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ABSTRACT 

We present a theoretical framework for genomic prediction accuracy when the 

reference data consists of information sources with varying degrees of relationship to 

the target individuals. A reference set can contain both close and distant relatives as 

well as ‘unrelated’ individuals from the wider population, assuming they all come 

from the same homogeneous population. The various sources of information were 

modeled as different populations with different effective population sizes (Ne). With a 

similar amount of data available for each source, we show that close relatives can 

have a substantially larger effect on genomic prediction accuracy than lesser related 

individuals. However, the number of individuals from the wider population can be far 

greater than that of close relatives. We validate our theory with analysis of real data, 

and illustrate that the variation in genomic relationships with the target, rather than 

the variation in genomic relationship as a deviation for the expected relationship, is a 

predictor of the information content of the reference set and information from 

pedigree relationships is then naturally included in the prediction framework. Both the 

effective number of chromosome segments (Me) and Ne are considered to be a 

function of the data used for prediction rather than being population parameters. We 

illustrate that when prediction also relies on closer relatives, there is less improvement 

in prediction accuracy with an increase in training data or marker panel density. We 

release software that can estimate the expected prediction accuracy and power when 

combining different reference sources with various degrees of relationship to the 

target, which is useful when planning genomic prediction (i.e. before collecting data) 

in animal, plant and human genetics.  
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INTRODUCTION 

Genomic prediction of (additive) genetic effects and phenotypes is emerging in a 

wide range of fields including animal and plant breeding, risk prediction in human 

medicine and forensics1-4. Genomic prediction requires modeling of the association 

between genome-wide single nucleotide polymorphisms (SNPs) and phenotypes. The 

success of genomic prediction is measured by its accuracy, i.e. how reliable a future 

phenotype of target individuals can be predicted. 

 

Genomic prediction requires a reference population of individuals having information 

on both genotype and phenotype. The accuracy of genomic prediction depends on 

various parameters, including sample size of the reference and its genetic structure. 

An important parameter in relation to the latter is the effective size of the population. 

The effective population size is a predictor of the effective number of chromosome 

segments that are represented in the population5-7. Theoretical predictions have 

usually considered a homogeneous population of individuals that are essentially 

unrelated. However, in most practical applications, the reference population used for 

genomic predictions possibly consists of many sub-groups with individuals having a 

variety of relatedness to the target individual, e.g. direct relatives, more distant 

relatives, and individuals that are considered unrelated, but still part of the same 

population as the target individual. It is relevant to assess the contribution of these 

various sources to prediction accuracy before actually conducting an experiment. 

 

A number of studies have shown that genomic predictions are more accurate if the 

genomic relationship between the proband and the reference population is higher, 

both in humans8-11 and in other species12-14. Habier et al (2013)15 distinguished 
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between three types of information in genomic prediction; linkage disequilibrium, 

additive-genetic relationships and co-segregation of QTL predicted from markers 

genotypes with a pedigree. They argued that it would be useful to understand how 

these sources contribute to the accuracy of genomic predictions, especially when 

designing reference populations for breeding programs. They show these 

contributions via simulated examples but did not provide methods that allow simple 

predictions for their contribution to accuracy. Pszczola et al. (2012)16 showed that the 

relationship between the reference population and the proband should be maximized 

to achieve an optimal design using a simulation study. However, they also did not 

attempt to derive the expected prediction accuracy from an optimal design in advance. 

Hayes et al. (2009)17 considered the influence of direct relatives on genomic 

prediction. They followed the same approach as the general theory, i.e. by considering 

the number of independently segregating chromosome segments within families. 

They showed the accuracy of genomic prediction from varying sizes of the first and 

second degree of relatives, but did not consider the information from combined 

sources18. It should also be noted that those studies that derived genomic prediction 

accuracy from theory using effective number of chromosome segments (Me)5,6,19-21, 

did not consider the correlation between relatedness at different chromosomes, 

therefore overestimating Me and underestimating whole-genome prediction accuracy7.  

 

Wientjes et al (2016)22 proposed a simple selection index approach to combine 

information from different populations. They considered a genetic correlation 

between genetic effects expressed in different populations. We propose to use the 

same approach to combine different sources of information from within a population, 

where the different cohorts have a different degree of relationship with the target 
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individual. To predict the accuracy, we derive the number of effective chromosome 

segments from a hypothetical Ne associated with each subset, and we show that that 

combining such subsets using selection index theory gives the same result as using a 

prediction from an Me derived from the variation in genomic relationships between 

the reference data and the target.  Prediction accuracy is derived from variation in 

genomic relationship rather than the variation in genomic relationship as a deviation 

for the expected relationship among members of the reference set, as was proposed by 

Goddard et al (2011) and also applied by Wientjes et al (2016). This approach leads to 

a theoretical concept useful for assessing the accuracy of genomic predictions in 

advance, and we illustrate this with examples based on real data.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 22, 2017. ; https://doi.org/10.1101/119164doi: bioRxiv preprint 

https://doi.org/10.1101/119164
http://creativecommons.org/licenses/by/4.0/


 6 

MATERIALS AND METHODS 

Predicting genomic selection accuracy  

The accuracy of genomic breeding values (GBV) or (genomic profile score in the 

context of human risk prediction23) based on genome-wide SNP genotypes can be 

predicted from theory5-7,24, assuming that prediction is based on a reference 

population with phenotypes and genotypes for the same genome-wide SNPs that are 

linked to quantitative trait loci (QTL). The accuracy depends on i) the proportion of 

genetic variance at QTL captured by markers and ii) the accuracy of estimating 

marker effects. The proportion of genetic variance at QTL captured by markers (b) 

depends on linkage disequilibrium (LD) between markers and QTL, which in turn 

depends on the number of markers (M) and the number of ‘effective chromosome 

segments’ (Me)5, that is 

b = M / (Me + M)5.  

Various forms of prediction of Me have been presented5,6,21 that were however 

inconsistent to each other, and without considering the correlation between 

chromosomes. Recently, we presented a prediction formula with the form7  

Me =
Nchr

[ln(2NeL +1)+ 2NeL(ln(2NeL +1)−1)] / (4Ne
2L2 )+ (1 / 3Ne ) ⋅ (Nchr −1)

    (1) 

where  Ne = effective population size;  L = average chromosome length;  Nchr = 

number of chromosomes. This formula accounts for mutation, and that without 

considering mutation should be referred to equation (10) in Lee et al. (2017)7. The 

accuracy of the genomic prediction of a phenotype can be written as5  

ry,ĝ = h ⋅ rg,ĝ = h ⋅
bh2

bh2 +Me / N
=

bh4

bh2 +Me / N
     (2) 
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where ry,ĝ   is the correlation coefficient between the true phenotypes (y) and estimated 

GBV, h2 is the heritability of the trait, and N is the number of phenotypic 

observations. Other measures for genomic prediction accuracy, particularly for human 

risk prediction, such as the area under the receiver operating characteristic curve or 

odds ratio of case-control status contrasting the higher or lower risk group are 

described elsewhere7.  

 

Me and genomic relationship 

After collecting genotypic information of the reference data and the target individual, 

it is possible to obtain an empirical Me from a genomic relationship matrix (GRM). In 

this derivation, the elements in the GRM are GTj = xTmx jm
m=1

M

∑ /M

 

where xTm and x jm
 

are the standardised genotype coefficients (mean 0 and variance 1) for the target 

individual (T) and jth individual in the reference data at the mth locus. It is possible to 

construct a GRM for each locus, and the elements in the GRM at the mth locus are 

GTj (m) =GT*(m) = xTmx jm  where * denotes the set of all reference individuals. Then, the 

variance of the mean of GT*(m)  across all Mi SNPs in a single chromosome is  

var GT*(m) /Mi
m=1

Mi

∑
"

#
$
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&
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1
Mi

2 cov(GT*(l ),GT*(m) )
l=1
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∑
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∑
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1
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∑
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∑
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)
*

+

,
-

=
1
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2 cov(x*(l ), x*(m) )
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∑
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∑ ⋅ (xT (l ) ⋅ xT (m) )
(

)
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+

,
-

=
1
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∑
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      (3) 
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where cov(x*(l ), x*(m) ) = xT (l ) ⋅ xT (m) = rm,l , which is a correlation between the mth and lth 

SNP-genotype, because of var(x) = 1 and mean(x) = 0, i.e. the genotype coefficients 

are standardized in the population, Mi is the number of SNPs in the ith chromosome 

and Me(i) is the effective number of chromosome segments for the ith chromosome, 

which is the inverse of the expectation of the squared correlation between SNPs6,7. 

When considering multiple chromosomes, the covariance of the pairwise relationship 

between two chromosomes is not negligible7. Assuming equal length and number of 

SNPs for Nchr chromosomes, Me for the whole genome can be written as  

1
Me

= var GT*(m) /Mi
m=1

Mi

∑
"

#
$

%

&
'+

Nchr −1
3Ne

"

#
$

%

&
'

)

*
+
+

,

-
.
.
⋅
1
Nchr

= var GT*(m) /M
m=1

M

∑
"

#
$

%

&
'    (4) 

where Nchr is the number of chromosomes.  

 

In Goddard et al. (2011)5, their theoretical derivation had to assume a homogeneous 

population of individuals that are essentially unrelated. However, here we show that 

the assumption about unrelated individuals can be relaxed so that any random samples 

from the population can be used for Eq. (4), irrespective of they are related or not.  

 

Effective population size in a reference data set  

One of critical parameters to determine the accuracy of genomic prediction is the 

effective population size (Ne). It is not very common to represent a reference 

population by a single value of Ne when it consists of several cohorts of individuals 

with different relationships to the target individual. The only study using a single 

value for Me representing a reference set consisting of two population is by Wientjes 

et al. (2016)22. Here, we introduce a novel concept based on the relationship between 

Ne, Me and var(GT*), which can assign a value of Ne for a reference population 
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consisting of several cohorts. For any subset of the reference data set, there are 

realized relationships with the target sample. From Eq. (4), a value of Me, which is the 

inverse of the variance of the genomic relationships between the proband and the 

reference sample, can be assigned to the reference data. Then, a single value of Ne, 

which is a function of Me from Eq. (1), can be obtained for the reference data. The 

effective population size of the reference set is therefore a parameter specific to the 

data used. It can be smaller, but also larger than the actual effective size that is often 

contributed to the population from which the data is derived, depending on whether 

closer or more distant individuals are chosen for the reference set. 

 

Based on this concept of Ne, reflecting information content of the reference sample in 

relation to the target sample, we consider three information sources consisting of 1) 

close relatives of the proband, e.g. Ne = 10, 2) distant relatives or individuals from the 

local area of the proband, e.g. Ne = 100 and 3) a wider population sample of 

individuals that are not related to the proband, e.g. Ne = 1,000.  

 

The GBV can be estimated based on each of these information sources, and the 

accuracy of the estimation can be calculated as above, e.g. rg,ĝ(i)  from Eq. (1) where i 

represents the ith information source. It is also possible to estimate GBV based on 

combined data of all three information sources. Assuming a random sample from the 

same population for each source, the accuracy of the GBV based on the combined 

data set can then be calculated using standard selection index theory as   

rg,ĝ = !g P−1g =

rg,ĝ(1)
2

rg,ĝ(2)
2
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2
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where g is the vector with covariances between each of the GBV and the true 

breeding value, and P is the variance-covariance matrix of the set of GBV. The 

accuracy of the GBV based on the combined data set can also be estimated based on 

the weighted Me from the three information sources. Assuming a random sample from 

the same population for each source, the weighted Me can be obtained as   

Me(weighted ) =
1

var(GT*)k pk
k=1

Nsub−sample

∑
=

1
pk

Me(k )k=1

Nsub−sample

∑
     (6) 

where pk is the proportion of the sample size over the total sample for each 

information source. The accuracy of the GBV based on the weighted Me is identical 

with that using standard selection index theory above (Eq. (5)). 

Following Wientjes et al. (2016)22 we can further generalize for a case where genetic 

correlations among multiple reference populations and those between reference 

populations and the target are not one. Equation (5) can be generalized as 

rg,ĝ = !g P−1g =

rG1,T
2 rg,ĝ(1)

2

!
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2 rg,ĝ(k )
2

#

$

%
%
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2

#

$
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%

&

'
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(

−1

rG1,T
2 rg,ĝ(1)

2

!
rGk ,T

2 rg,ĝ(k )
2

#

$

%
%
%
%

&

'

(
(
(
(

   (7) 

 where rGk ,T  is the genetic correlation between the kth reference population and the 

target set, and similarly, rGi, j
 
is the genetic correlation between the ith and jth reference 

population (i = j = 1 ~ k).  

  

 

 

Simulation 

In a simulation, a stochastic gene-dropping method 25,26 was used to simulate 4,000 

SNPs for each of 30 chromosomes, each of length L=1 Morgan with Ne = 50, 500 and 
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1000 for 50, 500 and 1000 generations, respectively. Recombination and mutations 

were modelled according to the genetic distance between SNPs and the mutation rate 

of 1e-08 per site per generation27. In the final generation, we constructed a genomic 

relationship matrix for a random set of 3000 individuals. Among the 3000 individuals, 

we randomly selected 1000 individuals as target data and 2000 individual as reference 

data, and estimated variance of the genomic relationships between the target and 

reference data to validate Eq. (3). 

 

Evaluation of the formulas   

For each of the three information sources contributing to genomic prediction we 

varied values for Ne, sample size in reference data and marker density. We compared 

the expected accuracy of GBV from the sample of Ne =1000 with predictions that 

additionally included information from the sample of Ne =100 and Ne =10. The total 

number in the reference population was kept equal between the comparisons.  

 

Real data analysis 

We used publicly available data from the Framingham heart study 

(phs000007.v26.p10.c1)28. There were 6950 individuals genotyped for 500,568 SNPs. 

Stringent quality control for genotype data and phenotype adjustment for confounders 

were applied to the data (the details can be found in Lee et al. (2016)7). The quality 

control included SNP call rate > 0.95, individual call rate > 0.95, HWE p-value > 

0.0001, MAF > 0.01 and individual population outliers < 6 SD from the first and 

second principal components (PC). After QC, 6920 individuals and 389,265 SNPs 

remained. Among them, 4243 individuals were phenotyped for height and body mass 

index (BMI).   
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We made three different information sources to form the reference data that were 

tested in 100 replicated analyses (Table 1). Initially, we randomly selected 800 

individuals out of 4243 phenotyped individuals as a target data set. For reference data 

set #1, we selected 50% of individuals that were highly related (> relatedness of 0.3) 

to the 800 target individuals (N1 = 617 ± 19). For reference data set #2, we selected 

80% of moderately related individuals (> relatedness of 0.1) of the 800 target 

individuals (N2 = 1254 ± 30). For reference data set #3, we took the rest of the 

individuals that were not selected for reference data set #1 and #2 (N3 = 1572 ± 33). 

There was no overlap sample between target data set and reference data sets #1, #2 

and #3.   

Using the real genotype data, the genomic relationships between the reference and 

target sample were constructed. Empirical Me was estimated from equation (3) for 

reference #1, 2 and 3, and that for combined data. We took a median rather than mean 

because the distribution of variance of the genomic relationship between target and 

reference sample was skewed. The correlation between the true phenotypes (that were 

not used in the analyses) and estimated GBV in the target data set was estimated for 

the combined data set, which was used as the genomic prediction accuracy ( ry,ĝ ). 

Phenotypes were adjusted for birth year, sex, and the first 10 PCs were used to control 

non-genetic confounding effects, e.g. population stratification. 

 

RESULTS   

In the simulation study, as shown in Figure 1A, 1B and 1C, the expected (from Eq. 

(1)) and empirically observed Me from the simulated genotyped data (using Eq. (4)) 

are in good agreement, however, they are considerably lower than the expectation 
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from the previous formulas5,6,21, which confirms the result from Lee et al. (2016)7. It 

is noted that Eq. (4) is still valid in the subset with a smaller Ne = 50 that has a 

significant proportion of high related individuals, indicating that the assumption about 

unrelated individuals (made in Godard et al. (2011)5) can be relaxed.  

 

In the evaluation of the formulas, we first tested how the prediction accuracy was 

changed with varying marker density, using formula (1) and (2) and b = M / (Me + M) 

(Figure 2). For Ne=10,000, the accuracy gradually increased with marker density, but 

the slope became flat when using the number of SNPs exceeded 100,000 (Figure 2A). 

For Ne=1,000, the accuracy did not increase with marker density as long as the 

number of SNPs was higher than 50,000 (Figure 2B). For Ne=100, there was no 

improvement of the accuracy if the number of SNPs was more than 10,000 (Figure 

2C). This would be expected because the proportion of genetic variance at QTL 

captured by markers (b = M / (Me + M) approached one when the number of SNPs 

(M) was more than 100,000, 50,000 and 10,000 for Ne = 10,000, 1000 and 100, 

respectively (Figure 3), as Me was equal to 21,248, 2,313 and 254 for these three 

cases.  

 

Next, we quantified the contribution of each information source when varying sample 

size in the reference data using formula (1), (2) and (4) (Figure 4). It was assumed 

that the number of SNPs was sufficient to capture most of causal variants (e.g. > 

50,000). When adding 100 individuals of Ne=100 or Ne=10 to the reference sample 

with Ne=1000, the accuracy was slightly or substantially improved (Figure 4A). The 

improvement was larger when adding more individuals (500) (Figure 4B). Results 

showed that an information source of a smaller Ne was more important when the 
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samples sizes of each information source were the same. When the total number of 

reference data was increased, the importance of adding an information source of a 

smaller Ne was relatively decreased (Figure 4). When heritability was higher, overall 

accuracy was increased, and the relative contribution from an information source of a 

smaller Ne, i.e. the close relatives, was reduced (Figure 5). 

 

Figure 6 confirms again that the smaller Ne, the better the prediction accuracy when 

using each information source separately. However, the sample sizes can be also 

varied across the information sources, as there are generally a lot fewer close relatives 

than individuals from the wider population. In Figure 6A, the accuracy at a sample 

size of 100 for Ne=10 was 0.73, which was lower than that of a sample size of 1,000 

for Ne=100 (0.81) or that of a sample size of 20,000 for Ne=1,000 (0.83). With a 

higher heritability, the result is similar in that the 20,000 records in the information 

source of Ne=1000 gave a better accuracy than the 100 records of close relatives 

(Ne=10).  

 

In real situations, the most common and desirable design may combine all of the 

information sources to maximize the prediction accuracy. We plotted the accuracy 

using a composite design consisting of Ne=1000 + Ne=100 (N=500) + Ne=10 (N=50), 

compared to that using Ne=1000 (Figure 7). The accuracy for a composite design was 

substantially increased especially when the total number of reference sample is low 

(Figure 7).  

 

Figure 8 illustrates the real data analyses. The median of empirically estimated Me 

from the inverse of the variance of the genomic relationship (Eq. 3) over 100 
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replicates was 2254 (SD=50), 3989 (SD=104) and 28848 (SD=920) for reference #1, 

#2 and #3, respectively (Table 1). Empirically estimated Me based on the combined 

data was 4836 (SD=106) while expected Me was 5309 (SD=88), approximately 

confirming Eq. (4). The (small) difference between empirical observation and 

expectation was probably due to skewed distribution of the variance of the genomic 

relationships.  

 

Given Me, N and h2, the expected accuracy (from Eq. (2)) agreed well with the 

observed accuracy when using Framingham data (Figure 9). The reported 

heritabilities, h2=0.8 29-31 for height and h2=0.4632,33 for BMI, were used.  

 

Finally, we quantified the importance of marker density using the real data. In 

agreement with Figure 2, the prediction accuracy is not much decreased even with 

50,000 SNPs that were randomly selected from 389,265 SNPs (Figure 10).  

 

 

 

 

DISCUSSION 

This work shows a simple approach for modeling genomic prediction in a reference 

data set that contained several subpopulations that differ in relatedness to the target 

set, and by modeling these subpopulations as having different effective population 

size. The model allows assessing the prediction accuracy before actually conducting 

an experiment so that designing genomic prediction can be precise and effective in 

animal, plant and human genetics. For example, it can address a question how much 
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the prediction accuracy can be increased by adding 10,000 (conventionally) unrelated 

individuals into the current experiment consisting of 100 relatives in the reference 

data. The value for Ne in equation (1) can be approximated based on prior knowledge 

of a population, and the relatedness of the sample with the target, possibly supported 

by some genotype information that maybe available on cohorts, or samples thereof. 

Prediction in advance indeed relies on arbitrary modelling a number of cohorts, but it 

would be a useful exercise, as illustrated in the results when considering marker 

density and various sizes of the subsets of the training data. The theory is also useful 

for an animal breeder to predict the value of genotyped animals in an own herd versus 

those in a wider references population consisting of a larger number of more distantly 

related individuals.  

 

The genotypic and phenotypic information of close and distant relatives of the 

proband can be effectively used as a part of the unified reference panel that also 

include a large number of individuals that are not related to the predicted subject to 

improve the accuracy further as illustrated in Figure 7. For a random sample from the 

same homogenous population, e.g. within the same breed or ethnicity, an optimal 

design should consist of both close and distant relatives and unrelated individuals, e.g. 

a composite design, to maximise the prediction accuracy (Figure 7). That is, the 

composite design takes advantage of effective information from smaller number of 

relatives while it also use information from a greater number of unrelated individual.  

  

Using equation (1) and (4), we showed that the prediction accuracy derived for a 

population with unrelated individuals turns out to be higher, compared to previous 

quantifications that overestimated Me for a larger number of chromosomes5,6,21,34. 
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Using the same theory, we also showed that the information from close relatives 

could increase the accuracy even further, especially for smaller reference populations 

(Figures 3 – 6). It is important to note that the assumption about using unrelated 

individuals in estimating empirical Me from genomic relationship5 is not strictly 

necessary and can be relaxed (Eq. (3) and (4)). The theory and empirical observation 

from simulation study agreed well (Figure 1) even when using a population with a 

smaller effective population size (Ne=50) that consisted of a significant proportion of 

high relatedness. 

 

Previous studies related to genomic prediction accuracy have suggested that Me can 

be derived from the variation in the differences between realized and expected 

relationships6,22, i.e. D = G – A where G is a genomic relationship matrix and A is a 

numerator relationship matrix based on pedigree. Those studies validated their results 

also with simulation. If the individuals used in the training set have a low expected 

relationship to the target individuals, then there is not much difference between the 

variations in D versus G. However, when some closer relatives are used, var(G) is 

larger than var(D) and Me is therefore smaller. Note that non-random sampling of 

individuals used for the training set can cause a difference between the Ne of the 

population that was simulated, and the Ne of the data set that was used for prediction.  

 

We have not tested the theory for multi-breed reference populations, i.e. those that are 

heterogeneous in the sense of consisting of populations from different genetic 

background, i.e. different breeds or ethnicities, each with different minor allele 

frequencies, different LD structure and different effects for causal variants. Wientjes 

et al. (2016)22 explicitly addressed the problem of different effects for causal variants 
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(i.e. genetic correlation less than one) when combining data from two populations. 

Individuals from different populations share genomic relationships that are lower than 

those among members within each population. Evidence in literature suggests low 

prediction accuracies when using information from different breeds or populations, 

which could be viewed as predicting from populations with very large Ne. Moreover, 

we have not considered historical population dynamics such as bottleneck and 

admixture, but assumed a constant Ne over the historical generations, which leads to 

simplifications that make the formulae tractable and easy to derive. Further work is 

required to extend the theory accounting for admixture populations and historical 

population dynamics.  

 

We have shown an improved theory for the prediction of the effective number of 

chromosome segments, which is a key parameter in genomic prediction accuracy7. 

The theory accounts for the correlation between relationships at different 

chromosomes and as a result the effective number of chromosome segments is 

smaller than predicted from previous theory5,6,21. As a result, the increase of the 

genomic prediction accuracy appears to be less reliant on higher marker density 

unless Ne is very large (e.g. > 10,000) (Figure 2), compared to what have been 

quantified by previous theory5,6,21. The previous theory overestimates Me (mostly due 

to neglecting correlation between chromosomes), therefore underestimates the 

proportion of genetic variance at QTL captured by markers. Little improvement of 

prediction accuracy with increasing SNP marker density has been empirically 

observed in a number of studies35-37. This may also have important implication in 

genomic prediction as to designing marker density in animal, plant and human 

genetics.  
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The ability to quantify the accuracy in relation to various degrees of relationships (e.g. 

close relatives, distant relatives, local or extensive population sample) is important for 

predicting outcomes of genomic prediction for specific designs. This study has 

addressed this question, and the theory has been implemented in MTG2 software 

(https://sites.google.com/site/honglee0707/mtg2). Therefore, a user can know the 

expected prediction accuracy and the power38 before designing an experiment of 

genomic prediction. Our approach can be applied both before and after collecting the 

data. 
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Table 1. The sample size (N) and empirically observed Me in each of three different 

reference data sets and combined data set in the Framingham data analysis.  

	
   Ni	
  (standard	
  deviation)	
   Me	
  (standard	
  deviation)	
  
Reference	
  #1	
   N1	
  =	
  617	
  (19)	
   2254	
  (50)	
  
Reference	
  #2	
   N2	
  =	
  1254	
  (30)	
   3989	
  (104)	
  
Reference	
  #3	
   N3	
  =	
  1572	
  (33)	
   28848	
  (920)	
  
Combined	
  all	
   Nall	
  =	
  3443	
  (0)	
   4836	
  (106)	
  

 
The values were averaged over 100 replicates.  
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C. 

 

 

Figure 1. Expected effective number of chromosome segments (Me) from previous 
studies in 20096, 20115 and 201321 and from Eq. (1) in this study, compared to 
empirically observed from Me simulation when varying the number of chromosomes 
each with 1 Morgan long. Effective population size was used as Ne =50 (A), 500 (B) 
and 1000 (C). This confirms the result from Lee et al. (2016)7.  
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A. 

 
B. 

 
C. 

 
 
Figure 2. Accuracy of GBV when varying the number of SNPs for Ne = 10,000 (A), 
1000 (B) and 100 (C). The sample size in the reference data was N=12,000, 6000 or 
3000. The heritability was 0.25.  
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Figure 3. The proportion of genetic variance at QTL captured by markers (b = M / (Me 
+ M) when varying the number of SNPs for Ne = 10,000, 1000 and 100. 
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A. 

 
 
B. 

 
 
Figure 4. Accuracy of GBV when adding 100 individuals (N=100) (A) or 500 
individuals (N=500) (B) of Ne=100 or Ne=10 to the reference population of Ne=1000. 
The heritability was 0.25. 
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Figure 5. Accuracy of GBV when adding 100 individuals (N=100) (A) or 500 
individuals (N=500) (B) of Ne=100 or Ne=10 to the reference population of Ne=1000. 
The heritability was 0.25. The heritability was 0.75. 
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Figure 6. Accuracy of GBV when using Ne=1000 only, Ne=100 only and Ne=10 only 
with a heritability of 0.25 (A), and with a heritability of 0.75 (B).  
For Ne=10 only, the accuracy at a sample size of 100 was 0.73 (A) and 0.88 (B). For 
Ne=100 only, the accuracy at a sample size of 1000 was 0.81 (A) and 0.92 (B). For 
Ne=1000 only, the accuracy at a sample size of 20,000 was 0.83 (A) and 0.93 (B).  
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Figure 7. Accuracy of GBV when using a composite design, e.g. Ne=1000 + Ne=100 
(N=500) + Ne=10 (N=50), compared to Ne=1000 only with a heritability of 0.25 (A) 
and with a heritability of 0.75 (B).  
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Figure 8. When using Framingham data, empirically estimated Me based on each of 
the reference data sets and combined data. Empirically estimated Me based on 
combined data is approximately agreed with that from theory (Eq. 4).  
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Figure 9. When using Framingham data, observed prediction accuracy and expected 
prediction accuracy with given Me and N (from Eq. (2)) are agreed well. The reported 
heritability, h2=0.8 29-31 for height and h2=0.4632,33 for BMI, were used.  
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Figure 10. When using Framingham data, the prediction accuracy is not much 
decreased even with 50,000 SNPs that were randomly selected from 389,265 SNPs.  	
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