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Abstract:  43 

Background: Cytokines are critical to human disease and are attractive therapeutic 44 

targets given their widespread influence on gene regulation and transcription. Defining 45 

the downstream regulatory mechanisms influenced by cytokines is central to defining 46 

drug and disease mechanisms. One promising strategy is to use interactions between 47 

expression quantitative trait loci (eQTLs) and cytokine levels to define target genes and 48 

mechanisms.  49 

Results: In a clinical trial for anti-IL-6 in patients with systemic lupus erythematosus we 50 

measured interferon (IFN) status, anti-IL-6 drug exposure and genome-wide gene 51 

expression at three time points (379 samples from 157 individuals). First, we show that 52 

repeat transcriptomic measurements increases the number of cis eQTLs identified 53 

compared to using a single time point by 64%. Then, after identifying 4,818 cis-eQTLs, 54 

we observed a statistically significant enrichment of in vivo eQTL interactions with IFN 55 

status (p<0.001 by permutation) and anti-IL-6 drug exposure (p<0.001). We observed 56 

210 and 72 interactions for IFN and anti-IL-6 respectively (FDR<20%). Anti-IL-6 57 

interactions have not yet been described while 99 of the IFN interactions are novel. 58 

Finally, we found transcription factor binding motifs interrupted by eQTL interaction 59 

SNPs, pointing to key regulatory mediators of these environmental stimuli and therefore 60 

potential therapeutic targets for autoimmune diseases. In particular, genes with IFN 61 

interactions are enriched for ISRE binding site motifs, while those with anti-IL-6 62 

interactions are enriched for IRF4 motifs.  63 

Conclusion: This study highlights the potential to exploit clinical trial data to discover in 64 

vivo eQTL interactions with therapeutically relevant environmental variables. 65 
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 67 

Background 68 

Cytokines are critical signals used by the immune system to coordinate inflammatory 69 

responses. These factors bind to specific receptors to induce widespread transcriptional 70 

effects. Cytokines and their receptors are not only genetically associated with 71 

susceptibility to a range of human diseases, they have also emerged as effective 72 

therapeutic targets[1]. Blockade of tumour necrosis factor (TNF) was the first cytokine-73 

directed therapy to achieve widespread use and is now used broadly to treat multiple 74 

inflammatory diseases including rheumatoid arthritis (RA), psoriasis, and inflammatory 75 

bowel disease[2]. More recently, IL-6 has emerged as a compelling therapeutic target. 76 

IL-6 levels are elevated in autoimmune diseases such as systemic lupus erythematosus 77 

(SLE) and RA. The IL-6 receptor has been successfully targeted with tocilizumab in 78 

RA[3] and giant cell arteritis[4], while IL-6 has been targeted directly with siltuximab for 79 

successful treatment of Castleman’s disease[5]. In SLE, IL-6 is thought to play a role in 80 

the observed B cell hyperactivity and autoantibody production[6]. Targeting IL-6-R in 81 

SLE has shown promise in phase I trials[7] and this has led to the development of other 82 

biologics targeting IL-6 such as PF-04236921[8]. Interferon (IFN)-α, produced primarily 83 

by plasmacytoid dendritic cells, has pleiotropic effects on the immune system. It has 84 

been implicated as a key mechanism in SLE development and pathogenesis, and is 85 

being investigated as a therapeutic target[9]. Agents targeting other inflammatory 86 

cytokines, including Interleukin-1 (IL-1), IL-12, and IL-17A and IL-23 are also in clinical 87 

use to treat autoimmune conditions. Interestingly, IL-1 blockade with canakinumab has 88 
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also been recently reported to reduce risk of heart attacks, stroke and cardiovascular 89 

disease[10]. Therefore, defining the regulatory consequences of physiologic 90 

perturbations of cytokine levels will inform our understanding of both disease and drug 91 

mechanisms.  92 

 93 

A cis expression quantitative trait locus (eQTL) contains a genetic variant that alters 94 

expression of a nearby gene. Cis eQTLs are ubiquitous across the genome[11] and 95 

while most are stable across tissues and conditions, environmental variables can alter 96 

the effects of some of them[12–18]. If an environmental change leads to disruption of 97 

regulators upstream of a gene, then it could magnify or dampen an eQTL effect, 98 

resulting in a genotype-by-environment interaction (Figure S1). Therefore, observing a 99 

set of eQTL interactions due to a perturbagen, such as a cytokine, can identify shared 100 

upstream regulatory mechanisms, such as transcription factors and key pathways. Even 101 

a single eQTL interaction where we can define mechanism can lead to insights about 102 

the action of the perturbagen.  103 

 104 

However, cis eQTL interactions with physiologic environmental factors in humans have 105 

been challenging to discover in vivo[19–23] even with large cohorts[11, 17]. Success at 106 

finding cis eQTL interactions has largely been found in studies using model 107 

organisms[24, 25] or treating cells in vitro with non-physiologic conditions[26]. Thus far, 108 

these studies might be limited in power since they often map eQTLs separately across 109 

conditions and fail to exploit the power of repeat measurements[27]. In other instances, 110 
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they test for genetic variants associated with differential expression and miss 111 

information about the magnitude of the eQTL effect in a specific condition[28].  112 

 113 

We predicted that if the transcriptome is assayed at multiple time points under different 114 

exposure states, then the repeat measurements could lead to an increase in power to 115 

detect eQTLs and their interactions with environmental perturbations. If the same 116 

individual is assessed at multiple times, then the noise in transcriptomic measurements 117 

is reduced. Furthermore, repeat measurements from the same individuals when they 118 

are both unexposed and exposed to an environmental perturbagen allow for more 119 

accurate modelling of the effect of the perturbagen within those subjects. 120 

 121 

Clinical trials, with their structured study design, may be the ideal setting to detect eQTL 122 

interactions with therapeutically important variables. In clinical trials, it is becoming 123 

increasingly common to collect transcriptional and genetic data alongside clinical and 124 

physiological data[29]. This extensive phenotyping of therapeutically important variables 125 

and biomarkers within the same individual at multiple time points provides a unique 126 

opportunity to identify in vivo eQTL interactions.  127 

 128 

Here, we examined the modulation of eQTL effects by environmental factors that alter 129 

cytokine levels using data from a phase II clinical trial to evaluate the safety and efficacy 130 

of a neutralizing IL-6 monoclonal antibody (PF-04236921) in 157 SLE patients[8] 131 

(Methods). Many patients with SLE exhibit high levels of genes induced by type I IFN; 132 

these genes, known as the IFN signature, are a marker of disease severity[30, 31] and 133 

a pathogenic feature of SLE. This feature of the disease, together with exposure to anti-134 
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IL-6 leads to cytokine fluctuations in this cohort yielding opportunities to assess the 135 

impact of cytokine levels on eQTL effects. While this drug was not significantly different 136 

from placebo for the primary efficacy endpoint (proportion of patients achieving the SLE 137 

Responder Index (SRI-4) at week 24), biologically it effectively reduced free IL-6 protein 138 

levels (Figure S2). Given the key role of IL-6 and IFN in a range of diseases, the 139 

downstream regulatory effects of these cytokines are of great interest to study.  140 

 141 

In this study, we leverage the power of repeat transcriptional and environmental 142 

measurements from a lupus clinical trial to identify in vivo eQTL interactions with IFN 143 

status and anti-IL-6 exposure. In the process, we define novel eQTL interactions for 144 

both IFN and IL-6. 145 

 146 

Results 147 

We conducted whole blood high-depth RNA-seq profiling at 0, 12, and 24 weeks in anti-148 

IL-6 exposed and unexposed individuals with the Illumina TruSeq protocol. We 149 

quantified 20,253 gene features and examined 1,595,793 genotyped and imputed 150 

common variants genome-wide (Methods). Along with each RNA-seq assay, we 151 

documented anti-IL-6 exposure and quantified IFN signature status with real-time PCR. 152 

 153 

Mapping eQTL in SLE patients 154 

We first mapped cis eQTLs and then tested them for interactions with IFN status and 155 

anti-IL-6 exposure. eQTL interactions can be explored using our interactive visualisation 156 

tool (http://baohongz.github.io/Lupus_eQTL, Figure S3). 157 

 158 
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To identify cis eQTLs, we examined the association between gene expression and 159 

SNPs within 250kb upstream of the transcription start site and 250kb downstream of the 160 

transcription end site. In order to account for repeat measurements, with up to three 161 

RNA-seq assays per patient (Figure 1A, 379 samples from 157 patients, Methods), we 162 

used a linear mixed model. We included 25 gene expression principal components to 163 

maximise the number of eQTL detected and 5 genotyping principal components to 164 

account for the heterogeneity in ethnicity in our cohort (Methods). We observed that the 165 

multi-ethnic nature of our study did not confound our results, consistent with Stranger et 166 

al.[32] (Figure S4). 167 

 168 

To ensure we only tested for interactions in a set of highly confident eQTLs, we applied 169 

a stringent correction for the total number of hypotheses tested. We recognized that this 170 

approach might arguably be overly stringent for eQTL discovery, but we wanted to be 171 

certain that we were only testing eQTLs for interactions that had a convincing main 172 

effect. Since we tested a total of 5,872,001 SNP-gene pairs genomewide, we set a 173 

significance threshold of peqtl<8.5x10-9 (0.05/5,872,001 tests). We identified 4,818 cis 174 

eQTL genes (Figure 1B,1C, Table S1). The summary statistics for all the gene SNP 175 

pairs tested are available in Table S2.  176 

 177 

To confirm the validity of our eQTLs, we compared them to a larger dataset. In the BIOS 178 

cohort, consisting of 2,166 healthy individuals[11], we observed that 85.4% of our SLE 179 

eQTL SNP-gene pairs are reported as eQTLs (FDR<0.05). Of these, 98.9% showed 180 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/118703doi: bioRxiv preprint 

https://doi.org/10.1101/118703


 
Davenport et al 

 8 

consistent direction of effect (p<5x10-16, binomial test, Figure 1D), suggesting that our 181 

results were highly concordant with those in this substantially larger study.   182 

 183 

Repeat measurements increase power to detect eQTL 184 

Under reasonable assumptions, we would expect repeat samples to increase our 185 

power. Supporting that expectation, we detected 64% more cis eQTLs compared to the 186 

2,934 genes from using a single sample (first available time point) per individual (Figure 187 

1B). An alternative might have been to identify eQTLs separately from each of the three 188 

time points; however, this approach identified only a total of 3,050 eQTL genes (Figure 189 

S5). Modelling all three time points together results in 58% more cis eQTLs than 190 

modelling each time point separately.  191 

 192 

We speculated that while repeat measures did increase power over single measures, 193 

that given a fixed number of samples, independent samples would lead to more power. 194 

To this end, we conducted an analysis fixing the number of samples at 157 and using 195 

53 individuals with repeat measures (with two missing samples). Unsurprisingly, we 196 

found fewer eQTLs (2,215 genes) with the repeat measures alone compared to an 197 

analysis with the same number of independent samples (2,934 genes).  198 

 199 

IFN status eQTL interactions 200 

For each of the 4,818 cis eQTL genes, we tested the most significantly associated SNP 201 

for environmental interactions with our linear mixed model framework. We first explored 202 

the influence of type I IFN on gene regulation after determining the IFN status of every 203 
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patient at each time point. We classified each sample as either IFN high or IFN low 204 

using real-time PCR of 11 IFN-inducible genes[33] (Methods, Figure 2A).  205 

 206 

We first wanted to assess whether our results were indeed enriched for interactions. To 207 

do this, we identified those eQTLs with nominally significant interaction effects at 208 

pinteract<0.01. We would expect ~48 out of 4,818 from chance alone. Surprisingly we 209 

observed 182 IFN-eQTL interactions (Table S1) that were nominally significant at 210 

pinteract<0.01 suggesting that there was evidence of enrichment for eQTL interactions.  211 

We conducted permutations to ensure that these results were not the consequence of 212 

potentially inflated statistics, which might be the result for example of low frequency 213 

alleles, genes violating normality assumptions, or other technical artefacts. In each of 214 

1,000 stringent permutations, we simply reassigned IFN status across samples and 215 

retested for eQTL interactions. This permutation preserves the main eQTL effect, since 216 

it maintains genotypes of the individuals with the associated expression data, but 217 

disrupts any real interactions that might be present in the data. In 0 out of 1,000 218 

instance did we observe 182 or more interactions at pinteract<0.01 suggesting that the 219 

number of observed interactions is enriched and highly unlikely to have happened by 220 

chance (Figure S6, ppermute~0/1,000 = <0.001).  221 

 222 

We then went on to identify those specific IFN-eQTL interactions of greatest interest by 223 

calculating a false discovery rate or q value for each interaction using the q value 224 

package[34] (Methods). We observed a total of 210 interactions with an FDR<0.2 225 

threshold (Table S1). We note that 11 of these genes have already been described as 226 
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having an interaction with a proxy gene for type I IFN signalling in the much larger BIOS 227 

study[11]. For example, SLFN5 expression is influenced by the rs12602407 SNP 228 

(pinteract =1.3x10-10, FDR <9.9x10-8, Figure 2B) and this effect is magnified in IFN high 229 

samples. Of these 210 IFN-eQTL interactions, 99 were not reported in the BIOS 230 

study[11]. Indeed, applying a more stringent cut off of FDR<0.01, 27/34 of our 231 

interactions are not previously reported and therefore are almost certainly novel IFN-232 

eQTL interactions with high confidence (Figure S7).  233 

 234 

We speculated that groups of eQTL interactions might be driven by the same common 235 

regulatory factor. We divided interactions into magnifiers, where the environmental 236 

exposure increases the size of the eQTL effect, and dampeners where the 237 

environmental exposure decreases the eQTL effect (Figure S8). We hypothesized that 238 

the transcription factors driving the response to type I IFN may be different for the eQTL 239 

interactions defined as magnifiers (n=127, FDR<0.2) and dampeners (n=83, FDR<0.2).  240 

 241 

We applied HOMER[35] to assess overlap between transcription factor binding motifs 242 

and the eQTL interaction SNPs (and SNPs in high linkage disequilibrium (LD, r2>0.8) in 243 

the cis window, Methods). We conducted two separate analyses: magnifying eQTL 244 

interactions in the foreground with dampening interactions in the background and vice 245 

versa. We found enrichment of motifs for key transcription factors involved in IFN 246 

signalling including a statistically significant enrichment for the ISRE motif (HOMER 247 

p=1x10-4, Table S3).  The ISRE motif disruption occurred for 11 genes with an eQTL 248 

magnified in IFN high samples but for only 1 gene with an eQTL dampened 249 
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(permutation p<0.019, Methods, Figure 2C). An example is the GTF2A2 rs2306355 250 

eQTL (pinteract=8.7x10-3, FDR<0.15, Figure 2D); rs2306355 is in tight LD (r2=0.83 in 251 

Europeans) with rs6494127, which interrupts the TTCNNTTT core of the ISRE motif 252 

(Figure 3C). This SNP likely disrupts IRF9 and STAT2 binding in the ISGF3 253 

complex[36], which binds to the ISRE motif. We observe greater expression of GTF2A2 254 

in individuals with the rs2306355 A allele compared to G; this difference is magnified in 255 

IFN high individuals (Figure 2D).  256 

 257 

We considered that the principal components included as covariates in our model might 258 

be mitigating power. For example, the 4th principal component of gene expression is 259 

correlated with the IFN signature status of the sample (rs= -0.7, Table S4) so we 260 

repeated the IFN interaction analysis without correcting for principal component 4. For 261 

all the eQTLs tested for an IFN interaction, we observed very similar results with highly 262 

correlated z-scores (rs=0.94, Figure S9).  263 

 264 

Discovery of eQTL interactions with anti-IL-6 drug exposure 265 

We then examined whether IL-6 blockade alters the relationship between genomic 266 

variation and gene expression and induces drug-eQTL interactions. We wanted to first 267 

test if there was evidence of such interactions in our data set. Again, using a threshold 268 

of pinteract<0.01 for nominal significance for interactions, we observed 121 drug-eQTL 269 

interactions with anti-IL-6 out of 4,818 eQTLs tested (Table S1); similar to IFN 270 

interactions, this is far in excess of the ~48 we would expect by chance. As above, to 271 

ensure that these results were not the consequence of statistical artefact, we applied 272 

the same stringent permutation strategy, reassigning which samples were exposed or 273 
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not to anti-IL-6. After 1,000 permutations, we never observed as many as 121 drug-274 

eQTL interactions with pinteract<0.01 (Figure S10), suggesting that our eQTLs were 275 

indeed highly enriched for those interacting with anti-IL-6 (ppermute~0/1000<0.001). 276 

 277 

To identify specific eQTL events that interact with anti-IL-6, we again calculated a false 278 

discovery rate. We observed that 72 of these interactions have an FDR<0.2. Only 8 of 279 

these drug-eQTL interactions overlap with the interactions observed for IFN status 280 

(Table S1). We note biologically relevant drug-eQTL interactions for IL10 281 

(pinteract=2.6x10-3, FDR<0.19, Figure S11), an anti-inflammatory cytokine, CLEC4C 282 

(pinteract=2.9x10-3, FDR<0.19) which has previously been associated in trans with an SLE 283 

risk allele[37] and CLEC18A (pinteract=5.1x10-4, FDR<0.14, Figure 3A) another member 284 

of the C-type lectin domain family.  285 

 286 

Similar to the IFN-eQTL interactions, we divided the drug-eQTL interactions into 287 

magnifiers (n=33, FDR<0.2) and dampeners (n=39, FDR<0.2) (Figure S12) and used 288 

the approach as described above to define transcription factors potentially driving the 289 

response to IL-6 blockade (Table S5). One of the motifs enriched for eQTLs magnified 290 

after drug treatment (with dampeners in the background) was IRF4 (HOMER p=1x10-3). 291 

The IRF4 motif disruption occurred for 9 genes, including CLEC18A, with an eQTL 292 

magnified after drug treatment compared to 4 genes with an eQTL dampened (Figure 293 

3B, Methods). We permuted the magnifying and dampening genes and found this ratio 294 

for enrichment is suggestive at the gene level (p=0.058) but additional eQTL 295 

interactions will be necessary to confirm. 296 

 297 
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Comparing differential expression to eQTL interactions 298 

A more common strategy to determine the effect of an environmental variable is to use 299 

differential gene expression. For differential expression following anti-IL-6 treatment, we 300 

identified 415 genes with FDR<0.05 but modest effects (max fold change=1.3, Figure 301 

S13). Intriguingly, only 1/72 drug-eQTL interaction genes also show evidence of 302 

differential gene expression. This suggests that eQTL interactions offer independent 303 

information from differential expression, which might contribute to defining mechanisms. 304 

 305 

Concordance of drug-eQTL interactions with protein level interactions   306 

We hypothesized that interactions due to drug exposure are likely driven by free IL-6 307 

cytokine levels (our key clinical biomarker of interest). If this is the case, for eQTLs 308 

dampened by drug exposure, an increase in free IL-6 should elicit an opposite 309 

interaction effect and result in eQTL magnification. We assessed whether eQTL 310 

interactions with free IL-6 protein levels measured in the patient serum samples were 311 

consistent with those following IL-6 blockade. We observed enrichment in the overlap 312 

between cytokine interactions and drug interactions (53/72 interactions in expected 313 

opposite direction, Figure 3C, p=3.8x10-5, binomial test).  314 

 315 

Discussion 316 

In this study we mapped eQTLs in a clinical trial of SLE patients and discovered 317 

interactions with IFN and IL-6, two clinically important cytokines.  Our study had 318 

dramatic variation in IL-6 that was therapeutically induced, and variation in IFN due to 319 

the disease status of the SLE patients. This, together with the structured study design 320 
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with repeat measurements of gene expression across different conditions in the same 321 

individual, allowed us to identify in vivo eQTL interactions.  322 

 323 

eQTL interactions with drug interventions or other therapeutically relevant physiologic 324 

variables are important to identify. We note that these results are independent of 325 

differentially expressed genes, which are more likely to represent second order effects, 326 

rather than primary genetic effects. Therefore, these eQTL interactions can point to 327 

regulatory mechanisms, such as transcription factors or subclasses of enhancers, 328 

acting downstream of the environmental condition of interest and driving groups of 329 

eQTL interactions. The IFN status eQTL interactions we identified provide support for 330 

this approach. By making use of the direction of effect for the eQTL interaction, we were 331 

able to identify an enrichment of magnifying eQTL interaction SNPs interrupting the 332 

binding sites of transcription factors known to be important in the response to IFN, such 333 

as ISGF3 (the STAT1, STAT2 and IRF9 complex), which binds ISRE. Once we are able 334 

to recognize the downstream drivers of therapeutically relevant clinical variables, then it 335 

may become possible to define more mechanisms of action for drugs and more precise 336 

drug targets.  337 

 338 

As a powerful example, we note enrichment of magnifying anti-IL-6-eQTL interaction 339 

SNPs interrupting the binding site of IRF4. It has been suggested that IRF4 works 340 

downstream of IL-6 by binding BATF and co-ordinately regulating the production of IL10 341 

and other genes[38]. Consistent with this, we observed that the IL10 eQTL does indeed 342 

interact with presence of anti-IL-6 (Figure S11). Previous studies have highlighted a 343 
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role for IRF4 in the pathogenesis of autoimmune diseases in mouse and humans. For 344 

example in a murine model of SLE, IRF4 knockout mice did not develop lupus 345 

nephritis[39]. In humans, IRF4 is associated with RA[40], a disease in which anti-IL-6 346 

treatment has been successful[3]. Our findings provide further support that IRF4 could 347 

be a potential therapeutic target for autoimmune diseases such as RA where anti-IL-6 is 348 

effective[41].  349 

 350 

The ability to focus on interactions with specific patient phenotypes might point to key 351 

targets for disease intervention. For example, IFN is a key immunophenotype in SLE 352 

patients, and elevated in SLE compared to healthy controls[30, 31]. The IFN status 353 

immunophenotype is already itself driving interest in therapeutic targets. A recent phase 354 

II clinical trial has shown that an antagonist to the type I IFN receptor, acting upstream 355 

of ISRE, reduced severity of symptoms in SLE. Interestingly, the antagonist was more 356 

effective in the patients with a high baseline IFN status[42]. This example provides a 357 

compelling case study for how understanding master regulators of key disease 358 

phenotypes might lead to promising new therapeutic strategies. We speculate that this 359 

provides a mechanism for stratified medicine for future studies, which may be applicable 360 

to other diseases.  361 

 362 

We recognized that computing eQTL interactions requires a robust statistical model that 363 

accounts for genotype, environmental factor, RNA expression levels, repeat 364 

measurements, and technical covariates. We were sensitive to the possibility that pre-365 

processing and normalisation of these factors could potentially have an impact on our 366 
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results. For this reason, we used stringent filtering and examined only variants that were 367 

common and where the minor allele was present for each of the exposure groups. Next, 368 

to confirm enrichment of eQTL interactions, we used a stringent permutation-based 369 

strategy that preserved the distribution of genotypes and corresponding expression 370 

values. Finally, we also utilized a standard normal transformation[43] (Methods) and 371 

observed that this had little effect on the primary eQTL analysis (rs=0.99 for z scores, 372 

Figure S14) and interaction analyses (IFN rs=0.84, drug rs=0.76 for z scores, Figure 373 

S15), or the observed enrichment over the null in our stringent permutation analysis 374 

(Figure S16).  375 

 376 

We speculate that drug-eQTL interactions might offer an alternative pharmacogenetic 377 

strategy to assess drug response. For many biologic medications, predictive 378 

pharmacogenetics through typical association studies has been challenging; for 379 

example, studies trying to define genetic or transcriptomic biomarkers of anti-TNF 380 

response have not been successful[44, 45]. An eQTL interaction approach can be used 381 

to define a genotype-aware score reflecting the biological activity that a medication is 382 

having upon an individual, given their allelic combination of multiple genetic markers. 383 

For example, we can define a simple anti-IL-6 exposure score based on 7 anti-IL-6 384 

eQTL interactions with a more stringent FDR (FDR<0.1). This score is based on 385 

assessing whether the expression of the eQTL target gene was more consistent with 386 

the drug exposed or the unexposed state for the corresponding interaction SNP 387 

genotype. Unsurprisingly, we found a difference in drug exposure score between the 388 

unexposed and exposed samples (Figure S17) (rs=0.40, p=2.1x10-16); these differences 389 
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reflect the fact that the eQTLs were themselves identified by examining samples with 390 

and without drug exposure. However, while we did not utilize the administered drug 391 

dose to identify drug-eQTL interactions; we observed a significant correlation between 392 

drug dose (10, 50 or 200mg) and drug exposure score (rs=0.16, p=0.02) in the drug-393 

exposed samples (Figure S18). A simple eQTL interaction score may therefore have 394 

the potential to stratify individuals when assessing response to a medication for 395 

example those with a higher drug exposure score may have a better response to 396 

treatment. Similarly, this score could be correlated with adverse effects to capture 397 

informative gene expression signatures.  398 

 399 

We note a limitation of this study is that the drug itself did not achieve its primary 400 

efficacy endpoint of improving SLE outcomes. Hence, while the drug exposure score for 401 

this study tracked with the biological effect of the drug (reducing free IL-6 protein levels), 402 

it might not be useful for SLE specifically. However, such a scoring system could be 403 

implemented easily in most phase III trials for a broad range of therapeutics, where the 404 

numbers of samples are far in excess of this phase II trial, ensuring better powered and 405 

more accurate eQTL-interaction mapping. 406 

 407 

Conclusion 408 

We devised a framework for identifying in vivo eQTL interactions with therapeutically 409 

relevant variables, exploiting repeat measurements from a clinical trial. We have applied 410 

this approach to demonstrate how downstream regulatory effects of cytokine biology 411 

can be elucidated. This same approach can be applied to a wide range of other 412 
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clinically important cytokines, their antagonists, or indeed other targeted biologic 413 

therapies. We speculate that this approach might even be applied to the presence or 414 

absence of disease, or disease activity. However, given the multifaceted nature of 415 

disease effects, interpreting an eQTL interaction in that context might be more 416 

challenging. Modern clinical cohorts and clinical trial data sets with RNA-seq data that 417 

has been collected will make this approach easily applicable on a wide scale.  418 

 419 

 420 

Methods 421 

Study design 422 

The objectives of this study were to map eQTLs in a cohort of lupus patients and 423 

identify eQTL interactions with environmental perturbations such as drug treatment to 424 

shed light on drug and disease mechanisms. SLE patients were recruited to a phase II 425 

clinical trial to test the efficacy and safety of an IL-6 monoclonal antibody (PF-426 

04236921). The patient population recruited to this trial have been detailed extensively 427 

by Wallace et al.[8] 183 patients (forming a multi-ethnic cohort) were randomized to 428 

receive three doses of drug (10, 50 or 200mg) or placebo at three time points during the 429 

trial (weeks 0, 8 and 16).  430 

 431 

RNA-sequencing 432 

We collected peripheral venous blood samples in PAXgene Blood RNA tubes 433 

(PreAnalytiX GmbH, BD Biosciences) for high-depth RNA-seq profiling at 0, 12, and 24 434 

weeks. We extracted total RNA from blood samples using the PAXgene Blood RNA kit 435 
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(Qiagen) at a contract lab using a customized automation method. We assessed the 436 

yield and quality of the isolated RNA using Quant-iT™ RiboGreen® RNA Assay Kit 437 

(ThermoFisher Scientific) and Agilent 2100 Bioanalyzer (Agilent Technologies), 438 

respectively. Following quality assessment, we processed an aliquot of 500-1000 ng of 439 

each RNA with a GlobinClear-Human kit, (ThermoFisher Scientific) to remove globin 440 

mRNA. We then converted RNA samples to cDNA libraries using TruSeq RNA Sample 441 

Prep Kit v2 (Illumina) and sequenced using Illumina HiSeq 2000 sequencers. We 442 

generated an average of 40M 100bp pair-end reads per sample for downstream 443 

analysis. 444 

 445 

We successfully obtained 468 RNA-seq profiles from 180 patients. We aligned reads to 446 

the reference genome and quantified gene expression using Subread[46] and 447 

featureCounts[47] respectively. We included genes with at least 10 reads (CPM>0.38) 448 

in at least 32 samples (minimum number of patients with both unexposed and exposed 449 

RNA-seq assays in a drug group) prior to normalization. Following quality control (QC), 450 

we removed 4 samples as outliers. We then normalized 20,253 transcripts using the 451 

trimmed mean of M-values method and the edgeR R package[48]. Expression levels 452 

are presented as log2(cpm +1) (Table S6). 453 

 454 

Genotyping 455 

We genotyped 160 individuals across 964,193 variants genome-wide with the Illumina 456 

HumanOmniExpressExome-8v1.2 beadchip. We removed SNPs if they deviated from 457 

Hardy-Weinberg Equilibrium (HWE) (p < 1x10-7), had a minor allele frequency <5%, 458 
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missingness >2% or a heterozygosity rate greater than 3 standard deviations from the 459 

mean (PLINK[49, 50]). For mapping eQTLs, we removed SNPs on the Y chromosome. 460 

Following QC, we used 608,017 variants for further analysis. We removed one sample 461 

with high missingness and outlying heterozygosity rate from further analysis.  462 

 463 

Imputation 464 

We pre-phased the genotypes with SHAPEIT v2[51]. We imputed missing genotypes 465 

and untyped SNPs using Impute2[52] in 5Mb chunks against the 1000 Genomes Phase 466 

3[53] reference panel. To ensure only highly quality genotypes, and to avoid artefacts 467 

that can be induced by imputation uncertainty, we removed SNPs with an info score <1, 468 

MAF<0.05 or HWE p<1x10-7 leaving 1,595,793 SNPs for further analysis. 469 

 470 

Interferon status 471 

We classified the interferon (IFN) status of each sample at each time point from the 472 

expression of 11 IFN response genes (HERC5, IFI27, IRF7, ISG15, LY6E, MX1, OAS2, 473 

OAS3, RSAD2, USP18, GBP5) using TaqMan Low Density Arrays. These 11 genes 474 

were selected by identifying transcripts for which there was both a measureable 475 

response to IFN treatment in vitro, as well as differential expression (reduction in 476 

expression level) between baseline and visits with clinical improvement in the BOLD 477 

study[33]. There is no consensus set of genes to determine the IFN status of SLE 478 

patients but these 11 genes do overlap with other published gene sets. For example 479 

4/11 genes are also used in the 7-gene set defined by McBride et al[54] and 9/11 genes 480 

overlap with the 21-gene set defined by Yao et al[55].  481 
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 482 

The first principal component of the expression of the 11-gene set captured 91.7% of 483 

the variation (Figure S19). The distribution of this first principal component is nearly 484 

bimodal with good separation (Figure 2A) and we classified samples as high or low IFN 485 

based on this first principal component score. In our dataset, we see excellent 486 

correlations (rs=0.86-0.98) between the real-time PCR expression and the RNA-seq 487 

expression for these 11 genes (Figure S20). The first PC of the IFN signature of RNA-488 

seq data is also strongly correlated with the first PC of the IFN signature of real-time 489 

PCR (rs=0.96, Figure S21).  IFN status was available for 376 samples from 157 490 

subjects. 491 

 492 

Drug exposure 493 

Samples were assigned as unexposed (placebo or week 0 samples) or drug exposed 494 

(week 12 and week 24 samples in the drug groups).  495 

 496 

Free IL-6 protein levels 497 

We determined free IL-6 protein levels from serum using a commercial sandwich ELISA 498 

selected for binding only free IL-6. The assay was validated according to FDA 499 

biomarker and fit-for purpose guidelines. Free IL-6 protein levels were available for 311 500 

samples from 145 subjects. Since the distribution of IL-6 levels was highly skewed, we 501 

ranked samples in order of IL-6 protein levels and included in the model to identify drug-502 

eQTL interactions.  503 

 504 
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Statistical analysis 505 

eQTL and interaction analysis 506 

In total, 157 patients (with 379 RNA-seq samples) had good quality gene expression 507 

and genotyping data for eQTL analysis. All statistical analyses were carried out in R[56].  508 

 509 

We defined a cis eQTL as the SNP within 250kb upstream of the GENCODE[57] 510 

transcription start site of the gene or 250kb downstream of the transcription end site. 511 

We first applied a linear model for the first available time point (week 0 sample for 512 

n=152, week 12 sample for n=5) to identify each eQTL using the first 25 principal 513 

components of gene expression and the first 5 principal components of genotyping as 514 

covariates.  515 

 516 

To select the number of gene expression principal components to include, we counted 517 

the number of eQTL genes identified after incrementally increasing the number of 518 

principal components accounted for in the model from 0 to 50 by increments of five 519 

(Figure S22). We selected 25 principal components of gene expression to maximise the 520 

number of eQTL genes detected while minimising the number of principal components 521 

we corrected for. We included 5 principal components of genotyping to account for the 522 

heterogeneity in ethnicity in our cohort (Figure S23).  523 

 524 

SNPs were encoded as 0, 1 and 2 with respect to the number of copies of the minor 525 

allele. To adjust for multiple testing during eQTL discovery we used a stringent 526 

Bonferroni corrected p-value threshold of 8.5x10-9 (0.05/ 5,872,001 tests). The 527 
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Bonferroni adjustment assumes independence among the tests and we therefore note 528 

that it is a conservative multiple comparisons adjustment.  529 

 530 

To map eQTLs using multiple samples for each individual, we applied a random 531 

intercept linear mixed model using the first 25 principal components of gene expression 532 

and the first 5 principal components of genotyping as covariates and patient as a 533 

random effect:  534 

 535 

 536 

 537 

Where Ei,j is gene expression for the ith sample from the jth subject, θ is the intercept, 538 

βgeno is the genotype effect (eQTL), (κj|i) is the random effect for the ith sample from the 539 

jth subject, pci,l is principal component l of gene expression for sample i, pcj,m is principal 540 

component m of genotyping for subject j. 541 

 542 

We fitted the linear mixed models using the lme4 R package[58]. We assumed 543 

covariance between samples from the same individual, but did not assume any 544 

structure in this covariance. 545 

 546 

We used the most significant SNP (with p<8.5x10-9) from the 4,818 identified eQTL 547 

genes to explore eQTL interactions. For each environmental interaction analysis, we 548 

further filtered these eQTLs to include only those with at least two individuals 549 

homozygous for the minor allele of the SNP being tested in each of the environmental 550 

Ei, j =θ +βgeno ⋅ gj + (κ j i)+ φl
l=1

25

∑ ⋅ pci,l + γm
m=1

5

∑ ⋅ pcj,m
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factor groups. For example, we required two of these individuals in each of the drug 551 

exposed and drug unexposed groups. To identify eQTL interactions, we added an 552 

additional covariate to the model for example drug exposure, and an interaction term 553 

between this covariate and the genotype of the SNP:  554 

 555 

 556 

 557 

Where Ei,j is gene expression for the ith sample from the jth subject, θ is the intercept, 558 

βgeno is the genotype effect (eQTL), (κj|i) is the random effect for the ith sample from the 559 

jth subject, pci,l is principal component l of gene expression for sample i, pcj,m is principal 560 

component m of genotyping for subject j, βdrug is the drug effect (differential gene 561 

expression) and βx is the interaction effect. 562 

 563 

We determined the significance of the interaction term with a likelihood ratio test. 564 

 565 

To rigorously confirm the relative enrichment of eQTL interactions, we shuffled the 566 

interaction covariate (for example drug exposure) 1,000 times and calculated the 567 

number of significant interactions observed in each permutation. Our primary goal for 568 

the permutation analysis was to retain the main eQTL effect while examining only the 569 

effect of the environmental factor on the interaction. In this study, the main purpose of 570 

the covariates included in the model is to ensure the main eQTL effect is found. For IFN 571 

high/low status, we shuffled across all samples. For drug interaction permutation 572 

Ei, j =θ +βgeno ⋅ gj + (κ j i)+ φl
l=1

25

∑ ⋅ pci,l + γm
m=1

5

∑ ⋅ pcj,m +

βdrug ⋅di +βx ⋅di ⋅ gj
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analysis, we maintained the number of individuals in the drug group and the number of 573 

samples with exposure to drug. We calculated a qvalue for each interaction using the q 574 

value package[34]. Figure S24 shows the observed versus the expected p values for 575 

the interaction analyses.  576 

 577 

The expression of the majority of genes followed a normal distribution (Figure S25) but 578 

to assess whether non-normality could be causing an inflation of our test statistic, we 579 

repeated the identification of eQTLs and eQTL interactions following the standard 580 

normal transformation. We transformed the expression values of each gene to their 581 

respective quantiles of a normal distribution using the qqnorm function in R, breaking 582 

any ties (for example expression levels of zero in some individuals) randomly. 583 

 584 

Concordance with an eQTL study in healthy individuals 585 

In the SLE cohort, we classified 4,818 cis eQTL genes (p<8.5x10-9). The z-score for the 586 

most associated SNP for each of these genes was compared to the z- score from a 587 

previously published eQTL dataset from whole blood from 2,166 healthy individuals[11]. 588 

4,113/4818 SNP-gene pairs (85.4%) were also reported in the BIOS dataset 589 

(FDR<0.05). After removing 301 SNPs, which could not be mapped to a strand 590 

3,770/3,812 (98.9%) had a z-score (eQTL effect) in a consistent direction.  591 

 592 

Magnifiers and Dampeners 593 

An eQTL interaction can either magnify or dampen the original eQTL effect. We 594 

multiplied the interaction z-score by the sign of the original eQTL effect (genotype beta) 595 
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and defined magnifiers as interactions with an adjusted z-score > 0 and dampeners as 596 

interactions with an adjusted z-score < 0. 597 

 598 

Differential gene expression analysis 599 

To identify differentially expressed genes following drug exposure (unexposed or 600 

exposed), we applied a random intercept linear mixed model using the first 25 principal 601 

components of gene expression and the first 5 principal components of genotyping as 602 

covariates and patient as a random effect. We calculated a q value using the q value 603 

package[34].  604 

 605 

Drug exposure score 606 

We assigned a drug exposure score to each sample. We calculated a score for each 607 

gene (see equation below) and then averaged across the 7 drug-eQTL genes 608 

(FDR<0.1) to give the final drug exposure score. 609 

 610 

!"#$ !"#$%&'! !"#$% !!" !"#" =  12 (
! −  !!"#$%

!" )! − 12 (
! − !!"#

!" )!  

 611 

Where G is gene expression for a given sample, GUnexp is predicted mean gene 612 

expression for unexposed samples of the relevant SNP genotype, GExp is predicted 613 

mean gene expression for exposed samples of the relevant SNP genotype and SE is 614 

standard error for the intercept term of the model (unexposed expression for genotype 615 

0). 616 

 617 
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HOMER analysis for transcription factor binding motif enrichment 618 

We used the HOMER software suite[35] to look for enrichment of transcription factor 619 

binding motifs in the 210 IFN-eQTL interactions (FDR<0.2) and the 72 drug-eQTL 620 

interactions (FDR<0.2). Each eQTL interaction was identified using the most highly 621 

associated SNP for that eQTL. However, as this SNP is not necessarily the functional 622 

SNP, we additionally considered all those with an r2≥0.8 in the 1000 Genomes 623 

European population[53] within the cis eQTL window. We defined our motif search 624 

window as 20 bp on either side of each SNP (i.e. 41 bp wide).  625 

 626 

For each environmental factor, we divided the eQTL interactions into magnifiers or 627 

dampeners and conducted two separate HOMER analyses: one with magnifiers in the 628 

foreground and dampeners in the background; the other with dampeners in the 629 

foreground and magnifiers in the background. HOMER reported the transcription factor 630 

motifs that were significantly enriched in the foreground relative to background. Motifs 631 

were plotted using the SeqLogo R library[59].  632 

 633 

We determined permutation p values for enrichment of the ISRE and IRF4 transcription 634 

factor binding sites as follows. For ISRE, the motif is interrupted by interaction SNPs (or 635 

SNPs in LD) corresponding to 11 magnifying genes and 1 dampening genes. We 636 

permuted which genes were labelled as magnifiers or dampeners 100,000 times and 637 

counted the number of genes in each category with an ISRE motif interrupted. We 638 

found 1,855 occurrences from 100,000 trials with at least 11 magnifying genes 639 

(p<0.019). For IRF4 the motif is interrupted by SNPs corresponding to 9 magnifying 640 
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genes and 4 dampening genes. Using the same permutation approach, we found 5,801 641 

occurrences from 100,000 trials with at least 9 magnifying genes (p<0.058). 642 
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Figure 1. Identifying eQTLs in SLE patients (A) Clinical trial structure and sampling strategy. (B) 

Number of eQTL genes identified using a linear model (left) and a linear mixed model (right). For the 

linear model, we used the first available time point for each individual (week 0 sample for n=152, week 12 

sample for n=5). (C) Volcano plot of eQTL effects for the most significantly associated SNP for each gene 

(red color indicates p<8.5x10-9). (D) Concordance of SLE eQTL effects (p<8.5x10-9) with eQTLs observed 

in the BIOS cohort11 of healthy individuals (FDR <0.05). Each point represents the most significant 

SNP-gene pair for the SLE eQTL. 
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Figure 2. eQTL interactions with IFN status (A) Designation of IFN status for each 
sample from the real-time PCR expression of 11 genes (first principal component). (B) 
IFN status interaction with the SLFN5 eQTL plotted with respect to rs12602407 
genotype (left) and IFN status of the sample (right). (C) The ISRE motif enriched among 
eQTLs magnified in IFN high samples. Arrows indicate positions of the motif interrupted 
by interaction SNPs (or SNPs in strong LD). Red indicates these SNPs correspond to 
magnified eQTLs.  (D) IFN status interaction with the GTF2A2 eQTL plotted with respect 
to rs2306355 genotype (left) and IFN status of the sample (right).  
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Figure 3. eQTL interactions with drug exposure (A) Drug exposure interaction with the CLEC18A eQTL 
plotted with respect to rs3192882 genotype (left) and drug exposure (right). (B) The IRF4 motif enriched 
among eQTLs magnified following drug treatment. Arrows indicate positions of the motif interrupted by 
interaction SNPs (or SNPs in strong LD). Red and blue indicate SNPs corresponding to magnified and 
dampened eQTLs respectively. (C) Concordance of free IL-6 protein interaction effects with drug exposure 
interaction effects (grey indicates expected opposite direction).
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