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Abstract:   10 

 Large lake ecosystems support a variety of ecosystem services in surrounding 11 

communities, including recreational and commercial fishing.  However, many northern 12 

temperate fisheries are contaminated by mercury.  Annual variation in mercury accumulation in 13 

fish has previously been linked to water level (WL) fluctuations, opening the possibility of 14 

regulating water levels in a manner that minimizes or reduces mercury contamination in 15 

fisheries.  Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-16 

year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada 17 

and examined whether mercury content appeared to be related to several metrics of WL 18 

fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum 19 

WL).  Using simple correlation analysis, several WL metrics appear to be strongly correlated to 20 

Yellow Perch mercury content, although the strength of these correlations varies by lake.  We 21 

also used many WL metrics, water quality measurements, temperature and annual deposition 22 

data to build predictive models using partial least squared regression (PLSR) analysis for each 23 

lake.  These PLSR models showed some variation among lakes, but also supported strong 24 

associations between WL fluctuations and annual variation in Yellow Perch mercury content.  25 

The study lakes underwent a modest change in WL management in 2000, when winter WL 26 

minimums were increased by about 1 m in five of the six study lakes.  Using the PLSR models, 27 

we estimated how this change in WL management would have affected Yellow Perch mercury 28 

content.  For four of the study lakes, the change in WL management that occurred in 2000 likely 29 

reduced Yellow Perch mercury content, relative to the previous WL management regime. 30 
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Introduction: 32 

 Large lake ecosystems support a variety of ecosystem services, including commercial 33 

harvest, sport fishing and tourism (Holmlund and Hammer 1999).  However, many northern 34 

temperate fish communities are contaminated with methylmercury, which harm fish and may 35 

affect humans and other fish consumers (Scheuhammer et al. 2007).  Reducing mercury 36 

contamination in fisheries is a major management goal of many natural resource managers (e.g., 37 

Voyageurs National Park). 38 

 The amount of mercury in the biosphere has increased globally as a result of human 39 

activities and atmospheric mercury can travel long distances from its source (Munthe et al. 40 

2007).  Even otherwise pristine locations may receive substantial atmospheric deposition of 41 

mercury (Driscoll et al. 2007).  A portion of this atmospherically deposited mercury (often in 42 

oxidized elemental form) may then be converted to methylmercury (CH3HG+) by sulfate 43 

reducing bacteria in anoxic sediments (Selin 2009).  Methylmercury can then enter the food web 44 

and accumulate to much greater concentrations in higher trophic levels (Selin 2009). 45 

 Methylmercury production is often measured using a sentinel species approach.  The 46 

sentinel species approach involves sampling a single species over space or time, usually at the 47 

same age or life stage.  In previous studies, the young-of-year of a species that feeds at lower 48 

trophic levels has been used, so that the temporal variation in mercury concentrations can be tied 49 

to a particular season or exposure period (Sorensen et al. 2005, Wiener et al. 2006, Larson et al. 50 

2014).  Using these methods, controls over spatial variation in methylmercury production have 51 

been inferred, leading to the conclusion that methylmercury production is higher in watersheds 52 

with abundant wetlands (Wiener et al. 2006, Selin 2009).   Fewer studies have identified controls 53 

over temporal variation in methylmercury production, but among those that have, water level 54 

(WL) fluctuations have been identified as a potentially important driver of annual and longer-55 

term variation in methylmercury production (Sorensen et al. 2005, Dembkowski et al. 2014a, 56 

Larson et al. 2014, Willacker et al. 2016).  Water levels in lakes and reservoirs are often 57 

managed for multiple uses, hence water level management could be a tool used to reduce 58 

methylmercury production (Mailman et al. 2006). 59 

 In an analysis of lakes in Minnesota, Sorensen et al. (2005) found strong associations 60 

between WL fluctuations and mercury concentrations in young-of-year Yellow Perch (Perca 61 

flavescens).  A follow-up study by Larson et al. (2014) found that these associations varied in 62 
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magnitude spatially, with some lakes having no WL-mercury associations and others having very 63 

strong associations.  Here, our objective was to use multivariate methods to identify WL-64 

mercury relationships on a lake-specific basis.  To accomplish this objective, we analyzed annual 65 

measurements of mercury in tissues of young-of-year Yellow Perch from six large lakes during 66 

1997-2015, some of which have been used in previous studies (Sorensen et al. 2005, Larson et al. 67 

2014). 68 

 69 

Methods: 70 

Study Sites: 71 

The Rainy-Namakan Reservoir complex occurs on the border between the United States 72 

and Canada.  The complex consists of several naturally occurring lakes that have been 73 

impounded.  Water levels are regulated for multiple purposes (e.g., hydropower, flood control, 74 

fisheries).  Thirteen sites in six lakes from the Rainy-Namakan complex in or near Voyageurs 75 

National Park (Minnesota, USA) were sampled between 2013 and 2015 (Crane Lake, Lake 76 

Kabetogama, Little Vermilion Lake, Namakan Lake, Rainy Lake and Sand Point Lake; Table 1).  77 

Fish were collected between mid-September and early November each year.  Fish were collected 78 

with 15.2 or 30.5 m bag seines with 6.4 mm mesh (bar), following procedures approved by the 79 

National Park Service’s Institutional Animal Care and Use Committee. 80 

Water level estimates: 81 

 Water level metrics calculated here were similar to those used in Sorensen et al. (2005) 82 

and Larson et al. (2014).  All water level data were obtained from the Lake of the Woods Water 83 

Control Board, which provided daily averages for the entire study period.  Within-year minimum 84 

WL and maximum WL were used to calculate water level rise (WLR).  Mean and standard 85 

deviation (SD) in daily WL were also calculated.  In addition, change in maximum water level 86 

(ΔmaxWL) from the previous year was calculated.  Water levels in the Rainy-Namakan lake 87 

complex follow a seasonal pattern, with early-spring minimums and early to mid-summer 88 

maximums.  The WLR, minimum, maximum, mean and SD in WL were calculated for the entire 89 

year, for the spring (April-June) and for the summer (July-September).   90 

Atmospheric deposition of mercury and sulfate:  91 

Mercury and sulfate deposition were measured by the National Atmospheric Deposition 92 

Program (NADP).  For mercury, annual data from the Fernberg monitoring location (MN18) 93 
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were obtained from the NADP website (NADP 2012a).  For sulfate, annual data from the 94 

Sullivan Bay monitoring location (MN32) were also collected from the NADP website (NADP 95 

2012b). 96 

Temperature Data: 97 

Water temperature data were not available for most of the lakes over the time scales 98 

needed for analysis.  Instead, air temperatures and equation 1 from Chezik et al. (2014) were 99 

used to calculate annual degree days for each lake.  All data were obtained from the National 100 

Oceanic and Atmospheric Administration's National Climatic Data Center 101 

(http://www.ncdc.noaa.gov/data-access).  Station USW00014918 was used for all of the lakes in 102 

this study. In this formulation, the degree days for a single day (DD; °C-days) are calculated as: 103 

 �� � ����� � ����

	
� � T
  104 

 Tx is the threshold temperature under consideration (e.g., 0°C or 5°C) and Tmax and Tmin 105 

are the daily maximum and minimum temperatures respectively.  Negative daily DD estimates 106 

are discarded, and the positive daily DD estimates are summed for the year.  We calculated DDs 107 

for a Tx of 0°C, 5°C, 10°C and 15°C. 108 

Fish mercury analysis: 109 

 Fish mercury data is compiled from three previously published studies:  Sorensen et al. 110 

(2005), Larson et al. (2014) and Christensen et al. (2017, Table 1).  Methods for estimating the 111 

mercury content for young-of-year Yellow Perch were reported in those manuscripts.  For this 112 

analysis, we used only mercury content for young-of-year Yellow Perch  on a  dry mass basis.   113 

Statistical Methods: 114 

Data were compiled using a combination of R Version 3.1.0 (R Development Core Team 115 

2014).  All statistics were completed in R.   116 

We used partial least squared regression (PLSR) to identify associations between young-117 

of-year Yellow Perch mercury content and WL fluctuations.  Partial least squared regression is 118 

similar to principal components analysis (PCA; Manly 2005), in that axes of co-variation among 119 

variables are identified.  However, PLSR has a predictor-response structure that is used to 120 

identify the components (Carrascal et al. 2009).  Partial least squared regression is useful in cases 121 

where sample sizes are low and many predictor variables that are strongly correlated are believed 122 

to be important (Carrascal et al. 2009).  Essentially, PLSR identifies components of variation in 123 

the predictor variables (presumed to represent latent variables) that are related to variation in a 124 
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response variable (Garthwaite 1994, Carrascal et al. 2009).  Cross-validation can then be used to 125 

prevent overfitting of the data.  We implemented this analysis using the PLS package in R 126 

(Mevik and Wehrens 2007).  Cross-validation was used to select components that were related to 127 

response variables using the ‘leave-one-out’ method employed in the plsr() function.  Twenty-128 

three potential predictors were included in the PLSR analysis, including all of the WL variables 129 

described above, annual degree days for 0, 5, 10 and 15°C, annual precipitation, annual mercury 130 

deposition and annual sulfate deposition.  We ran an individual PLSR with all 23 of these 131 

potential predictor variables for each of the sites with more than 12 years of data (6 sites, 1 in 132 

each lake).  Root mean square error of prediction (RMSEP) was used to determine whether the 133 

inclusion of a component was strongly supported by the data:  If inclusion of a component 134 

lowered the RMSEP, then the component was considered strongly supported and was included in 135 

the model (Mevik and Wehrens 2007). In cases where the RMSEP was at a minimum in the 136 

model with no components, we assumed no strong associations existed between the components 137 

and the response variable.  Examples of the code are provided in the statistical appendix. 138 

A hydrologic model by Thompson (2013) was previously developed that uses weather 139 

data as inputs and predicts what the WLs would be given different WL management scenarios.  140 

For the period 2000-2014, this hydrologic model can be used to estimate what the WLs would 141 

have been if the 1970 Rule Curve had been retained.  The same model was also used to estimate 142 

what the WLs would have been if the 2000 Rule Curve were used.  During the 2000-2014 143 

period, the 2000 Rule Curve was used, but instead of using actual WL values, we used the model 144 

estimated WL values for this exercise for consistency.  Thus, this hydrologic model provides 145 

estimated WL fluctuation estimates for a given WL management strategy.  These WL estimates 146 

were then used as the predictor data in PLSR models that had strongly supported components to 147 

estimate young-of-year Yellow Perch mercury content.  Code for making the predictions is 148 

included in the statistical appendix. 149 

To incorporate potential error in the models, we used jackknife methods to make 150 

estimates of mercury in young-of-year Yellow Perch from 2000-2014.  Essentially, the jackknife 151 

approach involved dropping one of the observations (observations here are the annual means at a 152 

site), refitting the PLSR model using the remaining observations, making predictions using that 153 

model, and repeating the process until estimates had been made from all the possible 154 

combinations of data that lacked one observation.   155 
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Correlations between individual WL variables and young-of-year Yellow Perch mercury 156 

content were performed using the Bayesian First Aid package (Bååth 2014) for each of the 13 157 

sites sampled (both those sampled long-term and those sampled only during 2001-2003 and 158 

2013-2015).  Correlation coefficients were calculated with credible intervals.  If those credible 159 

intervals do not overlap zero, then we consider it strong evidence that the correlation is non-zero 160 

(McCarthy 2007).  161 

 162 

Results 163 

Yellow Perch Hg content from separate sites within the same lake co-varies 164 

 Pearson’s correlation coefficients between sites within a single lake were large (all were 165 

>0.80) and only in Lake Kabetogama did the 95% credible interval of a Pearson’s r overlap zero 166 

(Figure 1).  This indicates that within a particular lake, different sites tend to vary the same way 167 

over time, although these correlations are estimates from only 4-6 years (Figure 1).  Most 168 

correlations between Yellow Perch Hg content and individual WL parameters were similar 169 

within a particular lake, with all 95% credible intervals overlapping from within a particular lake 170 

(Table 2).  For example, the 95% credible interval of the Pearson’s r estimate for the association 171 

between Yellow Perch Hg content and Max WL in Little Vermilion Lake Site 1 (-0.42 to 0.68) 172 

and Site 2 (-0.90 to 0.71) had broad overlap (Table 2). 173 

Bayesian estimates of correlation coefficients between annual variation in WL and 174 

young-of-year Yellow Perch Hg content suggests substantial spatial variation in the magnitude of 175 

WL effects.  For example, the correlation between Yellow Perch Hg content and WLR was 0.88 176 

(0.66 to 0.97) in the Rainy Lake site with the most data, but was indistinguishable from zero in 177 

the Little Vermilion Lake with the most data (0.23 [-0.35 to 0.71]; Table 2).   178 

 Latent variables related to water level fluctuations strongly influence Yellow Perch Hg 179 

content 180 

Partial least squared regression analysis suggested strong associations between WL 181 

fluctuations and young-of-year Yellow Perch mercury content in five of the six study lakes 182 

(Supplemental Tables 1-6, Figure 2).  Only sites with 12+ years of data were used for this 183 

analysis.  For each of these five lakes (Crane Lake, Lake Kabetogama, Namakan Lake, Rainy 184 

Lake and Sand Point Lake) the first component was very similar (Table 3).  The first component 185 

explained between 42.9-79.2% of the variation in Yellow Perch mercury and always included the 186 
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Spring WL rise, with greater rise leading to greater mercury content (Table 3).  Only WL 187 

variables had correlations of >0.30 to this first component, and even then only a few crossed this 188 

threshold in each lake.  Lake Kabetogama, Namakan Lake and Rainy Lake had second 189 

components that were supported by the cross-validation as well, and these second components 190 

were all positively associated with degree days (Table 4).  None of the lakes had 3rd components 191 

that were supported by cross-validation. 192 

Statistical models suggest water level management changes would cause changes in Yellow 193 

Perch Hg content 194 

 The five strongly supported PLSR models were used to model the effects of the two WL 195 

management scenarios.  These were the models previously described in Tables 2 and 3, and 196 

included a 1 component model for Crane Lake and Sand Point Lake, and 2-component models 197 

for Lake Kabetogama, Namakan Lake and Rainy Lake (as mentioned above, no components 198 

were included in models for Little Vermilion Lake).  The two WL management scenarios 199 

included one scenario that used the 1970 Rule Curve and another that used the 2000 Rule Curve 200 

prescribed by the International Joint Commission for these lakes (IJC 2000).  Annual variation in 201 

young-of-year Yellow Perch mercury content was similar under either management scenario; 202 

however, predictions for Crane Lake, Namakan Lake, Sand Point Lake and Lake Kabetogama 203 

tended to be higher under the 1970 Rule Curve scenario (Figure 3).  For Rainy Lake, both 204 

management scenarios yield similar annual variation in fish mercury content (Figure 3), which is 205 

not surprising since the 1970 and 2000 Rule Curves for Rainy Lake are almost identical (IJC 206 

2000). 207 

 208 

Discussion 209 

 In previous studies on the lakes in this analysis, year-to-year changes in maximum WL 210 

appeared to be the biggest driver of annual variation in young-of-year Yellow Perch mercury 211 

content (Sorensen et al. 2005, Larson et al. 2014).  Year-to-year change in maximum WL was 212 

strongly associated with annual variation in Yellow Perch mercury content in this analysis as 213 

well (as indicated by correlation coefficients), but other WL metrics were equally important.  214 

However, in some lakes these associations were absent (Little Vermilion Lake) and in some the 215 

associations were very strong (Rainy Lake). 216 
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Use of partial least squared regression (PLSR) allowed us to incorporate many different 217 

WL metrics (and other environmental variables) into a more inclusive model than had been used 218 

in previous analyses (Larson et al. 2014).  The PLSR models demonstrated some lake-specific 219 

difference analogous to those seen in previous studies.  For example, PLSR could not identify 220 

any WL-influenced latent variables that might be driving annual variation in Little Vermilion 221 

Lake, consistent with Larson et al.’s (2014) finding that WL-fish mercury associations in that 222 

lake were weak.  But PLSR also was able to identify some commonalities among lakes that the 223 

previous study did not detect.  For example, Yellow Perch mercury content in Lake Kabetogama 224 

appeared unrelated to WL effects in Larson et al.’s (2014) analysis, but in the PLSR analysis a 225 

latent component correlated to a few WL metrics appeared to be strongly associated with annual 226 

variation in fish mercury content.  A very similar latent component appeared in every other lake 227 

(except Little Vermilion Lake).  Although it is still unclear why quantitative differences exist in 228 

the magnitude of these WL-fish mercury associations among lakes, qualitatively these 229 

associations appear more similar among lakes than they did in the less inclusive modeling 230 

approach (Larson et al. 2014).  These spatial differences also appear to be driven by lake-wide 231 

differences, since different sites within the same lake appeared to behave similarly. 232 

 Overall the PLSR models suggested that WL rise (in Spring and in some lakes annual) 233 

was positively associated with young-of-year Yellow Perch mercury content.  These are WL 234 

characteristics that were altered in five of these lakes (all but Rainy Lake) by the 2000 Rule 235 

Curves prescribed by the International Joint Commission. (IJC 2000).  These rule curves reduced 236 

the winter drawdown in Namakan Reservoir by approximately 1 m, whereas changes in Rainy 237 

Lake were minimal. When comparing the modeled WLs in these lakes using both the new and 238 

old regulations, differences emerge in the estimated fish mercury content.  For Crane Lake and 239 

Sand Point Lake, the models clearly suggest that fish mercury content would have been higher 240 

from 2000-2014 if the 1970 Rule Curve had been used.  For other lakes the models suggest no 241 

change (Rainy Lake) or suggest slight increases (Lake Kabetogama and Namakan Lake) from 242 

2000-2014 if the 1970 Rule Curve had been in place. 243 

 Methylmercury contamination of fisheries is a major management concern (Sandheinrich 244 

and Wiener 2011), and it appears that certain water level management strategies could possibly 245 

influence the magnitude of this problem.  Previous research has shown that differences in 246 

reservoir construction, initial inundation, and overall purpose may influence mercury content in 247 
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fish (Dembkowski et al. 2014b, Willacker et al. 2016), but here we show that different water 248 

level management regimes in established impounded lakes could be associated with changes in 249 

fish mercury content.  Management for methylmercury contamination is rarely the only 250 

consideration in WL management, but models such as those developed in this study could be 251 

used to evaluate different WL management scenarios so that consideration for multiple uses of a 252 

particular waterway could be incorporated.    253 
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Table 1.  Sites from which young-of-year Yellow Perch were captured and mercury content measured.  USGS site numbers refer to 
site data available through the website https://waterdata.usgs.gov/nwis. Data sources are 1- Sorensen et al. 2005, 2-Christensen et al. 
2017 and 3- Larson et al. 2014. 

Lake Site Latitude Longitude USGS site number Years of Yellow Perch Hg data Data sources 
Crane Lake 1 48.309780 -92.495530 481835092294401 2001-03, 2013-15 1,2 
Crane Lake 2* 48.307610 -92.481670 481827092285401 2001-10, 2013-15 1,2,3 
Lake Kabetogama 1* 48.432080 -92.870970 482556092521601 2001-10, 2013-15 1,2,3 
Lake Kabetogama 2 48.434280 -92.818080 482603092490501 2001-03, 2013-15 1,2 
Little Vermilion Lake 1* 48.304390 -92.429610 481818092254201 2001-10, 2013, 2015  
Little Vermilion Lake 2 48.297470 -92.421890 481751092251901 2001-03, 2013, 2015 1,2 
Namakan Lake 1* 48.431440 -92.679780 482553092404801 2001-10, 2013-15 1,2,3 
Namakan Lake 2 48.428030 -92.687690 482541092411601 2001-03, 2013-15 1,2 
Rainy Lake 1* 48.596920 -93.058330 483549093033001 2001-10, 2013-15 1,2,3 
Rainy Lake 2 48.604220 -93.094500 483615093054001 2001-03, 2015 1,2 
Sand Point Lake 0* 48.334940 -92.475920 482006092283301 1997, 1999, 2000-10, 2013-15 1,2,3 
Sand Point Lake 1 48.381360 -92.520830 482241092311501 2001-03, 2013-15 1,2 
Sand Point Lake 2 48.404530 -92.484330 482416092290401 2001-03, 2013-15 1,2 
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Table 2.  Correlation coefficients (with 95% credible intervals) between characteristics of water level variation and whole young-of-
year Yellow Perch total mercury content (per unit dry mass). Max WL- maximum annual WL, WLR-Annual water level rise, Δmax 
WL- change in maximum WL since last year, NA- indicates the model would not converge. *-sites used in the partial least squared 
regression analysis. Bold indicates a non-zero correlation co-efficient. 

Lake Site Years of data Max WL WLR Spring WLR Δmax WL 
Crane Lake 1 2001-03, 2013-15 0.56 (-0.30 to 0.95) 0.50 (-0.36 to 0.94) 0.53 (-0.35 to 0.94) 0.80 (0.16 to 0.98) 
Crane Lake 2* 2001-10, 2013-15 0.57 (0.05 to 0.87) 0.54 (0.02 to 0.86) 0.57 (0.09 to 0.86) 0.57 (0.07 to 0.87) 
Lake Kabetogama 1* 2001-10, 2013-15 0.49 (-0.04 to 0.83) 0.42 (-0.12 to 0.8) 0.28 (-0.28 to 0.72) 0.33 (-0.24 to 0.76) 
Lake Kabetogama 2 2001-03, 2013-15 0.67 (-0.11 to 0.97) 0.75 (0.07 to 0.98) 0.63 (-0.17 to 0.96) 0.66 (-0.15 to 0.97) 
Little Vermilion Lake 1* 2001-03, 2013, 2015 0.17 (-0.42 to 0.68) 0.23 (-0.35 to 0.71) 0.35 (-0.23 to 0.78) 0.35 (-0.25 to 0.78) 
Little Vermilion Lake 2 2001-03, 2013, 2015 -0.21 (-0.90 to 0.71) -0.20 (-0.92 to 0.70) -0.17 (-0.88 to 0.73) 0.12 (-0.75 to 0.86) 
Namakan Lake 1* 2001-10, 2013-15 0.72 (0.33 to 0.92) 0.61 (0.14 to 0.88) 0.59 (0.11 to 0.87) 0.53 (0.02 to 0.85) 
Namakan Lake 2 2001-03, 2013-15 0.80 (0.19 to 0.99) 0.72 (-0.06 to 0.98) 0.69 (-0.10 to 0.97) 0.88 (0.41 to 0.99) 
Rainy Lake 1* 2001-10, 2013-15 0.82 (0.51 to 0.96) 0.88 (0.66 to 0.97) 0.82 (0.52 to 0.95) 0.51 (0.01 to 0.84) 
Rainy Lake 2 2001-03, 2015 0.56 (-0.56 to 0.98) (NA) 0.46 (-0.70 to 0.98) 0.62 (-0.55 to 0.99) 

Sand Point Lake 0* 
1997, 1999, 2000-10, 

2013-15 0.64 (0.22 to 0.88) 0.58 (0.14 to 0.86) 0.59 (0.17 to 0.85) 0.68 (0.31 to 0.90) 

Sand Point Lake 1 2001-03, 2013-15 0.70 (-0.06 to 0.97) 0.66 (-0.19 to 0.96) 0.67 (-0.16 to 0.97) 0.80 (0.18 to 0.99) 
Sand Point Lake 2 2001-03, 2013-15 0.59 (-0.28 to 0.96) 0.60 (-0.24 to 0.96) 0.65 (-0.17 to 0.97) 0.75 (0.07 to 0.98) 
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Table 3.  The first component of a partial least squared regression analysis relating water level (WL) fluctuations, degree days, precipitation, sulfate 
deposition and mercury deposition to total mercury content (per unit dry mass) in whole young-of-year Yellow Perch (collected at the end of September).  
Loadings are equivalent to a correlation between the component and the individual variable.  Only loadings of 0.3 or more are shown.  Cross-validation 
supported the inclusion of each of these components.  Each of these sites had >12 years of data.  Spring refers to April-June; Summer refers to July-
September.  No components were supported for Little Vermilion Lake. 

 Crane Lake 
(Site 2) 

Lake 
Kabetogama 
(Site 1) 

Namakan Lake 
(Site 1) 

Rainy Lake 
(Site 1) 

Sand Point 
Lake (Site 0) 

% Variance Explained 
(predictors) 

46.5 42.8 46.4 48.1 47.6 

% Variance Explained (mean 
Yellow Perch Hg ng per g DW) 

54.2 42.9 61.7 79.2 62.3 

      
Loadings 
Annual maximum WL 0.30 0.35 0.31 0.30 - 
Annual WL rise - 0.34 0.31 - 0.30 
Change in maximum WL from 
last year - - - - - 
Annual minimum WL - - - - - 
Annual mean WL - - - - - 
Annual standard deviation WL - - - - - 
Spring maximum WL 0.30 0.32 0.31 0.30 - 
Spring WL rise 0.30 0.31 0.30 0.30 0.30 
Spring minimum WL - - - - - 
Spring mean WL - - - - - 
Spring standard deviation WL - - - - - 
Summer maximum WL 0.30 0.33 - 0.30 - 
Summer WL rise - 0.32 - - - 
Summer minimum WL - - - - - 
Summer mean WL - 0.33 - - - 
Summer standard deviation WL - 0.33 - - - 
Degree days (0°C) - - - - - 
Degree days (5°C) - - - - - 
Degree days (10°C) - - - - - 
Degree days (15°C) - - - - - 
Precipitation (mm) - - - - - 
Sulfate deposition - - - - - 
Mercury deposition - - - - - 
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Table 4.  The second component of a partial least squared regression analysis relating water level (WL) fluctuations, degree days, precipitation, sulfate deposition 
and mercury deposition to total mercury content (per unit dry mass) in whole young-of-year Yellow Perch (collected at the end of September).  Loadings are 
equivalent to a correlation between the component and the individual variable.  Only loadings of 0.3 or more are shown.  Cross-validation supported the inclusion 
of each of these components.  Each of these sites had >12 years of data.  Spring refers to April-June; Summer refers to July-September.  Crane Lake and Sand 
Point Lake did not have strongly supported second components, while Little Vermilion Lake had no strongly supported components. 

 Lake 
Kabetogama 
(Site 1) 

Namakan Lake 
(Site 1) 

Rainy Lake 
(Site 1) 

% Variance Explained 
(predictors) 

19.4 14.2 21.2 

% Variance Explained (mean 
Yellow Perch Hg ng per g DW) 

23.6 21.4 8.0 

Annual maximum WL - - - 
Annual WL rise - - - 
Change in maximum WL from 
last year - - - 
Annual minimum WL - 0.38 -0.34 
Annual mean WL - - - 
Annual standard deviation WL - - - 
Spring maximum WL - - - 
Spring WL rise - - - 
Spring minimum WL - 0.36 -0.34 
Spring mean WL - - - 
Spring standard deviation WL -0.31 - - 
Summer maximum WL - - - 
Summer WL rise - - - 
Summer minimum WL - - -0.31 
Summer mean WL - - - 
Summer standard deviation - - - 
Degree days (0°C) 0.36 0.34 - 
Degree days (5°C) 0.38 0.33 0.31 
Degree days (10°C) 0.40 0.35 0.32 
Degree days (15°C) 0.41 0.38 0.30 
Precipitation (mm) - - - 
Sulfate deposition - - - 
Mercury deposition - - - 
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Figure 1.  Annual variation in young-of-year whole fish Yellow Perch mean total mercury content in multiple sites from the same 
lake.  Units for Yellow Perch mercury content are ng g-1 dry mass.  The solid line is a 1:1 line.  Pearson’s correlation coefficients (r) 
are reported with 95% confidence intervals.  Each point is a separate year.  For Sand Point Lake, closed circles are data from Site 0, 
open circles are from Site 2. 
 

Figure 2.  Mean measured and predicted whole fish young-of-year Yellow Perch total mercury (ng g-1 dry mass).  Predictions are 
derived from partial least squared regression models that were validated using cross-validation.  Crane Lake and Sand Point Lake 
models included 1 component, other lakes included 2 components (see Tables 3 and 4).  The solid line is a 1:1 line. 

Figure 3.  Predicted whole fish young-of-year Yellow Perch total mercury content (ng g-1 dry mass) in response to changes in water 
level (WL) management.  Predictions are based on partial least squared regression (PLSR) models and two WL management scenarios 
generated from a hydrological model spanning 2000-2014.  Points are means of jackknifed PLSR models (error bars are standard 
deviations from the jackknifed estimates). 
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