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Abstract. If protein sequences are recoded with a binary alphabet derived from a division of the 20 
amino acids into two subsets, a protein can be identified from its subsequences by searching through 
a recoded sequence database. A binary-coded primary sequence can be obtained for an unbroken 
protein molecule from current blockades in  a nanopore. Only two (instead of 20) blockade levels 
need to be recognized to identify a residue's subset; a hard or soft detector can do this with two 
current thresholds. Computations were done on the complete proteome of Helicobacter pylori (http://
www.uniprot.org;  database id UP000000210, 1553 sequences)  using a binary alphabet  based on 
published data for  residue volumes  in the range ~0.06 nm3 to ~0.225 nm3.  Assuming  normally 
distributed volumes, more than 93% of binary subsequences of length 20 from the primary sequences 
of H. pylori are correct with a confidence level of 90-95%; they can uniquely identify over 98% of 
the proteins. Recently published work shows that a 0.7 nm diameter nanopore can measure residue 
volume with a resolution of ~0.07 nm3; this makes the procedure described here both feasible and 
practical. This is a non-destructive single-molecule method without the vagaries of proteolysis.

1.  Overview
It is shown that proteins in a proteome can be uniquely identified from subsequences of primary sequences based on 
a binary code. The code is derived from a division of the standard set of 20 amino acids into two subsets based on 
their volumes [1]. Using a sample proteome (Helicobacter pylori) calculations show that the codes of subsequences 
20 residues long are correct at a 90-95% confidence level, and that over 98% of the proteins in the proteome can be 
identified by exhaustively searching for the recoded subsequences in the recoded proteome database. The scheme 
described here can be translated into practice with a nanopore.

The  proposed  method  is  first  analyzed  computationally  before  looking  at  implementation  issues.  The 
computational study is in three steps: 1) Divide the set of amino acids into two ordered subsets S1 and S2; 2) Recode 
the primary sequences in a proteome with a binary code based on this two-way partition; 3) For every protein in the 
proteome find one or more subsequences in its binary coded primary sequence that uniquely identify the protein to 
the exclusion of every other protein.

2. An amino acid partition
Table 1 shows the standard set of 20 amino acids AA = {G,A,S,C,D,T,N,P,V,E,Q,H,M,I,L,K,R,F,Y,W} grouped into 
two subsets S1 and S2 by volume, where

S1 = {G,A,S,C,D,T,N,P: 59.9 ≤ volume ≤ 123.3} (1a)
S2 = {V,E,Q,H,M,I,L,K,R,F,Y,W: volume ≥ 138.8} (1b)

Table 1. The 20 amino acids in increasing order of volume. AA = Amino acid; Mean (μ) = Mean volume in nm3; SD 
(σ) = Standard deviation of volume in nm3. Shading shows division into ordered subsets S1 and S2; dividing line is 

between P and V. Data adapted from [1].
AA Mean SD AA Mean SD AA Mean SD AA Mean SD

G 59.9 2.2 T 118.3 2.3 Q 145.1 5.1 K 172.7 5.9

A 87.8 2.3 N 120.1 4.1 H 156.3 6.1 R 188.2 9.6

S 91.7 1.8 P 123.3 1.8 M 165.2 1.8 F 189.7 7.4

C 105.4 5 V 138.8 3.6 I 166.1 3.4 Y 191.2 8

D 115.4 2.2 E 140.9 5.3 L 168 4.3 W 227.9 3.8

The dividing line is chosen between P and V so that the two sets have roughly the same size and the difference 
between the volumes of P and V is relatively large. (There are higher volume differences between Y and W and 
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between G and A, but the resulting subset sizes are lopsided.) An amino acid X ϵ AA has a binary code C(X) given 
by

C(X) = i, X ϵ Si; i = 1, 2 (2)

The binary code for a protein sequence  X = X1 X2 ... Xn, where Xi is one of the 20 amino acids, is then C(X1) 
C(X2) ... C(Xn).

3.  Binary subsequences of primary sequences as protein identifiers
Assume that amino acid volumes are normally distributed. Figure 1 shows the distributions for the 20 amino acids 
based on μ and σ values in Table 1.

Figure 1.  Normal distributions of amino acid volume with mean and standard deviation from Table 1.

Let F(x; μ, σ) be the cumulative normal distribution function with mean μ and standard deviation σ:

F(x; μ, σ) = (1/√2πσ)  ∫
0

x

. exp(-(x- μ)2 /2σ2) (3)

The complement of F(x; μ, σ) is

G(x; μ, σ) = 1 – F(x; μ, σ) (4)

Let the mean volume and standard deviation for amino acid aa be μaa and σaa (see Table 1). If the volume of an amino 
acid is considered correct when it lies between two threshold levels T1 and T2, then eaa(T1,T2), the error for amino 
acid aa, is given by

aa ϵ S1: eaa (T1,T2) = F(T1;  μaa, σaa) + G(T2;  μaa, σaa) (5a)
aa ϵ S2: eaa  (T1,T2) = F(T2;  μaa, σaa) (5b)

Assuming  for  the  present  that  successive  residues  in  a  sequence  are  independent  the  confidence  level 
(probability that the binary code for a protein sequence X = X1 X2 ... Xn is correct) is given by

cX (T1,T2) = Πi=1 ..  n (1 - eXi (T1,T2)) (6)

The confidence level for a subsequence code can be computed from Equation 6 for subsequences of the primary 
sequences in a proteome coded as in Equation 2. The proteome of the gut bacterium Helicobacter pylori (Uniprot id 
UP000000210,  1553  sequences,  http://www.uniprot.org)  is  used as  an example.  Referring to Figure 1 the widest 
separation near the middle (leading to roughly equal-sized subsets) occurs between the curves for P and V (this is also 
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the line of division in Table 1). This value of 0.131 nm3 is used for T2. A second threshold T1 is set at 0.05 nm3, which is 
below the mean for the lowest volume amino acid G. (In implementation with a nanopore, this is required, see later.)  
Figure 2 shows the confidence level of binary codes for all subsequences in H. pylori that are of length 15, 20, or 25 
(data point symbol ♦) for T1 = 0.05 and T2 = 0.131. As expected the level drops off as subsequence length increases 
because of the continued multiplication in Equation 6. (This also means that the full protein sequence cannot be used 
as an identifier, the confidence level falls to 0 rapidly.)

Figure 2. Percentage of protein subsequences in H. pylori whose volume-based binary codes have a confidence 
level of 90-95% vs subsequence length (♦). Percentage of proteins identified uniquely from their subsequences vs 

subsequence length (■). (Lines connecting data points added for visual aid.)

Using routine search methods subsequences of given lengths from every protein in the recoded proteome may 
be exhaustively compared with subsequences in every other protein to determine if they uniquely identify their 
container proteins. To reduce computation time search subsequences from a protein sequence of length S are spaced 
Δ = 5 residues apart instead of at every position along the primary sequence. Thus subsequences of length L starting 
at positions 0, 5, 10, ..., S-4 are used. The percentages of proteins so identified are given for L = 15, 20, and 25 in 
Figure 2  (data point symbol  ■). As expected, with larger L more proteins are identified. The number of proteins 
identified goes from ~25% with L = 15 to ~98% with L = 20 and ~99% with L = 25. The increase from L = 20 to L = 
25 is less than 1%; thus subsequences longer than 20 have diminishing returns. (Using Δ = 5 is justified because the 
number of identifiers is close to 100%; the gains from reducing Δ are minimal going from L = 20 to L = 25. With L = 
15, setting Δ to 1 leads to the number of identified proteins going from 135 (8.69%) to 384 (24.66%), which is still a 
very low identification rate.)

From Figure  2 it  can be concluded  that  L = 20 is  a  near-optimal  length for  identifier  subsequences  as  it  
simultaneously optimizes the number of proteins identified and the confidence level of their subsequence codes.

The above computational procedure can be translated into practice by using a nanopore to measure residue 
volume.

4.  Using a nanopore to identify proteins from binary subsequences
Nanopore sequencing of proteins [2] uses an electrolytic cell in which two chambers  cis and  trans containing an 
electrolyte like KCl or NaCl are separated by a membrane with a nano-sized pore. A potential difference across the 
membrane results in an ionic current through the pore. When a protein molecule is introduced into cis it translocates 
through the pore and causes a blockade of the ionic current. By measuring the level of the blockade, a residue can be 
identified. With proteins no enzymatic digests are required; the analyte is a denatured (unfolded) form of unbroken 
protein. Normally this would require a blockade current resolution that can discriminate among 20 residue types (the 
standard set of amino acids is assumed). Such resolution is virtually unattainable in practice, especially with noise 
present.

The method proposed here directly addresses this problem and resolves it by reducing protein identification to 
measuring two (rather than 20) levels in the blockade current signal generated by an intact translocating protein. 
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Following this subsequences in the resulting binary sequence are found such that they can uniquely identify the 
protein in a binary-coded proteome database. As the blockade level is directly related to the volume of one or more 
residues translocating through the pore, residue volume is used here as a proxy for the blockade current.

It was recently shown experimentally that  a sub-nanometer-diameter (0.7 nm) nanopore can measure residue 
volume with a resolution of 0.07 nm3 [3]. The threshold values T1 and T2 chosen earlier can be understood in light of 
this. If T2 is considered in isolation, residues with mean volume > T2 will be identified as belonging to the residue 
subset S2, and those < T1 as belonging to S1. However blockades due to residues in the lower volume group have to 
be detected/differentiated from the quiescent ionic current (the current when there is no protein in the pore either 
fully or partially). This is why a second and lower threshold T2 corresponding to a volume of ~0.05 nm3 was set in 
the computational analysis in Section 3.

5.  Discussion
Some potential implementation-related issues are now considered.
1) The method described here works on single unbroken protein molecules without any proteolysis. It is thus free 
from the vagaries of the latter. There is no degradation of the sample, which can be reused.
2)  In  practice,  matching a measured subsequence with a  subsequence in the (recoded) proteome will  require a 
forward match as well as a reverse match because the protein may enter the pore C- terminal or N-terminal first.
3) Equation 6 assumes that successive residues in a protein are independent. This is not true in practice as there are 
inherent correlations. The latter can be extracted from the pore current signal and used in error correction, this leads 
to increased reliability. Software used in nanopore-based DNA sequencing routinely uses this kind of information to 
improve sequencing accuracy; see [4]  for example.
4) Almost every protein in the H. pylori proteome has a large number of identifying subsequences so this reduces the 
false detection rate (FDR) considerably.
5) Depending on the primary sequence a protein may carry only a weak charge, if at all, so that entry into and 
translocation through the pore may be a problem. One solution [5] is to attach a strongly charged carrier molecule 
like DNA (which has a uniform charge along its backbone) to the protein molecule.
6) Charged residues on the pore wall tend to interfere with the passage of an analyte, especially when the latter has 
charged residues. (Seven amino acids, namely D, E, K, R, H, C, and Y, carry a negative or positive charge whose 
value depends on the pH of the electrolyte.) One possible solution is to neutralize the wall charge in some way. With 
DNA as the analyte a lipid coat has been shown to have this effect [6].
7) A persistent problem in nanopore-based sequencing is homopolymer recognition, which in the present case means 
successive  residues  from the  same  subset  generating  the  same  (binary)  output  value.  With  a  thick  (8-10  nm) 
biological  or  synthetic  pore,  multiple  (typically  4  to  8)  residues  are  resident  in  the  pore  at  any  time  during 
translocation  so  that  the  boundary  between  two  successive  such  values  may be  difficult  to  identify,  although 
correlations in the measured signal can often provide useful information. Thus in [7] the blockade current was found 
to correlate well with four contiguous residues. On the other hand the severity of the problem can be reduced by 
using a single atom layer of graphene [8] or molybdenum sulphide (MoS2) [9] for the membrane, or a biological 
pore with a narrow constriction as in MspA [10] or in CsgG [11], or an adapter such as β-cyclodextrin in αHL [12]. 
In this case roughly one residue will be resident in the pore or its constriction (or in the adapter) any time during 
translocation. Software based on hidden Markov models  [4]  or  the Viterbi  algorithm [13]  can also be used to 
computationally separate successive residues with near identical blockade levels.
8)  The  high  speed  with  which  an  analyte  translocates  through  the  pore  makes  it  difficult  for  a  detector  with 
insufficient bandwidth to detect changes in the blockade current level [14]. One possible solution to this is the use of 
a room-temperature ionic liquid (RTIL) for the electrolyte. RTIL is a high viscosity liquid that can slow down an 
analyte by a factor of about 200 [9]. Another solution is to use an opposing hydraulic pressure field [15].
9) The method described in this report is aimed at identification of any protein belonging to an arbitrarily large set 
such as a proteome, rather than particular ones [16-18].
10) The approach described here targets known proteins. Thus de novo identification is outside its scope, at least in 
its present form.
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