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Abstract

Background: Gene duplications are a major source of raw material for evolution and a likely contributor to the
diversity of life on earth. Duplicate genes (i.e., homeologs, in the case of a whole genome duplication) may
retain their ancestral function, sub- or neofunctionalize, or be lost entirely. A primary way that duplicate genes
may evolve new functions is by altering their expression patterns. Comparing the expression patterns of
duplicate genes may give clues as to whether any of these evolutionary processes have occurred.
Results: We develop a likelihood ratio test for the analysis of the expression ratios of duplicate genes across
two conditions (e.g., tissues). We demonstrate an application of this test by comparing homeolog expression
patterns of 1,448 homeologous gene pairs using RNA-seq data generated from the leaves and petals of an
allotetraploid monkeyflower (Mimulus luteus). We assess the sensitivity of this test to different levels of
homeolog expression bias and compare the method to several alternatives.
Conclusions: The likelihood ratio test derived here is a direct, transparent, and easily implemented method for
detecting changes in homeolog expression bias that outperforms three alternative approaches. While our
method was derived with homeolog analysis in mind, this method can be used to analyze changes in the ratio
of expression levels between any two genes in any two conditions.
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Background

Gene duplications are a major source of raw mate-
rial for evolution and a likely contributor to the di-
versity of life on earth [1–9]. Gene duplications are a
special type of mutation resulting in the multiplica-
tion of intact functional components. These duplicate
genes may either retain the ancestral function or indi-
vidual portions of the gene’s ancestral function may be
partitioned (i.e., subfunctionalize) or evolve new func-
tions entirely (i.e., neofunctionalize) [10–12]. Duplicate
genes may evolve new functions either by changes in
the primary coding sequence or altering where and
when they are expressed. Previous work has indicated
that changes to gene expression and their regulatory
networks may be more important, rapid, or flexible
than divergence of protein identities in the evolution
of sub- and neofunctionlization [13–19].

There are multiple scenarios in which genes can be
duplicated, ranging from small regional gene duplica-
tions to massive whole genome duplications (WGDs).
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The term polyploid refers to cells or organisms that
have undergone a WGD event and contain more than
two paired sets of chromosomes. Each complete set of
chromosomes is referred to as a subgenome. Homol-
ogous genes located on separate subgenomes are re-
ferred to as homeologs.

WGDs are especially common in plants; indeed, all
extant angiosperms (i.e., flowering plants) have at least
two rounds of WGD in common [20] and up to 15% of
speciation events in angiosperms may have been the
product of WGDs [21]. Importantly, all major crops
(rice, corn, potato, wheat, etc.) are polyploid [22].
WGD events and the resulting polyploidy are not re-
stricted to plants, but have occurred in both verte-
brate and invertebrate lineages as well. For example,
the African clawed frog, Xenopus, commonly used as
an experimental model system and extensively stud-
ied in developmental biology, includes species ranging
from diploid to dodecaploid [23]. Other examples of
polyploids with ancient WGD events include the the
zebrafish Danio rerio [24], several salmonids [2], and
some species of fungi [25]. Interestingly, there exists at
least one polyploid mammal [26], a tetraploid rat from
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Argentina that mediates gene dosage by regulation of
ribosomal RNA.

The biological consequences of gene duplications and
subfunctionalization are significant and include exam-
ples such as the evolution of eyes [27], the evolution
of hemoglobins [28], development of heat resistance in
plants [29], and insecticide resistance [30]. Given the
importance of duplicate genes in evolution, it is nat-
ural to ask how we might quantify differences in the
activity or function of homeologous genes. One way
to begin exploring this question is by analyzing gene
expression levels.

Genome-wide gene expression levels are commonly
quantified using high throughput RNA sequencing
(RNA-seq) [31]. In RNA-seq experiments, mRNA
is extracted, purified, and reverse transcribed into
cDNA. This cDNA is fragmented into smaller pieces
and sequenced using next-generation technology. The
resulting millions of sequence reads are then mapped
to either a reference genome or reference transcrip-
tome, and the number of sequences mapping to a par-
ticular gene is used as an indication of the expression
level of that gene.

In differential expression analysis, high-throughput
RNA-seq data is used to determine if gene expression
levels vary under different experimental conditions, or
in distinct tissues, etc. Several different approaches to
this statistical analysis exist [32–34], some of which use
methods based on maximum likelihood estimation and
likelihood ratio tests.

Homeologous gene pairs frequently have distinguish-
ing sequence differences. Therefore, sequencing reads
derived from individual homeologs can be distin-
guished and expression levels can be determined for
each homeolog. The term homeolog expression bias
(HEB) refers to cases where homeologs are expressed
at unequal levels in a single experimental condition
[35]. The primary objective of this paper, develop-
ment of a likelihood ratio test for statistical analysis of
changes in homeolog expression bias (denoted ∆HEB)
is a non-trivial extension of the statistical analysis of
differential expression.

The following sections begin with the derivation of
a likelihood ratio test for HEB. This is our start-
ing point for the development of a likelihood ratio
test for ∆HEB, i.e. changes in relative expression lev-
els between homeologous genes in two conditions. We
demonstrate an application of this method using RNA-
seq data to compare homeologous gene expression in
petals and leaves of the allotetraploid Mimulus luteus.
Finally, using simulated data, we show that the like-
lihood ratio test for ∆HEB derived here is the best
choice among competing methods.

Methods

Quantifying homeolog expression bias (HEB)

We will write A and B to denote a homeologous gene
pair from which RNA-seq data is generated in n bio-
logical replicates. Typically, the mean expression levels
of the homeologs (denoted ā and b̄) are normalized by
gene length and sequencing depth, as when reported in
units of RPKM (reads per kilobase of coding sequence
per million mapped reads). We define the homeolog
expression bias (HEB) of the n replicates as

HEB = log
(
b̄/ā
)

= log b̄− log ā ,

a dimensionless quantity with HEB = 0 indicating no
bias. If one uses the base 2 logarithm, HEB = −3
indicates 8-fold bias towards homeolog A.

Likelihood ratio test for HEB

After accounting for the possibility of different gene
lengths, the statistical test for HEB is essentially a like-
lihood ratio test for differential expression of a pair of
homeologous genes. The goal is to determine whether
there is sufficient evidence to reject the null hypoth-
esis (H0) that there is no bias (i.e., equal expression
levels for homeologous genes) in favor of the alterna-
tive hypothesis (H1) that bias is present, i.e., different
expression levels for homeologous genes. In mathemat-
ical terms, the null hypothesis H0 corresponds to the
parameters (denoted by θ) of a probability model for
generating the data being in a specified subset Θ0 of
the parameter space Θ, that is,

H0 : θ ∈ Θ0

H1 : θ ∈ Θ\Θ0 .

Let θ = (λa, λb) denote the true but unknown expres-
sion levels (properly scaled, e.g., in units of RPKM).
Assuming positive, i.e. non-zero, expression, the pa-
rameter space is Θ = {θ : λa, λb ∈ R+}. The null (H0)
and alternative (H1) hypotheses for the likelihood ra-
tio test for homeolog expression bias are formalized as
follows,

H0 : (λa, λb) ∈ {λa, λb ∈ R+ : λa = λb}
H1 : (λa, λb) ∈ {λa, λb ∈ R+ : λa 6= λb} .

Equivalently, let ω = λb/λa denote the ratio of ex-
pression levels and drop the superscript indicating the
reference homeolog (λ = λa). In that case, λb = ωλ
and the hypotheses are written as follows,

H0 : (λ, ω) ∈ {λ, ω ∈ R+ : ω = 1}
H1 : (λ, ω) ∈ {λ, ω ∈ R+ : ω 6= 1} .
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Once we specify a probability model for the data
X , likelihood functions for each hypothesis, L0(θ|X )
and L1(θ|X ), can be derived (see next section). For
composite hypotheses, the appropriate likelihood ratio
test statistic is

W (X ) = −2 ln
L̂0

L̂1

= 2
(

ln L̂1 − ln L̂0

)
, (1)

where L̂1 and L̂0 are the maximized likelihoods,

L̂1 = sup{L(θ|X ) : θ ∈ Θ }
L̂0 = sup{L(θ|X ) : θ ∈ Θ0 } .

A critical value of the test statistic (W∗) is obtained
from the Chi-squared distribution with significance
level α = 0.05. The number of degrees of freedom
δ is the difference in the number of free parameters
in Θ and Θ0 (here δ = 1) [36]. The null hypothe-
sis H0 is rejected in favor of the alternative H1 when
W (X ) > W∗.

Probability model for RNA-seq read counts

Denote the lengths of homeologous genes a and b as `a

and `b (e.g., in kilobases) and let di be the sequencing
depth (e.g., in millions of mapped reads) of replicate
i. The expected number of RNA-seq reads for gene a
and replicate i is

µai = λa`adi = λ`adi , (2)

where in the second equality we have dropped the su-
perscript for the reference homeolog (λ = λa). Simi-
larly, the expected number of RNA-seq reads for gene
b and replicate i is

µbi = λb`bdi = ωλ`bdi (3)

where ω = λb/λa = λb/λ.
The probability model assumes that the count data

for each gene is drawn from a negative binomial dis-
tribution,

f(x;µ, r) =
Γ(r + x)

Γ(r)x!

(
µ

µ+ r

)x(
r

µ+ r

)r
,

where µ is the appropriate mean (µai or µbi in Eqs. 2
and 3). That is, if Xa

i and Xb
i are random variables

representing the count data for replicate i of homeol-
ogous genes A and B,

Pr{Xa
i = ai} = f(ai;λ`

adi, ri)

Pr{Xb
i = bi} = f(bi;ωλ`

bdi, ri) ,

where we have used µai = λ`adi and µbi = ωλ`bdi.
In these expressions, the aggregation parameter ri is
obtained from the observed mean-variance relation for
all homeolog pairs of the ith experimental replicate
(see Appendix 1).

Assuming independence of experimental replicates,
the likelihood functions L1 and L0 are products of the
likelihood functions for each observation, that is,

L1(X ) =
∏n
i=1 Li1(X ) ,

and similarly for L0(X ), where Xi = {ai, bi} indi-
cates the observed read counts for replicate i and
X = ∪ni=1Xi. The likelihood function for the alterna-
tive hypothesis and the ith replicate is

Li1(X ) =
Γ(ri + ai)

Γ(ri)ai!

Γ(ri + bi)

Γ(ri)bi!

×
(

λ`adi
λ`adi + ri

)ai ( ωλ`bdi
ωλ`bdi + ri

)bi
(4)

×
(

ri
λ`adi + ri

)ri ( ri
ωλ`bdi + ri

)ri
.

The likelihood function for the null hypothesis and the
ith replicate, Li0(X ), is given by Eq. 4 with ω = 1.

Maximum likelihood estimation

Maximum likelihood estimation is performed using the
the log-likelihood function corresponding to Eq. 4,
namely,

lnL1(X ) =
∑
i lnLi1(X ) , (5)

where

lnLi1(X ) = γ (ri + ai) + ln (ai!)

+ γ (ri + bi) + ln (bi!)

+ 2ri ln ri − 2γ (ri)

+ ai ln (λ`adi) + bi ln
(
ωλ`bdi

)
− (ai + ri) ln (λ`adi + ri)

− (bi + ri) ln
(
ωλ`bdi + ri

)]
(6)

and γ(·) = ln Γ(·). The log-likelihood function for the
null hypothesis (lnL0) is given by Eq. 13 with ω = 1.

The log-likelihood function lnL1(X ) is maximized by

numerically solving for λ̂ and ω̂ leading to zero partial
derivatives,

0 =
∂ lnL1

∂λ

∣∣∣∣
λ̂,ω̂

(7)

0 =
∂ lnL1

∂ω

∣∣∣∣
λ̂,ω̂

, (8)
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as described in Appendix 2. The log-likelihood func-
tion lnL0(X ) is maximized by solving for λ̂ leading to

0 =
∂ lnL0

∂λ

∣∣∣∣
λ̂

. (9)

The optimal parameter values λ̂ and ω̂ are used to eval-
uate ln L̂0(X ; λ̂), ln L̂1(X ; λ̂, ω̂), and the test statistic
W (see Eq. 1).

Quantifying changes in homeolog expression bias
(∆HEB)

Let A and B represent homeologous genes and RNA-
seq data is generated under conditions 1 and 2 in n
biological replicates, leading to mean expression levels
ā1, ā2, b̄1, b̄2. The change in homeolog expression bias
(∆HEB) is defined as

∆HEB = HEB2 −HEB1 = log

(
b̄2/ā2

b̄1/ā1

)
, (10)

where the last equality uses HEB1 = log b̄1/ā1 and
HEB2 = log b̄2/ā2.

Likelihood ratio test for ∆HEB

The likelihood ratio test for ∆HEB is designed to de-
termine whether there is sufficient evidence to reject
the null hypothesis (H0) that homeolog expression
bias is the same under two experimental conditions
(∆HEB = 0) in favor of the alternative hypothesis
(H1) that there is a difference in bias (∆HEB 6= 0).
Following notation similar to the previous section, our
hypotheses are

H0 : θ ∈ Θ0 = {λa|b1|2 ∈ R+ : λb1/λ
a
1 = λb2/λ

a
2}

H1 : θ ∈ Θ\Θ0 = {λa|b1|2 ∈ R+ : λb1/λ
a
1 6= λb2/λ

a
2} ,

where λ
a|b
1|2 is an abbreviation for λa1 , λ

b
1, λ

b
1, λ

b
2. Equiv-

alently,

H0 : θ ∈ Θ0 = {λ1|2, ω1|2 ∈ R+ : ω1 = ω2}
H1 : θ ∈ Θ\Θ0 = {λ1|2, ω1|2 ∈ R+ : ω1 6= ω2} ,

where ω1 = λb1/λ
a
1 , ω2 = λb2/λ

a
2 , λ1 = λa1 and λ2 = λa2 .

The difference in degrees of freedom of the alternative
and null hypotheses is δ = 4− 3 = 1.

The likelihood functions for the ∆HEB test are sim-
ilar to those for HEB, though the two different ex-
perimental conditions lead to twice as many terms
(cf. Eq. 4). The likelihood function for H1 is

L1(X ) =
2∏
k=1

n∏
i=1

Lk,i1 (X ) (11)

where Lk,i1 , the likelihood function for the ith repli-
cate of the kth condition, has the form of Eq. 4 with
parameters indexed by condition (ak,i, bk,i, r

a
k,i, r

b
k,i,

ωk). The log-likelihood function for H1 is thus

lnL1(X ) =
2∑
k=1

n∑
i=1

lnLk,i1 (X ) (12)

where

lnLk,i1 (X ) = γ (rk,i + ak,i) + ln (ak,i!)

+ γ (rk,i + bk,i) + ln (bk,i!)

+ 2rk,i ln rk,i − 2γ (rk,i)

+ ak,i ln (λ`adi) + bk,i ln
(
ωkλ`

bdi
)

− (ak,i + rk,i) ln (λ`adi + rk,i)

− (bk,i + ri) ln
(
ωkλ`

bdi + rk,i
)]

(13)

and γ(·) = ln Γ(·). The log-likelihood function for the
null hypothesis (lnL0) is given by the above expres-
sions with ω1 = ω2 = ω. The aggregation parame-
ters (rk,i) are determined from the data with experi-
mental conditions k = 1 and 2 considered separately
(cf. Eqs. 17–19).

The log-likelihood function lnL1(X ) used in the
analysis of ∆HEB is maximized by numerically solv-
ing uncoupled systems of the form of Eqs. 7 and 8
for (λ̂1, ω̂1) and (λ̂2, ω̂2). The log-likelihood function

lnL0(X ) is maximized by solving for λ̂1, λ̂2 and ω̂
that lead to zero partial derivatives,

0 =
∂ lnL0

∂λ1

∣∣∣∣
λ̂1,λ̂2,ω̂

(14)

0 =
∂ lnL0

∂λ2

∣∣∣∣
λ̂1,λ̂2,ω̂

(15)

0 =
∂ lnL0

∂ω

∣∣∣∣
λ̂1,λ̂2,ω̂

. (16)

The optimal parameter values are used to evaluate the
likelihoods, L̂0(X ; λ̂1, λ̂2, ω̂) and L̂1(X ; λ̂1, λ̂2, ω̂1, ω̂2),
and the test statistic W (see Eq. 1).

The numerical solution of these equations was facil-
itated by transforming these equations in a manner
that ensured both parameters are positive and sym-
metric with respect to the mean expression levels of
homeolog A and B (see Appendix 2).

Results

The likelihood ratio test for HEB applied to
allotetraploid Mimulus luteus

To demonstrate the application of the likelihood ratio
test for HEB, five biological replicates of RNA-seq data
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Subgenome A
Bias in petals towards

Na= 334

Subgenome B
Bias in petals towards

Nb= 342

Overall
N = 1560

-2.50 2.37-0.01Means:

Subgenome A
Bias in leaves towards

Na= 199

Subgenome B
Bias in leaves towards

Nb= 200

Overall
N = 1498

-2.84 2.780.00Means:

-8 -6 -4 -2 0 2 4 6 8

HEB (log2)

Figure 1: Likelihood ratio test for HEB in petals (top)
and leaves (bottom) of M. luteus. (Top) Of 1,560 testable
homeologous gene pairs in the petals (gray), a total of 676
show significant bias. Of these, 334 pairs are biased towards
the A homeolog (yellow), with a mean HEB of −2.49 (5.6×).
342 pairs are biased towards the B homeolog (blue), with a
mean HEB of 2.39 (about 5.2×). (Bottom) Of 1,560 testable
homeologous gene pairs (gray), a total of 676 show significant
bias. Of these, 334 pairs are biased towards the A homeolog
(yellow), with a mean HEB of −2.49 (5.6×). 342 pairs are
biased towards the B homeolog (blue), with a mean HEB of
2.39 (about 5.2×). The Benajamini-Hochberg correction for
multiple testing was applied at significance level α = 0.05
(and also in Figure 3).

were generated from petals of the tetraploid Mimulus
luteus (monkeyflower), and another five replicates were
generated from the leaves (see Appendix 3 for details).
We have chosen M. luteus because it is a tetraploid
with two distinct subgenomes [37], denoted A and B.
In this section, we use the likelihood ratio test for HEB
to find homeologous gene pairs where one homeolog
is expressed at significantly different levels than the
other, one tissue at a time. In the section on ∆HEB
we develop a likelihood ratio test to determine whether
there is a significant difference in the bias between the
two tissues.

Homeolog expression bias in Mimulus luteus petals

Figure 1 (top panel) shows the result of applying
the likelihood ratio test for HEB to the petal data.
There are 1,853 homeologous gene pairs in M. lu-
teus that can be identified as coming from separate
subgenomes. Of these 1,853 homoeologous pairs, 1,560
were testable (measurable expression from each in-
dividual homeolog). Of the testable pairs, a total of
676 gene pairs show significant bias (using a signifi-
cance level of α = 0.05, and applying the Benjamini-
Hochberg correction [38, 39] to account for multiple
testing error). In the 334 pairs biased towards the A

homeolog the mean HEB is −2.49 (5.6-fold change).
In the 342 pairs biased towards the B homeolog, the
mean HEB is 2.39 (5.2-fold change).

These results may be indicative of a number of evo-
lutionary processes. For example, one of the homeologs
may have become sub- or neofunctionalized in this tis-
sue, or one of the homeologs may simply be losing its
function.

Homeolog expression bias in Mimulus luteus leaves

Next, the likelihood ratio test for HEB was applied to
the leaf data (results shown in Fig 1, bottom panel). Of
the 1,853 homoeologous pairs, 1,498 were testable. Of
this subset, a total of 399 gene pairs show significant
bias. In the 199 pairs biased towards the A homeolog
the mean HEB is −2.83 (7.1-fold change). In the 200
pairs biased towards the B homeolog, the mean HEB
is 2.80 (7.0-fold change).

The likelihood ratio test for ∆HEB applied to
allotetraploid Mimulus luteus

Subgenome A
Bias shift in leaf towards

Ng= 35

Subgenome B
Bias shift in leaf towards

No= 41

Overall
N = 1448

-8 -6 -4 -2 0 2 4 6 8

Means : -3.44 -0.01 3.38

∆HEB (log2)

Figure 2: Likelihood ratio test for ∆HEB in the leaves
vs. petals of M. luteus. Of 1,448 testable homeologous gene
pairs (gray), 76 show significant ∆HEB. Of these, 35 are more
biased towards the A homeolog in the leaves than in the petals
(yellow). 41 gene pairs are more biased towards the B home-
olog in the leaf than in the petal (blue).

The likelihood ratio test for ∆HEB requires each
homeolog to have at least one read in each condition.
Returning to the leaf and petal data from the previ-
ous sections on HEB, this gives 1,448 testable pairs.
Figure 2 shows the results of the likelihood ratio test
for ∆HEB. We find a total of 76 gene pairs show sig-
nificant ∆HEB. Of these, 35 are more biased towards
the A homeolog in the leaf than they are in the petal.
The remaining 41 gene pairs are more biased towards
the B homeolog in the leaf than they are in the petal.

Figure 3 shows a scatter plot of homeolog expres-
sion bias (HEB) in leaf and petal. Colored marks indi-
cate gene pairs with statistically significant changes in
homeolog expression bias (∆HEB) (these points cor-
respond to the colored bars in Figure 2). Data points
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Figure 3: Statistical significance of ∆HEB compared to
homeolog expression bias (HEB) in leaf and petal. Yellow and
blue indicates homeolog gene pairs with significant ∆HEB.
The likelihood ratio test for ∆HEB is distinct from HEB tests
in leaf and petal (see text).

in the top-left and bottom-right quadrants of Figure 3

represent homeologous pairs where one homeolog is

more highly expressed in one tissue and its partner

is more highly expressed in the other tissue. On the

other hand, the top-right and bottom-left quadrants

correspond to homeologous pairs where the difference

in bias favors the same homeolog but has become more

extreme. Finally, all of the marks that are colored blue

or yellow show significant change in bias and are can-

didates for tissue specific sub- or neofunctionalization.

Although the change in homeolog expression bias is

defined by Eq. 10 as the log-fold change in homeolog

expression bias, the intercalation of significant (yellow

and blue) and not significant (gray) ∆HEB in Figure 3

makes it clear that statistical evidence for ∆HEB is

not reducible to the difference between HEBleaf and

HEBpetal (the vertical or horizontal distance to the

line of slope 1 where HEBleaf = HEBpetal).

Whether or not ∆HEB can be called significant also

depends on differences in sequencing depths, mean ex-

pression levels (e.g., lowly expressed genes are more

likely to be influenced by shot noise), and ratios of

gene lengths. All of these factors are considered simul-

taneously in the likelihood ratio test presented here.

Calling ∆HEB based on sequential HEB results would

almost certainly result in a different set of genes being

called significant.

Validation of the likelihood ratio tests using simulated
data

A natural question to ask about HEB and ∆HEB is,
“How large does the change in expression levels be-
tween homeologs across conditions need to be before
we can detect ∆HEB most of the time?”. Unsurpris-
ingly, this depends largely on the number of biological
replicates.

To explore this question we generated simulated
data with one expression level fixed at a constant
value, µa = 100, and varied the other expression level,
µb = 2xµa, with x ∈ [0, 2] in steps of 0.1. For each
value of x, we generated 10,000 sets of data from a
negative binomial distribution for N = 3, 6, 12 and 24
replicates. We fixed the parameter r = 10 for sim-
plicity; this is in the typical range of values we have
observed in RNA-seq data.

Fig 4 shows the results of the likelihood ratio test
for HEB on this simulated data set. We find that a 4-
fold change is almost always detectable, regardless of
the number of replicates. However, detecting a 2-fold
change at least 95% of the time requires at least 12
replicates.

1 2 4
0

α = 0.05

0.95
1

µb/µa

F
ra
ct
io
n
of

ti
m
es

H
0
is

re
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Figure 4: Ability of the likelihood ratio test for HEB
to detect different levels of bias. Simulation results show
the fraction of times H0 was rejected for 10,000 trials with
the given values of x and n (parameters: α = 0.05, µa = 100,
r = 10). With n ≥ 3 replicates, a 4-fold change is detectable
over 95% of the time. Detecting a 2-fold change greater than
95% of the time requires at least 12 replicates.
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To assess the sensitivity of ∆HEB to different levels
of bias shift, we created a similar data set. This time,
we set 3 of the expression levels equal (µa1 = µb1 = µa2 =
100), and varied the fourth; µb2 = 2xµa2 , with x ∈ [0, 2]
in steps of 0.1. The aggregation parameter was again
fixed at r = 10. For each value of x, 10,000 sets of data
were generated from a negative binomial distribution
for N = 3, 6, 12 and 24 replicates.

Fig 5 shows the results of the likelihood ratio test
for ∆HEB on this simulated data set. The results are
similar to those for HEB, with the test for ∆HEB be-
ing slightly less sensitive than the test for HEB. For
∆HEB, a 4-fold change in bias is detected more than
95% of the time when N ≥ 6. As with the test for
HEB, the ability to detect smaller changes increases
significantly with the number of replicates.
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Figure 5: Ability of the likelihood ratio test for ∆HEB
to detect different levels of change in bias. Simulation
results show the fraction of times H0 was rejected for 10,000
trials with given values of x and n (parameters: α = 0.05,

µa
1 = µb

1 = µa
2 = 100, r = 10). With n ≥ 6 replicates, a

4-fold change is detectable over 95% of the time. However,
detecting a 2-fold change more than 95% of the time requires
at least 24 replicates.

Discussion

Alternative Methods

While our method is transparent, derived specifically
for the analysis of ∆HEB, and requires a minimal

number of assumptions, we also wished to investi-
gate whether other methods could achieve similar re-
sults. Since we found nothing directly comparable to
our method in the literature, we developed three ad-
ditional ad hoc methods. To compare these methods
we generated simulated data sets and analyzed ROC
curves. Each data set contained 20,000 gene pairs, half
of which had ∆HEB fixed at a constant value (2,8, and
16). Three replicates were generated from negative bi-
nomial distributions, and this was repeated 100 times
for each value of ∆HEB (300 simulations total).

First, we took a naive approach and performed t-
tests and z-tests on the ratio of log2-fold changes be-
tween conditions 1 and 2. Next, we ran DESeq2 and ex-
tracted the estimated shrunken log2-fold changes and
their standard errors, and performed a z-test (we call
this method ‘DEZ’). Unsurprisingly, the naive meth-
ods underperformed the LRT, with area under the
ROC curve (ROC area) typically less than the LRT
by ≈ 0.05 to 0.36.

The LRT outperformed DEZ for ∆HEB = 8 and 16
(Figure 6, top region). For ∆HEB = 2, both meth-
ods performed poorly with mean ROC area = 0.5616
for the LRT, while DEZ came out slightly ahead with
mean ROC area = 0.5620 (not shown).

It is possible for a test to have a larger ROC area
but not necessarily be the best choice, for example, if a
curve accumulates a small amount of area for low FPR,
and a large amount of area for high FPR. To address
this we evaluated partial ROC area for false positive
rates between 0 and 0.1 (we assume that, in practice,
most researchers would never accept FPR> 0.1). By
this metric, the LRT outperforms DEZ for ∆HEB = 8
and 16, while for ∆HEB = 2 both methods performed
poorly, with DEZ marginally better (Figure 6, bottom
region).

Conclusion

Gene duplication and polyploidy are extremely impor-
tant factors in generating the diversity of life on earth.
As Ohno stated in his seminal work on gene duplica-
tion [1], “Natural selection merely modified while re-
dundancy created” the raw materials necessary for the
diversification of life on earth.

In this paper we have developed a robust statisti-
cal framework specifically designed for the compari-
son of duplicate gene expression patterns. Importantly,
this technique is consistent and reproducible. Through
analysis of simulated data we have shown that these
methods perform well, especially given the typically
small sample sizes in most RNA-seq experiments. We
have shown that the ability to detect small differences
in expression levels increases as a function of sample
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Figure 6: Comparison of the LRT and DEZ The top part
of the plot shows the distribution of area under ROC curves
for 100 trials of simulated data. Each trial contained 20,000
genes, half of which had ∆HEB fixed at a constant value.
Results for ∆HEB = 2 are not shown as they were too low
(mean area for LRT= 0.5616, for DEZ=0.5620). The bottom
part of the plot shows ROC area constrained to false positive
rates less than 0.1. In both regions, boxes indicate interquar-
tile ranges, whiskers indicate 5th and 95th percentiles, and
black lines indicate medians.

size, a fact which can be used to aid experimental de-
sign. Other authors have noted this with traditional
differential expression analysis and made similar rec-
ommendations [40–42]. Moreover, we demonstrate the
usefulness of the likelihood ratio test for ∆HEB using
homeolog expression (RNA-seq) data derived from a
polyploid plant. While we have developed this test for
the purpose of analyzing changes in expression pat-
terns of homeologous genes, we emphasize that the
methods are suitable for the expression analysis of any
two genes (they need not be homeologs) across any two
conditions.

Appendix 1: Estimation of aggregation
parameters

Due to the typically small number of replicates in
RNA-seq experiments, accurate estimation of the ag-
gregation parameter is not realistic on a gene-by-gene
basis [34, 43]. Instead, we use the mean-variance rela-

tion of a negative binomial distribution, namely,

σ2 = µ+
1

r
µ2 , (17)

to compute an aggregation parameter r for each exper-
imental replicate, after rescaling to account for each
replicates sequencing depth.

In brief, let xij denote the count data for the jth
pair of homeologous genes obtained for experimental
replicate i ∈ {1, 2, . . . , n}. For each of the n replicates,
we produce an auxiliary data set (yik,j) by rescaling
the count data for all replicates as though each were
obtained in an experiment with the sequencing depth
of replicate k,

yik,j =
dk
di
xij . (18)

For each gene (j), we compute a scaled mean (µk,j)
and variance (σ2

k,j) of yik,j over replicates (i). To ob-
tain the aggregation parameter rk, we perform a non-
linear least squares fit of the observed mean-variance
relation across all genes. That is, rk minimizes the sum
of squares error,

E =
∑
j

(
σ2
k,j − µk,j −

1

rk
µ2
k,j

)2

. (19)

Appendix 2: Numerical scheme for
maximum likelihood estimation

For the analysis of both HEB and ∆HEB, parameter
values maximizing the likelihood functions L̂0 and L̂1

were obtained using the built-in MATLAB command
fsolve applied to Eqs. 7–9 and 14–16. In both cases,
the numerical procedure was facilitated by changing
variables from (λ, ω) to (v, y) through

λ = ev−y

ω = e2y ,

that is, v = lnλ + y and y = (lnω)/2. This ensures
positivity of λ and ω and leads to a system of equations
that is symmetric in λa ↔ λb. The new variable v is
the logarithm of the geometric mean of the expression
levels λa = λ and λb = ωλ,

v = ln
√
λaλb = ln

√
λ · ωλ ,

that is, λa = λ = ev−y and λb = ωλ = ev+y. The
transformed partial derivatives used to maximize the
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log-likelihood lnL1 (Eqs. 7–8) are

0 =
∂ lnL1

∂v
=
∑
i

Bi(v, y) +Ai(v, y) (20)

0 =
∂ lnL1

∂y
=
∑
i

Bi(v, y)−Ai(v, y) (21)

where

Ai(v, y) = ai −
(ai + ri)e

v−y`adi
ev−y`adi + ri

(22)

Bi(v, y) = bi −
(bi + ri)e

v+y`bdi
ev+y`bdi + ri

. (23)

The transformed partial derivative used to maximize
lnL0 are found by substituting y = 0 in Eq. 20,

0 =
∂ lnL0

∂v
=
∑
i

Bi(v, 0) +Ai(v, 0) .

For the analysis of ∆HEB, the partial derivatives used
to maximize lnL1 are two uncoupled systems of the
form of Eq. 20–23, one for each experimental condition
(k = 1 and 2),

0 =
∂ lnL1

∂vk
=
∑
i

Bk,i(vk, yk) +Ak,i(vk, yk)

0 =
∂ lnL1

∂yk
=
∑
i

Bk,i(vk, yk)−Ak,i(vk, yk)

where

Ak,i(v, y) = ak,i −
(ak,i + rk,i)e

v−y`adi
ev−y`adi + rk,i

Bk,i(v, y) = bk,i −
(bk,i + rk,i)e

v+y`bdi
ev+y`bdi + rk,i

.

For the null hypothesis y2 = y1 = y we numerically
solve a system of three equations, including

0 =
∂ lnL0

∂vk
=
∑
i

Bk,i(vk, y) +Ak,i(vk, y)

for k = 1 and 2. These are coupled via

0 =
∂ lnL0

∂y
=
∑
k

∑
i

Bk,i(vk, y)−Ak,i(vk, y) .

Appendix 3: Experimental methods

Plant tissues were collected from second generation
inbred Mimulus luteus. All plants were grown in a
greenhouse under a 16 hour light regiment at 21◦C

and 30% humidity. Petal tissue was collected from
the corolla of a flower bud near blooming, and leaf
tissue came from young leaves adjacent to the stem
apical meristem. Five replicates of each tissue type
were collected, at the same time of day, from different
individuals. Approximately 100–200 mg of plant tis-
sue was immediately placed into liquid nitrogen. RNA
was extracted by grinding frozen tissue with pestles in
PureLink R© Plant RNA Reagent from AmbionTM. Col-
umn isolation of RNA was subsequently performed us-
ing Direct-zolTM RNA MiniPrep Plus Kit from Zymo
Research. Libraries were constructed using KAPA
Stranded mRNA-Seq Kit. During library construction,
sequence specific Illumina TruSeq R© adapters were
added to distinguish each library. Using an Agilent
2100 Bioanalyzer, average fragment lengths were de-
termined to be between 230 and 300 bp. Libraries were
then pooled and sequenced by the Duke Center for
Genomic and Computational Biology on an Illumina
HiSeq 2500 instrument. The resulting reads (50 base
pair, single end) were mapped to the M. luteus genome
using bowtie2 [44] with the --very-sensitive-local
option. Reads to exonic regions were counted using
htseq-count [45] with the default settings (minimum
alignment quality of 10 on the phred scale).

Availability of data and materials

Sample MATLAB code and the data used in ∆HEB analysis can be found

on the Mathworks file exchange, submission number 62502:

https://www.mathworks.com/matlabcentral/fileexchange/62502. Raw

sequence reads are available on the NCBI SRA under accession number

PRJNA380107: https://www.ncbi.nlm.nih.gov//bioproject/PRJNA380107.
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26. Gallardo, M.H., González, C.A., Cebrián, I.: Molecular cytogenetics

and allotetraploidy in the red vizcacha rat Tympanoctomys barrerae

(Rodentia, Octodontidae). Genomics 88, 214–221 (2006)

27. Rivera, A.S., Pankey, M.S., Plachetzki, D.C., Villacorta, C., Syme,

A.E., Serb, J.M., Omilian, A.R., Oakley, T.H.: Gene duplication and

the origins of morphological complexity in pancrustacean eyes, a

genomic approach. BMC evolutionary biology 10(1), 123 (2010)

28. Hardison, R.C.: Evolution of hemoglobin and its genes. Cold Spring

Harbor perspectives in medicine 2(12), 011627 (2012)

29. Hu, C., Lin, S.-y., Chi, W.-t., Charng, Y.-y.: Recent gene duplication

and subfunctionalization produced a mitochondrial GrpE, the

nucleotide exchange factor of the Hsp70 complex, specialized in

thermotolerance to chronic heat stress in arabidopsis. Plant physiology

158(2), 747–758 (2012)

30. Remnant, E.J., Good, R.T., Schmidt, J.M., Lumb, C., Robin, C.,

Daborn, P.J., Batterham, P.: Gene duplication in the major insecticide

target site, rdl, in drosophila melanogaster . Proceedings of the

National Academy of Sciences 110(36), 14705–14710 (2013)

31. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for

transcriptomics. Nature Reviews Genetics 10, 57–63 (2009)

32. Soneson, C., Delorenzi, M.: A comparison of methods for differential

expression analysis of RNA-seq data. BMC Bioinformatics 14(91)

(2013)

33. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome

Biology 15(550) (2014)

34. Anders, S., Huber, W.: Differential expression analysis for sequence

count data. Genome Biology 11(R106) (2010)

35. Grover, C.E., Gallagher, J.P., Szadkowski, E.P., Yoo, M.J., Flagel,

L.E., Wendel, J.F.: Homoeolog expression bias and expression level

dominance in allopolyploids. New Phytologist 196, 966–971 (2012)

36. Wilks, S.S.: The large sample distribution of the likelihood ratio test for

testing composite hypotheses. Ann. Math Statist. 9(1), 60–62 (1938)

37. Edger, P.P., Smith, R.D., McKain, M.R., Cooley, A.M., Vallejo-Marin,

M., Yuan, Y., Bewick, A.J., Ji, L., Platts, A.E., Bowman, M.J., et al.:

Subgenome dominance in an interspecific hybrid, synthetic

allopolyploid, and a 140 year old naturally established neo-allopolyploid

monkeyflower. The Plant Cell 29(9)

38. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a

practical and powerful approach to multiple testing. Journal of the

royal statistical society. Series B (Methodological), 289–300 (1995)

39. Groppe, D.M.: Benjamini & Hochberg/Yekutieli false discovery rate

control procedure for a set of statistical tests (2015). https:

//www.mathworks.com/matlabcentral/fileexchange/27418-fdr-bh

Accessed 6 Dec 2017

40. Liu, Y., Zhou, J., White, K.P.: RNA-seq differential expression studies:

more sequence or more replication? Bioinformatics 30(3), 301–304

(2013)

41. Schurch, N.J., Schofield, P., Gierlinski, M., Cole, C., Sherstnev, A.,

Singh, V., Wrobel, N., Gharbi, K., Simpson, G.G., Owen-Hughes, T.,

Blaxter, M., Barton, G.J.: How many biological replicates are needed

in an RNA-seq experiment and which differential expression tool

should you use? RNA 22(6), 839–851 (2016)

42. Roulin, A., Auer, P.L., Libault, M., Schlueter, J., Farmer, A., May, G.,

Stacey, G., Doerge, R.W., Jackson, S.A.: The fate of duplicated genes

in a polyploid plant genome. The Plant Journal 73(1), 143–153 (2013)

43. Robinson, M.D., Smyth, G.K.: Small-sample estimation of negative

binomial dispersion, with applications to SAGE data. Biostatistics

9(2), 321–332 (2008)

44. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with

Bowtie 2. Nature methods 9(4), 357–359 (2012)

45. Anders, S., Pyl, P.T., Huber, W.: HTSeq–a Python framework to work

with high-throughput sequencing data. Bioinformatics, 638 (2014)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/119438doi: bioRxiv preprint 

https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr-bh
https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr-bh
https://doi.org/10.1101/119438
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract

