

transgenic lines that largely label each particular cell type. d) Jitter plots showing the 

expression (y axis) of differentially expressed marker genes in each cell type (x axis). Each 

dot in the jitter plot shows the expression of the gene log10 (counts + 1) in each cell. 

  

Figure 2. The distribution of cells from different transgenic lines modelled by Monocle 

a) The trajectories of cell states predicted by Monocle are shown in grey for each transgenic 

line used, with the associated cell types labelled in blue. The percentage of cells from each 

transgenic line contributing to each state is given next to the relevant trajectory. b) Pie charts 

showing the contribution of transgenic lines to each cell type. The colour code relates to the 

colours given in the headers for each transgenic line used in (a). 

  

Figure 3. Cells within distinct states have different repopulation potentials 

a) Experimental strategy for the adult transplantation experiment. Kidneys were dissected 

from transgenic donor fish and sorted for cells expressing the fluorescent transgene. Positive 

cells were collected and injected into sub-lethally irradiated rag2E450fs-/- fish. b) Assessment 
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for engraftment was made one day, four- and 14 weeks post transplantation using flow 

cytometry. Successfully engrafted fluorescent donor cells were isolated at four weeks PI by 

index sorting single cells into a microtitre plate for subsequent RNA-seq analyses. c) 

Distribution of runx1+ cells, from non-transplanted (left) and transplanted fish at 4 (middle) 

and 14 wpt (right), modelled by Monocle. 

 

Figure 4. Transcriptionally similar cells display different probabilities of being stem 

cells. a) Cells predicted to be stem cells in the middle part of the lineage tree according to 

their stemness index. The insert shows the new Monocle tree including transplanted cells 

(1,724 single cells and 1,871 highly variable genes). b) Distribution of stemness scores in 

different branches of the tree showing the presence of potential HSCs exclusively in the 

HSPC branch. c) Contribution of different transgenic lines to predicted stem cells. 

 

Figure 5. Lineage differentiation is defined by two main trends in gene expression 

a) Heatmap of genes whose expression changed dynamically during pseudotime in each of 

the four branches. b) Graph showing the average expression pattern of the dynamically 

expressed genes that follow the same trend across pseudotime. For each of the cell states, 

one gene is presented that follows one of the two main trends. Standard error is shown as a 

gray area around the trend lines. c) Heatmap of expression of 168 genes annotated as 

“ribosomal proteins” genes in pseudotime in each of the four branches. 

  

Figure 6. Conservation analysis of zebrafish genes differentially expressed in the 

main blood cell types. 

a) Percentage of zebrafish protein-coding genes (specific for distinct blood cell types, as well 

as non-differentially expressed) with orthologs in other vertebrate species. b) The total 

number of paralogs duplicated exclusively pre- (green) and post ray-finned speciation (red).  

The numbers 1-7 mark the number of cell types (erythrocytes, monocytes, neutrophils, 

thrombocytes, HSPCs, T-cells and NK cells) in which the duplicated genes are expressed. c) 

The percentage of conserved vs diverged genes duplicated exclusively post speciation (fish 

specific genes). 

  

Supplementary Figure 1. Comparison of the difference between unique and multi-

mapped alignment methods on our scRNA-Seq data set. a) Pearson correlation of the 

average gene expressions between Salmon and Sailfish. Gene quantification accuracy was 

assessed by selecting for each of the 21 sequenced plates the average log10 (TPM+1) gene 

expressions. b) Violin plots of the number of detected genes (TPM>1) at single-cell level. 

Salmon (unique mapped reads) and Sailfish (multi-mapped reads) were compared for each 
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of the 21 plates. c) Distribution of the Coefficient of Variation. Comparison of  

log10(CV+0.001) gene expression (TPMs) values at a single-cell level between Salmon 

(unique mapped reads) and Sailfish (multi-mapped reads), across 21 plates. 

 

Supplementary Figure 2. Quality control of scRNA-seq data 

Plots for the number of input reads, detected genes, %ERCCs and % mitochondrial (MT) 

genes on the y-axis in columns versus these four parameters on the x-axis in rows. The key 

in the bottom right hand plot indicates cells that have passed the quality control (% ERCCs 

<60%, mt <60%, at least 1000 detected genes), those that have failed and controls (bulk 

cells, empty wells and testes). 

  

Supplementary Figure 3. Quality control of scRNA-seq data in the erythroid lineage 

and comparison of bulk versus single cell transcriptomes 

The expression of the erythroid specific genes ba1 and hbaa1 were taken into account for 

quality control. a) and (c) plots show that many of the cells that initially failed QC (see key in 

a) have high expression of ba1 (a) and hbaa1 (c). These cells were therefore reassessed 

and those with >40000 ba1 TPM (B) or >9000 hbaa1 TPM (d) were included in the dataset. 

e) Correlation of average single cell transcriptome profiles and corresponding bulk wells for 

each fish line. The Pearson correlation coefficient shown in each plot indicates a strong 

correlation (0.7-0.9) between single and bulk transcriptome profiles. 

 

Supplementary Figure 4. Representation of single cell transcriptomes in three 

dimensional component space and the identification of the most highly variable 

genes 

a) The 1,845 most highly variable genes were used to generate a diffusion map, 

independent component analyses and principal component analyses. The approximate 

positions of the cell states identified by Monocle 2 (Figure 1) are shown in the insert. Cells 

were derived from the transgenic lines and plates as  listed in the key. b) The graph shows 

the squared coefficient of variance (CV2) plotted versus mean read counts. The solid 

magenta line shows the curve of the technical noise fit and the dashed yellow line shows the 

position of genes with 25% biological CV. Blue dots indicate the ERCCs; magenta dots 

indicate the significantly variable genes; brown dots show the rest of genes expressed in the 

dataset.   

 

Supplementary Figure 5. Monocle trajectories generated using different sets of highly 

variable genes. Trajectories were generated using three different sets of highly variable 

genes.  Highly variable genes were calculated using thresholds of 5%, 25%-(default) and 
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95% biological variation. For each reconstructed tree, the percentage (and a total number) of 

“misclassified” cells in each branch was calculated compared to the default setup (25%). 

k=number of components used. 

 

Supplementary Figure 6. The isolation and morphological characterisation of 

transgenic cell types 

Representative FACS plots of cells isolated for scRNA-seq from each transgenic line. All 

cells that were positive for the fluorescent transgene were plotted on to forward/side scatter 

plots of live cells and are shown as coloured dots. To the right of each plot are the names of 

the genes and representative cells that were isolated by cytospins and stained with May-

Grünwald Giemsa. 

 

Supplementary Figure 7. The morphological characteristics of wild type cell sub-

populations and their distribution in Monocle2 

a) Flow cytometry forward scatter/side scatter plot of the wild type whole kidney marrow, 

showing the gating strategy for isolating populations P1-5. The percentage of live cells in 

each gate is also given. The cells on the left hand side of the P1 and P2 were gated out 

because the majority of these cells are erythrocytes. b) The cytospins of the representative 

cells from P1-P5 stained with May-Grünwald Giemsa. c) The trajectories of cell states 

predicted by Monocle are shown in grey for P1-P5, with the associated cell types labelled in 

blue. The percentage of cells from each sub-population contributing to each state is given 

next to the relevant trajectory.  

 

Supplementary Figure 8. Correlation analysis between ribosomal and cell cycle 

related genes. (a) Correlation heatmaps across all ribosomal and cell cycle genes, (b) 

correlation heatmaps of ribosomal and cell cycle  genes in pseudotime and (c) average 

expression patterns of ribosomal and cell cycle genes in pseudotime. 

 

Supplementary Figure 9. Analysis of ribosomal genes in human HSCs and 

progenitors. a) Heatmap of ribosomal gene expression in human HSCs and progenitors. 

Clustering of all human ribosomal genes across different HSPC populations, using Euclidean 

distance and Ward Linkage.  b) Correlation analysis of expressed ribosomal genes across 

891 HSPCs. Pairwise Pearson correlation revealed similar expression levels of the 

expressed cytosolic ribosomal genes in  HSC and various progenitors (MPP, CMP, GMP, 

MEP and MLP). 
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Supplementary Table 1. Details of transgenic and wild type lines used for single cell 

experiments, giving age, number of fish, number of 96 well plates sorted, number of cells 

passing quality control and references. 

 

Supplementary Table 2. Full list of the DE expressed genes in each of the five Monocle 

states; GO term enrichment analysis for each of the states; dynamically expressed genes in 

monocytes, neutrophils, erythrocytes and thrombocytes; expression of ribosomal genes 

which show dynamic and random expression in pseudotime in monocytes, neutrophils, 

erythrocytes and thrombocytes. 

  

Supplementary Table 3. Detailed description of the Human progenitor populations 

considered in the present study with their respective FACS markers. 
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