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Abstract 

Heterogeneity of cell states represented in pluripotent cultures have not been described at the 
transcriptional level. Since gene expression is highly heterogeneous between cells, single-cell RNA 
sequencing can be used to identify how individual pluripotent cells function. Here, we present results 
from the analysis of single-cell RNA sequencing data from 18,787 individual WTC CRISPRi human 20 
induced pluripotent stem cells. We developed an unsupervised clustering method, and through this 
identified four subpopulations distinguishable on the basis of their pluripotent state including: a core 
pluripotent population (48.3%), proliferative (47.8%), early-primed for differentiation (2.8%) and late-
primed for differentiation (1.1%). For each subpopulation we were able to identify the genes and 
pathways that define differences in pluripotent cell states. Our method identified four transcriptionally 25 
distinct predictor gene sets comprised of 165 unique genes that denote the specific pluripotency 
states; and using these sets, we developed a multigenic machine learning prediction method to 
accurately classify single cells into each of the subpopulations. Compared against a set of established 
pluripotency markers, our method increases prediction accuracy by 10%, specificity by 20%, and 
explains a substantially larger proportion of deviance (up to 3-fold) from the prediction model. Finally, 30 
we developed an innovative method to predict cells transitioning between subpopulations, and support 
our conclusions with results from two orthogonal pseudotime trajectory methods.  
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Introduction 
  

The transcriptome is a key determinant of the phenotype of a cell and regulates the identity and fate 

of individual cells. Much of what we know about the structure and function of the transcriptome comes 

from studies averaging measurements over large populations of cells, many of which are functionally 45 
heterogeneous. Such studies conceal the variability between cells and so prevent us from determining 

the nature of heterogeneity at the molecular level as a basis for understanding biological complexity. 

Cell-to-cell differences in any tissue or cell culture are a critical feature of their biological state and 

function. 

In recent decades, the isolation of pluripotent stem cells, first in mouse followed by human 50 
(Evans and Kaufman, 1981; Thomson et al., 1998), and the more recent discovery of deriving 

pluripotent stem cells from somatic cell types (iPSCs) (Takahashi and Yamanaka, 2006), is a means 

to study lineage-specific mechanisms underlying development and disease to broaden our capacity 

for biological therapeutics (Palpant et al., 2017). Pluripotent stem cells are capable of unlimited self-

renewal and can give rise to specialized cell types based on stepwise changes in the transcriptional 55 
networks that orchestrate complex fate choices from pluripotency into differentiated states. 

In addition to individual published data, international consortia are banking human induced 

pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and providing extensive 

phenotypic characterization of cell lines including transcriptional profiling, genome sequencing, and 

epigenetic analysis as data resources (Streeter et al., 2017; The Steering Committee of the 60 
International Stem Cell, 2005). These data provide a valuable reference point for functional genomics 

studies but continue to lack key insights into the heterogeneity of cell states that represent 

pluripotency. 

While transcriptional profiling has been a common endpoint for analyzing pluripotency, the 

heterogeneity of cell states represented in pluripotent cultures has not been described at a global 65 
transcriptional level. Since each cell has a unique expression state comprising a collection of 

regulatory factors and target gene behavior, single-cell RNA sequencing (scRNA-seq) can provide a 

transcriptome-level understanding of how individual cells function in pluripotency (Wen and Tang, 

2016). These data can also reveal insights into the intrinsic transcriptional heterogeneity comprising 

the pluripotent state. In this study, we provide the largest dataset of single-cell transcriptional profiling 70 
of undifferentiated hiPSCs currently available, which cumulatively amount to 18,787 cells across five 

biological replicates. Moreover, we have developed several innovative single-cell methods focused on 

unbiased clustering, machine-learning classification, and quantitative and directional cellular trajectory 

analysis. Our findings address the following hypotheses: (1) pluripotent cells form distinct groups or 

subpopulations of cells based on biological processes or differentiation potential; (2) transcriptional 75 
data at single cell resolution reveal gene networks governing specific cell subpopulations; (3) 
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transcripts can exhibit differences in gene expression heterogeneity between specific subpopulation 

of cells. 

 Results 
  80 
Description of the parental hiPSC line, CRISPRi 

WTC-CRISPRi hiPSCs (Mandegar et al., 2016) were chosen as the parental cell line for this study. 

These cells are genetically engineered with an inducible nuclease-dead Cas9 fused to a KRAB 

repression domain (Supplemental Figure S1a). Transcriptional inhibition by gRNAs targeted to the 

transcriptional start site is doxycycline-dependent and can be designed to silence genes in an allele-85 
specific manner. The versatility of this line provides a means to use this scRNA-seq data as a parental 

reference point for future studies aiming to assess the transcriptional basis of pluripotency at the single 

cell level. Cells were verified to have a normal 46 X,Y male karyotype by Giemsa banding analysis 

before analysis by scRNA-seq (Supplemental Figure S1b). 

  90 
Overview of single-cell RNA sequence data 

After quality control of the sequencing data (Methods), we obtained 1,030,909,022 sequence reads 

for 20,482 cells from five hiPSC single cell samples (Supplemental Table S1, Supplemental Figure 
S2), with 63-71% confidently and uniquely mapped (mapping quality 255) to the human reference 

transcriptome hg19 (Ensembl, release 75). We sequenced 19,937 cells from four samples to an 95 
average depth of 44,506 reads-per-cell (rpc), and one sample consisting of 545 cells was sequenced 

to an average depth of 318,909 rpc. On average, 2,536 genes and 9,030 Unique Molecular Identifiers 

(UMIs) were detected per cell. Comparing the sequencing results between five samples, we observe 

little variation in the total number of genes detected per sample, despite differences in the number of 

cells per sample, and average reads per cell (Supplemental Table S1). For example, we observed 100 
only a slight increase in the average number of genes detected for cells sequenced at a greater depth 

(Supplemental Tables S1, S3, Supplemental Figure S2f), and no gain in the total number of genes 

detected for all cells in the whole sample. These results suggest that an average of 44,506 rpc 

achieves close to maximum total gene detection in our samples. We found that the number of reads 

per cell affects per-cell gene detection (sensitivity), whereas the number of cells per sample effects on 105 
total gene detection (more unique genes per sample). Overall, after quality control we detected 16,064 

unique genes, which were expressed in at least 1% of the total cells. Importantly, of the 16,064 genes, 

only one was unique to a single sample (Supplemental Table S4). We subsequently removed 1,738 

cells due to a high percentage of expressed mitochondrial and/or ribosomal genes (Methods, 
Supplemental Table S2), leaving a total of 18,787 high-quality hiPSCs for further analysis. Following 110 
between-sample and between-cell normalisation, we observed no evidence for batch effects due to 

sample or sequencing run (Figure 1a, Supplemental Figure S3).  
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Identification of four hiPSC subpopulations based on biological function 

We developed an innovative classification method, which we term Unsupervised High-Resolution 115 
Clustering (UHRC), to objectively assign cells into subpopulations based on genome-wide transcript 

levels (Figure 1, Supplemental Figure S4, and Methods section). The UHRC procedure is 

comprised of three unbiased algorithms. First, a PCA reduction step was implemented to overcome 

the inherent multicollinearity in single cell expression data. Subsequently we apply bottom-up 

agglomerative hierarchical clustering, which importantly provides a ‘data-driven’ identification of 120 
clusters, rather than inputting a specific number of expected clusters, as is the case with K-means 

algorithms. Third, to robustly define large clusters, a dynamic branch merging process is used to detect 

complex nested structures and outliers. This unbiased method identified four independent 

subpopulations of cells containing 48.3, 47.8, 2.8 and 1.1 percent of the 18,787 cells, respectively 

(Figure 1 a, b and d; and Supplemental Figure S4). Importantly, after clustering, we did not observe 125 
evidence for batch effects underlying any of the four cell subpopulations (Figure 1a, Supplemental 
Table S5), suggesting that the clusters represent biological and not technical factors. By comparing 

gene expression levels between subpopulations, we identified four differentially expressed gene sets 

that distinguish each subpopulation from the remaining cells (Figure 1c, Supplemental Table S6). 

We have made this data available via an interactive, gene-searchable web application available at 130 
http://computationalgenomics.com.au/shiny/hipsc/. 

  

We initially examined transcript dynamics in the subpopulations based on expression of previously 

described markers of pluripotency and lineage determination (Tsankov et al., 2015) (Figure 2 and 
Supplemental Table S7). Of the 18,787 cells, 99.8% expressed at least one of 19 pluripotency genes 135 
(Supplemental Table S8). Furthermore, genes with known roles in pluripotency had stronger 

expression across all subpopulations compared to genes involved in lineage determination (Figure 
2a-b, Supplemental Tables S7 and S8). For example, POU5F1 (also known as OCT4), which 

encodes a transcription factor critically involved in the self-renewal of undifferentiated pluripotent stem 

cells (Boyer et al., 2005), was consistently expressed in 98.6% of cells comprising all four 140 
subpopulations (Figure 2a-b, Supplemental Tables S7 and S8). Other known markers of 

pluripotency such as SOX2, NANOG and UTF1 were expressed across the subpopulations (Figure 
2a-b, Supplemental Tables S7 and S8), but showed differences in expression heterogeneity, 

suggesting differences in the pluripotent state across subpopulations (Supplemental Table S7).  

  145 
Classification of hiPSC subpopulations 

We sought to identify biological processes underlying transcriptional classification of cell 

subpopulations by firstly performing a statistical analysis to identify significantly differentially 
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expressed genes between subpopulations (Methods, Figure 1c, Supplemental Table S6). 
Differentially expressed genes with a fold-change significant at a Bonferroni-corrected p-value 150 
threshold (p < 3.1 x 10-7) were evaluated for enrichment of functional pathways (Supplemental Tables 
S9-S13). 

 
Cells classified in subpopulations one and two, which comprise 96.1% of total cells analyzed (Figure 
1 a, b, c), were distinguished from one another by significantly different expression levels of genes in 155 
alternate pathways controlling pluripotency and differentiation (Supplemental Figure S5, 
Supplemental Tables S9-S11). The Transcriptional Regulation of Pluripotent Stem Cells (TRPSC) 

pathway was consistently up-regulated in cells classified as subpopulation two compared to 

subpopulation one (Supplemental Figure S5, Supplemental Table S11 and S14). TRPSC is an 

auto-activation loop, which maintains expression of POU5F1, NANOG, and SOX2 at high levels. 160 
Complexes containing various combinations of these transcription factors (Lam et al., 2012) can 

activate the expression of genes whose products are associated with rapid cell proliferation, and also 

repress the expression of genes associated with cell differentiation (Forristal et al., 2010; Guenther, 

2011) (Supplemental Figure S5). In particular, POU5F1, NANOG, and SOX2 are more highly 

expressed in subpopulation two (Supplemental Table S7), and the direction of differential expression 165 
of genes associated with cell proliferation and repression of cell differentiation (Forristal et al., 2010; 

Guenther, 2011) is consistent with subpopulation two containing cells that are more active in their self-

renewal than cells in subpopulation one (Supplemental Tables S7, S10 and S14). 

  

We hypothesized that expression differences between subpopulations one and two could reveal novel, 170 
subpopulation-specific markers. We applied unbiased differential expression analysis between 

subpopulation one and two, identifying 49 statistically significant genes that were taken forward to 

biological pathway analysis (Supplemental Table S6, Supplemental Figure S5). Among these 49 

genes, two key transcription factors and a signaling receptor were significantly higher in subpopulation 

two than subpopulation one, including SALL4 (Spalt-like transcription factor 4, p-adjusted: 7.0 x 10-5), 175 
ZIC1 (Zic family member 1, p-adjusted: 4.3x10-5), and NR6A1 (Nuclear Receptor Subfamily 6 Group 

A Member 1, p-adjusted: 3.7 x 10-6) (Supplemental Table S14).  

  

SALL4 is one of the key transcription factors that participates in controlling transcriptional balance in 

pluripotent cells and suppressing differentiation (Miller et al., 2016) (Supplemental Figure S5). 180 
Specifically, SALL4 activates transcription of POU5F1 and maintains pluripotency (Yang et al., 2010b). 

ZIC1, upregulated gene in subpopulation two, was identified by GeneMANIA analysis to be related to 

SALL4 through shared protein domains (Supplemental Figure S6). Both ZIC1 and SALL4 were 

predicted by the STRING database to interact with key pluripotency markers (Supplemental Figure 
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S6). Furthermore, ZIC1 and its paralog ZIC3, a key member in the TRPSC pathway (Supplemental 185 
Figure S5), are involved in maintaining the undifferentiated state, for example in the case of neural 

precursor cells (Inoue et al., 2007). Moreover, we also identified another differentially expressed gene, 

NR6A1, a known regulator of POU5F1 later in differentiation (Fuhrmann et al. 2001; Weikum et al. 

2017), and which we predict is likely to participate in the TRPSC pathway since its paralog, NR5A1, is 

among the key members of this pathway (Supplemental Figure S6). Based on these observations, 190 
we hypothesize that in subpopulation two, three differentially expressed (DE) genes, SALL4, NR6A1 

and ZIC3, cooperate with key pluripotency transcription factors POU5F1, SOX2, and NANOG to 

activate genes related to proliferation, but not genes involved in differentiation (Supplemental Figure 
S5).  

  195 
Compared to subpopulations one and two, subpopulations three and four represent pluripotent 

populations with significant down-regulation of key pluripotency network genes (e.g. NANOG and 

UTF1) (Figure 2a-b). For all known pluripotency markers examined in Supplemental Table S8, we 

observed expression in a higher proportion of cells in subpopulation one and two than subpopulations 

three and four. Furthermore, the mean expression of 46 out of 56 known markers involved in 200 
pluripotency shown in Supplemental Table S7 is higher in subpopulations one and two than in three 

and four. For subpopulation three, comprising 2.8% of cells, Reactome pathway enrichment analysis 

of 2,534 DE genes between subpopulations three and four showed the top pathways related to 

developmental signaling and transcriptional regulation via chromatin modification (Supplemental 
Table S12). Intracellular signaling pathways that control cell proliferation, cell differentiation, and cell 205 
migration, such as EGFR, PDGF, and NGF pathways (FDR < 1.7 x 10-6), were the top three most 

enriched pathways (Supplemental Table S12). Additionally, signaling pathways by FGFRs involved 

in differentiation were also significantly enriched (FDR < 3 x 10-4). Comparing subpopulations three 

and one, signaling by TGF-beta, and signaling by NODAL were in the top enriched pathways (FDR < 

8 x 10-3). Similarly, signaling by NODAL (FDR < 0.04) (Levin cent et al., 2003) and pre-NOTCH 210 
processing (FDR < 0.04) (Artavanis-Tsakonas et al., 1999), which are involved in cell fate decisions, 

were in the top enriched pathways when comparing subpopulation three to subpopulations one and 

two (Supplemental Table S12). In addition, ‘chromatin modifying enzymes’ is among the top 

Reactome pathways distinguishing subpopulation three, suggesting that cells are undergoing active 

transcription regulation. Thus, pluripotent cells in subpopulation three appear more lineage primed 215 
compared to subpopulations one and two.  

  

Further, we extended the pathway enrichment analysis to a broad collection of background gene 

ontology databases, beyond the manually curated Reactome database, by using BiNGO in Cytoscape 

for all 1,706 DE genes in subpopulation four vs. all other subpopulations (1.1% of analyzed cells) 220 
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(Supplemental Table S13). We found the top enriched pathways related to differentiation including 

genes involved in: gastrulation (FDR < 1.3 x 10-2) and formation of primary germ layer (FDR < 1.4 x 

10-2); developmental process (FDR < 2.8 x 10-3); and cell differentiation (FDR < 1.2 x 10-2); and more 

than 20 significantly enriched pathways related to organogenesis (FDR < 5 x 10-2; Supplemental 
Table S13). Thus, although cells in subpopulation four are still pluripotent, as indicated by the 225 
expression of pluripotent markers, they likely represent cells at a late-primed state progressing toward 

differentiation. 

  

Taken together, our transcriptional profiling of single cells revealed four subpopulations defined by 

their pluripotency levels, cell proliferation, and potential for cell lineage commitment. Subpopulation 230 
one pluripotent cells likely represent a core pluripotent state, subpopulation two proliferative pluripotent 

cells, subpopulation three as early-primed for differentiation, and subpopulation four as late-primed for 

differentiation (Figure 1b). 
  

Improved cell classification using a reduced set of gene markers 235 
Current methods of classifying cells into sub-types or functional groups rely on prior knowledge of so-

called ‘marker genes’ to inform the pseudotime algorithm. One limitation of this approach is that, to 

discover new or rare cell types using single-cell RNA-seq, the use of established markers as an input 

may not be feasible. 

Using differentially expressed genes identified between subpopulations, we built a novel unbiased 240 
machine learning predictor to identify the pluripotency potential of a single cell. To avoid over-fitting 

the model due to co-expression of genes, we used a variable selection regression model called 

LASSO (Tibshirani, 1996) to estimate gene effects differentiating each subpopulation conditional upon 

the effects of other genes. Using a 100-fold bootstrapping approach, we estimated the predictive 

accuracy of identifying a cell in each of the four subpopulations (Figure 3, Supplemental Table S15) 245 
(Tibshirani, 1996). To detect new gene markers compared to the use of known pluripotency markers 

(Supplemental Table S7), we applied LASSO to selected sets of differentially expressed genes 

between one subpopulation compared to the remaining subpopulations. Consistently across four 

comparisons, our method increases prediction accuracy by 10%, specificity by 20%, and explains a 

substantially larger proportion of deviance (up to 3-fold) from the prediction model compared to known 250 
markers (Supplemental Figures S7-S8, Supplemental Tables S15-S16). Prediction by DE genes 

showed markedly higher performance, measured specifically by sensitivity, specificity and percentage 

of deviance explained, in distinguishing cells classified in subpopulations three and four from the 

remaining cells (Figure 3a). Similarly, a significantly higher percent of deviance can be explained by 

using DE genes compared to using known markers (t-test, p=1.4x10-77) (Figure 3b). We  observed 255 
the highest classification accuracy using genes identified using the LASSO model for cells in 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/119255doi: bioRxiv preprint 

https://doi.org/10.1101/119255
http://creativecommons.org/licenses/by/4.0/


9 

subpopulations three and four than cells in subpopulations one and two, suggesting that these 

subpopulations were more divergent from the remaining majority of the cell population (Figure 3c). 

This observation further supports the classification of subpopulations three and four as more primed 

to differentiation than subpopulations one and two. Although the difference in accuracy was less 260 
apparent for cells in subpopulations one and two, the improved accuracy achieved using the DE genes 

compared to known markers supports the conclusion that our analysis has identified novel genes that 

act as pluripotency markers (Figure 3c). 

 

Cell transition between pluripotency states 265 
We next sought to investigate cell trajectories between subpopulations of iPSCs. We further deployed 

the results from the LASSO variable selection procedure described above to develop a classifier 

model, termed Local Transitions between Subpopulations (LTS) that can predict the conversion 

potential of cells in one subpopulation into cells in a target subpopulation. For each subpopulation, we 

trained the expression data using the genes identified as differentially expressed, to optimize a logistic 270 
regression model by penalized maximum likelihood estimation. The training provides an optimal 

LASSO model with selected genes and corresponding coefficients. The coefficients estimated from 

the training model were fitted into the expression levels of each of the remaining subpopulations (target 

populations), enabling us to predict which cells in the target population were the most similar to cells 

in the training subpopulation. The percentage of cells within the target subpopulation accurately 275 
predicted by the training subpopulation is termed the transition score. The transition scores provide 

both a quantitative and directional estimate of the progression potential between subpopulations. 

Using LTS to predict lineage trajectory between subpopulations of pluripotent cells showed that 

subpopulation one is capable of progressing into all other states, with the potential to convert into 

approximately 45%, 69%, and 47% of the cells in the subpopulation two, three, and four respectively 280 
(Table 1, Figure 4e). In contrast, subpopulation two predominantly transitions into subpopulation one 

(39%), with low transition scores when compared against subpopulations three and four (< 5%), 

(Figure 4e). The difference in transition scores from subpopulation two to other subpopulations 

suggests that the cells were at a reversible, self-renewal state (Table 1). Notably, the LASSO method 

predicts the highest transition score for the progression from subpopulation three to subpopulation 285 
four (> 99%), providing further support that subpopulation three is “early primed” prior to the “late 

primed” state in subpopulation four (Figure 4e). 

 

To confirm that the population of iPSCs was comprised of groups of cells located in different states 

along a differentiation path, we cross-validated our findings with two independent pseudotime analysis 290 
methods, namely Monocle2 (Qiu et al, 2017) and diffusion pseudotime (Haghverdi et al., 2016). These 

two methods estimate the differentiation distance of a cell compared to a root cell (see Methods 
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section), but do not otherwise provide quantitative information about direction of movement. Monocle2 

(Figure 4a-b) revealed a substantial overlap between subpopulations one and two, with cells classified 

in subpopulation one distributed across the trajectory, indicating a pluripotent state. Furthermore, the 295 
majority of cells within subpopulation two are located at the right terminal, indicating cells are closer 

to the root. As expected, cells within subpopulations three and four were located distal to cells from 

subpopulation two at the left terminal which supports our results suggesting classification of 

subpopulations three and four as being more primed to differentiate. The diffusion algorithm, 

implemented through the Destiny package (Angerer et al., 2016), maps cells onto a two-dimensional 300 
pseudotime space. The results obtained from diffusion pseudotime analysis (Figure 4c-d) were in 

strong agreement with the Monocle2 prediction, supporting our evidence that the four subpopulations 

present in a culture of iPSCs exist in multiple states of pluripotency. 

 

Validation against transcriptional data from the Human Induced Pluripotent Stem Cells 305 
Initiative (HipSci)  

To confirm that genes selected by our LASSO analysis were also expressed in other hiPSC lines, we 

obtained open-access RNA-Seq transcript count data (tags per million - tpm) from the Human Induced 

Pluripotent Stem Cells Initiative (HipSci) for 71 hiPSC lines derived from reprogramming of dermal 

fibroblast biopsies from normal individuals (Streeter et al., 2017). Consistently, we observed 310 
expression of LASSO genes in 71 other independent hiPSC samples (Supplemental Figure S8). 

Moreover, we observed high correlation (r > 0.85) between the relative expression values among 

genes in our single-cell dataset with those genes in the HipSci bulk RNA-seq dataset (Supplemental 
Figure S8c). The high correlation further confirms that the single-cell sequencing data accurately 

reflects the relative abundance of transcripts. 315 
  

Transcriptional heterogeneity varies between cell subpopulations 

With the large-scale data from 18,787 single cells greater than 16,000 genes were detected as 

expressed. Using this expression matrix, we were able to robustly analyze expression heterogeneity, 

both between genes, and for a given gene, between cells and cell subpopulations (Supplemental 320 
Figure S9). The inherently high heterogeneity of gene expression in scRNA-seq data, especially for 

low abundance genes with a more frequent on-off signal, may reduce the power to detect differential 

expression between cells (Shalek et al., 2013). Indeed, we identify more variation for subpopulations 

with smaller number of cells (Supplemental Figure S9a), and also for genes with low expression 

(Supplemental Figure S9b). Tagwise dispersion, which is expression variability for a gene across all 325 
cells in a subpopulation, decreased when average expression increased (Supplemental Figure S9b). 

The difference in the level of heterogeneity of gene expression for cells in a given subpopulation 

compared to other subpopulations is an important indicator of the relative dynamic cellular activity of 
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the subpopulation. The red line in Supplemental Figure S9b shows the median dispersion of all 

genes across all cells within a subpopulation, thereby representing the average expression 330 
heterogeneity of the subpopulation. We found the median dispersion was higher in subpopulations 

three and four than in subpopulations one and two (Supplemental Figure S9b). This is consistent 

with our conclusion that subpopulations three and four were closer to a differentiated state compared 

to cells in subpopulations one and two, which are identified as being more pluripotent based on 

transcriptome analysis.  335 
 

Cell cycle classification of hiPSC subpopulations 

To test the hypothesis that the subpopulations classified as core pluripotent (subpopulation one) or 

proliferative (subpopulation two) would harbor specific cell cycle signatures, we predicted the cell cycle 

phase of each cell (Scialdone et al., 2015; Lun et al., 2016 ). To estimate phase scores for each cell, 340 
the prediction method uses gene expression data and a reference training set containing prior ranks 

of relative expression of “marker pairs”, in which the sign of each pair changes between cell cycle 

phases (Scialdone et al., 2015;  Leng et al., 2015) (Figure 4f). In particular, we observed a significantly 

higher percentage of cells in S (synthesis) phase belonged to subpopulation two (14.2%) compared 

to subpopulation one (8.4%: Fisher's exact test, P < 2.2 x 10-16), and a significantly higher percentage 345 
of cells in G1 (50.3%) belonged to subpopulation one compared to subpopulation two (45.6%: Fisher's 

exact test, P < 2.2 x 10-16). Table 2 summarizes the proportions of cells in each cell cycle phase 

grouped by subpopulation. These data confirm our previous findings that subpopulation two is more 

proliferative and likely forms the reversible, self-renewing component of the pluripotent population as 

a whole.  350 
  

Discussion 
  

While methods to dissect cell subpopulations at single cell resolution such as FACS and 

immunohistochemistry have been available, a comprehensive profiling of transcriptional state(s) 355 
defining functionally distinct cell subpopulations comprising a ‘homogenous’ hiPSC cell line has not 

been described (Wilson et al., 2015; Kalkan et al., 2017).  Although the heterogeneity of pluripotency 

states in an induced pluripotent cell culture is widely recognized, the quantitative characterization of 

subpopulations, identification of markers for subpopulations and prediction of transition potential 

among them have not been investigated. To address this, we generated and analyzed the largest 360 
hiPSC single-cell transcriptomics dataset to date, from five biological replicates of an engineered 

WTC-CRISPRi hiPSC line (Mandegar et al., 2016). The 18,787 high-quality transcriptomes that 

comprise this hiPSC population, collectively expressing 16,064 genes, provided strong statistical 

power for unbiased computational decomposition of cellular and transcriptional heterogeneity.  
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 365 
We developed a high-resolution and deterministic clustering method (UHRC) that does not require a 

predetermined cluster number. Across five separate biological replicates, we consistently found the 

existence of two main subpopulations including a core pluripotent and a pluripotent-proliferative 

subpopulation, accounting for 96.1% of all cells profiled. Comparison of transcriptomes between 

subpopulations revealed a cell proliferation gene network, coordinately regulated by two transcription 370 
factors SALL4, ZIC1 and the NR5A1 signaling receptor, together with the well-characterized 

pluripotency regulators POU5F1, SOX2, and NANOG. Recently, Kalkan et al (2017) detected higher 

expression of Sall4 and Nr5a2 by single-cell RNA-seq in the early undifferentiated state (2i) of mouse 

ESCs compared to later, more differentiated time-points. The separation of two major subpopulations 

on the basis of cell proliferation states may in part be explained by evidence that reprogramming is 375 
commonly a stochastic process dependent on cell-proliferation rate (Hanna et al., 2009). It remains to 

be determined whether these subpopulations generally reflect a common feature of pluripotency in 

hESC or hiPSC populations. Furthermore, the high sensitivity of the UHRC method allowed the 

detection of two smaller subpopulations (2.8% and 1.1% of the total cells) with transcriptional 

signatures of pluripotency but primed for differentiation based on enriched signaling pathways and 380 
gene ontologies related to lineage specification. Interestingly, from analysis of expression 

heterogeneity within and between subpopulations, we found higher variability in these two 

subpopulations compared to the remaining cells. This observation is consistent with recent single-cell 

studies showing that the transition from pluripotency to lineage commitment phase is characterized by 

high gene expression variability (Semrau et al., 2016) and by the gradual destabilization of the 385 
pluripotent stem cell networks (Bargaje et al., 2017). 

 

Moreover, we developed a method to find novel gene markers and models capable of distinguishing 

these subpopulations. Our marker identification method enables objective selection of genes from a 

large set containing hundreds to thousands of differentially expressed genes. The novel markers 390 
outperform known markers in predicting subpopulations. We developed a machine learning approach 

that can be widely applied to optimize prediction models based on single-cell transcriptomics data to 

classify cells into subpopulations at a high accuracy. Identifying cell types is often based on 

immunostaining, FACS, or targeted PCR quantification of a small number of markers (Tsankov et al., 

2015; Kalkan et al., 2017). Here, we constructed an unbiased classification model based on differential 395 
gene expression selected by the LASSO penalized maximum likelihood optimization procedure. The 

procedure does not require model tuning by selecting parameters based on prior knowledge. We 

identified large, previously unreported groups of genes as new predictors for pluripotency and showed 

that prediction models from differentially expressed genes performed better than models built from 

known markers. Our model is especially effective at identifying genes and estimating their effects in 400 
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the prediction of complex phenotypes (polygenic traits), which are controlled by multiple genetic loci 

and where each locus has a small individual effect (Yang et al., 2010a; Boyle et al., 2017). Our results 

support the use of an unbiased and transcriptome-wide approach to developing gene prediction 

models, which can leverage subtle expression changes in a large number of genes to accurately 

classify cell types (subpopulations) and discover novel gene markers for important phenotypes. The 405 
results of these predictions can generate important hypotheses around genes and networks to be 

validated by functional genomics assays.  

  

Importantly, using LTS, our quantitative and directional prediction method, we observed that these 

multiple iPSC subpopulations have the potential to transition between pluripotency states, which was 410 
further supported by two independent analysis methods, Monocle2 and diffusion pseudotime. The 

results of these trajectory analyses revealed the dynamic transition among subpopulations that 

ensures both cell state-renewal (transition between subpopulation two and subpopulation one) and 

differentiation capacity (subpopulation one to subpopulations three and four). This is especially the case 

for subpopulations 1 and 2, which are on a continuum yet are distinguishable from one another based on 415 
their transcriptional profiles. However, between subpopulations 2 to 3 and 2 to 4, the continuum is less 

clear, suggesting greater distinction between each subpopulation (Figure 4). Prior work using microarray 

gene expression arrays on human embryonic stem cells (hESCs) suggested a continuum of pluripotent 

states exists (Hough et al., 2009). Our finding is consistent with a study on early developmental 

progression from naive pluripotency in human epiblast and embryonic stem cells to more differentiated 420 
tissues such as trophectoderm and primitive endoderm (Yan et al., 2013). Using single cells, the 

authors reported a strong reduction in the expression of pluripotency markers during the cell transition 

from pluripotent to differentiated. A second study investigating early developmental progression from 

naïve pluripotency in mouse ESCs (Kalkan et al., 2017) showed reduced expression of pluripotency 

markers occurred prior to the activation of lineage specification markers.   425 
 

Despite the large number of cells sequenced, this study was limited in that only 3’ mRNA was 

sequenced, and thus there remained variation between cell populations that could not be detected. In 

addition, our observations were obtained from one iPSC line and may not reflect the general behavior 

of all pluripotent stem cells. Nevertheless, our aim was to deconvolute a ‘homogeneous’ hiPSC 430 
population, and inclusion of transcriptional sequence data from other RNA species in the future will 

likely improve our ability to further delineate subpopulations of cells. Furthermore, we confirmed that 

the genes selected were expressed in 71 HipSci datasets (Streeter et al., 2017), and that relative 

expression level among genes was consistent between scRNA and bulk RNA sequencing. The 

parental cell line selected for this study, WTC-CRISPRi hiPSCs (Mandegar et al., 2016), is an 435 
important system for targeted transcription inhibition, and is a key feature for functional genomics 
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studies that build on this dataset to study the biology of pluripotency. Coupled with high-throughput 

single-cell RNA-seq, our innovative computational methods have revealed the intrinsic characteristics 

that distinguish subpopulations of pluripotent stem cells. Future work is required to expand this 

analysis to multiple hiPSC and hESC lines to identify common features of single-cell subpopulations 440 
in pluripotency.  

 

  

Methods 
Cell culture 445 
Undifferentiated human induced pluripotent stem cells (hiPSC; WTC-wild type C) were provided 

courtesy of Bruce Conklin (UCSF and Gladstone Institutes) as previously described (Mandegar et al., 

2016). Cells were maintained on Vitronectin XF (STEMCELL Technologies, cat. no. 07180) and 

cultured in mTeSR1 (STEMCELL Technologies, cat. no. 05850). Cytogenetic analysis by Giemsa 

banding showed a normal 46, XY male karyotype. For scRNA-seq, samples one and two were 450 
harvested from a single plate using Versene, split into two technical replicates resuspended in 

Dulbecco’s PBS (dPBS; Life Technologies, cat. no. 14190-144) with 0.04% bovine serum albumin 

(Sigma, cat. no. A9418-50G) and immediately transported for cell sorting. For samples 3-5 cells were 

harvested from individual plates using 0.25% Trypsin (Life Technologies, cat. no. 15090-046) in 

Versene, neutralized using 50% fetal bovine serum (HyClone, cat. no. SH30396.03) in DMEM/F12 455 
(Life Technologies, cat. no. 11320-033), centrifuged at 1200 rpm for 5 minutes and re-suspended in 

dPBS + 0.04% BSA. 

  

Cell sorting 

Viable cells were sorted on a BD Influx cell sorter (Becton-Dickinson) using Propidium Iodide into 460 
Dulbecco's PBS + 0.04% bovine serum albumin and retained on ice. Sorted cells were counted and 

assessed for viability with Trypan Blue using a Countess automated counter (Invitrogen), and then 

resuspended at a concentration of 800-1000 cells/µL (8 x 105-1 x 106 cells/mL). Final cell viability 

estimates ranged between 80-93%. 

  465 
Generation of single cell GEMs and sequencing libraries 

Single cell suspensions were loaded onto 10X Genomics Single Cell 3' Chips along with the reverse 

transcription (RT) mastermix as per the manufacturer's protocol for the Chromium Single Cell 3' 

Library (10X Genomics; PN-120233), to generate single cell gel beads in emulsion (GEMs). Reverse 

transcription was performed using a C1000 Touch Thermal Cycler with a Deep Well Reaction Module 470 
(Bio-Rad) as follows: 55oC for 2h; 85oC for 5min; hold 4oC. cDNA was recovered and purified with 

DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; Cat# 37002D) and SPRIselect beads 
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(Beckman Coulter; Cat# B23318). Purified cDNA was amplified as follows: 98oC for 3min; 12x(98oC 

for 15s, 67oC for 20s, 72oC for 60s); 72oC for 60s; hold 4oC. Amplified cDNA was purified using 

SPRIselect beads and sheared to approximately 200bp with a Covaris S2 instrument (Covaris) using 475 
the manufacturer’s recommended parameters. Sequencing libraries were generated with unique 

sample indices (SI) for each sample. Libraries for samples 1-3 and 4-5 were multiplexed respectively, 

and sequenced on an Illumina NextSeq 500 (NextSeq control software v2.0.2/ Real Time Analysis 

v2.4.11) using a 150 cycle NextSeq 500/550 High Output Reagent Kit v2 (Illumina, FC-404-2002) in 

stand-alone mode as follows: 98bp (Read 1), 14bp (I7 Index), 8bp (I5 Index), and 10bp (Read 2). 480 
  

Bioinformatics mapping of reads to original transcripts and cells 

Processing of the sequencing data into transcript count tables was performed using the Cell Ranger 

Single Cell Software Suite 1.2.0 by 10X Genomics (http://10xgenomics.com/). Raw base call files from 

the NextSeq 500 sequencer were demultiplexed, using the cellranger mkfastq pipeline, into sample-485 
specific FASTQ files. These FASTQ files were then processed with the cellranger count pipeline where 

each sample was processed independently. First, cellranger count used STAR (Dobin et al., 2013) to 

align cDNA reads to the hg19 human reference transcriptome, which accompanied the Cell Ranger 

Single Cell Software Suite 1.2.0. We note that, since the expression data is limited to the 3’ end of a 

gene and we used gene-level annotations, differences between reference versions, such as GRCh38, 490 
are unlikely to significantly alter conclusions. Aligned reads were filtered for valid cell barcodes and 

unique molecular identifiers (UMI) and observed cell barcodes were retained if they were 1-Hamming-

distance away from an entry in a whitelist of known barcodes. UMIs were retained if they were not 

homopolymers and had a quality score > 10 (90% base accuracy). cellranger count corrected 

mismatched barcodes if the base mismatch was due to sequencing error, determined by the quality 495 
of the mismatched base pair and the overall distribution of barcode counts. A UMI was corrected to 

another, more prolific UMI if it was 1-Hamming-distance away and it shared the same cell barcode 

and gene. cellranger count examined the distribution of UMI counts for each unique cell barcode in 

the sample and selected cell barcodes with UMI counts that fell within the 99th percentile of the range 

defined by the estimated cell count value. The default estimated cell count value of 3000 was used for 500 
this experiment. Counts that fell within an order of magnitude of the 99th percentile were also retained. 

The resulting analysis files for each sample were then aggregated using the cellranger aggr pipeline, 

which performed a between-sample normalization step and merged all 5 samples into one. Post-

aggregation, the count data was processed and analyzed using a comprehensive pipeline assembled 

and optimized in-house as described below. 505 
  

Preprocessing 
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To preprocess the mapped data, we constructed a cell quality matrix based on the following data 

types:  library size (total mapped reads), total number of genes detected, percent of reads mapped to 

mitochondrial genes, and percent of reads mapped to ribosomal genes. Cells that had any of the 4 510 
parameter measurements higher than 3x median absolute deviation (MAD) of all cells were 

considered outliers and removed from subsequent analysis (Supplemental Table S2). In addition, we 

applied two thresholds to remove cells with mitochondrial reads above 20% or ribosomal reads above 

50% (Supplemental Table S2). To exclude genes that were potentially detected from random noise, 

we removed genes that were detected in fewer than 1% of all cells. Before normalization, abundantly 515 
expressed ribosomal protein genes and mitochondrial genes were discarded to minimize the influence 

of those genes in driving clustering and differential expression analysis. 

  

Data normalization 

Two levels of normalization were performed to reduce possible systematic bias between samples and 520 
between cells. To reduce potential confounding effects caused by differences in sequencing depths 

between five samples, a subsampling process (Zheng et al., 2017) was used to scale the mean 

mapped reads (MMR) per cell of all samples down to the level of the sample with the lowest MMR. 

For each sample, a binomial sampling process randomly selected reads and UMIs for each gene in a 

cell at a sample-specific subsampling rate. The subsampling rate for each sample was determined 525 
using the ratios of expected total reads (given the expected mean reads per cell (minimum MMR of all 

samples), the known number of cells, and the fraction of mapped reads to total reads) to the original 

total mapped reads (equation 1). Following resampling, the MMRs for the five samples were scaled, 

while the expression data distribution for genes in all cells of the sample was for genes in all cells of 

the sample was maintained. 530 

                                Ratei =min(MMRj)*Ni*(ReadFractioni)/Total_mapped_readsi                      (1) 

 where: min(MMRj) is the minimum MMR of all samples to be merged; Nj is the number of cells in 

sample j; ReadFractioni is the ratio of confidently mapped reads in a cell to the total number of reads 

detected for that cell in sample i; Total_mapped_readsi is the total number reads that share the same 

cell barcode. For each gene in each cell, we performed a random binomial sampling process of reads 535 
with the probability equal the subsample rate calculated in equation (1). This process is more robust 

than standard scaling options because it takes into account unique read information associated with 

mapped genes and cells. 

  

To reduce cell-specific bias, possibly caused by technical variation such as cDNA synthesis, PCR 540 
amplification efficiency and sequencing depth for each cell, expression values for all genes in a cell 

were scaled based on an estimated cell-specific size factor. Before normalization, counts were log2-
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transformed (by log2(count+1)) to stabilize variance due to the large range of count values (spanning 

6 orders of magnitude, Supplemental Figure S1e). To estimate the scaling size factor for each cell, 

a deconvolution method (Lun et al., 2016) was applied for summation of gene expression in groups of 545 
cells. This summation approach reduced the number of stochastic zero expression of genes that are 

lowly expressed (higher dropout rates), or genes that are turned on/off in different subpopulations of 

cells. 

                                                      E(Vik) = li0 θ"t"
$%

"∈'(
      (2) 

Where Sk is a pool of cells, Vik is the sum of adjusted expression value (Zij = θ"*li0, where li0 is the 550 

expected transcript count and θ" is the cell-specific bias) across all cells in pool Vk for gene i,  	θ"t"$% is 

the cell-specific scale factor for cell j (where t"	is the constant adjustment factor for cell j).  

The estimated size factor of a gene in in pool Sk, named as E(Rik), is the ratio between the estimated 

Vik and the average Zij across all cells in the population. E(Rik)» θ"t"
$%

'(
C-1 where C = N-1

θ"t"
$%

'*
, 

where N is the number of cells, S0 represents all cells and is a constant for the whole population and 555 
thus can be set to unity or ignored. The cell pools were sampled using a sliding window on a list of 

cells ranked by library size for each cell. Four sliding windows with 20, 40, 60, and 80 cells were 

independently applied and results were combined to generate a linear system that can be decomposed 

by QR decomposition to estimate θ"t"$% size factor for each of the cell.  The normalized counts are the 

results of taking the raw counts divided by cell-specific normalized size factors. 560 
 
Developing a publically accessible data resource 

To make this valuable single-cell human pluripotent single-cell dataset publicly accessible we created 

an interactive R shiny server at http://computationalgenomics.com.au/shiny/hipsc/. The server 

contains user-friendly data exploration and representation tools. Users can interactively explore the 565 
expression of any selected gene from the 16,064 genes in each cell of the 18,787 cells. The data 

specific for each subpopulation is also calculated. For each gene, a summary table, tSNE plot and a 

density plot can be generated and the results are downloadable.  

 

Analyzing transcriptional heterogeneity in a population of single cells  570 
To assess transcriptional heterogeneity among cells and genes, we first removed potential variation 

due to technical sources by the subsampling process and the cell-specific normalization as described 

above. Depending on experimental design, an additional step using a generalized linear model (GLM) 

to regress out other potential confounding factors can be included. After reducing technical variation 

via normalization, we calculated the coefficient of variation and expression dispersion of each gene 575 
across all cells. For cell-to-cell variation, we first performed principal component analysis (PCA) on 

general cell data, which included percent counts of the top 100 genes, total number of genes, percent 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/119255doi: bioRxiv preprint 

https://doi.org/10.1101/119255
http://creativecommons.org/licenses/by/4.0/


18 

of mitochondrial and ribosomal genes. To investigate variation between genes, the distribution of 

dispersion across a range of expression values was calculated (equation 3). This approach is useful 

because technical variation often appears greater in lowly expressed genes than in more abundant 580 
genes (Shalek et al., 2013). Denoting xi as the vector of expression values (in counts-per-million) for 

gene i across all cells, we use the following formula to compute coefficient of variation (cv): 

                                                            cv = +,-(/0)/34,5(/0)                  (3) 

We estimated the BCV (biological coefficient of variation) with an empirical Bayesian approach to 

estimate dispersion between genes and between samples (McCarthy et al., 2012). Common 585 
dispersion (shared dispersion value of all genes), trended dispersion (mean dispersion trend for lowly 

expressed genes to abundant genes), and gene-specific dispersion was estimated to reflect variation 

of all genes across the whole population (Supplemental Figure S9). 

  

Dimensionality reduction 590 
After merging five samples, preprocessing, and normalizing the dataset was scaled to z-distribution 

and PCA was performed for dimensionality reduction using the prcomp function in R (McCarthy et al., 

2016). To assess PCA results, we examined the top genes that were most correlated to PC1 and PC2, 

and the distribution of cells and percent variance explained by the top five PCs. Importantly, the optimal 

number of PCs explaining the most variance in the dataset was determined using a Scree test 595 
calculated by the fa.parallel function in the psych package. The fa.parallel was run based on 

expression data for the top variable genes. 

  

Cells are represented using t-SNE and diffusion map (van der Maaten and Hinton, 2008). We used 

the Rtsne package v0.1.3 with the normalized expression data (16,064 genes by 18,787 cells) to 600 
calculate a three-dimensional t-SNE projection dataset (16,064 genes by three t-SNE dimensions), 

which was then combined with other data types to display cells on two- and three-dimensional t-SNE 

plots. 

  

Clustering 605 
We developed an unsupervised clustering method that does not require the number of clusters to be 

specified prior to the analysis so that small and big clusters can be determined automatically. We first 

computed a cell-PCA eigenvector matrix based on the full expression dataset (all 18,787 cells and 

over 15,953 genes) to reduce the full dataset to a 18,787 cells x 10 first orthogonal principal 

components (PCs). The first 10 PCs that explained for most of the variance of the full expression 610 
matrix were used for computing cell-to-cell Euclidean distance. We applied an agglomerative 

hierarchical clustering (HAC) procedure using Ward’s minimum variance (minimal increase of sum of 
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squared) method aiming at finding compact clusters to minimize total within-cluster variance. By using 

Ward’s linkage method, cells and branches are joined iteratively from the bottom (each cell is one 

branch) to the top (all cells form one cluster), resulting in a complete dendrogram tree. To consider 615 
the broadest possible solution space for finding clusters from the tree without a constraining threshold, 

we allowed a cut height of 99% of the range between the 5th percentile and the maximum of the joining 

height on the dendrogram, allowing the entire set of branches in the original tree to be considered in 

the cluster search space. 

 620 
To determine the number of subpopulations, branches of the dendrogram were pruned by a Dynamic 

Tree Cut method, which uses an approach that does not attempt to merge all branches with distance 

lower than a constant (supervised) height cutoff (Langfelder et al., 2008). The dynamic merging 

process is a hybrid method that uses the dendrogram tree shape to define the bottom level clusters 

(based on number of cells, distance between cells, core of the branches and gaps between branches) 625 
and uses the dissimilarity measure to merge cells/branches (with lowest dissimilarity) into the initially 

defined clusters. The dynamic, iterative decomposition and combination of clusters enables the 

sensitive detection of outliers and nested clusters. To ascertain the clustering results are stable. We 

performed cluster stability analysis and resolution analysis. We narrowed the clustering search space 

by running 10 clustering iterations at the bottom 25% height of the entire tree. In each iteration, we 630 
decreased the pruning window by 2.5%. The bottom 25% of the tree was used in the stability analysis 

to keep clusters at the highest resolution, allowing detection of small clusters. Among all 10 

independent clustering iterations, we consistently found 4 clusters (Supplemental Figure S4). 

To allow for the detection of the smallest subpopulation, we considered any cluster with more than 20 

cells to be significant in size, thereby enabling the detection of a cluster as small as 0.1% of the total 635 
cells. With these two parameters, the whole tree and the smallest clusters are considered without 

predetermined parameters.  

Cluster information was then overlaid on cells in 2-3-dimensional t-SNE plots. Notably, the clusters 

were the results from HAC analysis and were not dependent on the t-SNE plots, which were used 

purely for representation purposes. 640 
 

Cell cycle analysis  

To assess whether the clustering assignments were affected by the differences in cell cycle phases, 

we applied a machine learning prediction model to predict cell cycle phase (Scialdone et al., 2015; 

Lun et al., 2016). The model uses scRNA gene expression data and a reference training set (prior-645 
knowledge) on relative expression of “marker pairs”, in which the sign of each pair changes between 

cell cycle phases (Scialdone et al., 2015). Scores for each of the three phases G1, G2M and S were 
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estimated based on the proportion of training pairs having the sign changed in each phase relative to 

the other phases.  The human training set was from Leng et al. (2015).   

  650 
Differential expression analysis 

To select genes that distinguish subpopulations, we performed pairwise differential expression 

analysis between cells in pairs or groups of clusters by fitting a general linear model and using a 

negative binomial test as described in the DESeq package (Anders and Huber, 2010). Each cell was 

considered as one biological replicate in each cluster. We found that the shrinkage estimation of 655 
dispersion approach used in DESeq produced stable estimation of scale factors for genes and cells 

between clusters and was more conservative in detecting differentially expressed genes, especially 

when comparing subpopulations with a larger number of cells, such as subpopulation one and two, to 

subpopulations with small cell numbers, such as three and four. Specifically, DESeq detected fewer 

DE genes that expressed highly in a small proportion of cells in a subpopulation while remaining cells 660 
in that subpopulation had zero or very low expression. Significantly differentiated genes were those 

with Bonferroni threshold P-values less than 5% (p < 3.1 x 10-7). 

  

Subpopulation Classification Analysis 

To develop predictive models based on single cell transcriptomics data, we applied the Least Absolute 665 
Shrinkage and Selection Operator (LASSO) procedure. LASSO selects gene predictors for classifying 

cells into one of the four subpopulations. Briefly, penalized logistic regression was applied to fit a 

predictor matrix (training set) containing expression values of the top differentially expressed genes in 

50% of the total cells, or for the smallest subpopulation four, a subsample of a randomly selected 10% 

of the total cells, and a response variable vector assigning cells into one of the subpopulations 670 
(dichotomous variable, with two classes: belonging to the subpopulation or belonging to the remaining 

cells). The LASSO procedure optimizes the combination set of coefficients for all predictors in a way 

that the residual sum of squares is smallest for a given lambda value (Friedman et al., 2010).  

 

We applied the glmnet R package to estimate parameters by a penalized maximum likelihood 675 
procedure as shown in the equation (4) so that insignificant genes j (not explaining variance) were 

removed (coefficients shrunken to 0): 

Minimize (%
6

7(80, :; + :=/0=
>
=?%

@
0?% ) +	A |	:=|

>
=?% )                            (4)                                               

 where xi = (xi1, xi2, …, xip) is a vector of expression values of p genes in cell Ci; yi is the cell 

subpopulation class of the cell Ci; 7(80, :; + :=/0=
>
=?%  is the negative log-likelihood for Ci; and λ is a 680 

tuning parameter that controls the shrinkage penalty of the coefficients.  
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For each training dataset, an optimal  λ  and a set of gene predictors can be determined by a 10-fold 

cross-validation procedure to select the λ that produced the minimum classification errors. The LASSO 

procedure optimizes the combination set of coefficients for all predictors in a way that the residual sum 

of squares is smallest for a given lambda value [38]. In other words, the LASSO procedure identified 685 
an optimal combination of genes (predictors) and fitted a logistic regression model. The logistic 

regression model is a generalized linear model in which the response variable belong to the binomial 

family, in which expression values of the selected genes were predictors and the binary labels 

(classes) of cells were response variables. The fitted model could either explain the highest deviance, 

compared to the full model, or classify cells to subpopulations with the lowest 10-fold classification 690 
error. The glmnet R package was applied to select top genes from the differentially expressed genes 

that contributed to classifying cells into each subpopulation (Tibshirani et al., 2012). To calculate the 

model prediction accuracy, we trained the LASSO model using one subsampled dataset and then 

evaluated the trained model in predicting a new, non-overlapping subsampled dataset. By comparing 

the prediction results with the known subpopulation label of each cell, the model prediction accuracy 695 
was calculated. We applied a Bootstrap procedure to calculate classification accuracy for 100 

iterations. 

  

Pseudotime analysis 
We applied the optimal LASSO classification model trained in the procedure above to estimate 700 
transition scores between subpopulation. For two subpopulations, the transition score is the 

percentage of cells in the target subpopulation that are classified as belonging to the original 

subpopulation and not belonging to the other class. For each subpopulation, the logistic regression 

model (with LASSO selected genes and corresponding coefficients) was fitted into a new expression 

dataset for all cells in another subpopulation. The model estimates the conditional class probability of 705 
a cell Ci belonging to a class k (0 or 1 ≡ belong or not belong to) given the gene expression profile xi 

of the p LASSO-selected genes xi:  
 
The conditional class probabilities of cell Ci belonging to class k is then the linear combination of 

selected genes, and can be estimated as: 710 

ln(Pr(y=1|X=x)) = :0  + :1x1 + :2x2 +…+ :GxP  = :0 + x:′             (5) 

 

where :I is a coefficient for gene j  (:I=0 if the gene j is not a predictor of the class).  The coefficient 

vector := (:0,:1….:G) can be calculated by maximum likelihood estimation and the deviance that 

best explains the variance compared to the full model, as in equation (4). The predicted probability of 715 
a cell Ci being in a subpopulation 1 or 0 is estimated by replacing :and gene expression values in the 

regression equation (5). 
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Results from our novel trajectory analysis method was compared to the two state-of-the-art 

pseudotime analysis approaches, namely Diffusion pseudotime (Haghverdi et al., 2016) and Monocle2 720 
(Qiu et al, 2017). The Diffusion method, implemented in Destiny (version 2.0.8), applies a diffusion-

like random walk algorithm to estimate the cell’s probabilities, based on a weighted nearest neighbor 

graph, of transitioning into another cell at a different fate/state, thereby inferring a differentiation 

trajectory. The diffusion approach is not dependent on dimension reduction.  The Monocle2 package 

(version 2.2.0) applies an unsupervised manifold learning technique, namely reverse graph 725 
embedding (DDRTree - Discriminative Dimensionality Reduction for learning principal graphs), to learn 

an optimal path (a curved manifold in a low dimensional space) that approximates the structure of 

high-dimensional data and reversely map cells on this path back to the original multidimensional space 

so that nearby cells on the manifold are also nearby cells on the original space  (Qiu et al, 2017).  Both 

Monocle2 and Diffusion methods estimate pseudotime, which is a measure of how far a cell 730 
progresses in the differentiation process compared to a root cell. Pseudotime is therefore the distance 

between two cells in a modelled trajectory and is estimated independently from the experimental time. 

 

Pathway and gene functional analysis 

To functionally characterize the four subpopulations, we performed a network analysis using 735 
significant DE genes between cells within a subpopulation and the remaining cells, or between cells 

in pairs of subpopulations. We used Cytoscape to apply three main programs: GeneMANIA (Warde-

Farley et al., 2010), with a comprehensive background database containing 269 networks and 14.3 

million interactions, the Reactome functional interaction network analysis, a reliably curated protein 

functional network (Wu et al., 2010), and the STRING protein-protein interaction database (Szklarczyk 740 
et al., 2015).  
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Data access 

The raw and processed data is available at ArrayExpress under E-MTAB-6687. All code for figures 745 
and analysis are on GitHub (https://github.com/IMB-Computational-Genomics-

Lab/hiPSC_paper_2018) and available as Supplemental_Code.zip. 
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 945 

Figures 
 
Figure 1. Identification of four cell subpopulations from 18,787 hiPSC cells, sequenced from 
five biological replicates. (a) Three-dimensional t-SNE distribution of cells based on gene 
expression value. Each point represent a single cell in three-dimensional space. A t-SNE 950 
transformation of the data was used for positioning cells, while four cell subpopulation labels (marked 
by different colors) represent results from clustering, and are independent of t-SNE data transformation 
(see http://computationalgenomics.com.au/shiny/hipsc/ for interactive, searchable figure). Pathway 
analysis based on differential expression identified functional properties that distinguish each 
subpopulation. (b) Four pluripotent subpopulations functionally separated from a homogeneous hiPSC 955 
population. (c) The top significantly differentially expressed genes of cells in a subpopulation 
compared to cells in the remaining three subpopulations. Genes denoted with orange points are known 
naive and primed markers. Genes represented with blue and purple points are those in the top 0.5% 
highest logFC or -log(P-value) respectively. (d) Unsupervised clustering of all cells into four 
subpopulations. The dendrogram tree displays distance and agglomerative clustering of the cells. 960 
Each branch represents one subpopulation. The clustering is based on a dynamic tree cut that 
performs a bottom-up merging of similar branches. The number of cells in each of the four 
subpopulations are given below branches. 
 
 965 
Figure 2. Expression levels of known pluripotency and lineage primed markers. (a) Violin and 
jitter plots for expression of top pluripotency markers and expression of the selected genes 
represented by t-SNE plots. Each point represents a single cell. Color gradient in the t-SNE plot 
represents relative expression level of the gene in a cell across the whole population and 
subpopulations (light grey = low; dark purple = high). (b) Heatmap of the mean expression of known 970 
markers within each subpopulation. The upper panel shows the classifications of genes into 
pluripotency and lineage-primed markers. 
 
  
Figure 3. Selection of significant gene predictors for classifying each subpopulation using 975 
LASSO regression. (a) For each subpopulation, a LASSO model was run using a set of differentially 
expressed (DE) genes and another set of known markers. Dashed lines are ROC (Receiver Operating 
Characteristic) curves for models using known markers. Continuous lines are for models using 
differentially expressed genes. The text shows corresponding AUC (Area Under the Curve) values for 
ROC curves. For each case (known markers or DE genes), a model with the lowest AUC and another 980 
model with the highest AUC are given. Lower AUC values (and ROC curves) in the prediction models 
using known markers suggested that the models using DE genes performed better in sensitivity and 
specificity. (b) Each deviance plot (bottom panel) shows the deviance explained (x-axis) by a set of 
gene predictors (numbers of genes is shown as vertical lines and varies from 1 to maximum value as 
the total number of gene input or to the minimum number of genes that can explain most of the 985 
deviance). The remaining space between the last gene and 1.0 border represents deviance not 
explained by the genes in the model. (c) Classification accuracy calculated using a bootstrap method 
using all known markers (both pluripotent markers and primed lineage markers) or markers from our 
differentially expressed gene list is shown. Expression of LASSO selected genes for subpopulation 
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one and subpopulation two is shown in Supplemental Figure S7. The X-axis labels are for three cases: 990 
using LASSO selected differentially expressed genes (DE);  LASSO selected pluripotency/lineage-
primed markers (PL); and all pluripotency/lineage-primed markers (All PL). 
 
 
Figure 4. Trajectory and cell cycle membership analysis 995 
Cell differentiation potential was mapped using two pseudotime approaches implemented in Monocle2 
2 and Destiny and a novel transition estimation method. Panel (a) shows the results of the Monocle2 
analysis, colored by subpopulation, and the normalized density of the cells in each location along the 
trajectory is shown as a density curve in the x and y plot margins. Panel (b) shows the differentiation 
distance from the root cell to the terminal state where the dark blue represents the beginning (the root) 1000 
and light blue represents the end (the most distant cells from the root) of the pseudotime differentiation 
pathway. (c) and (d) show the results of diffusion pseudotime analysis, colored by cluster (c) and by 
diffusion pseudotime (d). DC refers to diffusion component and DPT refers to diffusion pseudotime. 
The red and blue pathways in c and d represent the transition path from cell to cell calculated by a 
random-walk algorithm. (e) We developed a novel approach that uses the LASSO classifier to quantify 1005 
directional transitions between subpopulations. Panel (e) shows the percent of transitioning cells 
predicted between subpopulations. The weight of the arrows is relative to percentage (thicker is higher 
percentage), and the light grey dotted arrows represent percentages lower than 20. Cell cycle stages 
were predicted for each cell by subpopulation (f). Subpopulation 1 (‘Core’) contains a significantly 
lower number of cells in the S phase (synthesis) compared to Subpopulation 2 ('Proliferative'; Fisher's 1010 
exact Test, P < 2.2x10-16).  
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 1015 
Table 1. Percentage of cells in other subpopulations predicted by LASSO 
 
 Subpop 1 Subpop 2 Subpop 3 Subpop 4 

Subpop 1 -  45.1 69.4 47.3 

Subpop 2 39.4 -  4.9 2.5 

Subpop 3 28.4 19.9 -  99.1 

Subpop 4 24.6 20.6 61.0 -  

 
 
 1020 
 
Table 2. Prediction of cell cycle phases for each of the 18,787 cells in four subpopulations. 
 

Subpopulation 
ID 

Phase Cell Number Cluster 
Percent 

Cluster Total Phase 
Percent 

Phase Total 

1 G1 8084 89 (***) 9083 50.3 16075 

2 G1 7324 81.6 8977 45.6 16075 

3 G1 482 91.6 526 3 16075 

4 G1 185 92 201 1.2 16075 

1 G2M 239 2.6 9083 37.3 640 

2 G2M 374 4.2 8977 58.4 640 

3 G2M 21 4 526 3.3 640 

4 G2M 6 3 201 0.9 640 

1 S 760 8.4 9083 36.7 2072 

2 S 1279 14.2 (***) 8977 61.7 2072 

3 S 23 4.4 526 1.1 2072 

4 S 10 5 201 0.5 2072 

*** Cluster 1 vs 2: P < 2.2 x 10-16, Fisher’s Exact Test 
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