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Abstract1

Geographically separated populations can convergently adapt to the same selection pressure. Convergent2

evolution at the level of a gene may arise via three distinct modes. The selected alleles can (1) have3

multiple independent mutational origins, (2) be shared due to shared ancestral standing variation, or (3)4

spread throughout subpopulations via gene flow. We present a model-based, statistical approach that utilizes5

genomic data to detect cases of convergent adaptation at the genetic level, identify the loci involved and6

distinguish among these modes. To understand the impact of convergent positive selection on neutral7

diversity at linked loci, we make use of the fact that hitchhiking can be modeled as an increase in the8

variance in neutral allele frequencies around a selected site within a population. We build on coalescent9

theory to show how shared hitchhiking events between subpopulations act to increase covariance in allele10

frequencies between subpopulations at loci near the selected site, and extend this theory under different11

models of migration and selection on the same standing variation. We incorporate this hitchhiking effect12

into a multivariate normal model of allele frequencies that also accounts for population structure. Based13

on this theory, we present a composite-likelihood-based approach that utilizes genomic data to identify loci14

involved in convergence, and distinguishes among alternate modes of convergent adaptation. We illustrate15

our method on genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we16

investigate the adaptation for copper toxicity tolerance in two populations of the common yellow monkey17

flower, Mimulus guttatus. We show that selection has occurred on an allele that has been standing in these18

populations prior to the onset of copper mining in this region. Lastly, we apply our method to data from four19

populations of the killifish, Fundulus heteroclitus, that show very rapid convergent adaptation for tolerance20

to industrial pollutants. Here, we identify a single locus at which both independent mutation events and21

selection on an allele shared via gene flow, either slightly before or during selection, play a role in adaptation22

across the species’ range.23

1 Introduction24

Convergent adaptive evolution, where selection independently drives the evolution of the same trait, demon-25

strates the impressive ability of natural selection to repeatedly shape phenotypic diversity (Losos, 2011).26

Many studies have revealed cases of repeated adaptation resulting from changes in the same molecular27

mechanisms across distinct lineages (Stern, 2013; Wood et al., 2005). Here, we use the term convergence to28

define all cases of repeated evolution of similar traits across independent lineages, and do not distinguish29

between convergent and parallel evolution (Arendt and Reznick, 2008). In some cases, these convergent30

adaptive changes are identical at the level of the same orthologous gene or nucleotide (Martin and Or-31

gogozo, 2013), suggesting adaptation may be more predictable and constrained than previously appreciated.32

Studying repeated evolution has long played a key role in evolutionary biology as a set of replicated natural33

experiments to help build comparative arguments for traits as adaptations, and to identify and understand34

the ecological and molecular basis of adaptive traits (Harvey and Pagel, 1991).35

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2017. ; https://doi.org/10.1101/119578doi: bioRxiv preprint 

https://doi.org/10.1101/119578
http://creativecommons.org/licenses/by/4.0/


While we often think of convergent evolution among long-separated species, populations of the same36

(or closely-related) species often repeatedly evolve similar traits in response to similar selective pressures37

(Arendt and Reznick, 2008). Convergent adaptation at the genetic level among closely related populations38

may arise via multiple, distinct modes (see Stern, 2013, for a recent review). Selected alleles present at the39

same loci in multiple populations can have multiple independent mutational origins (e.g. Pearce et al., 2009;40

Chan et al., 2010; Tishkoff et al., 2007). Alternatively, adaptation in different populations could proceed41

by means of selection on the standing variation present in their ancestor (e.g. Colosimo et al., 2005; Roesti42

et al., 2014), or a single allele spread throughout the populations via gene flow (e.g. Heliconius Genome43

Consortium, 2012; Song et al., 2011). Understanding the source of convergent adaptation can aid in our44

understanding of fundamental questions about adaptation. Distinguishing among these modes may provide45

evidence for how restricted the paths adaptation can take are to pleiotropic constraints and if adaptation is46

limited by mutational input (Orr 2005, for review). Additionally, we can improve our understanding of the47

role of standing variation and gene flow in adaptation (Barrett and Schluter, 2008; Hedrick, 2013; Welch and48

Jiggins, 2014).49

With the advent of population genomic data, it is now possible to detect genomic regions putatively50

underlying recent convergent adaptations. A growing number of studies are sequencing population genomic51

data from closely related populations, in which some have potentially converged on an adaptive phenotype52

(e.g. Turner et al., 2010; Jones et al., 2012). Population genomic studies of convergent evolution often53

take a paired population design, sampling multiple pairs of populations that independently differ in the54

key phenotype or environment. These studies are usually predicated on finding large effect loci which have55

rapidly increased from low frequency to identify the population genomic signal of selective sweeps shared56

across populations that independently share a selective pressure. Regions underlying convergent adaptations57

can potentially be identified by looking for genomic regions where multiple pairs of populations are strongly58

differentiated (e.g. using FST ) compared to the genomic background. Another broad set of approaches59

identify convergent loci by looking for genomic regions where the populations that share an environment60

cluster together phylogenetically in a way unpredicted by genome-wide patterns or geography (e.g. Pease61

et al., 2016; Jones et al., 2012). While these methods have proven useful in identifying loci involved in62

convergent adaptation, currently there are few model-based ways to identify the signal of convergence in63

population genomic data or to distinguish the different modes of convergent adaptation. In the case where64

an allele is shared due to adaptation from standing variation or migration, chunks of the haplotype on which65

the selected allele arose and swept on will also be shared among the populations (Slatkin and Wiehe, 1998;66

Bierne, 2010; Kim and Maruki, 2011; Roesti et al., 2014), providing a useful heuristic for these modes to67

be distinguished from convergent sweeps from independent mutations. We also note there are a variety of68

approaches to detect introgression (see Hedrick, 2013; Racimo et al., 2015; Rosenzweig et al., 2016, for recent69

reviews). However, these methods are not usually focused on detecting sweeps in both populations, but70

rather look for signatures of unusual amounts of shared ancestry between populations. Here, we present71

coalescent theory that leverages these signatures selection has on linked neutral variation in a model-based72

approach. We extend this to a statistical method that utilizes genomic data to identify loci involved in and73

distinguish between modes of genotypic convergence.74

Positive selection impacts neutral diversity at linked loci due to hitchhiking (Maynard Smith and Haigh,75

1974; Kaplan et al., 1989) and can be modeled as an increase in the variance in neutral allele frequencies76

around their ancestral frequencies. We develop coalescent theory to show how shared hitchhiking events77

between subpopulations act to increase covariance in allele frequencies around their ancestral frequencies78

at loci near the selected site, and extend this theory under different models of migration and selection79

on the same standing variation. We incorporate this hitchhiking effect into a multivariate normal model80

of allele frequencies that also accounts for population structure, allowing for the application to data from81

many populations with arbitrary relationships. Based on this theory, we present a composite-likelihood-82

based approach (Kim and Stephan, 2002; Nielsen et al., 2005; Chen et al., 2010; Racimo, 2016) that utilizes83

genomic single-nucleotide polymorphism (SNP) data to identify loci involved in convergence, and distinguish84

among alternate modes of convergent adaptation. As these models are also specified by relevant parameters,85

it is possible to obtain estimates for parameters of interest such as the strength of selection, the minimum age86

and frequency of a standing variant, and the source population of the beneficial allele in cases of migration.87

We also present a parametric-bootstrapping approach to help with model choice and construct confidence88

intervals for our parameters as standard likelihood approaches are not applicable to composite likelihoods.89
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This method should be of wide use with the increase in population genomic samples from across the90

geographic range of a species. Here, we illustrate the utility of our inference method by applying it to91

genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we investigate the92

basis of the convergent adaptation observed across populations of the annual wildflower Mimulus guttatus to93

copper contaminated soils from two populations sampled near Copperopolis, California (Wright et al., 2015).94

We find selection has been acting on standing variation shared between these populations for a tolerance95

allele present prior to the onset of copper mining in this region. To further exemplify the flexibility of our96

method, we study a more complex population scenario: the rapid adaptation of four populations of killifish97

(Fundulus heteroclitus) to high levels of pollution, sampled across the Eastern seaboard of the United States98

(Reid et al., 2016). We find that even at the level of a single gene, both convergent mutation and selection99

on an allele shared via gene flow, either slightly before or during selection, have played a role in adaptation100

in this species.101

2 Models102

In the following section, we present models for the three modes of genotypic convergent adaptation: (1)103

multiple independent mutations at the same locus, (2) selection on shared ancestral standing variation, and104

(3) migration between populations spreading a beneficial allele (Figure 2). Throughout this section, we105

compare our derived expectations to coalescent simulations using mssel, a modified version of ms (Hudson,106

2002) that allows for the incorporation of selection at a single site. This simulation program takes as input107

the frequency trajectory of the selected allele for each population. We simulate stochastic trajectories of108

the selected allele in populations following our three modes of convergence (see Appendix A.2 for simulation109

details). We focus on a set of four populations as shown in Figure 1 where populations 2 and 3 are adapted110

to a shared novel selection pressure and populations 1 and 4 are in the ancestral environment. The average111

coancestry coefficient values across simulations, estimated as described in Appendix A.1, are plotted for 100112

bins of recombination distance away from the selected site, which occurs at distance 0. The results for all113

three models are shown in dashed lines in Figure 3.114

2.1 Null Model115

We aim to model the variances and covariances of the neutral allele frequencies within and between popula-116

tions due to convergent sweeps. First, we must specify a null model that accounts for population structure.117

Populations will have some level of shared deviations away from an ancestral allele frequency, ε, due to shared118

genetic drift. Let xi represent the present day allele frequency in population i (Figure 1). We denote the119

deviation of this frequency from the ancestral frequency by ∆xi = xi−ε. Genetic drift, in expectation across120

loci, does not change the population allele frequencies (i.e. E[∆xi] = 0) as an allele increases or decreases121

in frequency with equal probability. Drift however does act to increase the variance in this deviation across122

loci, with this variance increasing as more time is allowed for drift. The variance in the change of neutral123

allele frequencies in population i is124

Var[∆xi] = E[∆x2
i ] = ε(1− ε)fii (1)

where fii can be thought of as the genetic drift branch length leading from the ancestral population to125

population i (Nicholson et al., 2002), specifying how much allele frequencies in population i deviate from126

their ancestral values (Figure 1). By rearranging Equation 1, fii can be interpreted as the population-specific127

FST for population i relative to the total population, here represented by the ancestral population (Wright,128

1943, 1951; Weir and Hill, 2002; Nicholson et al., 2002).129

Populations covary in their deviations from ε as some populations are more closely related due to shared130

genetic drift resulting from shared population history or gene flow. The covariance in this deviation between131

populations i and j is132

Cov[∆xi,∆xj ] = E[∆xixj ] = ε(1− ε)fij (2)

where fij is interpreted as the coancestry coefficient between populations i and j, and can be thought of as133

the shared branch length connecting i and j to the ancestral population (Figure 1).134
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Other natural interpretations of fii and fij follow from these definitions. Specifically, these values are135

probabilities of a pair of lineages being identical by descent relative to the ancestral population, i.e. the136

probability two sampled lineages coalesce before reaching the ancestral population (see Thompson, 2013, for137

a recent review). We briefly review this coalescent interpretation in Appendix A.1. For fii these two lineages138

are sampled both from population i. For fij , one lineage is sampled from population i and the other from139

population j. We note that in practice we do not get to observe the ancestral frequency, nor may the history140

of our populations be well represented by a tree-like structure (for instance the history of our populations141

may be reticulated). However, for the sake of clarity, we proceed with these assumptions and deal with these142

complications in the implementation of the method.143

Figure 1: Present day population allele frequencies at a given neutral locus (x1–x4 for populations 1–4,
respectively) are derived from ancestral allele frequency ε. Each population has a coancestry coefficient
proportional to the amount of drift experienced since the split from the ancestral population. f11 is shown
for population 1. Here, populations 1 and 2, and 3 and 4 share drift relative to the ancestral population and
have nonzero coancestry coefficients f12 and f34, respectively. Blue diamonds represent the novel selective
environment and red circles the ancestral environment. Note that branch lengths are not proportional to
time in generations (unless there is no migration and the amount of drift is small).

We define a matrix, F, for K populations as a K ×K matrix of coancestry coefficients. For example, for
the four populations shown in Figure 1, this matrix takes the following form:

F =


f11 f12 0 0

f12 f22 0 0

0 0 f33 f34

0 0 f34 f44


Populations i and j that split after the ancestral population and share no additional drift (e.g. populations144

1 and 3) have fij = 0 by definition.145

2.2 Incorporating selection146

Positive selection impacts neutral diversity at linked loci due to hitchhiking. As the beneficial allele increases147

rapidly in frequency, so does the haplotype on which it arose. Neutral alleles further from the selected site148

may recombine off the selected background during the sweep, whose duration depends on the strength of149

selection (s) and weakly on the effective population size (Ne). The effect of hitchhiking on the changes of150

linked neutral allele frequencies is similar to that of genetic drift. Hitchhiking does not alter the expected151

frequency change of linked neutral alleles across loci (i.e. E[∆xi] = 0) because the selected mutation arises152

on a random haplotypic background. Moreover, hitchhiking increases the variance in the deviation in neu-153

tral allele frequencies away from their ancestral values (Var[∆xi]) at linked sites (Gillespie, 2000). Shared154

hitchhiking events between subpopulations will act to increase covariance in allele frequency deviations be-155

tween subpopulations (Cov[∆xi, ∆xj ]) at loci near the selected site. This effect of hitchhiking on linked156

diversity, within and among populations gives us a way to distinguish among alternate modes of convergent157

adaptation.158

We define new matrices of coancestry coefficients that incorporate selection in addition to drift as F(S).159

In the following section, we use a coalescent approach to derive coancestry coefficients within and between160
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populations, f
(S)
ii and f

(S)
ij , for the three modes of genotypic convergent adaptation (Figure 2). In Supplement161

S2 we derive some of the same results forwards in time to help guide the reader’s intuition. For all models,162

we assume the beneficial allele has gone to fixation in all selected populations recently. Note that all our163

models of selection are phrased in terms of distortions to the neutral matrix F; therefore, the precise source164

of the neutral population structure (e.g. whether its due to shared population history or migration) is165

relatively unimportant to our approach. A deeper knowledge of the basis of this structure does add to the166

interpretation of the results, as we explain in the discussion.167

(a) Independent mutations model (b) Standing variant model (c) Migration model

Figure 2: Trajectories of the beneficial allele (red) for the three modes of convergent adaptation. Populations
i and j are under selection with present-day allele frequencies xi and xj at a neutral locus, derived from an
ancestral population with allele frequency ε. The populations share some amount of drift proportional to fij
before reaching the ancestral population. (2a) Beneficial mutations, indicated by the orange triangles, occur
independently in the selected populations after they have become isolated. Selection begins, indicated by the
blue triangles, once the beneficial allele is present in the population. The beneficial allele sweep to fixation
in ts generations. (2b) The beneficial allele is standing at frequency g in the ancestral population. After the
selected populations split, it is still standing at frequency g for t generations prior to the onset of selection.
(2c) The beneficial allele arises in population i and begins sweeping in population i. Meanwhile, there is a
continuous low level of migration from population i into population j. The beneficial allele establishes in j
after δ generations, where it is swept to fixation in ts generations.

2.2.1 Independent mutation model168

We first consider the case when a beneficial allele arises independently via de novo mutations at the same169

locus, or tightly linked loci, in both of the selected populations. We expect hitchhiking to increase the170

variance in neutral allele frequency deviations around the selected site in both populations. However, as the171

sweeps are independent and there is no gene flow between populations during or after the sweep, we expect172

no covariance in the neutral allele frequency deviations between these populations, beyond that expected173

under neutrality due to shared population history prior to the introduction of the beneficial allele.174

Moving backward in time, sampled neutral lineages linked to the selected site will be forced to coalesce175

if both lineages do not recombine off the sweep. We define the probability that a single neutral allele fails to176

recombine off the background of the beneficial allele during the sweep phase as y, which we can approximate177

as178

y ≈ e−rts/2 (3)

(Kim and Stephan, 2002; Durrett and Schweinsberg, 2004; Nielsen et al., 2005) where r is the recombination179

rate between the neutral locus and selected site, and ts is the amount of time the sweep phase takes (Figure180

2a). When the beneficial allele arises from a new mutation and selection is additive, ts ≈ 2log(4Nes)/s, where181

s is the selection coefficient for the heterozygote, such that heterozygotes experience a selective advantage182

of s and homozygotes 2s (Gillespie, 2000; Barton, 1998). The factor of 4Nes is due to the fact that our new183

mutation, if it is to establish in the population, rapidly reaches frequency 1/(4Nes) in the population and184

then increases deterministically from that frequency (Maynard Smith, 1971; Barton, 1998; Kim and Stephan,185

2002; Kim and Nielsen, 2004).186
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(a) Independent mutations model
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(b) Standing variant model
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(c) Migration model

Figure 3: We calculated the average coancestry co-
efficient values across 1000 runs of simulations for
each of 100 bins of distance away from the selected
site to compare our simulation results (dashed lines)
to our theoretical expectations (solid lines). (3a)
Average coancestry coefficients under the indepen-
dent mutations model (Ne = 100, 000) within a se-
lected population (population 2) with varying s. Also
shown is the coancestry coefficient between selected
populations which in this case is 0, the neutral ex-
pectation. (3b.) Coancestry coefficients under the
standing variation model between selected popula-
tions with varying amount of time beneficial allele
has been independently standing in populations (t).
The coancestry coefficient within a single population
is also shown for t = 50. For all, Ne = 10, 000,
g = 0.001, s = 0.01. (3c) Coancestry coefficients un-
der the migration model, within both selected popula-
tions (source population 2 and recipient population 3)
as well as between source and recipient (2,3) and be-
tween recipient and a non-selected population (1,3).
Here we are showing one set of parameters (s = 0.01,
m = 0.001, Ne = 10, 000) as estimates do not vary
dramatically with changing m (see Figure S2).
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The coancestry coefficient in population i that experiences a sweep, f
(S)
ii , is defined as the probability187

that two lineages sampled from population i coalesce either due to the sweep phase or neutrally before188

reaching the ancestral population. With probability y2, both lineages fail to recombine off the beneficial189

background during the sweep, and they will be forced to coalesce. If one or both lineages recombines off the190

sweep (with probability 1− y2), they can coalesce before reaching the ancestral population with probability191

fii. Combining these we find192

f
(S)
ii = y2 + (1− y2)fii (4)

For convenience, in our inference procedure, we assume the same strength of selection between our selected193

populations and thus duration of the sweep is the same. So, f
(S)
jj takes the same form as Equation 4, with194

its own neutral probability (fjj) of coalescing. Given that we assume the sweeps complete recently and have195

the same duration, the mutational events occur at approximately the same time in each selected population.196

If we assume there is no neutral migration amongst populations, Equation 4 will hold regardless of where197

the sweep occurs on the branch leading to i (but when migration occurs we need the sweep to be recent so198

that lineages sampled from population i are found in population i when the sweep occurs).199

For the coancestry coefficient between two selected populations i and j, we can calculate the probability200

two lineages, one sampled from population i and the other from population j, coalesce. When the sweeps201

are independent, the lineages can only coalesce with probability fij before reaching the ancestral population,202

as they have no probability of coalescing during the sweep phases which have independent origins. Thus,203

f
(S)
ij = fij (5)

Comparison to simulated data In Figure 3a we show the case of convergence due to independent204

origins of the beneficial allele. As we predicted, there is no additional coancestry between the selected205

populations. Additionally, we show how the coancestry within a selected population decays with distance206

from the selected site for a range of values for the strength of selection. These coancestry values decay to the207

neutral expectation at other regions of the genome. With larger s, this decay is slower as the sweep occurs208

more rapidly and there are fewer chances for recombination to occur during this time.209

2.2.2 Standing variant model210

We turn now to the case of a sweep shared between populations i and j due to selection acting on shared211

ancestral variation (Figure 2b). Our model is appropriate for cases where the standing variation from which212

the sweep arises was previously neutral or was maintained in the population at some low frequency by213

balancing selection. Let the beneficial allele be standing at frequency g in the ancestral population. We214

assume that the beneficial allele frequency does not deviate much from that of the ancestral population215

such that it is still g in the daughter populations prior to selection. Selection favoring the beneficial alleles216

begins t generations after the populations split and the beneficial allele reaches fixation in both populations217

after ts generations (see Figure 2b). We assume t, g, and s are the same for all of our selected populations.218

More work is needed to allow population-specific parameters to relax these assumptions. We acknowledge219

all selected populations starting from the same beneficial allele frequency may be unrealistic in many cases,220

particularly if t is long or if the populations experience bottlenecks at the time of the split.221

We first consider the coalescent process of two lineages within a single selected population. Again, y is222

the probability that a neutral lineage fails to recombine off the background of the beneficial allele during the223

sweep phase. Given that the beneficial allele is increasing from frequency g, y takes the same form as Equation224

3, where now ts ≈ 2 log(1/g)/s. If both lineages fail to recombine off the beneficial background during the225

sweep, there is a probability of coalescing during the standing phase that is higher than the probability of two226

neutral lineages randomly sampled from the population coalescing. Following from our assumptions during227

the standing phase, the rate at which two lineages coalesce within a population is 1/(2Neg) per generation.228

Alternatively, a lineage can recombine off in the standing phase onto the other background with probability229

r(1− g) ≈ r per generation. As these are two competing exponential processes, the probability two lineages230

coalesce before either recombines off the beneficial background can be simplified to231

P(coalesce in standing phase) =
1

1 + 4Nerg
(6)
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as described by Berg and Coop (2015). If either neutral lineage recombines off the beneficial background232

before they coalesce, the probability of coalescing with the other lineage before reaching the ancestral popu-233

lation can be treated as the coancestry coefficient associated with that particular portion of the population234

tree.235

Taking these approximations into account, we derive a coancestry coefficient for a neutral allele in pop-236

ulation i that experiences selection from standing variation as237

f
(S)
ii = y2

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fii

)
+ (1− y2)fii (7)

The first term corresponds to both lineages failing to recombine off the beneficial background during the238

sweep phase, which puts them both on the same background as the beneficial allele in the standing phase.239

Now, the two lineages can either coalesce in the standing phase or recombine off of the background of the240

beneficial allele where they can coalesce neutrally before they reach the ancestral population. Alternatively,241

one or both lineages can recombine off during the sweep phase and again they can coalesce neutrally.242

Populations that share a sweep due to shared standing ancestral variation will have increased covariance243

in the deviations of neutral allele frequencies around their ancestral means around the selected site since244

they will have a shared segment of the swept haplotype. From a coalescent perspective, this occurs because245

two lineages sampled from each population have a higher probability of coalescing if they stay on the246

beneficial background during the sweep and standing phases than two lineages sampled randomly between247

the populations.248

The probability that a single lineage does not recombine off onto the non-beneficial background during249

the standing phase for t generations can be approximated as250

(1− rt) = (1− r(1− g))t ≈ e−rt (8)

The coancestry coefficient between populations i and j is now251

f
(S)
ij = y2

(
(1− rt)2

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fij

)
+ (1− (1− rt)2)fij

)
+ (1− y2)fij . (9)

This derivation follows from that of f
(S)
ii in Equation 7, but now incorporates the additional probability252

(1−rt)2 of both lineages failing to recombine off the beneficial background during their independent standing253

phases for time t.254

This standing variation case represents a simple model of selection on standing variation However, we255

expect in many cases that the beneficial allele has not been standing since the ancestral population of256

the convergent population, but rather has been moved among populations by migration before becoming257

adaptive at some later time point. In these cases we invoke a model where the standing allele spreading by258

migration from some source population to recipient populations t generations in the past before the allele259

became favored. See Appendix A.4 for details. This model differs from the migration model presented in the260

next section in which we assume a continuous rate of migration throughout the duration of the sweep and261

that the variants sweep as soon as they are established in the population. In this standing case with a source262

of the standing variant, moving backwards in time we assume that the allele is standing for t generations in263

a population after the sweep and before the beneficial lineage migrates back instantly into a specified source264

population (see Figure 11). Biologically, it naturally captures the case where the allele is shared between the265

populations due to migration but is standing for sometime before it sweeps. For data analysis, we default266

to using this more complex model, where sampled selected populations are evaluated as possible sources of267

the standing variant.268

Extending this models to allow for the source to be a non-sampled population would be useful in studying269

the so-called “the transporter hypothesis” (Schluter and Conte, 2009; Bierne et al., 2013; Welch and Jiggins,270

2014) where adaptive gene flow is acting to introduction variation standing in another population. Here,271

more work is needed to address issues related to estimating coancestry coefficients for unsampled populations272

(see Appendix A.4 for more information).273

Comparison to simulated data In Figure 3b we show comparisons of simulations to show the fit of274

our predictions to simulations with adaptation from standing variation in the classic sense. As the duration275
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of the independent standing phases, t, increases, the coancestry at linked neutral alleles between selected276

populations decreases. Forward in time, this has the interpretation that the longer the beneficial allele277

is standing in the populations, the shorter the shared haplotype between the populations will be due to278

independent recombination events before selection begins. In the case that the beneficial allele has been279

standing for a very long time (t→∞) before selection occurs, this additional covariance will reduce to zero280

as in the independent sweeps case (Equation 5). We acknowledge this scenario is biologically unrealistic.281

For large values of t at small g, we expect it is likely that the allele would get either be lost or there may be282

allelic turnover due to recurrent mutations of the beneficial allele. However, it is useful here to gain intuition283

about when our models overlap. Conversely, if the standing variant is very young (t → 0), the decay in284

covariance between populations takes the form of the variance within populations (Equation 7) which, as we285

will see in the next section, looks similar to the pattern generated under the migration model.286

2.2.3 Migration model287

We now consider the case where the selected allele is spread across sub-populations by migration. This288

scenario has been studied by a number of authors (Slatkin and Wiehe, 1998; Santiago and Caballero, 2005;289

Kim and Maruki, 2011, note these all assume that the allele sweeps in all of the populations), and our290

approach here follows similar lines to that of Kim and Maruki (2011). Let there be a single origin of the291

beneficial allele, which occurs in population i. We assume a low, continuous level of migration during the292

sweep, with a proportion m of individuals in population j coming from population i each generation. Here293

we are considering only unidirectional migration from population i into population j. We say the sweep294

began in population j at time ts generations in the past and at time ts+ δ for population i (Figure 2c). Kim295

and Maruki (2011) found that the mean delay time, δ, between the two sweeps can be approximated by296

δ ≈ 1

s
log
(

1 +
s

m

)
. (10)

The coancestry coefficient of the source population, f
(S)
ii , follows that of a population experiencing an297

independent sweep from new mutation (Equation 4). To derive the coancestry coefficient of the recipient298

population, f
(S)
jj , we first need to consider the fate of two lineages sampled in population j at the selected299

site. Two events can occur if we trace the lineages of two beneficial alleles back in time: either the two300

lineages coalesce in population j and a single lineage migrates back into population i or the two lineages301

independently migrate back into the source population and coalesce there. We define the probability of these302

two events as Q and 1−Q, respectively. We use the approximation303

Q ≈ 1

1 + 4Nm
(11)

(see Pennings and Hermisson, 2006). Assuming m is small, such that a beneficial allele sampled at present304

day in population j migrates back into population i approximately ts generations in the past, the probability305

of a linked neutral allele recombining off during the sweep phase in population j can be approximated by y.306

If the lineage migrates back into population i before it recombines off the beneficial background, there is an307

additional time δ in population i for recombination to happen. So, there is an additional probability, e−rδ,308

of recombination of our linked neutral allele off the beneficial background.309

Thus, the coancestry coefficient for the recipient population is now310

f
(S)
jj = Q

(
y2+(1−y)2fjj+2y(1− y)fij

)
+(1−Q)

(
y2e−2rδ+y2(1−e−2rδ)fii+2(1−y)yfij+(1−y)2fjj

)
(12)

The terms in this approximation correspond to the following coalescent scenarios: First, if two lineages311

sampled in population j coalesce before migrating (with probability Q), then linked neutral alleles can312

coalesce either during the sweep if neither lineage recombines off the beneficial background, neutrally in313

population j if both lineages recombine off, or neutrally shared drift phase of populations i and j if just one314

lineage recombines off. Alternatively, if the two lineages fail to coalesce before one or both migrates (w.p.315

1−Q), there are four ways linked neutral alleles can coalesce:316

1. Both lineages fail to recombine off the beneficial background during the sweep and are forced to317

coalesce during the sweep in population i. The factor e−2rδ represents the additional opportunity for318

recombination when both lineages have migrated back into population i.319
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2. Both lineages stay on the beneficial background in population j (w.p. y2) but one or both lineages320

recombines off in population i (w.p. 1 − e−2rδ) and they coalesce neutrally in the source population321

with probability fii before reaching the ancestral population.322

3. Either lineage recombines off the beneficial background while it is still in population j and the two323

lineages coalesce neutrally in the shared drift phase of populations i and j, with probability fij before324

reaching the ancestral population.325

4. Both lineages recombine off during the sweep phase while they are still in population j and they coalesce326

neutrally with probability fjj .327

When a beneficial allele is shared between populations i and j via migration, there will be additional328

covariance in the deviations of linked neutral allele frequencies from their ancestral means. In this case,329

there are three ways a lineage sampled from population i and a lineage sampled from population j can330

coalesce. They are forced to coalesce during the sweep if both lineages fail to recombine off the background331

of the sweep, which occurs with probability y2e−rδ. Alternatively, the lineage sampled in population j can332

recombine off the beneficial background before it migrates back to source population i, in which case the333

lineages can coalesce neutrally before reaching the ancestral population in their shared drift phase, with334

probability fij . Lastly, if the lineage sampled in population j migrates back into population i then the335

two sampled neutral lineages can coalesce neutrally in population i with probability fii if the lineages don’t336

coalesce due to the sweep (i.e. either recombines off in time tS or δ). Thus, in the case of continuous337

migration the coancestry coefficient between the source and recipient population is338

f
(S)
ij = y2e−rδ + (1− y)fij + y(1− ye−rδ)fii (13)

To fully specify the coancestry matrix with selection, we need to take into account the effect migration339

has on non-selected populations. Specifically, the coancestry coefficients between recipient and non-selected340

populations are impacted since there is some probability linked neutral lineages will migrate from the recipient341

population into the source population backwards in time. Let population k be a non-selected population.342

Now, the coancestry coefficient between populations j and k can be expressed as343

f
(S)
jk = (1− y)fjk + yfik (14)

This is informative about the direction of migration. First, there is no impact of selection on the re-344

lationship between the source and non-selected populations. Additionally, the sweep shared via migration345

will induce additional coancestry between j and k if k is more closely related to our source population (e.g.346

population 1 in Figure 1 if population 2 is the source). The opposite is true if k is more closely related to347

our recipient population (e.g. population 4). Now, there is a deficit in the background level of coancestry348

between populations j and k near the selected site.349

Comparison to simulated data In Figure 3c we show our results above compared to simulations with350

continuous migration during the sweep phase, for a single set of parameters (s = 0.01, m = 0.001). Here,351

we have migration occurring from population 2 into population 3. We show the four relevant coancestries352

as a function of distance from the selected site: the covariance within source (f
(S)
22 ), within recipient (f

(S)
33 ),353

between source and recipient (f
(S)
23 ), within recipient and a non-selected population (f

(S)
13 ). We see the354

coancestry within the recipient population decays more rapidly than coancestry within the source population.355

This fits our expectations as there is some probability a lineage will, backwards in time, migrate back to the356

source population, decreasing the probability of coalescing before reaching the ancestral population when357

m is small. As m increases, this relationship changes (Figure S2). We also see increased coancestry near358

the selected site between the selected populations. The pattern of decay varies from that observed in our359

standing variation model, except for when t is small. Additionally, we see increased coancestry between360

the recipient population and a non-selected population that decays with recombinational distance to their361

neutral expectation. Note, the reverse, coancestry recovering to the neutral expectation with recombinational362

distance is observed for populations that initially are more related to the recipient population (i.e. population363

4), is also seen (Figure S3a). The coancestries between the source population and non-selected populations364

are unaffected (Figure S3b). Together, these observations using information from non-selected populations365

help distinguish possible source populations.366
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3 Inference367

We have described how selection at linked loci affects the matrix of coancestry coefficients, allowing us to368

parameterize the variance and covariance in neutral allele frequency deviations within and between popu-369

lations. To estimate the likelihood of our data under convergent adaptation models, we need a probability370

model for how allele frequencies depend on these variances and covariances. Neutral allele frequencies across371

K populations can approximately be modeled jointly as a multivariate normal distribution around the an-372

cestral allele frequency, ε, with covariance proportional to the coancestry coefficients (Nicholson et al., 2002;373

Weir and Hill, 2002; Coop et al., 2010; Samanta et al., 2009). Specifically,374

~x ∼ N
(
ε~1, ε(1− ε)F

)
(15)

where ~x is a vector of population frequencies and F is the K by K matrix of coancestry coefficients without375

selection.376

Above we demonstrated that we can generate coancestry matrices F(S) to explain the coancestry between377

multiple populations due to neutral processes and various modes of convergent adaptation. F(S) is a function378

of the neutral coancestry, (F) the model of convergence (M) and its parameters (ΘM ), and the recombination379

distance a neutral site is away from a selected site (rl). Thus, modeling neutral allele frequencies as multi-380

variate normal with covariance proportional to this new coancestry matrix, we can calculate the likelihood381

of observed data a given distance away from the selected site under a specific model of convergence as382

P (~xl | rl, F, M, ΘM ) ≈ N
(
~xl | εl~1, εl(1− εl)F(S)(rl, F, M, ΘM )

)
(16)

In practice, we do not know the true ancestral mean at a given locus, εl, so we use the mean of the383

present day population allele frequencies and calculate likelihoods of mean-centered allele frequencies and384

coancestry matrices (we account for this mean centering in appendix A.2.6). We also do not know the true385

neutral coancestry matrix, F, but estimate it from deviations of allele frequencies from sample means across386

the entire genome. We also incorporate the effects of sampling into this variance-covariance matrix. See387

appendix A.1 for details.388

3.1 Composite-likelihood framework389

We calculate the likelihood of all data (D`) in a large window around the selected site (`) under a given390

model of convergent adaptation (M), with its associated parameters (ΘM ), as the product of the marginal391

likelihoods for sites all distances away from the selected site. This composite likelihood is used as an392

approximation to the total likelihood of all sites, but is not a proper likelihood as neighboring sites are393

correlated due to shared histories. Moving Lleft sites to the left of the proposed selected site and Lright sites394

to the right,395

LC(M, ΘM ; D`) =

Lleft∏
i=1

P (~xi |M,F
(S)
M (ri, F, M, ΘM ))

Lright∏
j=1

P (~xj | F(S)
M (rj , F, M, ΘM )) (17)

where ri is the genetic distance from site i to `, and similarly for rj . We can also obtain a composite396

likelihood of our data under a neutral model (N), LC(N ; D`), which is only parameterized by F. This397

framework enables us to:398

1. Identify the maximum likelihood location of the selected locus in a region by varying the location of the399

proposed selected site. For a given region and model of convergent adaptation we vary the location of400

the selected site, taking the maximum composite likelihood over a grid of parameters. We take as our401

best estimate of the location under a given model of convergence, the maximum composite-likelihood402

location of the selected site
(̂̀= argmax

`, ΘM

LC(M, ΘM ; D`)
)
.403

2. Determine the parameter(s) which maximize our composite-likelihood estimates under a given model404

at a given location of the selected site (`). We obtain these maximum composite-likelihood estimate405
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(MCLE) parameters by evaluating the composite likelihood across a grid of parameters for a given406

location of the selected site
(
Θ̂M = argmax

ΘM

LC(M, ΘM ; D`)
)
.407

3. Distinguish between modes of convergence, and neutrality, in a genomic region by comparing the408

maximum likelihood under various models of convergent evolution. At a given location of the se-409

lected site (`) we compare the maximum composite likelihood of each model to the neutral model410 (
log
(
LC(M, Θ̂M ; D`)

/
LC(N ; D`)

))
.411

This composite likelihood ignores the correlation in allele frequencies (linkage disequilibrium) between412

neutral sites so the composite-likelihood surface will be too peaked. A number of authors have taken413

composite-likelihood approaches to inferring a range of population genetic parameters (e.g. Hudson (2001);414

see Larribe and Fearnhead (2011); Varin et al. (2011) for a broader statistical views on composite likelihood).415

In the setting of inferring genome-wide parameters, e.g. parameters of neutral demographic models, the416

maximum composite-likelihood parameter estimates are known to be consistent in the limit of many unlinked417

genomic regions (Wiuf, 2006). While in general composite-likelihood methods perform well, in all of these418

settings typical measures of uncertainty of parameters (confidence intervals) and model choice methods (e.g.419

AIC) are undermined due to the over peakiness of the likelihood.420

Composite-likelihood approaches have also been used in the context of selective sweeps, starting with421

Kim and Stephan (2002) who take a composite likelihood formed like Equation 17 of the product of marginal422

probabilities of allele frequencies within a single population moving away from a proposed selected site (an423

approach expanded on by Kim and Nielsen, 2004; Nielsen et al., 2005; Chen et al., 2010; DeGiorgio et al.,424

2014; Racimo, 2016). Our method is most closely related to that of Chen et al. (2010) and Racimo (2016)425

who look at allele frequencies across two or three populations respectively, and look for the signal of a sweep426

in one of the populations (or in the case of Racimo, 2016, in the ancestor of a pair of populations). We note427

that we have a further layer of abstraction over these previous composite-likelihood methods. Extending Kim428

and Stephan (2002), previous methods have calculated the likelihood of the sample frequency considering429

a binomial draw from some underlying population frequency, which is naturally modeled as being bounded430

between 0 and 1. We, however, use a multivariate normal likelihood to model our sample frequencies, which431

does not bound allele frequencies between 0 and 1. This further abstraction is justified by the fact that by432

using the multivariate normal approach we are able to handle arbitrarily large number of populations with433

arbitrary population structure and to flexibly model different forms of selection into an easily extendable434

form to the covariance matrix. Future work could potentially concentrate on hybrid approaches, combining435

the flexibility of our approach with the realism of previous approaches.436

3.2 Inference method on simulated data437

To test our method, we utilized the datasets generated using mssel (as discussed above with details in438

Appendix A.2) to see if we could recover the parameters and convergent mode used for simulation. The439

neutral coancestry matrix F was estimated using data from 1000 runs with no selection (as described in440

Appendix A.1). We assume that the model parametersNe and r are known and we set these at the values used441

to generate the simulations. We calculated the composite log-likelihoods for each of the simulated datasets442

under the following four models: neutral (no selection), independent sweep model, standing variation model,443

and migration model with the beneficial allele originating in population 2. We calculate the likelihoods444

under a dense grid of selection coefficients (s), migration rates (m), and standing times (t). In the standing445

variation model, the standing frequency (g) is held at 0.001. See Appendices A.2.4 and A.2.5 for details.446

We repeat this procedure for each of 100 runs of all simulated datasets. To compare between models, we447

calculate the composite log-likelihood differences between the true model and all other models including448

the neutral model, at the maximum composite-likelihood parameter estimate (MCLE) obtained under each449

model.450

3.2.1 Parameter estimation451

Location of selected site To explore our method’s ability to localize the selected site, we vary the true452

location of the selected site simulating under the independent mutation model. We estimate the maximum453
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composite-likelihood location under the independent sweep model over a fine grid of locations and selection454

coefficients. The method is able to correctly identify the location of selection (Figure 4a), with higher455

accuracy when the true location of the site is in the middle of the window. The method does show an edge456

effect when the true location of the selected site is at the edge of the region of interest perhaps because we457

do not get to see the decay of coancestry on both sides of the selected site. Additionally, we are able to458

correctly estimate the strength of selection while allowing the location of the selected site to vary (Figure459

S1a) and there is no correlation between these joint parameter MLCEs (Figure S1b).460

Independent mutations model To verify our ability to recover the selection coefficient, we simulated461

under the independent mutation model for a range of values for s, holding the location of the selected site462

at its true value. We are able to recover the parameters used for simulation (Figure 4b). The ability to463

correctly estimate s breaks down for large enough s, given a fixed window-size around the selected site and464

rBP , since we will not observe the full decay in coancestry.465

Standing variant model To explore our inference using the standing variant model, we hold the location466

of the selected site at its true location and take as our estimate of s and t their values at the joint maximum467

composite likelihood. Under the standing variant model, we are again able to accurately estimate s (Figure468

S6). The inference of s and g simultaneously is somewhat more confounded (Figure 5). How the signal of469

the sweep within populations decays, as we move away from the selected site, is primarily determined by s470

and g (see Equation 7). While a higher frequency of the standing variant (g) can lead to a quicker decay,471

this can be partially compensated for the strength of the sweep being stronger (higher s, lower ts). This472

explains the J-shaped ridge in the likelihood surfaces for s and g, seen in Figure 5. Therefore, in practice473

we can often infer a lower bound s and an upper bound for g, but not find the precise values of each when474

inference is performed under the standing variation model. We are able to accurately estimate the time the475

beneficial allele has been standing in the independent populations prior to selection, t, as shown in Figure476

4c. Our inference of t is relatively free of confounding with s and g, as t primarily governs the decays in477

coancestry between populations, making it separable from the scale of the sweep within populations.478

Migration model We explored our inference under the migration model of parameters m and s, again479

fixing the location of the selected site and taking the joint maximum composite-likelihood estimate. We are480

able to correctly estimate s (Figure S4b). However, we obtain poor estimates of the rate of migration, m481

(Figure S4a). This is perhaps unsurprising as the coancestry coefficients under the migration model depend482

only weakly on m. We obtain fairly bimodal estimates of m that are usually either very low (10−5 to 10−3)483

or high (1). As the true value of m increases, we see fewer estimates of small m and more estimates of m = 1.484

These estimates of m seem to be a true reflection of the patterns in the simulated datasets. Specifically, this485

effect is mostly observed in the variance within the recipient population as Equation 12 depends on m in486

both Q and δ. High m estimates correspond to datasets with lower empirical levels of coancestry within the487

recipient than datasets where low estimates of m were obtained (Figure S5). We believe that the bimodality488

results from stochasticity in how many lineages ancestral to the sample migrate before they recombine off489

the sweep in the recipient population. While our estimates of m are noisy, the migration model does capture490

key features of the spread of adaptive alleles by migration, allowing it potentially to be distinguished from491

other modes of convergence. We now turn to the performance of the method in distinguishing modes of492

convergence.493
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Figure 4: Maximum composite likelihood parameter estimates calculated under model used for simula-
tion. We vary the true value of the parameter used for simulations along the x-axis and show the MCLE for
each of 100 simulations (points). Crossbars indicate first and third quartiles with second quartiles (medians)
as the horizontal line. The true values of the parameters are marked with dashed, black lines.
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Figure 5: Composite log-likelihood surface of the strength of selection (s) and the frequency of standing
variant (g) for three simulations (with Ne = 10,000, t = 500, g = 0.001, s = 0.01) to exemplify confounding
of s and g under the standing variant model. Blue diamond pluses represent the true location of the
parameters used for simulation. Blue circles represent MCLE.

3.2.2 Model comparison494

To test the ability of our method to distinguish between modes of convergence, we calculated the maximum495

composite log-likelihood of 100 simulations for each dataset generated under both the true model and all496

other models with a fixed, fine grid of parameter values. The location of the selected site is fixed at its true497

location. The results are summarized in Figure 6, which shows histograms of the difference in maximum498

composite log-likelihoods calculated under a given model relative to the true model used for simulation. For499

example, in evaluating the independent mutations model, we present the difference in the composite log-500

likelihoods calculated for data simulated under the independent mutations model for all other models and501

the composite log-likelihood calculated for the true independent mutations model. Thus, values less than502

zero indicate that the correct model has a higher maximum composite log-likelihood than the true model.503

Conversely, values greater than zero indicate the incorrect model of convergence has a higher composite504

log-likelihood than the true model. For inference under the migration model, we fix the source to be the505

true source of the selected allele when simulating under the migration model, and to an arbitrary one of the506

two selected populations when performing inference on simulations under other models.507

Neutral model We first compare the composite likelihoods calculated for data generated with no selection.508

For the selection models, we fix the location of the selected site. The distributions of the resulting composite509

log-likelihood ratios are shown in Figure 6a. As expected for a composite likelihood, the composite log-510

likelihood ratio between a convergent selection model and the neutral model with no selection are inflated511

compared to those expected under the usual asymptotic χ2 distribution. However, these likelihood ratio512

differences are relatively small compared to those we observed when simulating under alternative models.513

This is because when s→ 0 in all models with selection, the coancestries converge to our neutral expectations.514

Indeed when we look at the MCLE for the strength of selection (ŝ) under the incorrect models with selection,515

we see that for all nearly simulations ŝ is close to zero 0 (Figure 7a). Overall, this suggests that our null516

model is reasonably well calibrated, given the limitations of composite-likelihood schemes.517

Independent mutations model As shown in Figure 6b, we are able to correctly distinguish between518

a neutral model of no selection and the true independent mutation model by at least 160 composite log-519

likelihood units even for relatively weak selection (s = 0.005). This difference increases as the true value of520

s increases. This same relationship is true when comparing the migration model to the true independent521
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mutation model. Therefore, we have good ability to distinguish the independent sweeps model from neutral522

and migration model over a range of selection coefficients.523

Our ability to distinguish between the standing variation model and the true independent mutation model524

is less clear. When the true s is small, the two models have comparable composite log-likelihoods, with525

differences ranging from -3 to 20. This difference decreases, with higher likelihood for the true independent526

mutation model more frequently, as s increases. This result makes sense when we look into the maximum527

likelihood estimate of the parameter t (Figure 7b). We obtain estimates of t approaching our highest528

value on the grid (106). Thus, we may not be able to distinguish between the cases where the origins of529

the beneficial allele are truly independent or whether selection has been on a single variant that has been530

standing independently for a long time as these two models converge for large t.531

Standing variant model Simulating under the standing variation model, the picture is more complicated.532

Like the other models, we can exclude the neutral model, although note that this would become challenging533

when the allele has been standing at high frequencies, g � 0 (Berg and Coop, 2015). When the independent534

standing time, t, is small, we see little difference in the composite log-likelihoods between the true standing535

model and the migration model. As t increases, we see a larger difference between these two models. However,536

as t increases, the composite log-likelihood difference between the independent mutation model and standing537

variation model tightens around 0. These results fit our expectations as we know the models look similar538

in the extreme values of t, the migration model when the standing time is small and independent mutation539

model when the standing time is large, respectively.540

Migration model We are able to distinguish the migration model from the neutral and independent541

sweeps model. However, the standing variation and true migration model are again somewhat confounded.542

The values of the composite log-likelihood differences range from -44 to 123 when m = 10−4 and this range543

narrows closer to 0 as m increases. These results fit our understanding when we again look at the MCLEs544

of t in the standing model. Now, the estimates are at t = 0 (Figure 7c) indicating it is hard to distinguish545

between convergence that is due to migration or selection on a shared standing variant that has only been546

standing for a very short time, as they result in similar patterns in decay of coancestries.547

Summary We can clearly distinguish the outcomes of the migration and independent sweeps models from548

each other. Both models are hard to distinguish from the standing variation case, but in very different549

regimes of the standing variation model. The estimated time the variant has been standing (t) for is a550

helpful indicator of the mode of convergence, with very low estimates meaning that the standing model551

is indistinguishable from the migration model, while very high estimates mean that the standing model is552

indistinguishable from the independent sweeps model. When data is simulated under the standing model553

with intermediate values of t, we can distinguish this from both independent sweeps and recent migration554

models. This is because an intermediate value of t generates a covariance pattern not well explained by either555

other model. Therefore, while comparing the maximum composite likelihoods between models is useful, the556

estimated value of t is useful in judging the different models.557
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(c) True model: standing variant
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Figure 6: Histograms of the differences in max-
imum composite log-likelihoods calculated un-
der a given model relative to the true model used
for 100 simulations. Parameter values used to sim-
ulate are noted, varying along the vertical dimen-
sion. Values less than zero, marked with solid line,
indicate the true model has a higher maximum com-
posite likelihood than alternative model. Conversely,
values greater than zero indicate the alternative, in-
correct model of convergence has a higher compos-
ite log-likelihood than the true model. For (6b)
Ne = 100, 000, (6c)Ne = 10, 000, s = 0.01, g = 0.001,
(6d) Ne = 10, 000, s = 0.01.
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Figure 7: Histograms of MCLE for parameters estimated under incorrect models.

558

3.2.3 Evaluating properties of the estimators and models for real datasets559

Our use of a composite likelihood means that we cannot rely on standard asymptotic properties of likelihood560

estimators to construct confidence intervals or help with model choice (e.g. AIC). Therefore, we take a561

parametric-bootstrapping approach, simulating datasets under the MCLEs of various models matched for562

sample sizes and number of segregating sites and other qualities (recombination rate and size of the region,563

Ne, neutral F matrix) as the original data. See Appendix A.3 for more details. From these simulations, we564

generate a distribution of composite-likelihood ratios. Specifically, we wish to understand if we have support565
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for a model (j) as compared to a seemingly less likely model (i); this could be a model with selection to566

one without, or a model with standing variation compared to one with independent mutations. We simulate567

datasets under one model (i), using the MCLE of that model applied to the real data, we then estimate568

the maximum composite log-likelihood of dataset k under this model (Lki), and the maximum composite569

log-likelihood under a second model j (Lkj) and form the distribution over our simulations of the difference570

Lkj − Lki. We can then compare the value of the composite log-likelihood ratio (LDj − LDi) obtained571

for our true dataset D to this distribution to obtain the parametric-bootstrap p-value for the comparison572

the alternative model (j) compared to the null model (i). Additionally, we generate parametric-bootstrap573

confidence interval for parameters of interest, particularly t, the minimum age of the standing variant, as574

this parameter is informative about the overlap of models as shown above.575

4 Applications576

4.1 Copper tolerance in Mimulus guttatus577

The study of adaptation to toxic mine tailings is a classic case of rapid local adaptation to human altered578

environments (MacNair et al., 1993). We apply our inference method to investigate the basis of the convergent579

adaptation seen between populations of the annual wildflower Mimulus guttatus to copper contaminated soils580

near Copperopolis, CA. Wright et al. (2015) sequenced pooled samples from 20-31 individuals from two mine581

and two off-mine populations from two distinct copper mines in close geographic proximity (all populations582

within 15 km of each other) to 34-72X genome-wide coverage for each population. They observed elevated583

genome-wide estimates of genetic differentiation between mine and off-mine populations (FST M/OM= 0.07584

and 0.14), with similar levels of differentiation between the mine populations (FST MM= 0.13). Only a small585

number of regions had high levels of differentiation. Here, we focus on the region with the strongest signature586

of differentiation between the two mine/off-mine pairs found on Scaffold8 by Wright et al. (2015). They587

observed low genetic diversity within each mine population in this region compared to off-mine populations.588

When the mine populations are compared to each other, they have elevated differentiation in this region,589

except for in the center where they share a nearly identical core haplotype. This pattern suggests the sweeps590

may not have been independent within each mine population, and that the sweep is possibly shared either591

due to migration or selection of shared standing variation.592

We estimate the F matrix using SNPs from twelve scaffolds that showed no strong signals of selection593

(shown in Table S6). Using all SNPs in the 169.3 kb Scaffold8, we apply our inference framework to both594

identify the locus under selection and distinguish between modes of convergence between the two mine595

populations. We move the proposed selected site along this scaffold and calculate the composite likelihood596

under our three modes of convergent adaptation: (1) both mine populations have had independent mutations597

at the same locus, (2) the beneficial allele was standing in one of the mine populations and was spread via598

migration into the other mine population where it is still standing prior to the onset of selection (as detailed599

in Appendix A.4), and (3) the beneficial allele arose in one of the mine populations and spread to the other600

via migration. We estimate the maximum composite likelihood over a dense grid of parameters used to601

specify these models (Table S7). For the migration model, we allow both adapted populations to be possible602

sources. We use an Ne = 7.5 × 105, calculated from the observed pairwise diversity π = 4Neµ using a603

mutation rate of µ = 1.5× 10−8 and rBP = 4.72× 10−8 (Lee, 2009).604

In Figure 8a, we summarize the results, showing the difference in maximum composite log-likelihoods605

between a given model of convergence and the neutral model of no selection as a function of the proposed606

selected sites along the scaffold. We see the three likelihoods peaking when the selected site is approximately607

at position 303-308 Kbp and that the model with the highest likelihood is selection on shared ancestral608

standing variation.609

To judge the significance of differences in the composite log-likelihood between the standing-source model610

and the other models we used our parametric-bootstrap procedure. We simulated 100 datasets under the611

independent and migration modes of convergent adaptation at their MCLE as well as a neutral model with no612

selection (see Appendix A.3 for details). For each simulated dataset, we calculate the composite log-likelihood613

ratio comparing the standing source model to the likelihood of each of the other models (for their respective614

simulations), under the same parameter grid as the original data (Table S7) but holding the location of615

the selected site and, where relevant, the source population constant at their respective MCLEs used for616
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simulation. Our observed composite log-likelihood ratio, comparing the standing source model to each of the617

others, was well outside the range those obtained by simulation (implying a parametric-bootstrap p-value618

of < 1/100). The smallest difference is under the migration model where the range of out 100 composite619

log-likelihood ratios is [4.12, 749.45], while the observed ratio is 945.95 (see Table S8 for all results). These620

results suggest that the non-standing source models offer a significantly worse fit to the data.621

Focusing on the standing-source model at the most likely selected site, we can obtain parameter estimates622

for the strength of selection (s), standing frequency of the beneficial allele (g), and the amount of time that623

the beneficial allele has been standing in both mine populations after they have been isolated but prior to624

selection (t). The strength of selection and starting frequency of the allele are confounded (Figure 8c) as625

expected. Our maximum composite log-likelihood parameter estimates suggest selection was relatively strong626

(>0.02) and the allele was not standing at very high frequencies (< 10−4) when selection began. We see the627

maximum composite log-likelihood is obtained when the standing time (t) is approximately 646 generations628

(Figure 8b). As the Copperopolis Mimulus are annual, this corresponds to 646 years. We obtained 95%629

parametric-bootstrap confidence interval of [364, 9525] generations (years), by simulating under the standing-630

source at our MCLE (see Appendix A.3). This time also has the interpretation of the minimum age of the631

standing variant as it has been standing for at least this amount of time and potentially longer in the source632

population. As copper mining started in 1861 in this region (Aubury, 1902), this suggests the tolerance allele633

was present prior to the onset of mining again consistent with the variant being a standing variant when634

selection began.635

There is little information about the source population of the standing variant (we obtain identical636

likelihood surfaces for either copper population as the source, see Figure S7a). This is perhaps unsurprising637

as there is relatively little hierarchical structure among the populations. Additionally, we tested the standing638

variant model with no source and saw no difference in the likelihood surfaces over the proposed selected sites639

(Figure S7a). The maximum composite-likelihood estimate of t is higher for the models of standing variation640

with a source than the simple model of standing variation (see Figure S7b). This is likely because making641

one of the populations a source of the standing variant increases the covariance around the selected site642

among the selected populations, as described in Appendix A.4, and so the model compensates by increasing643

the rate of decay of this covariance.644
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Figure 8: Inference results
for Mimulus guttatus cop-
per tolerance adaptation on
Scaffold8. (a) Composite log-
likelihood ratio of given model
relative to neutral model of no
selection as a function of the pro-
posed selected site. We show
likelihoods for the standing-
source model maximizing over
possible sources, but all re-
sults can be seen in Figure
S7a.(b, c) MCLE of parame-
ters in standing variation model
with position 308503 as selected
site. (b) Profile composite log-
likelihood surface for minimum
age of standing variant, max-
imizing over other parameters,
with peak at 646 generations (c)
Composite log-likelihood surface
for strength of selection versus
frequency of standing variant.
Blue circles represents point esti-
mate of joint MCLE (ŝ = 0.034,
ĝ = 10−7). t is held constant at
MCLE of 646 generations.
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4.2 Industrial pollutant tolerance in Fundulus heteroclitus645

We demonstrate how our method can be extended to more complex population scenarios. Populations of646

the Atlantic killifish, Fundulus heteroclitus, have repeatedly adapted to typically lethal levels of industrial647
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pollutants (Nacci et al., 1999, 2010). Reid et al. (2016) have sequenced 43-50 individuals from four pairs of648

pollutant-tolerant and sensitive populations along the U.S. Atlantic coast (see Figure 9a), sequencing each649

individual to 0.6-7X depth. The southern pair of populations form a distinct clade relative to the northern650

populations, consistent with a phylogeographic break centered on New Jersey (Duvernell et al., 2008).651

Reid et al. (2016) found that a number of the strongest signals of recent selection are shared between all652

tolerant populations, suggesting genotypic convergent adaptation. We focus our method on their strongest653

signal of selection, Scaffold9893 (the scaffold containing the aryl hydrocarbon receptor interacting protein654

(AIP) gene), where all four pairs of tolerant/sensitive populations sampled show high levels of differentiation.655

Here, we test the hypotheses that all four tolerant populations show convergent adaptation due to our three656

previous modes of independent mutation, migration, or selection on shared ancestral variation. For our657

standing variation model, we specified the source of the standing variant (as described in Appendix A.4).658

We also test the hypotheses that there is an independent mutation in the southern tolerant population while659

the three northern populations are sharing a sweep at this locus, either due to migration between populations660

or selection on variation present in the ancestor of the Northern populations. This latter set of hypotheses661

is consistent with the fact that Reid et al. (2016) detect a shared haplotype in the three northern tolerant662

populations while a different haplotype appears to have swept in the southern tolerant population. We663

estimated the F matrix from four scaffolds that show no strong signal of selection, and it is shown in Table664

S9. We use Ne = 8.3× 106 and rBP = 2.17× 10−8 (N. Reid personal communication).665

The results are summarized in 9b. For all models with migration or selection on standing variation, we666

plot the maximum composite log-likelihood for the most likely source at each location of the selected site667

(to reduce the number of lines plotted, see Figure S9 for the full figure). We see the model with the highest668

composite log-likelihood is when convergence is due to selection on shared standing variation in the North669

and an independent mutation in the southern tolerant population. This occurs when the selected site is at670

approximately position 1.96 Mbp on the scaffold.671

To assess the significance in the composite log-likelihoods of this model and the other models tested, we672

simulate 100 datasets under each model at their MCLE (see Appendix A.3 for details). We calculate the673

composite log-likelihood ratio for each simulated dataset to compare the standing variation in the North674

with an independent mutation in the South model to the others models used for simulation. We calculate675

the composite likelihoods under the same parameter space as used for the original data (Table S10), holding676

the location of the selected site and the source population constant at their MCLEs used for simulation.677

For the neutral model and the three models where all four tolerant populations have the same mode of678

convergence, the observed composite log-likelihood ratio was far outside the range of values obtained from679

the simulations (see Table S11 for all results), suggesting these models offer a significantly worse fit to the680

data (parametric-bootstrap p-value < 1/100). However, this is not true for the model where migration is681

occurring in the three Northern selected populations while there is an independent mutation at the same682

locus in the Southern tolerant population. Here, the range of the difference in maximum composite log-683

likelihood for 100 simulations is [-24675, 38997], while the observed difference is 8121 (parametric-bootstrap684

p-value = 0.58; Figure S10). Thus we are unable to discern these models at their MCLEs.685

Under the highest likelihood model of standing variation in the North and an independent mutation at686

the same locus in the South, we obtain the maximum composite log-likelihood estimate of the minimum687

age of the standing variant, t, of eight generations (Figure 10a). From simulating under this model at the688

MCLE, we obtain a 95% parametric-bootstrap confidence interval for t of [5, 310] generations. Thus under689

the standing-source model, the allele has only been standing for a very short time independently in the690

northern populations prior to selection. This is consistent with our observed overlap for the standing variant691

model and migration model. The confidence interval for t does not include 0, but that is also consistent with692

simulations under the migration model where inferred standing times are often slightly above zero (Figure693

7c and Figure Figure S12). Together these results again suggest we are unable to differentiate between the694

models where the southernmost tolerant population has an independent mutation and the three northern695

populations are sharing the beneficial allele, either via migration or selection on the same young standing696

variant.697

We see partial confounding of the strength of selection and the frequency of the standing variant (Figure698

10b) but our results indicate selection has been very strong (>0.3) and the allele was initially at a very low699

frequency (< 10−6). For the migration in the North model, we obtain similar MCLE of s of 0.4. Lastly, both700

the standing variation or migration in the North models has the highest composite log-likelihood when the701
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source population of the standing variant is T3, the southernmost population sampled in the North (standing702

variation composite log-likelihood = 547060, migration composite log-likelihood = 537744), but this model703

may not be distinguishable from that where the source is T2 (standing variation composite log-likelihood =704

545580, migration composite log-likelihood = 533426).705

(a) Map of sampled killifish popula-
tions with phylogenetic tree, showing
that the southern pair (T4, S4) are more
distant than other populations. Tree
is estimated from genome-wide biallelic
SNP frequencies using Phylogeny Infer-
ence Package (PHYLIP) Gene Frequen-
cies and Continuous Characters Max-
imum Likelihood (CONTML) module
(see Reid et al. (2016) for more informa-
tion).
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Figure 9: Inference results for Fundulus heteroclitus pollutant tolerance adaptation on Scaffold9893
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(b) Composite log-likelihood surface for strength of se-
lection versus frequency of standing variant. Blue cir-
cle represents point estimate of joint MCLE (ŝ = 0.3,
ĝ = 10−8). t is held at MCLE of 8 generations.

Figure 10: The composite log-likelihood surfaces for the parameters for Fundulus heteroclitus convergent
data in combined standing variation and independent sweep model with position 1961198 on Scaffold9893
as selected site and population T3 as source.

5 Discussion706

In this paper we have presented a novel approach to identify the loci involved in convergent adaptation and to707

distinguish among the three ways genotypic convergence can arise: selection on (1) independent mutations,708

(2) a variant standing independently in the selected populations, and (3) beneficial alleles introduced via709

migration. We leverage the effects selection has on linked neutral sites via a coalescent-based model approach710

that captures many of the heuristics that have been used in previous studies. This approach also allow us711

to potentially distinguish between more subtle models, such as the origin and the direction of gene flow of712

a beneficial allele, since they are explicitly modeled in our framework. Our approach takes advantage of713

information among all of the population samples simultaneously while accounting for population structure.714

Therefore, it naturally accommodates information from across multiple samples, rather than just pairs of715

populations, and thus offers a number of advantages in identifying the mode of convergence over other716

approaches. We provide the relevant R code for our approach in https://github.com/kristinmlee/717

dmc.718

Distinguishing among models We have demonstrated that our method is able to accurately distinguish719

among modes of convergent adaptation, across a relatively wide parameter space, in simulated data. However,720

we do see some confounding of models in particular regions of parameter space. In particular, we see the721

patterns generated from a model of selection on ancestral standing variation can look like our expectations for722

the other two modes of convergent adaptation for extreme values of the parameter t, the time the beneficial723

allele has been standing time independent in the selected populations.724

When t is small, we see confounding between the standing model and a model of convergence due to725

gene flow. The two models are very similar since in our standing variation model, as t → 0, the covariance726

in the deviations of a neutral allele between selected populations approaches the variance within a selected727
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population. The strong overlap in models is especially true when we have a source for the standing vari-728

ant. Intuitively, this indicates that the beneficial allele is on a haplotype that is mostly shared among the729

selected populations. This can be due to a very young standing variant shared amongst very closely-related730

populations from an ancestral population, a standing variant that was shared by gene flow before selection,731

or by the selected haplotype quickly moving across populations by gene flow after selection began (which732

are all closely related models, see Welch and Jiggins, 2014, for additional discussion).733

To illustrate distinguishing between these possibilities we now briefly revisit our applications. The North-734

ern tolerant killifish populations, under a standing variation model with gene flow prior to selection, have a735

very low estimate of the standing time t (8 generations with 95% CI [5, 310] generations). However, given736

this very low estimate of t, the allele cannot have been standing since the common ancestral population of737

T1, T2, T3 (which we estimate to coalesce more than 800 thousand generations ago, assuming no migration,738

using the estimation procedure outline in Appendix A.3.1). Therefore, the allele must be shared by gene739

flow among the three populations and it seems likely that the migration of the allele occurred either after740

selection began in one of the populations or very shortly before, with our parametric-bootstrapping approach741

suggesting we are not able to discern these two models. Interestingly, Reid et al. find no clear signals of742

admixture from migration elsewhere in the genome between Northern tolerant populations, suggesting that743

the migration of this allele might be a rare event, although we note that this may reflect a lack of power to744

detect gene flow.745

The case for adaptation from ancestral standing variation is more clear for the Mimulus copper tolerance746

example. Here, the estimate of t is much greater than zero (646 generations with 95% CI [364, 9525]747

generations) and indeed older than the putative selection pressure (approximately 150 generations ago).748

Additionally, the standing variant model considerably outperforms the other models and the results of our749

parametric-bootstrapping approach support this. In this case, we again favor the model that incorporates750

gene flow prior to selection on standing variation. The level of neutral differentiation of the mine populations751

very likely reflects much more than 646 generations of drift (see Appendix A.3.1), thus it seems likely that752

this allele is shared between the mine populations by gene flow but that the allele was standing in both753

populations for some time before selection began. Together these applications show distinguishing among754

models of convergence is possible in some cases, but may require extra knowledge of population history to755

aid our inference and understanding.756

Conversely, when t is large, we see a collapse of our standing model onto a model of convergence due to757

independent mutations in our selected populations. This intuition holds forwards in time since as t → ∞758

generations, recombination in our isolated populations independently breaks down the similarity of the759

haplotypes carrying the beneficial mutation. Thus, when selection for the standing variant begins, even760

tightly-linked, hitchhiking neutral alleles will not be shared between populations more than expected by761

chance. This is also the case when beneficial alleles arise multiple times independently. For example, in the762

case of the killifish, it is formally possible that the signal of independent selection in the Southern tolerant763

population is actually due to a very old standing variant shared with the Northern populations where there764

is almost no overlap between the Southern and Northern tolerant populations in the haplotype the selected765

allele is present on, even close to the selected site. As the precise functional variant(s) in this swept region are766

currently unknown (Reid et al., 2016) it is hard to totally rule out this very old standing variant hypothesis.767

In other cases it may be possible to rule out the standing variant hypothesis with very large parameter768

estimates of t if we know more about the population histories (i.e. our selected populations split more769

recently than the standing time). Additionally, it may be possible to totally rule out the standing variant770

hypothesis in cases where if the functional variants can be tracked down to clearly independent genetic771

changes (e.g. Tishkoff et al., 2007). However that degree of certainty may be difficult to achieve in many772

cases.773

Extendibility and flexibility of our approach We show the applicability of our method on two em-774

pirical examples of convergent adaptation: the evolution of copper tolerance in Mimulus guttatus and of775

pollutant tolerance in Fundulus heteroclitus. The latter exemplifies the extendibility and flexibility of our776

approach. As the number of selected populations increase, our potential number of hypotheses grows since777

any grouping of two or more populations could share selection due to migration or standing variation. Ad-778

ditionally, with more populations, we have more potential sources of the beneficial allele in the migration779

model. Our model could also be extended to have selection occurring in some of the adapted populations780
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and the neutral model in others, to identify genomic regions that are not experiencing convergent adaptation781

among all populations sharing the selected environment. These models are all relatively easy to implement782

into our framework; however, the sheer number of possible hypotheses as the number of populations grows783

will likely call for some more systematic way of implementing these models and exploring their relationships.784

Caveats and possible extensions Studying repeated evolution has long played a key role in evolutionary785

biology as a tool to help identify the ecological and molecular basis of adaptation. It is worth noting with786

this approach, we are able to identify sweeps in the same region and whether they appear to be shared or787

independent. However, in the scale of an entire genome, it may be possible for two, functionally unrelated788

sweeps to overlap. In the case of adaptation via independent mutations across multiple populations, it is789

especially hard to determine whether selection at the same site was acting on the same phenotype. It is790

potentially more plausible to claim that the phenotype and selection pressure are shared among populations791

in cases where the swept haplotype is shared. Ultimately, in demonstrating convergence, we will have to rely792

on a range of evidence. Shared sweeps can offer one substantial piece of evidence, particularly when we are793

studying recent adaptation to a strong selective pressure that is distinct to the adapted populations.794

In addition to assuming that the same locus is under selection in all adapted populations, we assume a795

single selected change underlies the sweep within a population and that recombination is free to break down796

associations between neutral alleles and this selected variant. If, for instance, selection acts on an epistatic,797

haplotypic combination of allele that sweeps, a long haplotype could be shared between populations not due798

to recent migration but because selection acts against recombinants breaking up the haplotype (Kelly and799

Wade, 2000). Convergent adaptations due to shared inversions also violate the assumptions of our method.800

Inversions can repress recombination across the entire inversion (see Kirkpatrick, 2010, for a recent review).801

Inversions significantly alter both neutral and selective model expectations (e.g. Guerrero et al., 2012) and802

could lead to long shared haplotypes among populations even if the shared inversion is old. It may be803

possible to use our approach to model the decay in coancestries outside of the inverted region, but this804

requires knowledge of the inversion and its break points a priori and a detailed knowledge of recombination805

rates surrounding the inversion.806

Throughout this paper we assume that the sweeps have fixed recently, and it will be important to relax807

this assumption. In these cases, models of migration that include selection against maladaptive migrants808

(Barton and Bengtsson, 1986; Charlesworth et al., 1997; Roesti et al., 2014) will be important to consider.809

Long-term selection against migrant alleles (i.e. due to local adaptation) lowers the effective migration810

rate at linked neutral sites and so will distort the covariance relationships among populations (and may in811

some cases confound the signal of the mode of convergence). These deviations could be incorporated into812

our models, allowing us to perform inference under these models. However, in practice we would likely be813

underpowered, as we only model segregating sites we cannot (in the current framework) fully account for814

selection that deepens the absolute divergence among particular populations.815

Additionally, our framework could be extended in various ways to both leverage more information and816

model more biologically relevant or interesting scenarios. There is more information to be gained from817

haplotypes and associations between sites that we fail to include in our composite likelihood when we sum818

across information from individual sites. Here we use this approach to analyze genomic regions that we819

a priori assume to be under convergent selection. In part this is due to the phylogenetic relationships820

among the populations (with convergent populations not being sister to each other). Additionally, we could821

then model ancestral sweeps to address whether sister populations sharing an adapted phenotype is truly822

convergent or simply due to selection in their ancestor Racimo (2016). We are currently working on ways to823

efficiently extend this approach to the application of genome-wide data to scan for genomic regions exhibiting824

convergence.825
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A Appendix835

A.1 Coalescent interpretation of covariances and F-matrix estimation836

Let xil be the allele frequency of allele 1 in population i at locus l, and that the frequency of this allele in
the ancestral population is εl. Consider the covariance Cov(∆xil,∆xjl) over replicates of the drift processes
at locus l. We can write

Cov[(xilεl), (xjl − εl)] = E[(xil − εl)(xjl − εl)] (A.1)

= E[xilxjl]− ε2l (A.2)

which follows from the fact that E[xil] = E[xjl] = εl. We can interpret E[xilxjl] as the probability that we837

sample a single allele in i and an allele in j and that they both are of type 1. Taking that interpretation,838

assuming that there is no mutation, E[xilxjl] is the probability that, tracing back a coalescent lineage from839

i and a lineage from j, both lineages trace back to type 1 alleles in the ancestral population. Let our pair840

of lineages drawn from i and j coalesce with probability fij . If our lineages coalesce before reaching the841

ancestral population then they will be identical by descent, and share the ancestral choice of allele. Therefore,842

we can write843

E[xilxjl] = (1− fij)ε2l + fijεl (A.3)

Then we can rewrite the covariance844

Cov(∆xil,∆xjl) = fijεl(1− εl), (A.4)

and for the variance we set i = j. Thus, under a model of genetic drift alone, we can interpret the entries of845

our covariance matrix as expressions of the underlying coalescent probabilities.846

Estimating F In the main text we assume that we have estimates of our neutral coancestry matrix F. We847

now describe how we obtain these. From above, Equation A.3, the expectation of xilxjl across loci is848

El[xilxjl] = El[(1− fij)ε2l + fijεl] (A.5)

Therefore we can write estimate fij as849

fij =
El[xilxjl]− El[ε2l ]

El[εl(1− εl)]
(A.6)

We can obtain an unbiased estimate of El[ε2l ] and El[εl(1− εl)] using the sample allele frequencies from two850

populations on either side of the root of the population phylogeny (see Supplement of Lipson et al., 2013).851

Let i′ and j′ be a pair of populations that span the root of the population tree, then we can use the estimate852

El[εl(1− εl)] = El[
1

2
xi′l(1− xj′l) +

1

2
(1− xi′l)(xj′l)] (A.7)

Likewise, we use the estimate853

El[ε2l ] = El[
1

2
xi′l(xj′l) +

1

2
(1− xi′l)(1− xj′l)] (A.8)

An estimate of the term El[xilxjl] can be obtained by using the sample frequency of allele 1 in populations854

i and j. However, as we only have a sample from the population frequency we need to account for the finite855

sampling bias within populations (i = j). Let n be the sample size in population i, then856

fii =
El[x2

il]
n
n−1 − El[xil] 1

n−1 − El[ε2l ]
El[εl(1− εl)]

(A.9)

where our x are now sample frequencies. There is no finite-sample size correction for fij , i 6= j and Equation857

A.6 can be used directly.858

In our simulations to show the effect of selection on the coancestry coefficients (Figure 3), we estimate fij859

in bins of fixed genetic size moving away from the selected site. We do this by approximating the expectations860

in the numerator and denominators in Equations A.6 and A.9 by the average of the expression over all of861

the SNPs that fall in a given genetic distance bin over all of the relevant simulations. To account for biases862

induced by defining the allele of interest, we randomize the reference allele at each SNP.863
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A.2 Simulation implementation details864

We perform coalescent simulations using mssel, a modified version of ms (Hudson, 2002) that allows865

for the incorporation of selection at single site (the code for this is provided in https://github.com/866

kristinmlee/dmc). The program allows the user to specify the frequency trajectory of the selected allele867

through time across populations, this trajectory is then used to simulate genetic data under the coalescent868

model conditioning on this trajectory (using the sub-divided coalescent model Hudson and Kaplan (1988);869

Kaplan et al. (1991)). We generate stochastic trajectories for the selected allele across populations and870

describe the simulation process below. We simulate multiple instances of the stochastic trajectories and871

average our results across datasets generated for these trajectories. We focus on a set of four populations872

with relationships as shown in Figure 1. Populations 2 and 3 are adapted to a shared novel selection pressure873

and populations 1 and 4 are in the ancestral environment.874

The original implementation of mssel assumes only a single origin of the selected allele, which occurs875

moving backward in time when the frequency of the derived allele goes to zero in the final population it876

segregates in. We modified the mssel source code directly to accommodate multiple origins of the selected877

allele as is necessary in the independent sweep model. We do so by allowing an independent origin of the878

selected allele in any population where the frequency of the derived selected allele goes to zero, if that879

population currently has a migration rate of zero to any other population containing the selected allele.880

A.2.1 Generating stochastic trajectories for the selected allele881

We generate stochastic trajectories for the selected allele to be used as input for mssel to generate sequence882

data for given convergent adaptation scenarios. We simulate the allele frequency trajectory for the selected883

allele forward in time using a normal deviate approximation to the simulation the Wright-Fisher diffusion.884

Specifically, given the frequency of the beneficial allele at time t, X(t), we simulate its frequency at time885

t+ ∆t according to886

X(t+ ∆t) ∼ N(µS(X(t))∆t, σ2(X(t))∆t) (A.10)

where µS( ) and σ2( ) are the infinitesimal mean and variance of the Wright-Fisher diffusion. We set887

∆t = 1/(2N), representing one Wright-Fisher generation on the diffusion time-scale (2N generations). We888

set X(0) = g, the initial frequency of the beneficial allele. When selection starts from a new mutation,889

g = 1/(2N).890

For all our models, the infinitesimal variance is891

σ2(X(t)) = X(t)(1−X(t)), (A.11)

representing the effect of genetic drift.892

For populations not impacted by migration, we condition our trajectory on the beneficial allele going to893

fixation forward in time. To do this we use the conditional infinitesimal mean894

µS(X(t)) =
2NsX(t)(1−X(t))

tanh(2NsX(t))
(A.12)

(see Przeworski et al., 2005; Berg and Coop, 2015, for previous applications). We simulate this process895

forward in time till fixation is reached. Given that we are assuming the sweeps completely recently, we have896

fixation occur at time zero so that the time of a new mutation is determined by the time of the sweep.897

Migration model In the case of our migration model, there is one way migration from population i into j.898

The trajectory of Xi is simulated first forwards in time, conditioning on fixation, using the above approach.899

We then simulate the frequency in population j starting from Xj(0) = 0, with the infinitesimal mean900

µS(Xj(t)) = 2NsXj(t)(1−Xj(t)) + 2Nm(Xi(t)−Xj(t)) (A.13)

(expanded from Ewens, 2004). We simulate the process forward in time until the selected allele reaches901

fixation in both populations. The first population to reach fixation is held at frequency 1 until the other902

population fixes for the beneficial allele.903
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Standing variation model. We define the standing variation trajectory as having three phases, the904

neutral phase, the standing phase, and the selected phase. To specify a trajectory in which the beneficial905

allele has been standing at frequency g for time t, we simply hold the allele frequency constant for this906

amount of time. We simulate a stochastic neutral trajectory of our beneficial allele from frequency g to 0907

backwards in time according to908

X(t−∆t) ∼ N(µN (X(t))∆t, σ(X(t))∆t) (A.14)

using the infinitesimal mean conditional of the neutral allele going to loss909

µN (X(t)) = −X(t) (A.15)

(see Przeworski et al., 2005; Berg and Coop, 2015, for previous applications). We simulate the selection910

phase forward in time for 2 log(1/g)/s generations. If the beneficial allele has reached fixation before this911

time, it is held constant at frequency 1 for the remaining time. If not, the trajectory is simply stopped at this912

time. This allows for the interpretation of the standing time and the time of the onset of selection to be the913

same throughout simulations. For the whole trajectory of a beneficial allele, we paste together these three914

components: neutral increase of allele from frequency 0 to g, the standing phase at frequency g for time t915

generations, and the selective phase. For populations not experiencing selection, the beneficial allele is kept916

at frequency g for the entire length of the trajectory. We acknowledge this is an untested approximation but917

think it has little impact on our results. The frequency of the standing variant matters mostly for estimating918

the duration of the sweep within populations, so its frequency during this standing phase is not as important919

as the frequency at the onset of selection. Additionally, we assume that g is small such that the probability920

of recombining off onto the other background during this phase is simply r. The frequency of the variant921

during the standing phase does impact the probability of coalescing before recombination (or vice versa)922

during this phase, but only weakly.923

A.2.2 Details of coalescent simulations924

In this section we give the details of the coalescent simulations. The mssel command lines can be found in925

Supplement S3. The mssel input can be interpreted as follows,926

./mssel nsam_tot nreps nsam_anc nsam_der trajFile locSelSite -t θ -r ρ nsites927

-I npops nAnc_pop1 nDerv_pop1 ... nAnc_popi nDerv_popi928

For all of the simulations we generate neutral allele frequency data for 10 samples from each of 4 popula-929

tions. The populations are related to each other as shown in Figure 1. Note, we did 1000 replications of the930

simulations for parameters used to generate comparisons of average simulations coancestry coefficients com-931

pared to theoretical expectations. 100 replications were done for simulations used for parameter estimates932

and model comparisons. For simulations used for both, the first 100 runs were used.933

Independent sweep model. We generated beneficial allele frequency trajectories under four different934

selection coefficients: s = [0.005, 0.01, 0.05, 0.1] under the independent sweep model with Ne = 100, 000. We935

set r, the per generation probability of cross-over between ends of the simulated locus, to 0.005. The neutral936

mutation rate, µ, for the entire locus is the same as r. We also simulate, with ms the same population937

structure with no selection to generate data to estimate the neutral coancestry matrix, F.938

Standing variation model. With s = 0.01 and g = 0.001, we generated beneficial allele frequency939

trajectories for standing times t = [50, 250, 500, 1000, 5000] generations under the standing variation model940

with Ne = 10, 000. Our t references the time that the populations have been independent. Therefore,941

we adjusted the split times to ensure that the t of interest corresponded to the duration of time that the942

selected populations had the standing variant prior the populations joining in the ancestral population. The943

population split times were determined to ensure selection started after the populations were completely944

isolated and to maintain a similar ratio of time for 4 independent populations to 2 ancestral populations.945

We again set r = µ = 0.005. Again, neutral regions were simulated in ms using the same population structure946

(i.e. each parameter set had its own neutral data generated).947

30

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2017. ; https://doi.org/10.1101/119578doi: bioRxiv preprint 

https://doi.org/10.1101/119578
http://creativecommons.org/licenses/by/4.0/


Migration model. Lastly, we simulated under the migration model with m = [0.0001, 0.001, 0.01, 0.1],948

holding s = 0.01 for Ne = 10, 000. Again, we simulated 10 samples from 4 populations related to each other949

as specified in Figure 1. Now, in mssel, we specify migration to start just prior to origin of the beneficial950

allele in the source population and to continue until the sweep has reached fixation (time zero in the past951

since we fix sweeps to complete at the end). We set population 2 to be the source and have 4Nem migrants952

from population 2 into population 3 each generation. We again set r = µ = 0.005. Neutral regions were953

again simulated using ms. Each set of parameters has its own neutral data generated as the migration rate954

impacts neutral coancestry as well.955

A.2.3 Interpretating mssel output956

The output from mssel and ms is in the form of haplotypes for each of the sampled chromosomes at957

polymorphic sites in addition to their positions on a scale of (0, 1). We use this to calculate sample allele958

frequencies at each site for each population. Prior to performing further estimations or analyses with these959

neutral allele frequencies, we randomize the reference allele so that there is no bias resulting from which allele960

was called ancestral or derived. We exclude sites where the average allele frequencies across populations are961

less than 5% or greater than 95%.962

A.2.4 Composite likelihoods of simulated data under all models details963

We calculated the composite log-likelihoods of each the simulated datasets under all models, including the964

neutral model, with the same parameter space shown in Table S1.965

A.2.5 Maximum likelihood estimate of parameters from simulated data under correct model966

We also calculated the composite log-likelihoods of each the simulated datasets under the correct model used967

to generate the data now with a more dense grid of parameters to obtain better estimates of the MCLE of968

each parameter. We allowed g to vary in the calculations of the MCLEs under the standing variation model.969

See Table S2, Table S4, Table S5.970

A.2.6 Inference details: mean-centering allele frequencies and covariances, sample size cor-971

rection, and speed-ups972

Given that we do not know the true ancestral mean at locus l, εl, we use the mean of the present-day sample973

allele frequencies at this locus, x̄l = 1
k

∑K
i=1 xi,l. When mean-centering, we lose a degree of freedom so in974

calculating the likelihood it is necessary to drop information from one population. Since the information975

from the dropped population is incorporated in the mean, the choice of the dropped population is arbitrary.976

In matrix form, the mean-centered allele frequencies with one dropped population can be expressed as977

~x′i = T~xi (A.16)

where T is an K − 1 by K matrix with K−1
K on the main diagonal and − 1

K elsewhere. Prior to mean-978

centering, we randomize the reference allele at each SNP to account for biases induced by defining the allele979

of interest.980

Now, we model the mean-centered allele frequencies as multivariate normal around mean zero with981

covariance proportional to a mean-centered parameterized covariance matrix (F(S)′) as982

~xl
′ ∼ N

(
~0, x̄l(1− x̄l)F(S)′

)
(A.17)

where we use the average present day allele frequency across populations at the locus, x̄l, as an estimate of εl983

in the site-specific term in the covariance. We note that x̄l(1− x̄l) is a slightly downwardly biased estimate984

of ε(1− ε), but for our purposes it seems sufficient to include this term as a locus-specific adjustment to the985

expected covariance.986

To obtain the corresponding mean-centered covariance matrix, dropping the same population, we can987

apply the following matrix operations,988

F(S)′ = TF(S)T>. (A.18)
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this new matrix is K − 1 by K − 1 and full rank.989

Before mean-centering, F(S), we apply a sample size correction to correct for the finite sampling bias.990

We add 1/ni to the diagonal where ni is the sample size in population i. We take twice the number of991

diploid individuals sampled in population i as ni for data applications. In simulations, we use the number of992

chromosomes sampled in population i as ni. Note that both this mean-centering and sample size correction993

is also preformed on the neutral matrix, F before likelihood calculations under a neutral model with no994

selection.995

To decrease some of the computational time involved in our likelihood calculations, we precompute the996

mean-centered covariance matrices with selection, F(S)′, for given bins of distance away from a putative997

selected site. We first divide our distances in our window into 1000 bins and take the midpoint of the998

distances in these bins to calculate F(S)′ as this matrix is a function of distance. To avoid the costly step999

of recomputing the corresponding inverses and determinants needed for likelihood calculations, we do this1000

step first and use these values for all SNPs in a given bin, and store them and reuse them over all locations1001

of the selected site.1002

Thus, we calculate the likelihood of mean-centered allele frequencies, ~xl
′, given our model M and its1003

parameters ΘM , a given locus l as1004

P (~x′l | F
(S)′ (rl,M,ΘM ) =

exp(− 1
2 ~xl
′>(F(S)′)−1(x̄l(1− x̄l))−1 ~xl

′)√
2πk(x̄l(1− x̄l))k det F(S)′

(A.19)

where k = K − 1, the rank of matrix F(S)′.1005

1006

A.3 Parametric bootstrapping approach details1007

To carry out the parametric-bootstrapping approach, we again perform coalescent simulations using mssel1008

for simulations with selection and ms for neutral simulations. We specify the number of populations and the1009

sample size for each populations (twice the number of individuals sampled). Now, instead of specifying θ, we1010

specify the number of segregating sites as the number of SNPs in our window of interest. We also simulate1011

with the same population-scaled recombination rate and number of sites between which recombination can1012

occur as the number of base pairs in our analysis window. To match the population-scaled recombination rate,1013

we take the genetic map of our region r and scale it to be 4Ner, assuming that recombination is uniformly1014

distributed over our region.We down-scaled the effective population size for computational efficiency in the1015

generation of the simulations, which impacts both ρ and the times in the trajectories of the beneficial allele1016

by a linear rescaling. Additionally, we specify the location of the selected site (`) to be at the MCLE of the1017

model used for simulation.1018

While in the rest of the paper we make use of stochastic trajectories, for the parametric-bootstrap1019

simulations we generated deterministic trajectories of the selected allele to be used as input for mssel. This1020

is because we need to set our simulations up to accommodate both the MCLE selection coefficient and the1021

coalescent times within and between populations, which is somewhat fiddly to automate with fully stochastic1022

trajectories across all the models. Now, we fix the time of the sweep to be1023

1

s
log

(
ptsq0

qtsp0

)
(A.20)

where p0, the frequency of the beneficial allele at time 0, is 1/2N for a new mutation or g for the standing1024

variant model. While pts , the frequency of the beneficial allele at fixation, is set to 0.999. For the migration1025

model, we start this trajectory (from 1/2N) after the delay time (Equation 10) for recipient population(s).1026

We simulate with migration after δ for a few generations. For the standing variant model with a source1027

population, we start the selected allele trajectory (from frequency g) in the recipient population(s) after t1028

generations. We simulate with a brief burst of migration at time t until the frequency of the beneficial allele1029

goes to 0 in the recipient population(s), at a very low rate. This forces an instantaneous coalescent event1030

back into our source population. The parameters (s, t, g, m, and the source population) are all set to the1031

MCLE of the corresponding model.1032
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We simulate each convergent and neutral model 100 times and interpret the output and calculate the1033

likelihood of our simulated data (as detailed in Appendix A.2) under the model used for simulations and the1034

model with the largest composite likelihood for the original data. The mssel command lines can be found1035

in Supplement S4.1036

A.3.1 Approximating demography given a neutral F matrix1037

For the parametric bootstrap we need to simulate under a model of population structure that approximately1038

matches that in our data. To do so we assume that our sampled populations are related through a bifurcating1039

population phylogeny (with no neutral migration). While this is a crude approximation it allows us a good1040

match to the observed F matrix of the data. and considerably simplifies the task of setting up the simulations.1041

In practice since our method works with these covariances, and inferring the details of population structure1042

is not our primary concern here, we view this as an acceptable compromise.1043

For simulating under the approximate population structure in our data, we need to estimate join times1044

for population pairs. We use1045

fij ≈ 1− e−t
coal
ij (A.21)

where tcoal
ij is in coalescent time units to approximate the shared branch length between populations i and1046

j, assuming no migration. Migration will impact the coancestry coefficients and thus our interpretations of1047

the coalescent times. For example, migration between two populations will increase their relatedness and1048

can make their shared branch length appear longer. We also use this approximation to compare the split1049

time between populations to the standing time for our adaptive alleles t, to judge whether they could have1050

been standing for a given time between two populations, or if migration must be invoked.1051

To generate join times, we first solve for all tcoal
ij using A.21 from an estimated neutral F matrix. We find1052

populations i and j with the largest tcoal
ij . We approximate the join time as the average of the differences1053

between the total time associated with each population (i.e. tcoal
ii and tcoal

jj ) and the time between them1054

(tcoal
ij ). This follows from assuming drift is acting additively such that fii ≈ fij+fi where fi is the coancestry1055

coefficient associate with population i in isolation (see Supplement S2 for more). We then effectively join1056

these two populations, updating all tcoal
ik and tcoal

jk where k is any unjoined population to be the average of1057

tcoal
ik where k and tcoal

jk where k. We repeat this procedure, joining the two remaining populations with the1058

largest tcoal
ij until all populations are joined. From this, we are able to specify join times for simulations that1059

capture the general population structure of a given F matrix.1060

The population structure used for simulation is now represented in a bifurcating tree, which may fail to1061

capture of the complexity represented in a given F matrix. Thus, when performing the composite-likelihood1062

calculations we use a modified F matrix estimated using the procedure detailed in A.1 with neutral data1063

simulated with these join times, to parameterize our models.1064

Additionally, these estimates for the between population coalescent times, assuming no migration and a1065

bifurcating tree, can give us insight it is possible for the beneficial allele to have been standing for a given t̂1066

since the ancestral population or whether it is necessary to invoke the model where migration has a role in1067

spreading the beneficial allele prior it standing. For example, in our Mimulus analysis, we estimate our join1068

time to be 0.050 in coalescent units. Our MCLE for t under the classic standing model is 434 generations1069

or 0.00029 coalescent units, which is much shorter than the time in which our selected populations coalesce.1070

We caution against assigning too much value to these inferences, given the assumptions, but do find these1071

approximations to be broadly useful.1072

A.4 Standing variant model with a source population1073

When there are multiple selected populations and they do not follow a bifurcating tree structure, it is1074

necessary to incorporate a model that has a source population for the standing variant to have self-consistent1075

mean-centered covariance matrices.1076

Let population l be a selected population and the source of the beneficial allele. In all other populations,1077

the beneficial allele is standing for time t generations at frequency g before the lineage returns to the1078

source population where it still standing at frequency g (see Figure 11). We can define pairwise coancestry1079
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coefficients for all pairs of populations under this model. Let populations i and j represent populations that1080

experience selection and population k be any unselected population.1081

Figure 11: Trajectories of the beneficial allele (red) for the standing variant model with a source population.
Populations l and i are under selection with present-day allele frequencies xl and xi at a neutral locus,
derived from an ancestral population with allele frequency ε. The populations share some amount of drift
proportional to fil before reaching the ancestral population. The beneficial allele is standing at frequency
g in the source population, l. It migrates into population i from l,where it is standing at frequency g for t
generations prior to the onset of selection, indicated by the blue triangles.

Since population l is the source, its variance follows the same form as Equation 7.1082

f
(S)
ll = y2

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll

)
+ (1− y2)fll (A.22)

All other selected populations have a modified variance since lineages that fail to recombine off the1083

beneficial background during the sweep and fail to coalesce or recombine during the standing phase return1084

to the source population. Thus,1085

f
(S)
ii = (1− y)2fii + 2y(1− y)((1− rt)fil + (1− (1− rt))fii) + y2

(
e−t(2r+

1
2Neg )

( 1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll

)
+ (1− e−t(2r+

1
2Neg ))

1

1 + 4Nerg
+
(

(1− e−t(2r+
1

2Neg ))
4Nerg

1 + 4Nerg
− (1− e−t(r+

1
2Neg ))

4Nerg

1 + 2Nerg
(1− rt)

)
fii

+ (1− e−t(r+
1

2Neg ))
4Nerg

1 + 2Nerg
(1− rt)fil

)
(A.23)

There is additional coancestry between pairs of selected populations. This takes a different form than1086

Equation 9 as there since if either lineage fails to recombines off the beneficial background during the sweep1087

or standing phase, the lineage will be in population l. For selected populations i and j, now1088

f
(S)
ij = (1− y)2fij + y2

(
r2
t

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll

)
+ (1− (1− rt))2fij + (1− rt)(1− (1− rt))(fil + fjl)

)
+ y(1− y)

(
2(1− (1− rt))fij + (1− rt)(fil + fjl)

)
(A.24)

If either population is the source, l this reduces to1089

f
(S)
il = y(1− rt)

(
y(1− rt)(

1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll) + (1− y(1− rt))fll

)
+ (1− y(1− rt))fil (A.25)
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since if the lineage fails to recombines off the beneficial background in population i, it is back in population l.1090

If the lineage in l is still on the beneficial background after the sweep and the initial t generations of standing,1091

they can coalesce during the standing phase in population l. Else, the lineages will coalesce neutrally in1092

population l. However, if the lineage sampled in population i does not return to the source population (i.e.1093

it recombines during the sweep or standing phase of t generations), the lineages can coalesce with neutral1094

probability fil.1095

Lastly, we must incorporate the impact linked selection has on the coancestry between lineages sampled1096

from any pair of non-source selected population i and non-selected population k.1097

f
(S)
ik = y

(
(1− rt)fkl + (1− (1− rt))fik

)
+ (1− y)fik (A.26)

Since lineages that do not recombine off the beneficial background in population i go back into the source1098

population l, non-selected populations may now have more or less coancestry with population i depending1099

on whether l is neutrally has more or less coancestry with population l, respectively.1100

1101

It may be possible to extend these models to allow the source population to be an unsampled population,1102

u. In this case, we need information about how our unsampled source is related to our sampled populations.1103

Specifically, we have fiu and fuu terms in the coancestry coefficients of any selected population i as well as fiu,1104

fju, and fuu for coancestry between any selected population pairs i and j and fkl for unselected populations1105

k. More work is needed to address this problem. It is possible to use all sampled populations, including1106

non-selected populations, as proxies for the unsampled source to give us information about which sampled1107

population our unsampled source is more closely related to. Additionally, if we assume the unsampled1108

population is distantly related to our sampled populations, such that they span the root, the coancestry1109

between u and any other sampled population will be 0.1110

1111

A.5 Migration model: more than two non-source selected populations1112

In the main text, we consider two selected populations i and j where population i is the source of the1113

beneficial allele. We need to extend this model when we have more than two non-source selected populations.1114

Specifically, we need to define coancestry coefficients between selected non-source pairs. Now, let population1115

l be a selected population and the source of the beneficial allele.1116

The coancestry between non-source selected populations is affected by migration as there is some proba-1117

bility or either or both lineage failing to recombine off the beneficial background of the sweep and to migrate1118

back into population l. Thus, for selected populations i and j,1119

f
(S)
ij = y2e−2rδ + y2(1− e−2rδ)fll + y(1− y)

(
fil + fjl

)
+ y(1− ye−rδ)fii + (1− y)2fij (A.27)

If l is either population i or j, this reduces to Equation 13, up to a factor of 2δ as now only one1120

population experiences the delay, δ, as the other is the source. Thus, Equation 13 is more accurate for1121

defining the coancestry coefficient between the source and selected populations. Equation 12 holds for the1122

coancestry within all non-source selected population and Equation 14 for all non-selected and non-source1123

selected population pairs. Lastly, again, we assume the source coancestry within the source population l1124

follows that of an independent sweep from new mutation (Equation 4).1125

Similar to the standing variant model with a source population above, we can think about extending this1126

migration model to allow the source population to be unsampled. More work is needed to address the same1127

issues related to estimating coancestry coefficients for unsampled populations.1128
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S1 Single pulse of migration models1282

We also considered models of a single pulse of migration. We solve for f
(S)
ii and f

(S)
ij for the bounds on1283

the time during which the beneficial allele could migrate: (1) “instantly” after the beneficial allele arises in1284

population i and (2) after the beneficial allele reaches fixation in the population i.1285

S1.1 Beneficial allele migrates instantly after it arises in population i.1286

In this case, we are specifying the pulse of migration from population i into population j occurs sufficiently1287

soon enough after the sweep began such that the entire haplotype the beneficial mutation arises on in1288

population i migrates to population j (i.e. there is no time for recombination to occur). This case gives us1289

results for an extreme of a single pulse of migration may not be particularly relevant as the spread of the1290

beneficial allele into population j will likely only occur after it has reached a sufficiently high frequency in1291

population i as it may be lost due to drift. However, these results aid in our intuition of this model.1292

As the beneficial allele originates in population i, again,1293

f
(S)
ii = (fii + y2(1− fii)). (A.1)

The probability of two lineages in the recipient population, j, coalescing before reaching the ancestral1294

population is now1295

f
(S)
jj = y2 + 2y(1− y)fij + (1− y)2fjj (A.2)

Here, both lineages can fail to recombine off the sweep (w.p. y2) and therefore coalesce with probability 1.1296

Exactly one lineage can recombine off the sweep (w.p. 2y(1 − y)) and therefore the two lineages can only1297

coalesce in the shared drift phase (w.p. fij) as the lineage that does not recombine off the sweep migrates1298

into population i. Both lineages can recombine off the sweep (w.p. (1 − y)2) and then can coalesce in1299

population j before they reach the ancestral population.1300

1301

The probability of two lineages drawn from each population coalescing before reaching the ancestral1302

population is1303

f
(S)
ij = (1− y)fij + y(y + (1− y)fii) (A.3)

In this case, if the lineage in population j recombines off the sweep (w.p. 1 − y) , the two lineages can1304

only coalesce in the shared drift phase (w.p. fij) before reaching the ancestral population. If the lineage in1305

population j fails to recombine off the sweep (w.p. y), it migrates back to population i and will be forced1306

to coalesce with the lineage in population i if it also failed to recombine, else they will coalesce neutrally in1307

population i.1308

S1.2 Beneficial allele migrates after it reaches fixation in population i.1309

For the coancestry coefficient for population j, the logic follows from that of when the pulse of migration1310

happens instantly. However in deriving the coancestry coefficient between populations i and j, in the case1311

where the lineage sampled from population j fails to recombine off the sweep and migrates back to population1312

i, which happens with probability y, it is like we have two lineages sampled in population i. Now, both could1313

either fail to recombine off the sweep and coalesce with probability 1 or one or both could recombine off the1314

sweep and coalesce neutrally in population i. This can be written as1315

f
(S)
ij = (1− y)fij + y

(
y2 + (1− y2)fii

)
(A.4)

Together, these results characterize the other end point of a single pulse of migration spreading the1316

beneficial allele to the recipient population.1317
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S2 Forward in time derivation examples1318

For the forward in time results we utilize Gillespie’s (2000) psuedohittchiking approximation with the incor-1319

poration of recombination to model the variance in the change in neutral allele frequencies due to a selective1320

sweep (∆Sxi for population i). A new beneficial mutation will arise on the same background as a neutral1321

allele with probability equal to its frequency in the population, x. In the case no crossing over occurs and1322

the new mutation sweeps to fixation, the neutral allele frequency after the hitchhiking event, x′, will either1323

be 1 with probability x or 0 with probability 1− x. Therefore,1324

∆Sx =

{
(1− x) with probability x

−x with probability (1− x)
(B.5)

thus E[∆Sx] = 0 and Var[∆Sx] = x(1− x).1325

1326

Recombination can be incorporated into this model, allowing the neutral allele to stop hitchhiking before1327

it reaches fixation. The frequency of the haplotype on which the favorable mutation arises will increase to1328

y and all other alleles will have their frequencies reduced by 1 − y. So, if the favorable allele appears on1329

the same background of our neutral allele, which happens with probability x, x′ = (1− y)x+ y. Else, with1330

probability 1− x, x′ = (1− y)x. Therefore,1331

∆Sx =

{
y(1− x) with probability x

−yx with probability (1− x)
(B.6)

thus with recombination, E[∆Sx] = 0 and Var[∆Sx] = y2x(1− x).1332

1333

We can break down the changes in allele frequencies in the two populations from the ancestral allele1334

frequency ε into three components if we assume the independent drift in each population after the sweep1335

is negligible: the change due to (1) shared drift between populations i and j before they split (∆Nxij),1336

(2) independent drift in each population before the sweep (∆Nxi and ∆Nxj), and (3) the selective sweep1337

occurring in each population (∆Sxi and ∆Sxj).1338

Define E[∆Nx
2
ij ] = ε(1 − ε)fij and E[∆Nx

2
i ] = ε(1 − ε)fi for population i. The total amount of vari-1339

ance in a neutral allele frequency for the ith population is defined as ε(1 − ε)fii which we approximate as1340

ε(1 − ε)(fij + fi). This only holds if we assume the time intervals are short relative to drift so that these1341

terms act additively. If this is not the case, the E[∆Nx
2
i ] is no longer the probability that two alleles drawn1342

from population i before the sweep begins are identical by descent with reference to the ancestral population1343

with neutral allele frequency ε, but rather with reference to the population before the split into populations1344

i and j with neutral allele frequency xij . A more careful treatment of these parameters could be done to1345

relax this assumption, and follows naturally in a coalescent setting.1346

1347

From a forward in time perspective, we can solve for Var[∆xi], Var[∆xj ], and Cov[∆xi,∆xj ] with ∆xi =1348

∆Nxij + ∆Nxi + ∆Sxi. Assuming drift terms are independent of each other, we are left with the following1349

expressions1350

Var[∆xi] = ε(1− ε)fii + E[∆sx
2
i ] + 2E[∆Nxij ·∆Sxi] + 2E[∆Nxi ·∆Sxi] (B.7)

and1351

Cov[∆xi,∆xj ] = ε(1− ε)fij + E[∆Nxij ·∆Sxi] + E[∆Nxij ·∆Sxj ] + E[∆Nxi ·∆Sxj ]

+E[∆Nxj ·∆Sxi] + E[∆Sxi ·∆Sxj ]
(B.8)

S2.1 Independent sweep model1352

In the case of independent sweeps where there is no gene flow between populations, many terms in Equations
B.7 and B.8 equal zero since the sweeps are independent. For the variances, we are left with

Var[∆xi] = ε(1− ε)fii + E[∆sx
2
i ]

= ε(1− ε)(fii + y2(1− fii)) (B.9)

41

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2017. ; https://doi.org/10.1101/119578doi: bioRxiv preprint 

https://doi.org/10.1101/119578
http://creativecommons.org/licenses/by/4.0/


The covariance in allele frequencies between populations i and j, is simply what we would expect under1353

neutrality.1354

Cov[∆x1,∆x2] = ε(1− ε)fij (B.10)

S2.2 Shared sweeps via migration1355

The migration models better exemplifies these forward in time calculations. We demonstrate the calculations1356

of Var[∆xj ] and Cov[∆xi,∆xj ] for pulse of migration models specified in Supplement S1.1357

S2.2.1 Beneficial allele migrates instantly after it arises in population i.1358

The background on which the beneficial mutation arises depends on the neutral allele frequency in popula-1359

tion i before the sweep, xi. We are specifying the pulse of migration from population i into population j1360

occurs sufficiently soon enough after the sweep began such that the entire haplotype the beneficial mutation1361

arises on in population i migrates to population j (i.e. there is no time for recombination to occur). Now1362

∆Sxj depends on the neutral allele frequency in population i before the sweep.1363

1364

∆Sxj =

{
y(1− (ε+ ∆Nxij + ∆Nxj)) with probability ε+ ∆Nxij + ∆Nxi

−y(ε+ ∆Nxij + ∆Nxj) with probability (1− (ε+ ∆Nxij + ∆Nxi))
(B.11)

1365

1366

As the beneficial allele originates in population i, again,1367

Var[∆xi] = ε(1− ε)(fii + y2(1− fii)). (B.12)

1368

1369

Now ∆Sxj depends on xi, E[∆Nxi ·∆Sxj ], E[∆Sxi ·∆Sxj ], and E[∆Nxij ·∆Sxj ] are no longer zero. So,

Var[∆xj ] = ε(1− ε)fjj + 2E[∆Nxij ·∆Sxj ] + E[∆Sx
2
j ]

= ε(1− ε)(fjj − 2yfj + y2(1 + fj − fij)) (B.13)

and

Cov[∆xi,∆xj ] = ε(1− ε)fij + E[∆Nxi ·∆Sxi] + E[∆Sxi ·∆Sxj ]

= ε(1− ε)(fij + yfi + y2(1− fi − fij)). (B.14)

This result is the same as Equation A.3 if the assumption about drift being additive holds such that1370

fii = fi + fij .1371

S2.2.2 Beneficial allele migrates after it reaches fixation in population i.1372

Now, the frequency of a neutral allele in population i after the sweep has occurred is1373

xi′ =

{
y + (1− y)xi with probability xi

(1− y)xi with probability (1− xi)

Fixing that the migration from population i into j occurs after the sweep has finished in population i,1374

∆Sxj =

{
y(1− (ε+ ∆Nxij + ∆Nxj)) with probability ε+ ∆Nxij + ∆Nxi + ∆Sxi

−y(ε+ ∆Nxij + ∆Nxj) with probability (1− (ε+ ∆Nxij + ∆Nxi −∆Sxi))
(B.15)

This can also be written as1375

∆Sxj =


y(1− xj) with probability xi(y + (1− y)xi)

y(1− xj) with probability (1− xi)(1− y)xi

−yxj with probability xi(1− y − (1− y)xi)

−yxj with probability (1− xi)(1− (1− y)xi)

(B.16)
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Here, the first case is that the beneficial allele arises on the same background as our neutral allele in1376

population i and then is the haplotype that migrates into population j. The probability of the haplotype1377

migrating is equal to its frequency in the population. The third case also includes the beneficial allele arising1378

on the same background as our neutral allele, but the other haplotype migrates. The second and fourth cases1379

are when the beneficial mutation arises on the other background as our neutral allele. In the second case,1380

the haplotype containing our neutral allele migrates after the sweep and in the fourth, the other haplotype1381

migrates.1382

1383

The variance within population i and population j are the same as in the case of the beneficial allele1384

migrating instantly. The only term changed by specifying that the pulse of migration happens after the1385

sweep is E[∆Sxi ·∆Sxj ] which is now ε(1− ε)y3(1− fjj). So,1386

Cov[∆xi,∆xj ] = ε(1− ε)(fij + yfj + y3(1− fj − fij)) (B.17)

S3 mssel input for simulations1387

Independent sweep model. mssel input for all independent sweep model is of the following form with1388

different trajectory files for each s,1389

./mssel 40 1000 20 20 ind_sel0.1_stochastic.traj 0 -t 2000 -r 2000 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.05 3 4 -ej 0.05 2 1 -ej 0.07 4 1

Standing variation model.1390

./mssel 40 1000 20 20 sv_sel0.01_g0.001_t50_stochastic.traj 0 -t 200 -r 120 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.0346 2 1 -ej 0.0346 3 4 -ej 0.03575 4 1

./mssel 40 100 20 20 sv_sel0.01_g0.001_t250_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.039 3 4 -ej 0.039 2 1 -ej 0.0408 4 1

./mssel 40 1000 20 20 sv_sel0.01_g0.001_t500_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.04 2 1 -ej 0.04 3 4 -ej 0.047 4 1

./mssel 40 100 20 20 sv_sel0.01_g0.001_t1000_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.04 3 4 -ej 0.04 2 1 -ej 0.0595 4 1

./mssel 40 1000 20 20 sv_sel0.01_g0.001_t5000_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.135 2 1 -ej 0.135 3 4 -ej 0.1595 4 1

We also simulated under two additional selection coefficients, s = [0.001, 0.05], keeping t = 500 and1391

g = 0.001.1392

./mssel 40 100 20 20 sv_sel0.001_g0.001_t500_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.3455 3 4 -ej 0.3455 2 1 -ej 0.3578 4 1

./mssel 40 100 20 20 sv_sel0.05_g0.001_t500_Ne10000_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.00695 3 4 -ej 0.00695 2 1 -ej 0.01935 4 1

Migration model.1393

./mssel 40 1000 20 20 mig_sel0.01_mig1e-04_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 4

./mssel 40 1000 20 20 mig_sel0.01_mig0.001_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 40

./mssel 40 1000 20 20 mig_sel0.01_mig0.01_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 400

./mssel 40 1000 20 20 mig_sel0.01_mig0.1_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 4000
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We also simulated under two additional selection coefficients, s = [0.005, 0.05], keeping m = 0.001.1394

./mssel 40 100 20 20 mig_sel0.05_mig0.001_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.021 2 1 -ej 0.021 3 4 -ej 0.03 4 1
-em 0.014 3 2 0 -em 0 3 2 40

./mssel 40 100 20 20 mig_sel0.005_mig0.001_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.12 2 1 -ej 0.12 3 4 -ej 0.17 4 1
-em 0.11 3 2 0 -em 0 3 2 40

1395

S4 Parametric-bootstrap simulation details1396

S4.1 Copper tolerance in Mimulus guttatus specifics1397

Below are the input for the simulation runs to generate parametric bootstraps for the Mimulus guttatus1398

analysis. We simulate with Ne = 7500, except for in the migration model where Ne = 30000 (to allow for1399

smaller ŝ).1400

Neutral model.1401

./ms 194 100 -s 5723 -r 239.7203 169294 -I 4 62 42 40 50 -ej 0.057 4 1 -ej 0.056 2 1
-ej 0.085 3 1

Independent mutations model. (ˆ̀= 302666, ŝ = 0.021)1402

./mssel 194 100 102 92 mim_indMLE_comp.traj 87565.86 -s 5723 -r 239.7203 169294
-I 4 0 62 42 0 0 40 50 0 -ej 0.057 4 1 -ej 0.056 2 1 -ej 0.085 3 1

Migration model. (ˆ̀= 308504, ŝ = 0.003, m̂ = 1, source pop = 1)1403

./mssel 194 100 102 92 mim_migMLE_comp_Ne30000.traj 93403.6 -s 5723 -r 958.8812 169294
-I 4 0 62 42 0 0 40 50 0 -ej 0.057 4 1 -ej 0.056 2 1 -ej 0.085 3 1
-em 0.04975 3 1 0 -em 0.0496 3 1 120000

Standing variant with source model. (ˆ̀= 308504, ŝ = 0.034, ĝ = 10−7, t̂ = 646, source pop = 1)1404

./mssel 194 100 102 92 mim_svSourceMLE_comp.traj 93403.6 -s 5723 -r 239.7203 169294
-I 4 0 62 42 0 0 40 50 0 -ej 0.057 4 1 -ej 0.056 2 1 -ej 0.085 3 1
-em 0.043 3 1 0.001 -em 0.045 3 1 0

1405

S4.2 Industrial pollutant tolerance in Fundulus heteroclitus specifics1406

Below are the input for the simulation runs to generate parametric bootstraps for the Fundulus heteroclitus1407

analysis. We simulate with Ne = 1000 for all models.1408

Neutral model.1409

./ms 768 100 -s 66593 -r 214.4814 2470984 -I 8 96 96 98 100 100 86 94 98
-ej 0.0274276738490838 4 3 -ej 0.0344793500868448 3 1 -ej 0.0473737546397982 2 1
-ej 0.0529009970762367 6 1 -ej 0.060223521932099 5 1 -ej 0.0281723542369385 8 7
-ej 0.131042855088188 7 1
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Independent mutations model. (ˆ̀= 1790785, ŝ = 0.2)1410

./mssel 768 100 380 388 indMLE_killi_Ne1000.traj 1789333 -s 66593 -r 214.4814 2470984
-I 8 96 0 0 96 98 0 0 100 100 0 0 86 94 0 0 98 -ej 0.0274276738490838 4 3
-ej 0.0344793500868448 3 1 -ej 0.0473737546397982 2 1 -ej 0.0529009970762367 6 1
-ej 0.060223521932099 5 1 -ej 0.0281723542369385 8 7 -ej 0.131042855088188 7 1

Migration model. (ˆ̀= 2472436, ŝ = 0.6, m̂ = 1, source pop = 6 (T3))1411

./mssel 768 100 380 388 mig_mle_Ne1000_killi.traj 2470984 -s 66593 -r 214.4814 2470984
-I 8 96 0 0 96 98 0 0 100 100 0 0 86 94 0 0 98 -ej 0.0274276738490838 4 3
-ej 0.0344793500868448 3 1 -ej 0.0473737546397982 2 1 -ej 0.0529009970762367 6 1
-ej 0.060223521932099 5 1 -ej 0.0281723542369385 8 7 -ej 0.131042855088188 7 1
-em 0.00614 8 6 0 -em 0.006 8 6 4000 -em 0.00614 2 6 0 -em 0.006 2 6 4000
-em 0.00614 4 6 0 -em 0.006 4 6 4000

Standing variant with source model. (ˆ̀= 2472436, ŝ = 0.6, ĝ = 10−9, t̂ = 50, source pop = 4 (T2))1412

./mssel 768 100 380 388 sv_killiMLE_Ne1000.traj 2470984 -s 66593 -r 214.4814 2470984
-I 8 96 0 0 96 98 0 0 100 100 0 0 86 94 0 0 98 -ej 0.0274276738490838 4 3
-ej 0.0344793500868448 3 1 -ej 0.0473737546397982 2 1 -ej 0.0529009970762367 6 1
-ej 0.060223521932099 5 1 -ej 0.0281723542369385 8 7 -ej 0.131042855088188 7 1
-em 0.0243 8 4 0 -em 0.0240 8 4 0.0001 -em 0.0243 2 4 0 -em 0.0240 2 4 0.0001
-em 0.0243 6 4 0 -em 0.0240 6 4 0.0001

Migration in North and independent mutation in South model. (ˆ̀= 2472436, ŝ = 0.4, m̂ = 10−5,1413

source pop = 6 (T3))1414

./mssel 768 100 380 388 migInd_mle_killi_Ne1000.traj 2470984 -s 66593 -r 214.4814 2470984
-I 8 96 0 0 96 98 0 0 100 100 0 0 86 94 0 0 98 -ej 0.0274276738490838 4 3
-ej 0.0344793500868448 3 1 -ej 0.0473737546397982 2 1 -ej 0.0529009970762367 6 1
-ej 0.060223521932099 5 1 -ej 0.0281723542369385 8 7 -ej 0.131042855088188 7 1
-em 0.01237 2 6 0 -em 0.0089 2 6 0.04 -em 0.01237 4 6 0 -em 0.0089 4 6 0.04

Standing variation with source in North and independent mutation in South model. (ˆ̀ =1415

1961198, ŝ = 0.3, ĝ = 10−6, t̂ = 8, source pop = 6 (T3))1416

./mssel 768 100 380 388 svInd_killi_Ne1000.traj 1959746 -s 66593 -r 214.4814 2470984
-I 8 96 0 0 96 98 0 0 100 100 0 0 86 94 0 0 98 -ej 0.0274276738490838 4 3
-ej 0.0344793500868448 3 1 -ej 0.0473737546397982 2 1 -ej 0.0529009970762367 6 1
-ej 0.060223521932099 5 1 -ej 0.0281723542369385 8 7 -ej 0.131042855088188 7 1
-em 0.0195 2 6 0 -em 0.01925 2 6 0.0001 -em 0.0195 4 6 0 -em 0.01925 4 6 0.0001
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S5 Supplemental tables and figures1417

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

selSitetruth

ŝ
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(a) MCLE of selection coefficients as function of
true location of selected site. Each location of selected
site has 100 simulations under independent muta-
tion model (10 chromosomes per population, Ne =
100,000, s = 0.05). Crossbars indicate first and third
quartiles with second quartiles (medians) as the horizon-
tal line. The true values of the parameters are marked
with dashed, black lines.
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Figure S1: MCLE of parameters for independent mutation simulations allowing selected site to
vary.
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Figure S2: Average coancestry coefficient values for migration simulations with various m, across 100 runs of
simulations for each of 100 bins of distance away from the selected site, showing the migration rate parameter
does not have a large effect on both expectations (solid lines) and simulation results (dashed lines). For all
simulations, s = 0.01, Ne = 10, 000, and the source of the beneficial allele is population 2.
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(a) Average coancestry coefficient values for migration
simulations across 100 runs of simulations for each of
100 bins of distance away from the selected site, between
recipient population (3) and non-selected populations (1
and 4).
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(b) Average coancestry coefficient values for migration
simulations across 100 runs of simulations for each of
100 bins of distance away from the selected site, between
source population (2) and non-selected populations (1
and 4).

Figure S3: Average coancestry coefficient values for migration simulations across 100 runs of simulations
for each of 100 bins of distance away from the selected site, between source and recipient populations and
non-selected populations (s = 0.01, m = 0.001, Ne = 10,000).
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(a) MCLE of migration rates for 100 simulations un-
der migration model (10 chromosomes per popula-
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(b) MCLE of selection coefficients for 100 simula-
tions under migration model (10 chromosomes per
population, Ne = 10,000, m = 0.001)

Figure S4: MCLE of parameters for migration model simulations. We vary the true value of the
parameter used for simulations along the x-axis and show the MCLE for each of 100 simulations (points).
Crossbars indicate first and third quartiles with second quartiles (medians) as the horizontal line. The true
values of the parameters are marked with dashed, black lines.
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Figure S5: Coancestry coefficient for the recipient population as a function of recombination distance from
the selected site, partitioned into simulations with MCLE for m = 1 and m < 1 (s = 0.01, m = 0.001, Ne
= 10,000).
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Figure S6: MCLE of selection coefficients for 100 simulations under standing variant model (10
chromosomes per population, Ne = 10,000, t = 500, g = 0.001). We vary the true value of the parameter
used for simulations along the x-axis and show the MCLE for each of 100 simulations (points). Crossbars
indicate first and third quartiles with second quartiles (medians) as the horizontal line. The true values of
the parameters are marked with dashed, black lines.
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(a) Composite log-likelihood for standing variation model with
no source specified and both selected populations as potential
sources, as a function of the proposed selected site.
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(b) Profile composite log-likelihood of the min-
imum age of the standing variant for stand-
ing variant model with no source specified and
both selected populations as potential sources.

Figure S7: Inference results for standing variant model applied to Mimulus data using both original standing
variant model and more complex model where a source population is specified. In this case, the composite
log-likelihoods do not change, but the parameter estimates do. We obtain higher MCLE for t when a source
is specified (646 generations) compared to the original no source model (434 generations). This fits our
expectation as t has slightly different interpretations under the two models.
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Figure S8: Histogram of MCLE for mimimum age of the standing variant (t̂) for 100 simulations under
MCLE of standing variation with source model for Mimulus guttatus. MCLE from actual data is shown with
dashed, blue line.
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Figure S9: Composite log-likelihood for Fundulus heteroclitus pollutant tolerance adaptation on Scaf-
fold9893, showing all possible sources for models with migration and standing variant model, as a function
of the proposed selected site.
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Figure S10: Histogram of composite log-likelihood ratio for 100 simulations under MCLE of migration
in Northern tolerant populations and independent mutation in Southern tolerant populations for Fundulus
heteroclitus (standing variation with T3 as source in Northern tolerant populations and independent mutation
in Southern tolerant populations - migration in Northern tolerant populations and independent mutation in
Southern tolerant populations). Observed value from actual data is shown with dashed, blue line.
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Figure S11: Histogram of MCLE for mimimum age of the standing variant (t̂) for 100 simulations under
MCLE of standing variation with T3 as source in Northern tolerant populations and independent mutation
in Southern tolerant populations for Fundulus heteroclitus. MCLE from actual data is shown with dashed,
blue line.
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Figure S12: Histogram of MCLE for mimimum age of the standing variant (t̂) for 100 simulations un-
der MCLE of migration with T3 as source in Northern tolerant populations and independent mutation in
Southern tolerant populations for Fundulus heteroclitus.

Table S1: Parameter spaces for composite-likelihood calculations for simulated datasets

Position of selected site 0

s
10−4, 5× 10−4, 10−3, 2× 10−3, 4× 10−3, 5× 10−3, 6× 10−3, 8× 10−3,
0.01, 0.012, 0.014, 0.018, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1,
0.11, 0.12, 0.14, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6

t

0, 5, 15, 25, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500,
550, 600, 650, 700, 750, 800, 900, 1000, 1200, 1500, 1800, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 9000,
104, 1.5× 105, 2× 105, 3× 105, 5× 105, 7× 105, 9× 105, 105, 106

g 10−3

m 10−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 0.01, 0.2, 0.5, 0.9, 1
Migration source population 2
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Table S2: Parameter spaces for composite-likelihood calculations for independent sweep model simulations

Position of selected site 0

s

10−4 2× 10−4, 3× 10−4, 4× 10−4, 5× 10−4, 6× 10−4, 7× 10−4, 8× 10−4, 9× 10−4,
0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005, 0.0055, 0.006, 0.0065,
0.007, 0.0075, 0.008, 0.0085, 0.009, 0.0095, 0.01, 0.0105, 0.011, 0.0115, 0.012, 0.0125,
0.013, 0.0135, 0.014, 0.0145, 0.015, 0.0155, 0.016, 0.0165, 0.017, 0.0175, 0.018,
0.0185, 0.019, 0.0195, 0.02, 0.0205, 0.021, 0.0215, 0.022, 0.0225, 0.023, 0.0235,
0.024, 0.0245, 0.025, 0.0255, 0.026, 0.0265, 0.027, 0.0275, 0.028, 0.0285, 0.029,
0.0295, 0.03, 0.0305, 0.031, 0.0315, 0.032, 0.0325, 0.033, 0.0335, 0.034, 0.0345,
0.035, 0.0355, 0.036, 0.0365, 0.037, 0.0375, 0.038, 0.0385, 0.039, 0.0395, 0.04,
0.0405, 0.041, 0.0415, 0.042, 0.0425, 0.043, 0.0435, 0.044, 0.0445, 0.045, 0.0455,
0.046, 0.0465, 0.047, 0.0475, 0.048, 0.0485, 0.049, 0.0495, 0.05, 0.0505, 0.051,
0.0515, 0.052, 0.0525, 0.053, 0.0535, 0.054, 0.0545, 0.055, 0.0555, 0.056, 0.0565,
0.057, 0.0575, 0.058, 0.0585, 0.059, 0.0595, 0.06, 0.0605, 0.061, 0.0615, 0.062,
0.0625, 0.063, 0.0635, 0.064, 0.0645, 0.065, 0.0655, 0.066, 0.0665, 0.067, 0.0675,
0.068, 0.0685, 0.069, 0.0695, 0.07, 0.0705, 0.071, 0.0715, 0.072, 0.0725, 0.073,
0.0735, 0.074, 0.0745, 0.075, 0.0755, 0.076, 0.0765, 0.077, 0.0775, 0.078, 0.0785,
0.079, 0.0795, 0.08, 0.0805, 0.081, 0.0815, 0.082, 0.0825, 0.083, 0.0835, 0.084,
0.0845, 0.085, 0.0855, 0.086, 0.0865, 0.087, 0.0875, 0.088, 0.0885, 0.089, 0.0895,
0.09, 0.0905, 0.091, 0.0915, 0.092, 0.0925, 0.093, 0.0935, 0.094, 0.0945, 0.095,
0.0955, 0.096, 0.0965, 0.097, 0.0975, 0.098, 0.0985, 0.099, 0.0995, 0.1, 0.1005,
0.101, 0.1015, 0.102, 0.1025, 0.103, 0.1035, 0.104, 0.1045, 0.105, 0.1055, 0.106,
0.1065, 0.107, 0.1075, 0.108, 0.1085, 0.109, 0.1095, 0.11, 0.1105, 0.111, 0.1115,
0.112, 0.1125, 0.113, 0.1135, 0.114, 0.1145, 0.115, 0.1155, 0.116, 0.1165, 0.117,
0.1175, 0.118, 0.1185, 0.119, 0.1195, 0.12, 0.1205, 0.121, 0.1215, 0.122, 0.1225,
0.123, 0.1235, 0.124, 0.1245, 0.125, 0.1255, 0.126, 0.1265, 0.127, 0.1275, 0.128,
0.1285, 0.129, 0.1295, 0.13, 0.1305, 0.131, 0.1315, 0.132, 0.1325, 0.133, 0.1335,
0.134, 0.1345, 0.135, 0.1355, 0.136, 0.1365, 0.137, 0.1375, 0.138, 0.1385, 0.139,
0.1395, 0.14, 0.1405, 0.141, 0.1415, 0.142, 0.1425, 0.143, 0.1435, 0.144, 0.1445,
0.145, 0.1455, 0.146, 0.1465, 0.147, 0.1475, 0.148, 0.1485, 0.149, 0.1495, 0.15,
0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,
0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45,
0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6

Table S3: Parameter spaces for composite-likelihood calculations for independent sweep model simulations
when position of selected site varies

Position of selected site

0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16 0.18, 0.2, 0.22, 0.24, 0.26,
0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58,
0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9,
0.92, 0.94, 0.96, 0.98, 1

s
10−4, 5× 10−4, 0.001, 0.002, 0.004, 0.005, 0.006, 0.008, 0.01, 0.012, 0.014,
0.018, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1, 0.11, 0.12, 0.14, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4, 0.5, 0.6
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Table S4: Parameter spaces for composite-likelihood calculations for migration model simulations

Position of selected site 0

s

10−4, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.011,
0.012, 0.013, 0.014, 0.015, 0.016, 0.018, 0.02, 0.022, 0.024, 0.026, 0.028, 0.03,
0.032, 0.034, 0.036, 0.038, 0.04, 0.042, 0.044, 0.046, 0.048, 0.05, 0.052, 0.054,
0.056, 0.058, 0.06, 0.062, 0.064, 0.066, 0.068, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13,
0.14, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6

m

1−5, 8× 10−5, 0−4, 1.2× 10−4, 1.4× 10−4 1.6× 10−4, 1.8× 10−4,
2× 10−4, 2.2× 10−4, 2.4× 10−4, 2.6× 10−4, 2.8× 10−4,
3× 10−4, 3.2× 10−4, 3.4× 10−4, 3.6× 10−4, 3.8× 10−4,
4× 10−4, 8× 10−4, 0.001, 0.0012, 0.0014, 0.0016, 0.0018, 0.002,
0.0022, 0.0024, 0.0026, 0.0028, 0.003, 0.0032, 0.0034, 0.0036, 0.0038, 0.004, 0.006,
0.008, 0.01, 0.012, 0.014, 0.016, 0.036, 0.056, 0.076, 0.096, 0.116, 0.136, 0.156, 0.176,
0.196, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Migration source population 2

Table S5: Parameter spaces for composite-likelihood calculations for standing variation model simulations

Position of selected site 0

s
10−4, 0.0020, 0.0040, 0.0050, 0.0060, 0.0080, 0.0100, 0.0120, 0.0140,
0.0180, 0.0200, 0.0400, 0.0500, 0.0600, 0.0700, 0.0900, 0.1000, 0.1500, 0.2000, 0.3000,
0.4000 0.5000 0.6000

t

5, 5, 25, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,
650, 700, 750, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000,
5500, 6000, 6500, 7000, 7500, 8000, 9000, 10000, 15000, 20000, 30000, 50000,
70000, 9000, 105

g 10−6, 10−5, 10−4, 10−3, 10−2

Table S6: Neutral F matrix from 12 scaffolds with no strong signatures of selection in Mimulus guttatus pop-
ulations (Scaffold7 and regions adjacent to scaffolds 1, 4, 8, 47, 80, 84, 106, 115, 129, 148, 198). Populations
1 and 3 are copper tolerant.

Pop1 Pop2 Pop3 Pop4
Pop1 0.1571 0.0266 0.0153 0.0356
Pop2 0.0266 0.1008 0.0000 0.0204
Pop3 0.0153 0.0000 0.1807 0.0179
Pop4 0.0356 0.0204 0.0179 0.1232
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Table S7: Parameter spaces for composite-likelihood calculations for Mimulus

Position of selected site
215100, 220938, 226775, 232613, 238451, 244289, 250126, 255964, 261802,
267640, 273477, 279315, 285153, 290990, 296828, 302666, 308504, 309000,
314341, 320179, 326017, 331854, 337692, 343530, 349368, 355205, 361043

s

0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01,
0.011, 0.014, 0.016, 0.019, 0.021, 0.024, 0.026, 0.029, 0.032, 0.034, 0.037
0.039, 0.042, 0.045, 0.047, 0.05, 0.052, 0.055, 0.057, 0.06, 0.08, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6

t
5, 10, 81, 151, 222, 293, 364, 434, 505, 576, 646, 717, 788, 859, 929, 1000,
1500, 1607, 1714, 1821, 1929, 2036, 2143, 2250, 2357, 2464, 2571, 2679, 2786,
2893, 3000
(we include larger values 4000, 5000, 7000, 9000, 105, 107 when calculating the
likelihoods of parametric-bootstrap datasets)

g 10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2

m 10−5, 10−4, 5−4, 0.001, 0.005, 0.01, 0.1, 0.2 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Source population 1, 3

Table S8: Parametric-bootstrap results for Mimulus analysis

Range of CLR from 100 simulations
Model (standing source - simulation model) Observed CLR
Neutral [-30.42, 145.04] 1985.87
Independent mutations [-0.05, 88.02] 436.21
Migration [4.12, 749.45] 945.95

Table S9: Neutral F matrix from four scaffolds with no strong signatures of selection in Fundulus heteroclitus
populations (Scaffold0, Scaffold1, Scaffold2, Scaffold3)

S1 T1 S2 T2 S3 T4 S5 T5
S1 0.339 0.292 0.315 0.332 0.179 0.229 0.022 0.003
T1 0.292 0.372 0.304 0.329 0.171 0.218 0.020 0.000
S2 0.315 0.304 0.381 0.384 0.213 0.263 0.053 0.034
T2 0.332 0.329 0.384 0.451 0.220 0.276 0.055 0.035
S3 0.179 0.171 0.213 0.220 0.198 0.192 0.058 0.044
T3 0.229 0.218 0.263 0.276 0.192 0.272 0.053 0.037
S4 0.022 0.020 0.053 0.055 0.058 0.053 0.142 0.093
T4 0.003 0.000 0.034 0.035 0.044 0.037 0.093 0.142
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Table S10: Parameter spaces for composite-likelihood calculations for Fundulus

Position of selected site 1452, 86658, 171865, 257071, 342277, 427484, 512690, 597896, 683103,
768309, 853515, 938722, 1023928, 1109134, 1194341, 1279547, 1364754,
1449960, 1535166, 1620373, 1705579, 1790785, 1875992, 1961198, 2046404,
2131611, 2216817, 2302023, 2387230, 2472436

s
0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16,
0.18, 0.2, 0.3, 0.4, 0.5, 0.6

t
0, 5, 50, 100, 500, 1000, 5000, 107

(we include 2, 8, 10, 15, 20, 30, 35, 40 when trying to get a more accurate estimate of t̂
under our standing (3) + ind (1) model)

g 10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2

m 10−5, 10−4, 5−4, 0.001, 0.005, 0.01, 0.1, 0.3, 0.5, 0.9, 1
Source population T1, T2, T3, T4

Table S11: Parametric-bootstrap results for Fundulus analysis

Range of CLR from 100 simulations
Model (standing source w/ ind mutation model - simulation model) Observed CLR
Neutral [-5.74, 2133.35] 124756.50
Independent mutations [-54.84, 984.97] 49891.11
Migration [-28393.81, 27274.27] 124757.10
Standing source [-3040.37, 2536.41] 44540.12
Migration w/ [-24675.19, 38996.70] 8120.52
independent mutation
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