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Abstract 
Motivation: Large compendia of gene expression data have proven valuable for the discovery 
of novel biological relationships. The majority of available RNA assays are run on microarray, 
while RNA-seq is becoming the platform of choice for new experiments. The data structure and 
distributions between the platforms differ, making it challenging to combine them. We 
performed supervised and unsupervised machine learning evaluations, as well as differential 
expression analyses, to assess which normalization methods are best suited for combining 
microarray and RNA-seq data. 

Results: We find that quantile and Training Distribution Matching normalization allow for 
supervised and unsupervised model training on microarray and RNA-seq data simultaneously. 
Nonparanormal normalization and z-scores are also appropriate for some applications, 
including differential expression analysis. 

Availability and Implementation: These analyses were performed in R and are available at 
https://www.github.com/greenelab/RNAseq_titration_results under a BSD-3 clause license. 

Contact: csgreene@upenn.edu 

Supplementary Information is available. 
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1. Introduction 
The union of large and diverse compendia of gene expression data with machine learning 
approaches has enabled the extraction of cell type-specific networks (Greene et al., 2015) and 
the discovery of new biological patterns associated with cellular responses to the environment 
(Tan et al., 2016). Integrative analyses of multiple microarray cohorts have uncovered 
important signatures in human infection (Andres-Terre et al., 2015; Sweeney et al., 2016). 
Sequencing-based RNA assays have certain advantages over array-based methods, namely 
quantitative expression levels and a higher dynamic range (Wang et al., 2009). As a result, 
researchers have increasingly adopted this new technology for their gene expression 
experiments. 

RNA-sequencing (RNA-seq) assays are a growing share of new gene expression experiments. 
In 2015, the ArrayExpress team reported that the amount of sequencing-based submissions 
had doubled in the last 18 months (Kolesnikov et al., 2015). However, it remains essential to 
include microarray data in large-scale studies of gene expression, as the ratio of array- to 
sequencing-based experiments was 6 to 1 as of the 2015 publication and the rate of 
microarray submissions was still growing (Kolesnikov et al., 2015). Future integrative analyses 
of gene expression will require facing the challenge of combining these data types; a task of 
utmost importance for rare diseases or understudied biological processes and organisms 
where all available assays will be required to discover robust signatures or biomarkers. Thus, 
effective strategies for combining data from the two platforms—perhaps in a manner that 
leverages both the advantages of RNA-seq and the abundance of microarray data—are 
paramount to transcriptomic and functional genomic experiments going forward. 

Much work has been performed to develop methods for effectively combining multiple cohorts 
or batches of gene expression data (Johnson et al., 2007; Leek and Storey, 2007; Gagnon-
Bartsch and Speed, 2012; Sweeney et al., 2016)	, but no method has been widely adopted for 
the problem of combining mixed platform data. Quantile normalization (QN) is a widely used 
normalization technique originally utilized for microarray data (Bolstad et al., 2003), but it has 
also been adopted for RNA-seq data normalization (Law et al., 2014) and in some cases, 
cross-platform normalization (Li et al., 2015). Probe Region Expression estimation Based on 
Sequencing (PREBS) was developed to make RNA-seq and microarray data more comparable 
(Uziela and Honkela, 2015), but this method requires raw reads and probe specific information 
and may not be feasible for large-scale public data efforts. Training Distribution Matching 
(TDM) was developed by our group to make RNA-seq data more comparable to microarray 
data from transcript abundances specifically for machine learning applications (Thompson et 
al., 2016). In that work, it was demonstrated that QN, TDM and a method from the analysis of 
graphs, nonparanormal normalization (NPN), had good performance in the supervised learning 
evaluation (Thompson et al., 2016). However, combining platforms was not evaluated.  

Here, we present a series of experiments to test what normalization approaches can be used 
to combine microarray and RNA-seq data for multiple applications: supervised machine 
learning, unsupervised machine learning, and differential expression analysis. We specifically 
add varying amounts of RNA-seq data to our training sets to assess at what point performance 
begins to suffer. We find that QN, TDM, NPN, and standardized scores are all suitable for 
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some use cases, with the widely adopted QN performing well for machine learning applications 
in particular.  

2. Methods and Data 
We aimed to assess the extent to which it was possible to effectively normalize and combine 
microarray and RNA-seq data for use as a training set for machine learning applications. We 
assessed performance on test sets comprised entirely of microarray data and entirely of RNA-
seq data. To design such an experiment, we required a data set that had matched samples—
sets of samples run on microarray and RNA-seq—and that was of sufficient size. 

2.1 Evaluation gene expression data 
The Cancer Genome Atlas (TGCA) (Cancer Genome Atlas Network, 2012) breast cancer 
(BRCA) data set includes samples that have been measured with both microarray and RNA-
seq platforms. In addition, BRCA has well-defined molecular subtypes that are suitable for use 
as labels/classes for supervised machine learning approaches we describe below. We used 
log2-transformed, quantile normalized microarray data and RSEM (RNA-seq by Expection 
Maximization) gene-level count RNA-seq data. (Li and Dewey, 2011) We consider these data 
to be the products of standard processing pipelines for their respective mRNA expression 
platforms. For the purpose of these analyses, we restricted the data set to the 520 tumor 
samples that had been measured on both platforms (termed ‘matched samples’). 

2.2 Subtype prediction and unsupervised feature extraction 

2.2.1 Experimental design 

An overview of our experimental design for machine learning evaluations is illustrated in Fig 1. 
Matched samples were split into training (2/3) and test (1/3) sets using the 
createDataPartition function in the caret package (Kuhn, 2012), which takes the balance 
the class distributions in the training and holdout sets into account (Fig 1A). See Fig S1 for a 
representative plot of subtype distribution. Two holdout sets were used: a set comprised 
entirely of RNA-seq data and a set comprised entirely of microarray data. We refer to these as 
the RNA-seq holdout set and microarray holdout set, respectively. Samples analyzed with 
RNA-seq were "titrated" into the training set via random selection in 10% increments to 
produce training sets containing 0%, 10%, 20% ... 100% RNA-seq data (Fig 1B). The pipeline 
for partitioning data into training and testing, titration, and normalization was repeated 10 times 
using different random seeds, as were the downstream analyses (e.g., subtype classification, 
unsupervised feature construction). 

2.2.2 Cross-platform normalization approaches 

For every normalization method, samples source (RNA-seq or microarray) were matched in 
the training set. In accordance with how these methods would be used in practice, 
normalization was performed separately for training and holdout sets. For the normalization 
methods that require a reference distribution (e.g., quantile normalization and Training 
Distribution Matching), the RNA-seq training and holdout sets were normalized using the 
microarray data training data as a reference, separately. Only genes measured on both 
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platforms were included; genes that had missing values in the RNA-seq data in all samples (all 
samples in holdout data, training ‘titration’ samples at any sequencing levels) were removed. 

Log2-transformation (LOG): As the log2-transformed array data contained negative values, the 
microarray data was inverse log-transformed and then log-transformed such that values are 
non-negative by adding 1 to each expression value before transformation. All missing values 
were set to zero. This array data was used in all downstream processing steps. 

Quantile normalization: QN was performed using the preProcessCore R package (Bolstad, 
2013). Given the log2-transformed microarray distribution ("target"), the 
normalize.quantiles.use.target method will normalize the columns of the RNA-seq data 
such that the data sets are drawn from the same distribution. For sets entirely comprised of 
samples on a single platform without an applicable reference, normalize.quantiles was 
used. 

Training Distribution Matching: TDM was developed specifically to make RNA-seq test data 
compatible with models trained on microarray data (Thompson et al., 2016); it identifies the 
relationship that the microarray training data has between the spread of the middle half of the 
data and the extremes and then transforms the RNA-seq test set such that it has the same 
relationship between the spread of the middle half of the data and the extremes. We used the 
TDM R package to perform TDM normalization. For the training set comprised of 0% RNA-seq 
data, models trained on log2-transformed microarray data were used for 
prediction/reconstruction on the TDM normalized RNA-seq holdout set. TDM was not used 
when the training set was comprised of 100% RNA-seq data, as there is no relevant 
microarray data to use as the reference distribution in this case. 

Non-paranormal normalization: NPN is in essence a rank-transformation followed by placing 
data where it would fall on a normal distribution (Liu et al., 2009). NPN was performed using 
the huge R package prior to concatenating samples from both platforms and separately on 
single-platform holdout sets. 

Standardizing scores: z-scoring was performed on a per gene basis using the scale function 
in R prior to concatenating training samples from both platforms. Single-platform holdout sets 
were z-scored separately. Z-scores or standard scores are calculated ! =  !! !

! , where ! and ! 
are the gene mean and standard deviation, respectively 

Gene expression values were standardized to the range [0,1] on a per gene basis, either 
before or after concatenating samples from each platform. Quantile normalization followed by 
standardizing scores (QN-Z)—used only for differential expression analysis—was performed 
using the target method as described under Quantile normalization above. 

2.2.3 Subtype prediction on mixed platform data sets 

The PAM50 microarray classifications were used as the subtype labels for supervised 
analyses (Fig 1C). We performed 5-fold cross-validation on training sets for model training and 
hyperparameter optimization using total accuracy for performance evaluation. We used the 
Kappa statistic to evaluate performance on holdout data, as classes were not balanced. 
Briefly, the Kappa statistic takes into account the expected accuracy of a random classifier and 
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is generally considered to be less misleading than observed accuracy alone (Landis and Koch, 
1977). We trained the following three classifiers: LASSO logistic regression	(Tibshirani, 1996), 
linear support vector machine (SVM), and random forest. We used the glmnet R package 
(Friedman et al., 2010) implementation of LASSO. The training of SVM and random forest 
classifiers was performed using the caret package and utilizing the kernlab (Zeileis et al., 
2004) and ranger (Wright and Ziegler, 2015) packages, respectively. 

2.2.4 Unsupervised feature extraction from mixed platform data sets 

We performed Principal Components Analysis (PCA) and Independent Components Analysis 
(ICA) on each of the training sets (Fig 1C). We performed PCA using the prcomp function in R 
and ICA using the fastICA function in the fastICA R package (Marchini et al.), setting the 
number of components to 50. For PCA, we projected the holdout data onto the training data 
PC space and then reconstructed the holdout data using the first 50 principal components. For 
ICA, we projected the holdout data onto the training data IC space using the product of the 
prewhitening and estimated unmixing matrices and reconstructed the holdout data from the 
projection using the estimated mixing matrix. 

We assess reconstruction error (comparing holdout input, !, to reconstructed values, !) by 
calculating the mean absolute scaled error (MASE) (Hyndman and Athanasopoulos, 2014). 
MASE is calculated on a per gene basis as follows: 

!"#$ = !"#$ |!! − !! |
1
! |!

!!! !! − !|
 

We performed supervised analysis following reconstruction to assess whether the subtype 
signals were retained or if features were dominated by noise introduced by combining 
platforms. We used the models trained for subtype classification to predict on the 
reconstructed holdout sets to assess how well the molecular subtype signal was retained in the 
reconstructed holdout data (Fig 1C). We again used the Kappa statistic to evaluate 
performance. 

2.3 Differential expression analyses 
We used a standard two-group single-channel experimental design in limma to identify 
differential expressed genes (Ritchie et al., 2015). We used Benjamini-Hochberg correction 
(Benjamini and Hochberg, 1995) multiple hypotheses testing, the output of which is known as 
a false discovery rate (FDR). We used mean-variance modeling at the observational level 
(VOOM) (Law et al., 2014) as implemented in limma (Ritchie et al., 2015) to pre-process the 
single platform RNA-seq data. We termed the set of differentially expressed genes (DEGs) as 
detected at a specified FDR from single platform data microarray and RNA-seq "silver 
standards" (Sweeney et al., 2017). We again titrated in RNA-seq samples at 10% increments 
and identified DEGs (Fig 2). We compared them by calculating the Jaccard similarity, !, 
between the silver standard DEGs, !, and the experimental DEGs, !, as follows: 

!(!,!) = |! ∩ !|
|! ∪ !| 
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2.3.1 Small sample size experiment 

For each number of samples (!), we randomly selected ! (! = 3,4,5,6,8,15,25,50) samples 
each from the Her2 and LumA subtype. To generate platform-specific silver standards, we 
compared the 2! samples in single platform data (100% log2-transformed microarray data and 
100% RSEM RNA-seq data). For the normalization experiments, we identified DEGs in data 
sets that were 50% microarray and 50% RNA-seq data. Ten repeats were performed. All 
genes with an !"# < 10% were considered differentially expressed. These sets of DEGs were 
used to calculate Jaccard similarity. 

3. Results and Discussion 
We performed a series of supervised and unsupervised machine learning evaluations, as well 
as differential expression analyses, to assess which normalization methods are best suited for 
combining data from microarray and RNA-seq platforms. We evaluated five normalization 
approaches for all methods: LOG, NPN, QN, TDM, and standardizing scores (z-scoring; Z). 

3.1 Non-paranormal normalization, quantile normalization, and Training 
Distribution Matching allow for training subtype classifiers on mixed 
platform sets 
We trained models to predict BRCA PAM50 subtype on training sets with varying amounts of 
samples from the RNA-seq platform. We used these models to predict on holdout data sets 
comprised entirely of microarray data or RNA-seq data (Fig 1). We trained three commonly 
used classifiers: LASSO logistic regression, linear SVM, and random forest. Kappa statistics 
were used to assess performance. We visualize the Kappa statistics for varying amounts of 
samples from RNA-seq in the training data in Fig. 3. (Note that the pipeline in Fig 1A-C was 
repeated ten times.) The three classifiers showed the same trends across normalization 
approaches overall, suggesting that the normalization approaches recommended herein will 
generalize to multiple classification methods. 

Importantly, there were appreciable differences between normalization methods. Log-
transformation demonstrated the worst performance. This is expected as we think of this 
method as a negative control and it was previously shown to be insufficient to make RNA-seq 
data comparable to microarray (Thompson et al., 2016). We also saw that z-scoring data 
resulted in the most variable performance. This is not unexpected because the calculation of 
the standard deviation and mean will be highly dependent on which samples are selected from 
each platform and the random selection of RNA-seq samples to be included in the training set 
does not take into account subtype distribution, which may not be known in practice. We found 
that NPN, QN, and TDM all performed well when moderate (i.e., not extreme) amounts of 
RNA-seq data are incorporated into the training set. These results are consistent with the high 
performance of these three methods in our case study of training entirely on microarray data 
and using solely RNA-seq as a test set (Thompson et al., 2016). These three methods 
performed well on both the microarray and RNA-seq holdout sets. 

Quantile normalization did not perform well at the extremes (0% and 100% RNA-seq data). We 
attribute this loss of performance to the lack of reference distributions in these cases—for all 
other amounts of RNA-seq (10 - 90%), the set of microarray data is used as a reference 
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distribution for both the RNA-seq data included in the training set as well as for the holdout set 
(see Methods). This result reiterates the importance of drawing training and holdout sets from 
the same distribution, as is well-documented in the machine learning literature, and highlights 
the necessity of proper cross-platform normalization. 

3.2 Quantile normalization and Training Distribution Matching are suitable 
for unsupervised feature extraction from mixed platform data sets 
Dimensionality reduction and/or unsupervised feature extraction methods are commonly 
employed in the analysis of gene expression data. We used two such approaches—PCA and 
ICA—and evaluated normalization method performance. The molecular subtypes in BRCA are 
strong, linear signals that we should be able to predict in the holdout sets given the 
performance of the classifiers visualized in Fig 3 and should be readily extractable using ICA 
and PCA. We aimed to identify which normalization methods were most suitable for feature 
extraction in data sets comprised of a mixture of microarray and RNA-seq data. Our approach 
was as follows: PCA or ICA was performed on the training sets and then the holdout sets were 
projected onto the training space and then reconstructed to obtain "reconstructed holdout sets" 
(see Methods, Fig 1). We evaluated performance in two ways: 1) we performed BRCA subtype 
prediction on the reconstructed sets using the classifiers trained in the supervised analyses 
and 2) we calculated reconstruction error post-transformation (MASE; see Methods). The 
Kappa statistics from the first evaluation are visualized in Fig 4 (see Fig S2 for performance on 
LOG normalization data). 

Although we found similar trends among the ICA and PCA reconstructions, we observed 
differences in classifiers and normalization methods as measured by the Kappa statistics (Fig 
4). This suggests that ICA and PCA are largely comparable in this particular evaluation. The 
SVM performance was most robust to reconstruction (Fig 4), consistent with expectations for 
linearly separable class problems. In general, the random forest classifier suffered the largest 
loss of performance, likely due to gene expression thresholds (rules) used for prediction. In the 
case of NPN, the near zero random forest Kappa statistics (Fig 4A) resulted from predictions 
of only one class label. We observed the largest differences in performance between the two 
platform holdout sets with Z normalization (Fig 4D). We found that projecting the holdout sets 
onto QN and TDM normalized training space results in less loss of subtype classifier 
performance (Fig 4B-C). In addition, we observed QN resulted in low reconstruction error (Fig 
S3). This suggests that these two methods are suitable for normalizing sets comprised of data 
from both platforms for use with unsupervised feature extraction applications. 

3.3 Differential expression analysis is possible on mixed platform data sets 
The identification of genes that are down- or up-regulated between conditions is an 
exceptionally common analysis performed on gene expression data. Differential expression 
analysis is also a distinct problem from the supervised and unsupervised machine learning 
approaches investigated above. For example, prediction of BRCA subtype does not require all 
genes measured (as demonstrated by the excellent performance of LASSO) and random gene 
sets are prognostic in BRCA (Venet et al., 2011), but the goal of differential expression 
analysis in this context is to identify which genes differ between conditions from genome-scale 
measurements. We sought to identify normalization methods that yielded similar results 
between data sets comprised of solely one platform and those comprised of a combination of 
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microarray and RNA-seq data (see Methods, Fig 2). We termed the set of DEGs as detected 
at a specified FDR from single platform data microarray and RNA-seq "silver standards" 
(Sweeney et al., 2017) For these evaluations, we included two additional normalization 
approaches: untransformed (UN), where untransformed count data (RSEM in this case) and 
log-transformed microarray data were concatenated together and quantile normalized followed 
by standardizing scores (QN-Z). 

3.3.1 All data 

We identified differentially expressed genes between the Her2 and LumA subtypes using the 
limma R package in 100% microarray data and 100% RNA-seq data and identified genes with 
an !"# < 5% to obtain the platform-specific silver standards (see Fig S4 for proportion of 
genes identified as differentially expressed at this FDR). We then performed the same 
comparison in data sets with increasing amounts of RNA-seq samples included. We evaluate 
the set of DEGs (!"# < 5%) from this experiment to both platform-specific standards by 
computing the Jaccard similarity between the experimental set and the standards. The results 
of this analysis are visualized in Fig 5A. Notably, the microarray and RNA-seq standards have 
a Jaccard similarity of 0.61 (Fig 5A, LOG panel), which indicates that the majority of DEGs 
detected using standard pipelines for each of the platforms are shared but differences exist. 

There are marked differences in normalization approach performance as measured by Jaccard 
similarity to silver standards, with the results mirroring our machine learning assessments. We 
found that adding log-transformed and untransformed (count) RNA-seq data to the data set, 
which we regard as negative controls, recovered the fewest silver standard DEGs (for either 
platform) as demonstrated by the low Jaccard similarity to standards (Fig 5A). We found that 
TDM and QN have similar performance, recovering less than half of the standard DEGs for 
moderate amounts of RNA-seq data in the data set used to identify DEGs. Using NPN, Z, or 
QN-Z resulted in detection of the majority of silver standard DEGs, suggesting that these 
methods are best suited to the differential expression problem. We also performed a similar 
analysis comparing Basal samples to all other subtypes and observed similar performance 
across methods (Fig S5). 

3.3.2 Small sample sizes 

The differential expression analyses we describe above utilized all matched BRCA samples. 
To provide some guidance in combining the two platforms in considerably smaller data sets, 
we devised a "small n" experiment. We elected to evaluate the QN and Z normalization 
approaches because of their simplicity and wide usage. We used varying sample sizes from 3 
to 50 samples (see Methods, Fig 5B). We again used Jaccard similarity to single platform 
standards to evaluate normalization method performance. 

We hypothesized that the z-score approach would only perform well with sufficient n because 
a larger sample size would be required to reliably calculate the gene means and standard 
deviations. Our results support this hypothesis (Fig 5B), as we only observe recovery of DEGs 
in the mixed platform data sets when ! ≥ 15. We observed poor performance, regardless of 
sample size, with QN (Fig 5B). This is perhaps unsurprising given the performance in the 
larger data set (Fig 5A). In total, these results suggest that caution is required in when 
combining multiple platforms particularly when sample sizes are small. 
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4. Conclusions 
Herein we perform, to our knowledge, the first examination of cross-platform normalization for 
machine learning on training sets comprised of data measured on both popular gene 
expression platforms—RNA-seq and microarray—and demonstrate that it is possible to 
combine these data types for use with supervised and unsupervised applications as well as 
differential expression analysis. We find that QN and TDM perform well for both types of 
machine learning approaches. NPN and Z are also appropriate for some applications, but care 
may be required in of z-scoring the data to ensure that that the distributions are comparable 
(e.g., distributions of classes, which may not be known). We also find that combining platforms 
is not appropriate for data sets with a small number of replicates (Fig 5B). 

This study has some important limitations. Because of our experimental design, we required a 
large data set of samples run on both platforms. This limited our work to one data set of high 
quality: TCGA BRCA data. BRCA subtypes are well-defined signatures that have evident linear 
expression patterns. As a result, our guidance may not generalize to nonlinear classifiers, data 
sets of poor quality, or small sample sizes. 

Nevertheless, this work indicates that it is possible to perform model training and differential 
expression analysis on microarray and RNA-seq. Combining both platforms could allow 
models to take advantage of the additional information captured in some RNA-seq 
experiments while benefiting from the substantially greater abundance of microarray data. 
Training sets comprised of samples run on both platforms will be a new realty as RNA-seq 
becomes the platform of choice and the ability to perform such analyses will be of particular 
importance for understudied biological problems. 
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FIGURE LEGENDS 

 
Figure 1. Overview of supervised and unsupervised machine learning experiments. (A) 520 
TCGA Breast Cancer samples run on both microarray and RNA-seq were split into a training (2/3) and 
holdout set (1/3). (B) RNA-seq’d samples were ‘titrated’ into the training set, 10% at a time (0-100%) 
resulting in eleven training sets for each normalization method. (C) Machine learning applications. We 
used three supervised algorithms to train multi-class (BRCA PAM50 subtype) classifiers on each 
training set and tested on the microarray and RNA-seq holdout sets. The holdout sets were projected 
onto and back out of the training set space using two unsupervised techniques, Independent and 
Principal Components Analysis, to obtain reconstructed holdout sets. The classifiers used in 4A were 
used to predict on the reconstructed holdout sets.  
 

Figure 2. Overview of differential expression experiment. All matched TCGA breast cancer 
samples (n = 520) were considered when building the platform-specific “silver standards.” These 
standards are the genes that were differentially expressed at a specified False Discovery Rate (FDR) 
using data sets comprised entirely of one platform and processed in a standard way: log2-transformed 
microarray data and “untransformed” RSEM count data (preprocessed using the voom function in 
limma). RNA-seq’d samples were ‘titrated’ into the data set, 10% at a time (0-100%) resulting in eleven 
experimental sets for each normalization method. Differentially expressed genes (DEGs) were 
identified using the limma package. Lists of experimental DEGs were compared to standard gene sets 
using Jaccard similarity.  

 
Figure 3. BRCA subtype classifier performance on microarray and RNA-seq holdout data. Violin 
plots of Kappa statistics from 10 repeats of steps 1-4A from Figure 1 and for five normalization methods 
are displayed. Median values are shown as points. (LOG  - log2-transformed; NPN – nonparanormal 
normalization; QN – quantile normalization; TDM – Training Distribution Matching; Z – z-score)  
 

Figure 4. BRCA subtype classifier performance on reconstructed microarray and RNA-seq 
holdout data. The holdout sets were projected onto the training set Independent or Principal 
Components reduced dimensional space and back out to obtain reconstructed holdout sets. Subtype 
prediction on the reconstructed data using the classifiers trained during the supervised analyses was 
performed. Ten repeats were performed. Violin plots of Kappa statistics are displayed; median values 
are shown as points. (NPN – nonparanormal normalization; QN – quantile normalization; TDM – 
Training Distribution Matching; Z – z-score) 

Figure 5. Overlap between platform-specific silver standard differentially expressed genes 
(DEGs) and experimental DEGs when testing (A) all samples and (B) smaller sample sizes. 
Genes differentially expressed between Her2 and LumA samples were identified. (A) All Her2 and 
LumA samples were compared for all normalization methods with varying amounts of RNA-seq data 
included. All genes with an FDR < 5% were considered differentially expressed. These lists were used 
to calculate Jaccard similarity. (B) Small n experiment. For each number of samples (n), we randomly 
selected n samples each from the Her2 and LumA subtype. To generate platform-specific standards, 
we compared the 2n samples in single platform data (100% log2-transformed microarray data and 
100% RSEM RNA-seq data). For the normalization experiments, we identified DEGs in data sets that 
were 50% microarray and 50% RNA-seq data. Ten repeats were performed. All genes with an FDR < 
10% were considered differentially expressed. These lists were used to calculate Jaccard similarity. 
The median and 95% confidence on the median” (+/-1.58 IQR/sqrt(n) Chambers, et al. 1983) of the 
Jaccard similarity from ten repeats is displayed. (LOG  - log2-transformed; NPN – nonparanormal 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 21, 2017. ; https://doi.org/10.1101/118349doi: bioRxiv preprint 

https://doi.org/10.1101/118349
http://creativecommons.org/licenses/by/4.0/


normalization; QN – quantile normalization; QN-Z – quantile normalization followed by z-score; TDM – 
Training Distribution Matching; UN – untransformed (count data); Z – z-score) 
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