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Abstract

Gene duplications are a major source of raw material for evolution and a likely contributor to the diversity of
life on earth. Duplicate genes (i.e., homeologs, in the case of a whole genome duplication) may retain their
ancestral function, sub- or neofunctionalize, or be lost entirely. A primary way that duplicate genes may evolve
new functions is by altering their expression patterns. Comparing the expression patterns of duplicate genes
may give clues as to whether any of these evolutionary processes have occurred. Here we develop a likelihood
ratio test for the analysis of the expression ratios of duplicate genes across two conditions. We demonstrate an
application of this test by comparing homeolog expression patterns of 1,448 homeologous gene pairs using
RNA-seq data generated from the leaves and petals of a tetraploid monkeyflower (Mimulus luteus). Using
simulated data, we show the sensitivity of this test to different levels of homeolog expression bias. While we
have developed this method for the analysis of duplicate genes, it can be used for comparing expression
patterns of any two genes (or alleles) across any two conditions.

Background

Gene duplications are a major source of raw mate-
rial for evolution and a likely contributor to the di-
versity of life on earth [1–9]. Gene duplications are a
special type of mutation resulting in the multiplica-
tion of intact functional components. These duplicate
genes may either retain the ancestral function or indi-
vidual portions of the gene’s ancestral function may be
partitioned (i.e., subfunctionalize) or evolve new func-
tions entirely (i.e., neofunctionalize) [10–12]. Duplicate
genes may evolve new functions either by changes in
the primary coding sequence or altering where and
when they are expressed. Previous work has indicated
that changes to gene expression and their regulatory
networks may be more important, rapid, or flexible
than divergence of protein identities in the evolution
of sub- and neofunctionlization [13–19].

There are multiple scenarios in which genes can be
duplicated, ranging from small regional gene duplica-
tions to massive whole genome duplications (WGDs).
The term polyploid refers to cells or organisms that
have undergone a WGD event and contain more than
two paired sets of chromosomes. Each complete set of
chromosomes is referred to as a subgenome. Homol-
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ogous genes located on separate subgenomes are re-
ferred to as homeologs.

WGDs are especially common in plants; indeed, all
extant angiosperms (i.e., flowering plants) have at least
two rounds of WGD in common [20] and up to 15% of
speciation events in angiosperms may have been the
product of WGDs [21]. Importantly, all major crops
(rice, corn, potato, wheat, etc.) are polyploid [22].
WGD events and the resulting polyploidy are not re-
stricted to plants, but have occurred in both verte-
brate and invertebrate lineages as well. For example,
the African clawed frog, Xenopus, commonly used as
an experimental model system and extensively stud-
ied in developmental biology, includes species ranging
from diploid to dodecaploid [23]. Other examples of
polyploids with ancient WGD events include the the
zebrafish Danio rerio [24], several salmonids [2], and
some species of fungi [25]. Interestingly, there exists at
least one polyploid mammal [26], a tetraploid rat from
Argentina that mediates gene dosage by regulation of
ribosomal RNA.

The biological consequences of gene duplications and
subfunctionalization are significant and include exam-
ples such as the evolution of eyes [27], the evolution
of hemoglobins [28], development of heat resistance in
plants [29], and insecticide resistance [30]. Given the
importance of duplicate genes in evolution, it is nat-
ural to ask how we might quantify differences in the
activity or function of homeologous genes. One way
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Figure 1: Comparison of the analysis of differential ex-
pression, homeolog expression bias (HEB), and home-
olog expression bias shift (∆HEB). A and B represent
homeologous genes; the subscripts 1 and 2 denote experimen-
tal conditions. Differential expression analysis (vertical solid
lines) uses high throughput RNA sequencing (RNA-seq) of
one gene in different experimental conditions. HEB analysis
(horizontal solid lines) involves two homeologous genes in one
condition. ∆HEB analysis (diagonal broken lines) simultane-
ously compares expression level ratios for two genes and two
conditions.

to begin exploring this question is by analyzing gene
expression levels.

Genome-wide gene expression levels are commonly
quantified using high throughput RNA sequencing
(RNA-seq) [31]. In RNA-seq experiments, researchers
extract and purify mRNA. This mRNA is reverse tran-
scribed into cDNA, fragmented into smaller pieces, and
sequenced using next-generation technology. The re-
sulting millions of sequence reads are then mapped to
either a reference genome or reference transcriptome,
and the number of sequences mapping to a particular
gene is used as an indication of the expression level of
that gene.

In differential expression analysis, high-throughput
RNA-seq data is used to determine if gene expression
levels vary under different experimental conditions, or
in distinct tissues, etc. Several different approaches to
this statistical analysis exist [32], some of which use
methods based on maximum likelihood estimation and
likelihood ratio tests. A specific implementation of this
approach is provided by DE-seq (an R/Bioconductor
software package) [33,34].

Homeologous gene pairs frequently have distinguish-
ing sequence differences. Therefore, sequencing reads
derived from individual homeologs can be distin-
guished and expression levels can be determined for
each homeolog. The term homeolog expression bias
(HEB) refers to cases where homeologs are expressed
at unequal levels in a single experimental condition
[35]. The primary objective of this paper, statistical

analysis of changes in homeolog expression bias (de-
noted ∆HEB) is fundamentally different than the sta-
tistical analysis of differential expression. For example,
statistical evidence for ∆HEB involves simultaneous
comparison of count data of four genes (two home-
ologs in two conditions, see Fig. 1) and is not reducible
to sequential differential expression tests. Due to the
importance of duplicate genes in evolution [1], specif-
ically the ability of duplicate genes to evolve distinct
expression profiles (e.g., sub- or neofunctionalize), we
have developed a likelihood ratio test for ∆HEB anal-
ysis of RNA-seq data. The following sections describe
the development of a likelihood ratio test for HEB
and ∆HEB. We then use this test to analyze home-
olog expression patterns from the leaves and petals
of a tetraploid monkeyflower (Mimulus luteus). Using
simulated data, we show the sensitivity of this test to
different levels of homeolog expression bias.

Results

Quantifying homeolog expression bias (HEB)

We will write A and B to denote a homeologous gene
pair from which RNA-seq data is generated in n bio-
logical replicates. Typically, the mean expression levels
of the homeologs (denoted ā and b̄) are normalized by
gene length and sequencing depth, as when reported in
units of RPKM (reads per kilobase of coding sequence
per million mapped reads). We define the homeolog
expression bias (HEB) of the n replicates as

HEB = log
(
b̄/ā
)

= log b̄− log ā ,

a dimensionless quantity with HEB = 0 indicating no
bias. If one uses the base 2 logarithm, HEB = −3
indicates 8-fold bias towards homeolog A.

Likelihood ratio test for HEB

After accounting for the possibility of different gene
lengths, the statistical test for HEB is essentially a like-
lihood ratio test for differential expression of a pair of
homeologous genes. The goal is to determine whether
there is sufficient evidence to reject the null hypoth-
esis (H0) that there is no bias (i.e., equal expression
levels for homeologous genes) in favor of the alterna-
tive hypothesis (H1) that bias is present, i.e., different
expression levels for homeologous genes. In mathemat-
ical terms, the null hypothesis H0 corresponds to the
parameters (denoted by θ) of a probability model for
generating the data being in a specified subset Θ0 of
the parameter space Θ, that is,

H0 : θ ∈ Θ0

H1 : θ ∈ Θ\Θ0 .
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Let θ = (λa, λb) denote the true but unknown expres-
sion levels (properly scaled, e.g. in units of RPKM).
Assuming positive expression, the parameter space is
Θ = {θ : λa, λb ∈ R+}. The null (H0) and alterna-
tive (H1) hypotheses for the likelihood ratio test for
homeolog expression bias are formalized as follows,

H0 : (λa, λb) ∈ {λa, λb ∈ R+ : λa = λb}
H1 : (λa, λb) ∈ {λa, λb ∈ R+ : λa 6= λb} .

Equivalently, we let ω = λb/λa denote the ratio of
expression levels and drop the superscript indicating
the reference homeolog (λ = λa). In that case, λb = ωλ
and the hypotheses are written as follows,

H0 : (λ, ω) ∈ {λ, ω ∈ R+ : ω = 1}
H1 : (λ, ω) ∈ {λ, ω ∈ R+ : ω 6= 1} .

Once we specify a probability model for the data
X , likelihood functions for each hypothesis, L0(θ|X )
and L1(θ|X ), can be derived (see next section). For
composite hypotheses, the appropriate likelihood ratio
test statistic is

W (X ) = −2 ln
L̂0

L̂1

= 2
(

ln L̂1 − ln L̂0

)
, (1)

where L̂1 and L̂0 are the maximized likelihoods,

L̂1 = sup{L(θ|X ) : θ ∈ Θ }
L̂0 = sup{L(θ|X ) : θ ∈ Θ0 } .

A critical value of the test statistic (W∗) is obtained
from the Chi-squared distribution with significance
level α = 0.05. The number of degrees of freedom
δ is the difference in the number of free parameters
in Θ and Θ0 (here δ = 1) [36]. The null hypothe-
sis H0 is rejected in favor of the alternative H1 when
W (X ) > W∗.

Probability model for RNA-seq read counts

Denote the lengths of homeologous genes a and b as `a

and `b (e.g., in kilobases) and let di be the sequencing
depth (e.g., in millions) of replicate i. The expected
number of RNA-seq reads for gene a and replicate i is

µai = λa`adi = λ`adi , (2)

where in the second equality we have dropped the su-
perscript for the reference homeolog (λ = λa). Simi-
larly, the expected number of RNA-seq reads for gene
b and replicate i is

µbi = λb`bdi = ωλ`bdi (3)

where ω = λb/λa = λb/λ.

The probability model assumes that the count data
for each gene is drawn from a negative binomial dis-
tribution,

f(x;µ, r) =
Γ(r + x)

Γ(r)x!

(
µ

µ+ r

)x(
r

µ+ r

)r
,

where µ is the appropriate mean (µai or µbi in Eqs. 2
and 3). That is, if Xa

i and Xb
i are random variables

representing the count data for replicate i of homeol-
ogous genes A and B,

Pr{Xa
i = ai} = f(ai;λ`

adi, ri)

Pr{Xb
i = bi} = f(bi;ωλ`

bdi, ri) ,

where we have used µai = λ`adi and µbi = ωλ`bdi.
In these expressions, the aggregation parameter ri is
obtained from the observed mean-variance relation for
all homeolog pairs of the ith experimental replicate
(see Appendix 1).

Assuming independence of experimental replicates,
the likelihood functions L1 and L0 are products of the
likelihood functions for each observation, that is,

L1(X ) =
∏n
i=1 Li1(X ) ,

and similarly for L0(X ), where Xi = {ai, bi} indi-
cates the observed read counts for replicate i and
X = ∪ni=1Xi. The likelihood function for the alterna-
tive hypothesis and the ith replicate is

Li1(X ) =
Γ(ri + ai)

Γ(ri)ai!

Γ(ri + bi)

Γ(ri)bi!

×
(

λ`adi
λ`adi + ri

)ai ( ωλ`bdi
ωλ`bdi + ri

)bi
(4)

×
(

ri
λ`adi + ri

)ri ( ri
ωλ`bdi + ri

)ri
.

The likelihood function for the null hypothesis and the
ith replicate, Li0(X ), is given by Eq. 4 with ω = 1.

Maximum likelihood estimation

Maximum likelihood estimation is performed using the
the log-likelihood function corresponding to Eq. 4,
namely,

lnL1(X ) =
∑
i lnLi1(X ) , (5)
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where

lnLi1(X ) = γ (ri + ai) + ln (ai!)

+ γ (ri + bi) + ln (bi!)

+ 2ri ln ri − 2γ (ri)

+ ai ln (λ`adi) + bi ln
(
ωλ`bdi

)
− (ai + ri) ln (λ`adi + ri)

− (bi + ri) ln
(
ωλ`bdi + ri

)]
(6)

and γ(·) = ln Γ(·). The log-likelihood function for the
null hypothesis (lnL0) is given by Eq. 13 with ω = 1.

The log-likelihood function lnL1(X ) is maximized by

numerically solving for λ̂ and ω̂ leading to zero partial
derivatives,

0 =
∂ lnL1

∂λ

∣∣∣∣
λ̂,ω̂

(7)

0 =
∂ lnL1

∂ω

∣∣∣∣
λ̂,ω̂

, (8)

as described in Appendix 2. The log-likelihood func-
tion lnL0(X ) is maximized by solving for λ̂ leading
to

0 =
∂ lnL0

∂λ

∣∣∣∣
λ̂

. (9)

The optimal parameter values λ̂ and ω̂ are used to eval-
uate ln L̂0(X ; λ̂), ln L̂1(X ; λ̂, ω̂), and the test statistic
W (see Eq. 1).

Example of the likelihood ratio test for HEB applied to
tetraploid Mimulus luteus

To demonstrate the application of the likelihood ra-
tio test for HEB, five biological replicates of RNA-
seq data were generated from petals of the tetraploid
Mimulus luteus (monkeyflower), and another five repli-
cates were generated from the leaves (see Appendix 3
for details). We have chosen M. luteus because it is a
tetraploid with two distinct subgenomes [37]. One of
the subgenomes contains genes which more closely re-
semble the extant diploid M. guttatus than the other,
so we refer to the homeologs as M. guttatus-like and
Other. Please see [37] for a detailed description of how
the homeologs were identified and an overview of the
natural history of M. luteus.

In this section, we use the likelihood ratio test for
HEB to find homeologous gene pairs where one home-
olog is expressed at significantly different levels than
the other, one tissue at a time. In the section on ∆HEB
we develop a likelihood ratio test to determine whether
there is a significant difference in the bias between the
two tissues.

M. guttatus-like
Biased towards

Ng= 334

Other
Biased towards

No= 342

Overall
N = 1560

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Means : -2.49 -0.00 2.39

HEB (log2)

Figure 2: Likelihood ratio test for HEB in petals of M.
luteus. Of 1,560 testable homeologous gene pairs (gray), a to-
tal of 676 show significant bias. Of these, 334 pairs are biased
towards the M. guttatus-like homeolog (yellow), with a mean
HEB of −2.49 (5.6×). 342 pairs are biased towards the Other
homeolog (blue), with a mean HEB of 2.39 (about 5.2×). The
Benajamini-Hochberg correction for multiple testing was ap-
plied at significance level α = 0.05 (and also in Figure 3–5).

Homeolog expression bias in Mimulus luteus petals

Figure 2 shows the result of applying the likelihood
ratio test for HEB to the petal data. There are 1,853
homeologous gene pairs in M. luteus that can be iden-
tified as coming from separate subgenomes. Of these
1,853 homoeologous pairs, 1,560 were testable (mea-
surable expression from each individual homeolog). Of
the testable pairs, a total of 676 gene pairs show sig-
nificant bias (using a significance level of α = 0.05,
and applying the Benjamini-Hochberg correction [38]
to account for multiple testing error). In the 334
pairs biased towards the M. guttatus-like homeolog
the mean HEB is −2.49 (5.6-fold change). Negative
bias throughout this paper will indicate bias towards
the M. guttatus-like homeolog. In the 342 pairs biased
towards the Other homeolog, the mean HEB is 2.39
(5.2-fold change).

These results may be indicative of a number of evo-
lutionary processes. For example, one of the homeologs
may have become sub- or neofunctionalized in this tis-
sue, or one of the homeologs may simply be losing its
function.

Homeolog expression bias in Mimulus luteus leaves

Next, the likelihood ratio test for HEB was applied to
the leaf data (results shown in Fig 3). Of the 1,853
homoeologous pairs, 1,498 were testable. Of this sub-
set, a total of 399 gene pairs show significant bias (us-
ing a significance level of α = 0.05, and applying the
Benjamini-Hochberg correction to account for multiple
testing error). In the 199 pairs biased towards the M.
guttatus-like homeolog the mean HEB is −2.83 (7.1-
fold change). In the 200 pairs biased towards the Other
homeolog, the mean HEB of 2.80 (7.0-fold change).
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Figure 3: likelihood ratio test for HEB in leaves of
M. luteus. Of 1,498 testable homeologous gene pairs (gray),
a total of 399 show significant bias. 199 pairs are biased to-
wards the M. guttatus-like homeolog (yellow) the mean HEB
is−2.83 (7.1×). 200 pairs are biased towards the Other home-
olog (blue), with a mean HEB of 2.80 (7.0×).

Comparison of HEB in M. luteus petals and leaves

While the number of significantly biased gene pairs
in the two tissues is quite different, i.e., 676 biased
pairs in the petals vs. only 399 in the leaves, we cannot
simply combine these two results to determine which
genes exhibit a significant difference in bias (∆HEB)
between the two tissues. In the following section we
derive a statistical test for ∆HEB, and Fig 5 shows
the results of this test applied to the leaf and petal
data we just saw.

Quantifying changes in homeolog expression bias
(∆HEB)

The statistical analysis of changes in homeolog expres-
sion bias (∆HEB) involves simultaneous comparison of
count data of four genes (two homeologs in two con-
ditions, see Fig. 1). Suppose A and B represent home-
ologous genes and RNA-seq data is generated under
conditions 1 and 2 in n biological replicates, leading
to mean expression levels ā1, ā2, b̄1, b̄2. The change in
homeolog expression bias (∆HEB) is defined as

∆HEB = HEB2 −HEB1 = log

(
b̄2/ā2

b̄1/ā1

)
, (10)

where the last equality uses HEB1 = log b̄1/ā1 and
HEB2 = log b̄2/ā2.

Likelihood ratio test for ∆HEB

The likelihood ratio test for ∆HEB is designed to de-
termine whether there is sufficient evidence to reject
the null hypothesis (H0) that homeolog expression bias
is the same under two experimental conditions in fa-
vor of the alternative hypothesis (H1) that there is
a difference in bias. Following notation similar to the

previous section, our hypotheses are

H0 : θ ∈ Θ0 = {λa|b1|2 ∈ R+ : λb1/λ
a
1 = λb2/λ

a
2}

H1 : θ ∈ Θ\Θ0 = {λa|b1|2 ∈ R+ : λb1/λ
a
1 6= λb2/λ

a
2} ,

where λ
a|b
1|2 is an abbreviation for λa1 , λ

b
1, λ

b
1, λ

b
2. Equiv-

alently,

H0 : θ ∈ Θ0 = {λ1, λ2, ω1, ω2 ∈ R+ : ω1 = ω2}
H1 : θ ∈ Θ\Θ0 = {λ1, λ2, ω1, ω2 ∈ R+ : ω1 6= ω2} ,

where ω1 = λb1/λ
a
1 , ω2 = λb2/λ

a
2 , λ1 = λa1 and λ2 = λa2 .

The difference in degrees of freedom of the alternative
and null hypotheses is δ = 4− 3 = 1.

The likelihood functions for the ∆HEB test are sim-
ilar to those for HEB, though the two different ex-
perimental conditions lead to twice as many terms
(cf. Eq. 4). The likelihood function for H1 is

L1(X ) =
2∏
k=1

n∏
i=1

Lk,i1 (X ) (11)

where Lk,i1 , the likelihood function for the ith replicate
of the kth condition, has the form of Eq. 4 with appro-
priate parameters indexed by condition (ak,i, bk,i, r

a
k,i,

rbk,i, ωk). The log-likelihood function for H1 is thus

lnL1(X ) =

2∑
k=1

n∑
i=1

lnLk,i1 (X ) (12)

where

lnLk,i1 (X ) = γ (rk,i + ak,i) + ln (ak,i!)

+ γ (rk,i + bk,i) + ln (bk,i!)

+ 2rk,i ln rk,i − 2γ (rk,i)

+ ak,i ln (λ`adi) + bk,i ln
(
ωkλ`

bdi
)

− (ak,i + rk,i) ln (λ`adi + rk,i)

− (bk,i + ri) ln
(
ωkλ`

bdi + rk,i
)]

(13)

and γ(·) = ln Γ(·). The log-likelihood function for the
null hypothesis (lnL0) is given by the above expres-
sions with ω1 = ω2 = ω. The aggregation parame-
ters (rk,i) are determined from the data with experi-
mental conditions k = 1 and 2 considered separately
(cf. Eqs. 17–19).

The log-likelihood function lnL1(X ) used in the
analysis of ∆HEB is maximized by numerically solv-
ing uncoupled systems of the form of Eqs. 7 and 8
for (λ̂1, ω̂1) and (λ̂2, ω̂2). The log-likelihood function

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2017. ; https://doi.org/10.1101/119438doi: bioRxiv preprint 

https://doi.org/10.1101/119438
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smith et al. Page 6 of 10

M. guttatus-like
Bias shift in leaf towards

Ng= 35

Other
Bias shift in leaf towards

No= 41

Overall
N = 1448

-8 -6 -4 -2 0 2 4 6 8

Means : -3.44 -0.01 3.38

∆HEB (log2)

Figure 4: Likelihood ratio test for ∆HEB in the leaves
vs. petals of M. luteus. Of 1,448 testable homeologous gene
pairs (gray), 76 show significant ∆HEB. Of these, 35 are more
biased towards the M. guttatus-like homeolog in the leaf than
in the petal (yellow). 41 gene pairs are more biased towards
the Other homeolog in the leaf than in the petal (blue).

lnL0(X ) is maximized by solving for λ̂1, λ̂2 and ω̂
that lead to zero partial derivatives,

0 =
∂ lnL0

∂λ1

∣∣∣∣
λ̂1,λ̂2,ω̂

(14)

0 =
∂ lnL0

∂λ2

∣∣∣∣
λ̂1,λ̂2,ω̂

(15)

0 =
∂ lnL0

∂ω

∣∣∣∣
λ̂1,λ̂2,ω̂

. (16)

The optimal parameter values are used to evaluate the
likelihoods, L̂0(X ; λ̂1, λ̂2, ω̂) and L̂1(X ; λ̂1, λ̂2, ω̂1, ω̂2),
and the test statistic W (see Eq. 1).

The numerical solution of these equations was facil-
itated by transforming these equations in a manner
that ensured both parameters are positive and was
symmetric with respect to the mean expression levels
of homeolog A and B (see Appendix 2).

Example of the likelihood ratio test for ∆HEB applied
to real data

Returning to the leaf and petal data from the previous
sections on HEB, we now have a total of 1,448 testable
pairs (for ∆HEB, each gene in the pair needs to have
at least 1 read in both conditions (i.e., tissues)).

Figure 4 shows the results of the likelihood ratio test
for ∆HEB. We find a total of 76 gene pairs show sig-
nificant ∆HEB. Of these, 35 are more biased towards
the M. guttatus-like homeolog in the leaf than they are
in the petal. The remaining 41 gene pairs are more bi-
ased towards the Other homeolog in the leaf than they
are in the petal.

Figure 5 shows a scatter plot of homeolog expres-
sion bias (HEB) in leaf and petal. Colored marks indi-
cate gene pairs with statistically significant changes in
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Figure 5: Statistical significance of ∆HEB compared to
homeolog expression bias (HEB) in leaf and petal. Yellow and
blue indicates homeolog gene pairs with significant ∆HEB.
The likelihood ratio test for ∆HEB is distinct from HEB tests
in leaf and petal (see text).

homeolog expression bias (∆HEB) (these points cor-
respond to the colored bars in Figure 4). Data points
in the top-left and bottom-right quadrants of Figure 5
represent homeologous pairs where one homeolog is
more highly expressed in one tissue and its partner
is more highly expressed in the other tissue. On the
other hand, the top-right and bottom-left quadrants
correspond to homeologous pairs where the difference
in bias favors the same homeolog but has become more
extreme. Finally, all of the marks that are colored blue
or yellow show significant change in bias and are can-
didates for tissue specific sub- or neofunctionalization.

Although the change in homeolog expression bias is
defined by Eq. 10 as the log-fold change in homeolog
expression bias, the intercalation of significant (yellow
and blue) and not significant (gray) ∆HEB in Figure 5
makes it clear that statistical evidence for ∆HEB is
not reducible to the difference between HEBleaf and
HEBpetal (the vertical or horizontal distance to the
line of slope 1 where HEBleaf = HEBpetal).

Whether or not ∆HEB can be called significant also
depends on differences in sequencing depths, mean ex-
pression levels (e.g., lowly expressed genes are more
likely to be influenced by shot noise), and ratios of
gene lengths. All of these factors are considered simul-
taneously in the likelihood ratio test presented here.
Calling ∆HEB based on sequential HEB results would
almost certainly result in a different set of genes being
called significant.
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Figure 6: Ability of the likelihood ratio test for HEB
to detect different levels of bias. Simulation results show
the fraction of times H0 was rejected for 10,000 trials with
the given values of x and n (parameters: α = 0.05, µa = 100,
r = 10). A 4-fold change (i.e., |x| = 2) is almost always
detectable with n ≥ 3 replicates. Detecting a 2-fold change
greater than 95% of the time requires 12 or more replicates.

The remaining sections explore how the statistical
test for HEB and ∆HEB presented here perform on
simulated data.

Validation of the likelihood ratio test for HEB using
simulated data

A natural question to ask about HEB and ∆HEB is,
“How large does the change in expression levels be-
tween homeologs across conditions need to be before
we can detect ∆HEB most of the time?”. Unsurpris-
ingly, this depends largely on the number of biological
replicates.

To explore this question we generated simulated data
with one expression level fixed at a constant value,
µa = 100, and let the other expression level, µb, vary;
µb = 2xµa, with x ∈ [−2, 2], in steps of 0.1. For each
value of x, we used MATLAB to generate 10,000 sets
of data from a negative binomial distribution for N =
3, 6, 12 and 24 replicates. We fixed the parameter r =
10 for simplicity; this is in the typical range of values
we have observed in RNA-seq data.

Fig 6 shows the results of the likelihood ratio test
for HEB on this data set. We find that a 4-fold change
(i.e |x| = 2) is almost always detectable, regardless
of the number of replicates. However, detecting a 2-
fold change almost all of the time requires at least 12
replicates.
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Figure 7: Ability of the likelihood ratio test for ∆HEB
to detect different levels of change in bias. Simulation
results show the fraction of times H0 was rejected for 10,000
trials with given values of x and n (parameters: α = 0.05,

µa
1 = µb

1 = µa
2 = 100, r = 10). A 4-fold change (i.e., |x| = 2)

is almost always detectable with n ≥ 6 replicates. However,
detecting a 2-fold change greater than 95% of the time re-
quires 24 or more replicates.

Validation of the likelihood ratio test for ∆HEB using
simulated data

To assess the sensitivity of ∆HEB to different levels of
bias shift, we created a data set similar to that used for
Fig 6. This time, we set 3 of the means equal (µa1 =
µb1 = µa2 = 100), and let the fourth one vary; µb2 =
2xµa2 , with x ∈ [−2, 2] in steps of 0.5 (fewer points are
generated than in HEB due to longer computational
time). Aggregation parameter r = 10. For each value
of x, 10,000 sets of data were generated from a negative
binomial distribution for n = 3, 6, 12 and 24 replicates.

Fig 7 shows the results of the likelihood ratio test
for ∆HEB on this data set. The results are similar to
those for HEB, with the test for ∆HEB being slightly
less sensitive than the test for HEB. For ∆HEB, a 4x
change in bias is not detected nearly 100% of the time
for N = 3, but it is for N ≥ 6. As in HEB, the ability
to detect smaller changes increases significantly with
the number of replicates.

Conclusions

Gene duplication and polyploidy are extremely impor-
tant factors in generating the diversity of life on earth.
As Ohno stated in his seminal work on gene duplica-
tion [1], “Natural selection merely modified while re-
dundancy created” the raw materials necessary for the
diversification of life on earth.
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In this paper we have developed a robust statisti-
cal framework specifically designed for the compari-
son of duplicate gene expression patterns. Importantly,
this technique is consistent and reproducible. Through
analysis of simulated data we have shown that these
methods perform well, especially given the typically
small sample sizes in most RNA-seq experiments. We
have shown that the ability to detect small differences
in expression levels increases as a function of sam-
ple size, a fact which can be used to aid experimen-
tal design. Other authors have noted this with tradi-
tional differential expression analysis and made similar
recommendations [39–41]. Moreover, we have demon-
strated the application of the likelihood ratio test for
∆HEB using a real RNA-seq dataset derived from a
polyploid plant.

While we have developed this test for the purpose of
analyzing changes in expression patterns of homeolo-
gous genes, we wish to emphasize that the methods are
suitable for the expression analysis of any two genes
(they need not be homeologs) across any two condi-
tions. A potential application of this test may be the
comparison of expression patterns of duplicate genes
following hybridization through comparison of parent
and hybrid expression levels (assuming proper inter-
nal controls are used) [42]. One exciting application
of this method may be the analysis of allele specific
expression changes.

Appendix 1: Determining aggregation
parameters

Due to the typically small number of replicates in
RNA-seq experiments, accurate estimation of the ag-
gregation parameter is not realistic on a gene-by-gene
basis [34, 43]. Instead, we use the mean-variance rela-
tion of a negative binomial distribution, namely,

σ2 = µ+
1

r
µ2 , (17)

to compute an aggregation parameter r for each exper-
imental replicate, after rescaling to account for each
replicates sequencing depth.

In brief, let xij denote the count data for the jth
pair of homeologous genes obtained for experimental
replicate i ∈ {1, 2, . . . , n}. For each of the n replicates,
we produce an auxiliary data set (yik,j) by rescaling
the count data for all replicates as though each were
obtained in an experiment with the sequencing depth
of replicate k,

yik,j =
dk
di
xij . (18)

For each gene (j), we compute a scaled mean (µk,j)
and variance (σ2

k,j) of yik,j over replicates (i). To ob-
tain the aggregation parameter rk, we perform a non-
linear least squares fit of the observed mean-variance
relation across all genes. That is, rk minimizes the sum
of squares error,

E =
∑
j

(
σ2
k,j − µk,j −

1

rk
µ2
k,j

)2

. (19)

Appendix 2: Numerical scheme for
maximum likelihood estimation

For the analysis of both HEB and ∆HEB, parameter
values maximizing the likelihood functions L̂0 and L̂1

were obtained using the built-in MATLAB command
fsolve applied to Eqs. 7–9 and 14–16. In both cases,
the numerical procedure was facilitated by changing
variables from (λ, ω) to (v, y) through

λ = ev−y

ω = e2y ,

that is, v = lnλ + y and y = (lnω)/2. This ensures
positivity of λ and ω and leads to a system of equations
that is symmetric in λa ↔ λb. The new variable v is
the logarithm of the geometric mean of the expression
levels λa = λ and λb = ωλ,

v = ln
√
λaλb = ln

√
λ · ωλ ,

that is, λa = λ = ev−y and λb = ωλ = ev+y. The
transformed partial derivatives used to maximize the
log-likelihood lnL1 (Eqs. 7–8) are

0 =
∂ lnL1

∂v
=
∑
i

Bi(v, y) +Ai(v, y) (20)

0 =
∂ lnL1

∂y
=
∑
i

Bi(v, y)−Ai(v, y) (21)

where

Ai(v, y) = ai −
(ai + ri)e

v−y`adi
ev−y`adi + ri

(22)

Bi(v, y) = bi −
(bi + ri)e

v+y`bdi
ev+y`bdi + ri

. (23)

The transformed partial derivative used to maximize
lnL0 are found by substituting y = 0 in Eq. 20,

0 =
∂ lnL0

∂v
=
∑
i

Bi(v, 0) +Ai(v, 0) .
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For the analysis of ∆HEB, the partial derivatives used
to maximize lnL1 are two uncoupled systems of the
form of Eq. 20–23, one for each experimental condition
(k = 1 and 2),

0 =
∂ lnL1

∂vk
=
∑
i

Bk,i(vk, yk) +Ak,i(vk, yk)

0 =
∂ lnL1

∂yk
=
∑
i

Bk,i(vk, yk)−Ak,i(vk, yk)

where

Ak,i(v, y) = ak,i −
(ak,i + rk,i)e

v−y`adi
ev−y`adi + rk,i

Bk,i(v, y) = bk,i −
(bk,i + rk,i)e

v+y`bdi
ev+y`bdi + rk,i

.

In the case of the null hypothesis y2 = y1 = y we nu-
merically solve a system of three equations, including

0 =
∂ lnL0

∂vk
=
∑
i

Bk,i(vk, y) +Ak,i(vk, y)

for k = 1 and 2. These are coupled via

0 =
∂ lnL0

∂y
=
∑
k

∑
i

Bk,i(vk, y)−Ak,i(vk, y) .

Appendix 3: Experimental methods

Plant tissues were collected from second generation
inbred M. luteus. All plants were grown in a green-
house under a 16 hour light regiment at 21 ◦C and
30% humidity. Petal tissue was collected from the
corolla of a flower bud near blooming, and leaf tis-
sue came from young leaves adjacent to the stem
apical meristem. Five replicates of each tissue type
were collected, at the same time of day, from dif-
ferent individuals. Approximately 100 - 200 mg of
plant tissue was immediately placed into liquid ni-
trogen. RNA was extracted by grinding frozen tis-
sue with pestles in PureLink R© Plant RNA Reagent
from AmbionTM. Column isolation of RNA was subse-
quently performed using Direct-zolTM RNA MiniPrep
Plus Kit from Zymo Research. Libraries were con-
structed using KAPA Stranded mRNA-Seq Kit. Dur-
ing library construction, sequence specific Illumina
TruSeq R© adapters were added to distinguish each
library. Using an Agilent 2100 Bioanalyzer, average
fragment lengths were determined to be between 230
and 300 bp. Libraries were then pooled and sequenced
by the Duke Center for Genomic and Computational
Biology on an Illumina HiSeq 2500 instrument. The
resulting reads (50 base pair, single end) were mapped

to the M. luteus genome using bowtie2 [44] with the
--local-very-sensitive option. Reads to exonic re-
gions were counted using htseq-count [45] with the
default settings (minimum alignment quality of 10 on
the phred scale).
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