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	 The	confluence	of	microfluidic	and	sequencing	technologies	has	enabled	profiling	of	the	

transcriptome1,	2,	epigenome3,	and	chromatin	conformation	of	single	cells4	at	an	unprecedented	

scale	 and	 resolution.	 Initial	 applications	 of	 single	 cell	 RNA-sequencing	 have	 led	 to	 the	

characterization	of	cellular	heterogeneity	in	tumors5,	6,	tissues7,	8,	and	immune	cells	responding	

to	 stimulation9.	 More	 recently,	 droplet-based	 technologies	 have	 significantly	 increased	 the	

throughput	of	single	cell	capture	and	library	preparation1,	10,	enabling	transcriptome	sequencing	

of	thousands	of	cells	from	one	microfluidic	reaction.	

While	improvements	in	biochemistry11,	12	and	microfluidics13,	14	continue	to	increase	the	

number	of	cells	sequenced	per	sample,	for	many	applications	(e.g.	differential	expression	and	

population	variation	studies),	sequencing	thousands	of	cells	each	from	many	individuals	would	

better	capture	inter-individual	variability	than	sequencing	more	cells	from	a	few	individuals.	

However,	in	standard	workflows,	increasing	sample	size	is	cost	prohibitive	because	it	requires	

running	a	separate	microfluidic	reaction	for	each	sample15.	Pooling	cells	from	multiple	

individuals	for	a	single	library	preparation	could	significantly	reduce	the	per-sample	cost	by	

allowing	cells	from	all	individuals	to	be	processed	simultaneously	and	reduce	the	per-cell	cost	

by	allowing	higher	concentrations	of	cells	to	be	loaded	(due	to	the	ability	to	detect	doublets	

that	contain	two	cells	from	different	individuals).	Further,	sample	multiplexing	limits	the	

technical	variability	associated	with	sample	and	library	preparation,	improving	statistical	power	

to	estimate	true	biological	effects16.		

We	present	a	simple	experimental	protocol	for	multiplexed	dscRNA-seq	and	a	

computational	algorithm,	demuxlet,	that	harnesses	genetic	variation	to	determine	the	sample	

identity	of	each	barcoded	droplet	(demultiplexing),	including	droplets	containing	two	cells	(Fig.	
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1A).	While	strategies	to	demultiplex	cells	from	different	species1,	10,	17	or	host	and	graft	

samples17	have	been	reported,	no	method	is	available	for	simultaneous	demultiplexing	and	

doublet	detection	of	cells	from	>	2	individuals.	Inspired	by	models	and	algorithms	developed	for	

contamination	detection	in	DNA	sequencing	data18,	demuxlet	is	fast,	accurate,	scalable	and	

compatible	with	standard	input	formats17,	19,	20.		

At	the	heart	of	our	strategy	is	a	statistical	model	for	predicting	the	probability	of	

observing	a	consistent	‘genetic	barcode’,	a	set	of	single	nucleotide	polymorphisms	(SNPs),	in	

the	RNA-seq	reads	of	a	single	cell	given	genotypes	(from	SNP	genotyping,	imputation	or	DNA	

sequencing)	of	donor	samples.	The	model	accounts	for	the	base	quality	score	of	each	RNA-seq	

read	as	previously	described18	and	genotype	uncertainties	at	unobserved	SNPs	from	imputation	

to	large	reference	panels21.	It	then	uses	maximum	likelihood	to	determine	the	most	likely	

sample	identity	for	each	cell	using	a	mixture	model.	A	small	number	of	reads	overlapping	

common	SNPs	is	sufficient	to	accurately	identify	the	sample	of	origin.	For	a	pool	of	8	samples,	4	

reads	overlapping	SNPs	are	sufficient	to	uniquely	assign	a	cell	to	the	donor	of	origin	(Fig.	1B)	

and	20	reads	overlapping	with	SNPs	at	each	with	minor	allele	frequency	(MAF)	of	50%	can	

distinguish	every	sample	with	>	98%	probability.	The	mixture	model	in	demuxlet	also	uses	

genetic	information	to	identify	doublets	containing	two	cells	from	different	individuals.	By	

multiplexing	even	a	small	number	of	samples,	a	doublet	will	have	an	extremely	high	probability	

(1	–	1/N,	e.g.	87.5%	for	N	=	8	samples)	of	containing	cells	from	different	individuals	(Fig.	1C).	

The	ability	to	recover	the	sample	identity	of	each	cell	and	identify	most	doublets	enables	

experimental	designs	that	dramatically	increase	the	per	sample	throughput	of	current	dscRNA-

seq	workflows.	For	example,	if	a	1,000	cell	run	without	multiplexing	results	in	990	singlets	with	
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a	1%	doublet	rate,	multiplexing	1,570	cells	each	from	63	samples	can	theoretically	achieve	the	

same	rate	of	undetected	doublets,	producing	up	to	a	37-fold	larger	number	of	singlets	(36,600)	

(fig.	S1,	see	Methods	for	details).		

We	first	assess	the	feasibility	of	multiplexed	dscRNA-seq	and	the	performance	of	

demuxlet	by	analyzing	a	pool	of	peripheral	blood	mononuclear	cells	(PBMCs)	from	8	lupus	

patients.	Using	a	sequential	pooling	strategy,	three	pools	of	equimolar	concentrations	of	cells	

were	generated	(W1:	patients	S1-S4,	W2:	patients	S5-S8	and	W3:	patients	S1-S8)	and	each	

loaded	in	a	well	on	a	10X	Chromium	Single-Cell	instrument	(Fig.	2A).	3,645	(W1),	4,254	(W2)	

and	6,205	(W3)	single	cells	were	captured	and	sequenced	to	an	average	depth	of	51k,	39k	and	

28k	reads	per	cell.	

In	wells	W1,	W2	and	W3,	demuxlet	identified	91%	(3332/3645),	91%	(3864/4254),	and	

86%	(5348/6205)	of	droplets	confidently	as	singlets	(likelihood	ratio	test,	L(singlet)/L(doublet)	>	

2),	of	which	25%	(+/-	2.6%),	25%	(+/-	4.6%)	and	12.5%	(+/-	1.4%)	mapped	to	each	donor,	

consistent	with	equal	mixing	of	8	individuals.	By	analyzing	wells	W1	and	W2,	each	containing	

cells	from	two	disjoint	sets	of	4	individuals,	we	estimate	an	error	rate	(number	of	cells	assigned	

to	individuals	not	in	the	pool)	of	2/3332	(W1)	and	0/3864	(W2)	singlets	(Fig.	2B),	suggesting	>	

99%	of	singlets	were	correctly	assigned.		

We	next	assess	the	ability	of	demuxlet	to	detect	doublets	in	both	simulated	and	real	

data.	466/3645	(13%)	cells	were	simulated	as	synthetic	doublets	by	setting	the	cellular	

barcodes	of	two	sets	of	466	cells	from	individuals	S1	and	S2	to	be	the	same.	Applied	to	the	

simulated	data,	demuxlet	identified	91%	(426/466)	of	synthetic	doublets	as	doublets	

(L(doublet)/L(singlet)	>	2,	see	Methods)	or	ambiguous	(1/2	<	L(doublet)/L(singlet)	<	2),	correctly	
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recovering	the	sample	identity	of	both	cells	in	403/426	(95%)	doublets	(fig.	S2).	Applied	to	real	

data	from	W1,	W2	and	W3,	demuxlet	identified	138/3645,	165/4254,	and	384/6205	doublets	

corresponding	to	doublet	rates	of	5.0%,	5.2%	and	7.1%,	consistent	with	the	relationship	

between	the	number	of	cells	sequenced	and	doublet	rates	estimated	from	mixed	species	

experiments	(Fig.	2C).	

Demultiplexing	of	pooled	samples	allows	for	the	statistical	and	visual	comparisons	of	

individual-specific	dscRNA-seq	profiles	while	minimizing	technical	effects	due	to	separate	

sample	processing22,	23.	Singlets	identified	by	demuxlet	in	all	three	wells	cluster	into	known	

PBMC	subpopulations	(Fig.	2D)	and	are	correlated	with	bulk	sequencing	of	sorted	cell	

populations	(R=0.76-0.92)	(fig.	S4).	For	the	same	individuals	from	different	wells,	individual-

specific	projections	of	single-cell	data,	which	we	call	‘drop	prints’,	are	qualitatively	consistent	

and	estimates	of	cell	type	proportions	are	highly	correlated	(R	=	0.99)	(Fig.	2E	and	fig.	S5).	

Further,	both	aggregated	t-SNE	projections	and	individual-specific	drop	prints	are	not	

confounded	by	well	to	well	effects	(fig.	S3A).	While	we	found	6	differentially	expressed	genes	

(FDR	<	0.05)	between	wells	W1	and	W2,	only	2	genes	were	differentially	expressed	in	well	W3	

between	W1	and	W2	individuals	(FDR	<	0.05)	(fig.	S3B),	suggesting	sample	multiplexing	could	

reduce	confounding	from	library	preparation	or	sample	handling.	These	results	demonstrate	

that	demuxlet	recovers	the	sample	identity	of	single	cells	with	high	accuracy,	identifies	doublets	

at	the	expected	rate,	and	could	be	used	to	facilitate	the	comparison	of	dscRNA-seq	profiles	

between	individuals.	

We	used	multiplexed	dscRNA-seq	to	characterize	the	cell	type	specificity	and	inter-

individual	variability	of	response	to	IFN-β,	a	potent	cytokine	that	induces	genome-scale	changes	
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in	the	transcriptional	profiles	of	immune	cells24,	25.	From	8	lupus	patients,	1M	PBMCs	each	were	

isolated,	sequentially	pooled,	and	divided	in	two	aliquots.	One	sample	was	activated	with	

recombinant	IFN-β	for	6	hours,	a	time	point	we	previously	found	to	maximize	the	expression	of	

interferon-sensitive	genes	(ISGs)	in	dendritic	cells	(DCs)	and	T	cells26,	27.	A	matched	control	

sample	was	also	cultured	for	6	hours.		From	this	experiment,	14,619	control	and	14,446	

stimulated	cells	were	captured	and	sequenced.	

In	control	and	stimulated	cells,	demuxlet	identified	83%	(12138/14619)	and	84%	

(12167/14446)	of	droplets	as	singlets,	recovering	the	sample	identity	of	99%	(12127/12138	and	

12155/12167)	of	singlets.	The	estimated	doublet	rate	of	10.9%	in	each	condition	is	consistent	

with	predicted	rates	based	on	the	number	of	cells	recovered	(Fig.	2C),	and	the	observed	

frequency	of	doublets	for	each	pair	of	individuals	is	highly	correlated	with	the	expected	

(R=0.98)	(fig.	S7).	Detected	doublets	form	distinct	clusters	near	the	periphery	of	other	cell	

types,	indicative	of	the	expected	enrichment	of	doublets	for	two	cell	types	in	a	heterogeneous	

population	(fig.	S6).	

	 Demultiplexing	individuals	enables	the	use	of	the	8	samples	within	a	pool	as	biological	

replicates	to	quantitatively	assess	cell	type-specific	responses	of	PBMCs	to	IFN-β	stimulation.	

Consistent	with	previous	reports	from	bulk	RNA-sequencing	data,	IFN-β	stimulation	induces	

widespread	transcriptomic	changes	observed	as	a	shift	in	the	t-SNE	projections	of	singlets24		

(Fig.	3A).	After	assigning	each	singlet	to	a	reference	cell	population17,	we	identified	2,686	

differentially	expressed	genes	(logFC	>	2,	FDR	<	0.05)	in	at	least	one	cell	type	(table	S1).	These	

genes	cluster	into	modules	of	cell	type-specific	responses	enriched	for	distinct	gene	regulatory	

programs	(Fig.	3B,	table	S2).	For	example,	the	two	clusters	of	upregulated	genes,	pan-leukocyte	
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(Cluster	III:	401	genes,	logFC	>	2,	FDR	<	0.05)	and	CD14+	specific	(Cluster	I:	767	genes,	logFC	>	2,	

FDR	<	0.05),	are	enriched	for	general	antiviral	response	(e.g.	KEGG	Influenza	A:	Cluster	III	P	<	

1.6x10-5),	chemokine	signaling	(Cluster	I	P	<	7.6x10-3)	and	genes	implicated	in	SLE	(Cluster	I	P	<	

4.4x10-3).	The	five	clusters	of	downregulated	genes	are	enriched	for	antibacterial	response	

(KEGG	Legionellosis:	Cluster	II	monocyte	down	P	<	5.5x10-3)	and	natural	killer	cell	mediated	

toxicity	(Cluster	IV	NK/Th	cell	down:	P	<	3.6x10-2).	Analysis	of	multiplexed	single	cell	data	

recovers	cell	type-specific	gene	regulatory	programs	affected	by	interferon	stimulation.	

We	next	characterize	inter-individual	variability	in	gene	expression	at	baseline	and	in	

response	to	IFN-β	stimulation.	In	both	control	and	stimulated	cells,	the	variance	of	mean	

expression	over	all	PBMCs	across	individuals	is	higher	than	the	variance	across	synthetic	

replicates	(Fig.	3C).	As	previously	reported22,	28,	cell	type	proportions	vary	significantly	among	

individuals	(fig.	S8).	The	variance	across	synthetic	replicates	with	matched	cell	type	proportions	

is	more	concordant	with	the	variance	across	individuals	than	synthetic	replicates	without	

matched	proportions	(Lin’s	concordance	=	0.54	vs	0.022,	Pearson	correlation	=	0.78	vs	0.69,	Fig.	

3C-D).	However,	in	each	cell	type,	the	variance	across	individuals	is	also	higher	than	the	

variance	across	synthetic	replicates	within	cell	types	(Lin’s	concordance	=	0.007-0.20)	

suggesting	inter-individual	variability	not	explained	by	cell	type	proportion	(fig.	S9).	In	

CD14+CD16-	monocytes,	the	correlation	of	mean	expression	between	pairs	of	synthetic	

replicates	from	the	same	individual	(>99%)	was	greater	than	between	different	individuals	

(~97%),	further	indicating	variation	beyond	sampling	(Fig.	3E).	Correlating	the	average	

expression	of	two	samplings	of	single	cells	across	individuals,	we	found	between	15	and	827	

genes	with	statistically	significant	inter-individual	variability	in	control	cells	and	7	and	613	in	
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stimulated	cells	(Pearson	correlation,	FDR	<	0.05),	with	the	most	inter-individual	variable	genes	

found	in	CD14+	CD16-	monocytes	(cM)	and	CD4+	T	(Th)	cells.	Inter-individual	variable	genes	in	

stimulated	cM	and	to	a	lesser	extent	in	Th	cells	(P	<	9.3x10-4	and	4.5x10-2,	hypergeometric	test,	

Fig.	3F)	are	enriched	for	differentially	expressed	genes,	consistent	with	our	previous	discovery	

of	more	IFN-β	response-eQTLs	in	monocyte-derived	dendritic	cells	than	CD4+	T	cells26,	27.	These	

results	suggest	that	multiplexed	dscRNA-seq	recovers	repeatable	inter-individual	variation	in	

gene	expression	and	that	in	PBMCs,	this	variation	is	largely	driven	by	differences	in	cell	type	

proportions.		

In	sorted	immune	cell	types,	we	and	others	have	shown	extensive	inter-individual	

variability	in	gene	expression	driven	by	genetic	differences	between	donors26,	27,	29.	To	assess	

the	genetic	determinants	of	inter-individual	variability	in	cell	type	proportions	and	cell	type-

specific	expression	using	multiplexed	dscRNA-seq,	we	sequenced	an	additional	15,250	(pool	of	

7	donors),	22,619	(pool	of	8	donors)	and	25,918	cells	(pool	of	15	donors)	from	an	additional	15	

donors	(7	lupus	patients,	5	rheumatoid	arthritis	patients,	and	2	healthy	controls).	Over	the	

three	pools,	demuxlet	identified	71%	(10,766/15,250),	73%	(16,618/22,619)	and	60%	

(15,596/25,918)	of	cells	as	singlets,	correctly	assigning	99%	of	singlets	from	W1	and	W2	

(10,740/10,766	and	16,616/16,618).	The	estimated	doublet	rates	of	18%,	18%	and	25%	were	

consistent	with	the	increased	concentration	of	cells	loaded	in	this	batch	(Fig.	2C).	

	Similar	to	the	cells	in	the	IFN-β	stimulation	experiment,	we	found	that	the	expression	

variability	over	all	PBMCs	was	determined	by	variability	in	cell	type	proportion	in	batch	1	and	

batch	3	(Fig.	4A).	The	observed	variability	in	gene	expression	is	correlated	between	donors	

from	each	batch	(Fig.	S10).	In	a	cell	count	quantitative	trait	loci	(ccQTL)	analysis	of	>150K	
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genetic	variants	(MAF	>	20%)	for	8	major	immune	cell	populations	(B,	cM,	Th,	Tc,	DC,	ncM,	Mkt,	

NK),	we	identified	a	novel	SNP	(chr10:3791224)	significantly	associated	(FDR	<	0.05)	with	the	

minor	allele	decreasing	the	proportion	of	NK	cells	by	~5%	(Fig.	4B).	The	lack	of	additional	

genetic	associations	is	expected	given	the	limited	sample	size	of	our	study	and	additional	

factors	influencing	cell	type	proportion	from	previous	studies	22,	30,	31.	

Across	23	donors	from	two	sequencing	batches	(8	from	batch	1	and	15	from	batch	3),we	

then	conducted	an	expression	quantitative	trait	loci	(eQTL)	analysis	of	genetic	variation	with	

expression	variability	across	each	major	immune	cell	type	estimated	from	the	multiplexed	

dscRNA-seq	data.	We	found	a	total	of	32	local	eQTLs	(+/-	100kb,	FDR	<	0.1),	22	of	which	were	

detected	in	only	one	cell	type	(Fig.	4C,	table	S4).	Previously	reported	local	eQTLs	from	bulk	

CD14+	monocytes,	CD4+	T	cells	and	lymphoblastoid	cell	lines	were	more	significantly	associated	

with	the	most	similar	cell	types	estimated	from	the	single	cell	data	(cM,	Th	and	B	cells,	

respectively)	than	other	cell	types	(Fig.	4D).	To	identify	pan-cell	type	specific	eQTLs,	we	used	an	

inverse	variance	weighted	meta-analysis.	Among	genes	with	pan-cell	type	eQTLs	are	those	in	

the	major	histocompatibility	complex	(MHC)	class	I	antigen	presentation	pathway	including	

ERAP2	(P	<	3.57x10-32,	meta-analysis),	an	aminopeptidase	known	to	cleave	viral	peptides32	and	

HLA-C	(P	<	1.74x10-29,	meta-analysis),	the	MHC	class	I	heavy	chain	receptor	(Fig.	4E).	Genes	in	

the	MHC	class	II	pathway	exhibited	more	cell	type-specific	genetic	control:	we	found	HLA-DQA1	

has	local	eQTLs	only	in	cMs	and	ncMs	but	not	B	cells	or	DCs	(P	<2.11x10-15,	Cochran’s	Q)	while	

in	HLA-DQA2	we	found	local	eQTLs	in	all	antigen	presentation	cells	including	Bs,	cMs,	ncMs	and	

DCs,	(P	<	1.02e10-43,	Cochran’s	Q).	Among	other	cell	type-specific	local	eQTLs	are	CD52,	a	gene	

ubiquitously	expressed	in	leukocytes	that	only	has	eQTLs	in	monocyte	populations,	and	DIP2A,	
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a	gene	known	to	have	genetic	variation	influencing	immune	response	to	vaccination	in	

peripheral	blood,	with	an	eQTL	only	in	NK	cells	in	our	dataset33.	These	results	demonstrate	the	

ability	of	multiplexed	dscRNA-seq	to	reveal	cell	type-specific	genetic	control	of	gene	expression	

in	population-scale	genomics,	which	would	be	undetectable	when	bulk	tissues	are	analyzed.		

We	introduce	demuxlet,	a	new	computational	method	that	harnesses	natural	genetic	

variation	to	discover	the	genetic	identity	of	single	cells	and	identify	doublets,	enabling	simple	

and	cost-effective	multiplexed	dscRNA-seq	experiments.	The	capability	to	demultiplex	and	

identify	doublets	using	natural	genetic	variation	significantly	reduces	the	per-sample	and	per-

cell	cost	of	single-cell	RNA-sequencing,	does	not	require	synthetic	barcodes	or	split-pool	

strategies34-38,	and	captures	biological	variability	among	individual	samples	while	limiting	the	

effects	of	unwanted	technical	variability.	We	demonstrate	the	application	of	demuxlet	to	

multiplexed	dscRNA-seq	data	can	be	used	to	obtain	reliable	estimation	of	cell	type	proportion	

across	individuals,	recover	cell	type-specific	transcriptional	programs	from	mixed	immune	cell	

populations	consistent	with	previous	reports24,	identify	genes	with	inter-individual	variability,	

and	map	their	genetic	determinants.		

The	application	of	single	cell	sequencing	methods	such	as	dscRNA-seq	to	cohorts	with	

larger	numbers	of	individuals	is	a	promising	approach	to	characterizing	cellular	heterogeneity	

among	individuals	at	baseline	and	in	different	environmental	conditions,	a	crucial	area	for	

further	understanding	of	health	and	disease39-41.	Experimental	and	computational	methods	for	

reliable	and	efficient	sample	multiplexing	could	enable	broad	adoption	of	single	cell	sequencing	

for	population-scale	studies,	facilitating	genetic	and	longitudinal	analyses	in	relevant	cell	types	

and	conditions	across	a	range	of	sampled	individuals42.	
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Figure	1	–	Demuxlet:	demultiplexing	and	doublet	identification	from	single	cell	data.		

A)	Pipeline	for	experimental	multiplexing	of	unrelated	individuals,	loading	onto	droplet-based	

single-cell	RNA-sequencing	instrument,	and	computational	demultiplexing	(demux)	and	doublet	

removal	using	demuxlet.	Assuming	equal	mixing	of	8	individuals,	B)	4	genetic	variants	can	

recover	the	sample	identity	of	a	cell,	and	C)	87.5%	of	doublets	will	contain	cells	from	two	

different	samples.	
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Figure	2	–	Performance	of	demuxlet.	A)	Experimental	design	for	equimolar	pooling	of	cells	

from	8	unrelated	samples	(S1-S8)	into	three	wells	(W1-W3).	W1	and	W2	contain	cells	from	two	

disjoint	sets	of	4	individuals.	W3	contains	cells	from	all	8	individuals.	B)	Demultiplexing	single	

cells	in	each	well	recovers	the	expected	individuals.	C)	Estimates	of	doublet	rates	versus	

previous	estimates	from	mixed	species	experiments.	D)	Cell	type	identity	determined	by	

prediction	to	previously	annotated	PBMC	data.	E)	t-SNE	plot	of	two	individuals	(S1	and	S5)	from	

different	wells	are	qualitatively	concordant.		
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Figure	3	–	Interindividual	variability	in	IFN-β	response.	A)	t-SNE	plot	of	unstimulated	(blue)	and	

IFN-β-stimulated	(red)	PBMCs	and	the	estimated	cell	types.	B)	Cell	type-specific	expression	in	

stimulated	(left)	and	unstimulated	(right)	cells.	Differentially	expressed	genes	shown	(FDR	<	

0.05,	|log(FC)|	>	1).	Each	column	represents	cell	type-specific	expression	for	each	individual	

from	demuxlet.	C)	Observed	variance	(y-axis)	in	mean	expression	over	all	PBMCs	from	each	

individual	versus	expected	variance	(x-axis)	over	synthetic	replicates	sampled	across	all	cells	

(light	blue,	pink)	or	replicates	matched	for	cell	type	proportion	(blue,	red).	D)	Cell	type	

proportions	for	each	individual	in	unstimulated	and	stimulated	cells.	E)	Correlation	between	

sample	replicates	in	control	and	stimulated	cells.	F)	Number	of	significantly	variable	genes	in	

each	cell	type	and	condition.		
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Figure	4	–	Genetic	control	over	cell	type	proportion	and	gene	expression	.	A)	Observed	

variance	(y-axis)	in	mean	expression	over	all	PBMCs	from	each	individual	versus	expected	

variance	(x-axis)	over	synthetic	replicates	sampled	across	batch	1	(left)	and	batch	3	(right).	B)	

Association	of	chr10:3791224	with	NK	cell	type	proportions.		C)	Genome-wide	and	

chromosome	6	Manhattan	plots	across	all	major	cell	types.	Horizontal	lines	correspond	to	FDR	

<	0.1	(blue)	and	FDR		<	0.05	(red).	D)	Q-Q	plots	across	all	genes	and	subsets	of	previously	

published	eQTLs	in	relevant	cell	types	are	shown	for	B,	cM,	and	Th	populations.	E)	Notable	cis-
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eQTLs	across	all	major	immune	cell	types	are	marked	with	*(FDR	<	0.25),	**	(FDR	<	0.1),	and	

***	(FDR	<	0.05).		Lack	of	association	is	marked	with	NS	(not	significant).					
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Methods	
Identifying	the	sample	identity	of	each	single	cell.	

We	first	describe	the	method	to	infer	the	sample	identity	of	each	cell	in	the	absence	of	

doublets.	Consider	RNA-sequence	reads	from	C	barcoded	droplets	multiplexed	across	S	

different	samples,	where	their	genotypes	are	available	across	V	exonic	variants.	Let	𝑑"#	be	the	

number	of	unique	reads	overlapping	with	the	v-th	variant	from	the	c-th	droplet.	Let	𝑏"#% ∈

𝑅, 𝐴, 𝑂 , 𝑖 ∈ 1,⋯ , 𝑑"# 	be	the	variant-overlapping	base	call	from	the	i-th	read,	representing	

reference	(R),	alternate	(A),	and	other	(O)	alleles	respectively.	Let		𝑒"#% ∈ 0,1 	be	a	latent	

variable	indicating	whether	the	base	call	is	correct	(0)	or	not	(1),	then	given	𝑒"#% = 0, 𝑏"#% ∈

𝑅, 𝐴 	and		~	Binomial 2, ;
<
	when	𝑔 ∈ {0,1,2}	is	the	true	genotype	of	sample	corresponding	

to	c-th	droplet	at	v-th	variant.	When	𝑒"#% = 1,	we	assume	that	Pr(𝑏"#%|𝑔, 𝑒"#%)	follows	the	table	

S3.	𝑒"#% 	is	assumed	to	follow	Bernoulli 10G
HIJK
LM 	where	𝑞"#% 	is	a	phred-scale	quality	score	of	

the	observed	base	call.	

	 We	allow	uncertainty	of	observed	genotypes	at	the	v-th	variant	for	the	s-th	sample	

using	𝑃P#
(;) = Pr(𝑔|DataP#),	the	posterior	probability	of	a	possible	genotype	𝑔	given	external	

DNA	data	DataP#	(e.g.	sequence	reads,	imputed	genotypes,	or	array-based	genotypes).	If	

genotype	likelihood	Pr(DataP#|𝑔)	is	provided	(e.g.	unphased	sequence	reads)	instead,	it	can	be	

converted	to	a	posterior	probability	scale	using	𝑃P#
(;) = Pr	(DataP#|𝑔)Pr	(𝑔)	where	

Pr 𝑔 ~Binomial 2, 𝑝# 	and	𝑝#	is	the	population	allele	frequency	of	the	alternate	allele.	To	

allow	errors	𝜀	in	the	posterior	probability,	we	replace	it	to	(1 − 𝜀)𝑃P#
(;) + 𝜀Pr	(𝑔).	The	overall	

likelihood	that	the	c-th	droplet	originated	from	the	s-th	sample	is	
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	 𝐿" 𝑠 = Pr(𝑏"#%|𝑔, 𝑒)Y
Z[\ 𝑃P#

(;)]IJ
%[Y

<
;[\

^
#[Y 		 (1)	

In	the	absence	of	doublets,	we	use	the	maximum	likelihood	to	determine	the	best-matching	

sample	as	argmaxP 𝐿" 𝑠 .	

	

Screening	for	droplets	containing	multiple	samples.	

To	identify	doublets,	we	implement	a	mixture	model	to	calculate	the	likelihood	that	the	

sequence	reads	originated	from	two	individuals,	and	the	likelihoods	are	compared	to	determine	

whether	a	droplet	contains	cells	from	one	or	two	samples.	If	sequence	reads	from	the	c-th	

droplet	originate	from	two	different	samples,	𝑠Y, 𝑠<	with	mixing	proportions	 1 − 𝛼 ∶ 	𝛼,	then	

the	likelihood	in	(1)	can	be	represented	as	the	following	mixture	distribution18,		

𝐿" 𝑠Y, 𝑠<, α = 1 − α Pr 𝑏"#% 𝑔Y, 𝑒 + 𝛼Pr 𝑏"#% 𝑔<, 𝑒Y
Z[\ 𝑃P#

(;L)𝑃P#
(;d)]IJ

%[Y;L,;d
^
#[Y 		

	 To	reduce	the	computational	cost,	we	consider	discrete	values	of	α ∈ {αY,⋯ , αe},	(e.g.	

5	-	50%	by	5%).	We	determine	that	it	is	a	doublet	between	samples	𝑠Y, 𝑠<		if	and	only	if		

fghiL,id,j kI PL,Pd,l
fghikI P

≥ 𝑡	and	the	most	likely	mixing	proportion	is	estimated	to	be	

argmaxo𝐿" 𝑠Y, 𝑠<, 𝛼 .	We	determine	that	the	cell	contains	only	a	single	individual	s	if	

fghiL,id,j kI PL,Pd,l
fghikI P

≤ Y
q
	.	The	less	confident	droplets,	we	classify	cells	as	ambiguous.	While	we	

consider	only	doublets	for	estimating	doublet	rates,	we	remove	all	doublets	and	ambiguous	

droplets	to	conservatively	estimate	singlets.	Figure	S1	illustrates	the	distribution	of	singlet,	

doublet	likelihoods	and	the	decision	boundaries	when	t	=	2	was	used.		

	

Theoretical	upper	bound	of	expected	singlets.	
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To	calculate	the	theoretical	upper	bound	of	expected	singlets	with	multiplexing	(presented	in	

fig.	S1),	we	assume	that	the	sample	identity	of	each	cell	can	be	perfectly	deconvoluted.	

Without	multiplexing,	if	we	expect	to	observe	100𝑑r%	(e.g.	1%)	multiplet	rate	when	𝑢	(e.g.	

1,000)	cells	are	loaded	in	a	single	microfluidic	run,	the	expected	multiplet	rates	when	x	cells	are	

loaded	can	be	modeled	exponentially	as	𝑑(𝑥) = 1 − 𝑒G
u
v		where	the	normalization	factor	is	𝑍 =

Gx
yz{	(YG]|)

.	When	multiplexing	𝑥	cells	equally	from	𝑛	samples,	the	expected	multiplet	rates	are	

1 − 𝑒G
u
v	but	only	Y

~
	are	expected	to	be	undetectable	doublets	between	the	cells	originating	from	

the	same	sample.	Therefore,	the	undetectable	doublet	rate	can	be	fixed	at	Y
~
1 − 𝑒G

u
v = 𝑑,	

and	𝑥 = −𝑍 ∗ 	log	(1 − 𝑛𝑑).	Then,	the	expected	number	of	singlets	becomes	𝑥𝑒G
u
v = −𝑍(1 −

𝑛𝑑) ∗ log	(1 − 𝑛𝑑) = x(YG~])yz{	(YG~])
yz{ YG]|

	

	

Isolation	and	preparation	of	PBMC	samples.	

Peripheral	blood	mononuclear	cells	were	isolated	from	patient	donors,	Ficoll	separated,	and	

cryopreserved	by	the	UCSF	Core	Immunologic	Laboratory	(CIL).	PBMCs	were	thawed	in	a	37°C	

water	bath,	and	subsequently	washed	and	resuspended	in	EasySep	buffer.	Cells	were	treated	

with	DNAseI	and	incubated	for	15	min	at	RT	before	filtering	through	a	40um	column.		Finally,	

the	cells	were	washed	in	EasySep	and	resuspended	in	1x	PBMS	and	0.04%	bovine	serum	

albumin.		Cells	from	8	donors	were	then	re-concentrated	to	1M	cells	per	mL	and	then	serially	

pooled.	At	each	pooling	stage,	1M	cells	per	mL	were	combined	to	result	in	a	final	sample	pool	

with	cells	from	all	donors.		

	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 15, 2017. ; https://doi.org/10.1101/118778doi: bioRxiv preprint 

https://doi.org/10.1101/118778


	
	

IFN-β	stimulation	and	culture.	

Prior	to	pooling,	samples	from	8	individuals	were	separated	into	two	aliquots	each.	One	aliquot	

of	PBMCs	was	activated	by	100	U/mL	of	recombinant	IFN-β	(PBL	Assay	Science)	for	6	hrs	

according	to	the	published	protocol26.	The	second	aliquot	was	left	untreated.	After	6	hrs,	the	8	

samples	for	each	condition	were	pooled	together	in	two	final	pools	(stimulated	cells	and	

control	cells)	as	described	above.		

	

Droplet-based	capture	and	sequencing.	

Cellular	suspensions	were	loaded	onto	the	10x	Chromium	instrument	(10x	Genomics)	and	

sequenced	as	described	in	Zheng	et	al17.	The	cDNA	libraries	were	sequenced	using	a	custom	

program	on	10	lanes	of	Illumina	HiSeq2500	Rapid	Mode,	yielding	1.8B	total	reads	and	25K	reads	

per	cell.	At	these	depths,	we	recovered	>	90%	of	captured	transcripts	in	each	sequencing	

experiment.		

	

Bulk	isolation	and	sequencing.	

PBMCs	from	lupus	patients	were	isolated	and	prepared	as	described	above.	Once	resuspended	

in	EasySep	buffer,	the	EasyEights	Magnet	was	used	to	sequentially	isolate	CD14+	(using	the	

EasySep	Human	CD14	positive	selection	kit	II,	cat	#17858),	CD19+	(using	the	EasySep	Human	

CD19	positive	selection	kit	II,	cat	#17854),	CD8+	(EasySep	Human	CD8	positive	selection	kitII,	

cat#17853),	and	CD4+	cells	(EasySep	Human	CD4	T	cell	negative	isolation	kit	(cat	#17952)	

according	to	the	kit	protocol.	RNA	was	extracted	using	the	RNeasy	Mini	kit	(#74104),	and	

reverse	transcription	and	tagmentation	were	conducted	according	to	Picelli	et	al.	using	the	
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SmartSeq2	protocol43,	44.	After	cDNA	synthesis	and	tagmentation,	the	library	was	amplified	with	

the	Nextera	XT	DNA	Sample	Preparation	Kit	(#FC-131-1096)	according	to	protocol,	starting	with	

0.2ng	of	cDNA.		Samples	were	then	sequenced	on	one	lane	of	the	Illumina	Hiseq4000	with	

paired	end	100bp	read	length,	yielding	350M	total	reads.	

	

Alignment	and	initial	processing	of	single	cell	sequencing	data.	

We	used	the	CellRanger	v1.1	and	v1.2	software	with	the	default	settings	to	process	the	raw	

FASTQ	files,	align	the	sequencing	reads	to	the	hg19	transcriptome,	and	generate	a	filtered	UMI	

expression	profile	for	each	cell17.	The	raw	UMI	counts	from	all	cells	and	genes	with	nonzero	

counts	across	the	population	of	cells	were	used	to	generate	t-SNE	profiles.		

	

Cell	type	classification	and	clustering.	

To	identify	known	immune	cell	populations	in	PBMCs,	we	used	the	Seurat	package	to	perform	

unbiased	clustering	on	the	2.7k	PBMCs	from	Zheng	et	al.,	following	the	publicly	available	

Guided	Clustering	Tutorial17,	45.	The	FindAllMarkers	function	was	then	used	to	find	the	top	20	

markers	for	each	of	the	8	identified	cell	types.	Cluster	averages	were	calculated	by	taking	the	

average	raw	count	across	all	cells	of	each	cell	type.	For	each	cell,	we	calculated	the	Spearman	

correlation	of	the	raw	counts	of	the	marker	genes	and	the	cluster	averages,	and	assigned	each	

cell	to	the	cell	type	to	which	it	had	maximum	correlation.	

	

Differential	expression	analysis.	
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Demultiplexed	individuals	were	used	as	replicates	for	differential	expression	analysis.		For	each	

gene,	raw	counts	were	summed	for	each	individual.	We	used	the	DESeq2	package	to	detect	

differentially	expressed	genes	between	control	and	stimulated	conditions46.	Genes	with	

baseMean	>	1	were	filtered	out	from	the	DESeq2	output,	and	the	qvalue	package	was	used	to	

calculate	FDR	<	0.05	47.	

	

Estimation	of	interindividual	variability	in	PBMCs.	

For	each	individual,	we	found	the	mean	expression	of	each	gene	with	nonzero	counts.	The	

mean	was	calculated	from	the	log2	single	cell	UMI	counts	normalized	to	the	median	count	for	

each	cell.	To	measure	interindividual	variability,	we	then	calculated	the	variance	of	the	mean	

expression	across	all	individuals.	Lin’s	concordance	correlation	coefficient	was	used	to	compare	

the	agreement	of	observed	data	and	synthetic	replicates.	Synthetic	replicates	were	generated	

by	sampling	without	replacement	either	from	all	cells	or	cells	matched	for	cell	type	proportion.	

	

Estimation	of	interindividual	variability	within	cell	types.	

For	each	cell	type,	we	generated	two	bulk	equivalent	replicates	for	each	individual	by	summing	

raw	counts	of	cells	sampled	without	replacement.		We	used	DESeq2	to	generate	variance-

stabilized	counts	across	all	replicates.	To	filter	for	expressed	genes,	we	performed	all	

subsequent	analyses	on	genes	with	5%	of	samples	with	>	0	counts.		The	correlation	of	replicates	

and	QTL	detection	was	performed	on	the	log2	normalized	counts.	Pearson	correlation	of	the	

two	replicates	from	each	of	the	8	individuals	was	used	to	find	genes	with	significant	

interindividual	variability.		
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Quantitative	trait	mapping	in	major	immune	cell	types.	

Genotypes	were	imputed	with	EAGLE21	and	filtered	for	MAF	>	0.2,	resulting	in	a	total	of	189,322	

variants.	Cell	type	proportions	were	calculated	as	number	of	cells	for	each	cell	type	divided	by	

the	number	of	total	cells	for	each	person.		Linear	regression	was	used	to	test	associations	

between	each	genetic	variant	and	cell-type	proportion	with	the	Matrix	eQTL	software48.		

Cis-eQTL	mapping	was	conducted	in	each	cell	type	separately.	All	genes	with	at	least	50	UMI	

counts	in	20%	of	the	individuals	in	all	PBMCs	were	tested	for	each	cell	type,	resulting	in	a	total	

of	4555	genes.		Variance-stabilized	and	log-normalized	gene	expression	was	calculated	using	

the	‘rlog’	function	of	the	DESeq2	package46.	All	variants	within	a	window	of	100kbp	of	each	

gene	were	tested	with	linear	regression	using	Matrix	eQTL48.	Batch	information	for	each	sample	

as	well	as	the	first	3	principal	components	of	the	expression	matrix	were	used	as	covariates.		

	

Single	cell	and	bulk	RNA-sequencing	data	has	been	deposited	in	the	Gene	Expression	Omnibus	

under	the	accession	number	GSE96583.	Demuxlet	software	is	freely	available	at		

https://github.com/hyunminkang/apigenome.		
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