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Highlight 
Genetic effects on the trait variance, rather than the mean, have been found in several studies. Here we 

discuss how this sometimes, but not always, can be caused by epistasis. 

 

Abstract 
Epistasis and genetic variance heterogeneity are two non-additive genetic inheritance patterns 

that are often, but not always, related. Here we use theoretical examples and empirical results 

from analyses of experimental data to illustrate the connection between the two. This includes 

an introduction to the relationship between epistatic gene-action, statistical epistasis and 

genetic variance heterogeneity and a brief discussion about how other genetic processes than 

epistasis can also give rise to genetic variance heterogeneity. 
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QTL: Quantitative Trait Locus 
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Introduction 
Complex traits are generally affected by many alleles at different loci throughout the genome. 

A central question when trying to understand the genetic mechanisms regulating a complex 

trait is therefore: do the different alleles act independently of each other, or are the phenotypic 

effects of certain alleles dependent on the genetic background at other loci? Such 

dependencies between alleles at different loci are referred to as genetic interactions, or 

epistasis.  
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In quantitative genetics, the phenotypic variance (VP) is typically partitioned into one 

component (VG) that is due to genetic, and another component (VE) that is due to non-genetic, 

influences on the trait variance. The genetic variance (VG) can then be further partitioned into 

additive (VA), dominance (VD), and epistatic (VE) variance components1. This variance 

partitioning forms the basis of the metric heritability, which is defined as 𝐻! = !!
!!

 (broad 

sense heritability), or ℎ! = !!
!!

 (narrow sense heritability). The concept of additive genetic 

variance has been very useful in animal and plant breeding efforts1, since VA captures the 

“breedable” genetic contributions to the resemblance between relatives. The epistatic 

variance, however, is of little value in breeding and was originally introduced as a nuisance 

parameter in the genetic model1. These genetic variance components are population level 

metrics, specific to a certain population, and they do not have a straightforward functional 

interpretation in terms of gene action2,3. Epistatic gene action, i.e. when the effect of an allele 

at one locus varies depending on the genotype at another locus, is therefore not directly 

proportional to the level of epistatic variance in a population. This as it will usually contribute 

to both the additive and epistatic genetic variances4–6. To which extent epistatic gene action 

will contribute additive genetic variance is determined by allele frequencies, the type of 

genetic interactions, and how the genetic models used are parameterized3,5,7. To clarify the 

distinction between gene action and genetic variance, it has sometimes been highlighted that 

additive genetic variance can be an “emergent property” of non-additive gene action. We refer 

readers interested in this topic to previous work2–7, as our focus here is on the connection 

between epistatic gene action and genetic variance-heterogeneity.  

 

Genetic regulation of the variability of a trait  

The concept that also the trait variability could be under direct genetic control was introduced 

already in the 1940s when Waddington presented the idea of canalization, where he suggested 

that natural selection could act to produce traits that are robust to environmental and genetic 

perturbations8. He partly based his ideas on the observation that natural populations often are 

less variable than artificial populations of the same species. More recently, Hill and Mulder9 

proposed that “the environmental variation” can be regarded as a phenotype in its own right. 

One can then invoke much of the quantitative genetics methodology to search for genetic 

determinants of this phenotype. They consequently called this phenomenon “genetic control 

of the environmental variation”, a terminology which implies that it is the randomness, or 

instability, of the trait that is genetically controlled. Several studies have recently mapped 
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individual loci where the different alleles affect not only the mean, but also the variance of 

traits9–11. These loci can be detected since the variability of the measured trait differs between 

groups of individuals that carry alternative alleles at the locus. A simple example would be 

two groups of humans, where the group of individuals homozygote for a certain allele include 

both very short and very tall individuals, while the second group that is homozygote for the 

alternative allele include individuals of similar height. This would lead to genetic variance 

heterogeneity between the two groups of individuals. Note that the mean height does not have 

to be different between the groups in order for this to occur (Fig. 1). 

 

[Figure 1 about here] 

 

A growing body of evidence thus suggests that phenotypic variability can be genetically 

controlled10,12,13. As genetic variance heterogeneity is a statistical measure defined on the 

population level it is, in the same way as additive and epistatic genetic variance, a property 

that could emerge from several different underlying genetic mechanisms. A number of 

different genetic mechanisms that in theory can lead to genetic variance heterogeneity have 

been proposed and discussed in the literature11,13,14. Consequently, it is not possible to make 

immediate functional interpretations of genetic variance heterogeneity associations. The 

underlying mechanisms revealed to date, however, have one thing in common: they reach 

beyond the assumption of bi-allelic loci affecting the trait mean, which is the mode of 

inheritance typically assumed in quantitative genetics studies. We will here first use two 

recent empirical dissections of variance-heterogeneity associations to illustrate the underlying 

mechanisms revealed in these studies: alleles increasing stochasticity of a trait and linkage-

disequilibrium patterns across alleles at linked loci. After that, we will proceed to a third 

mechanism that can lead to genetic variance heterogeneity, and which is the main topic of this 

paper, genetic interactions or epistasis.  

 

Individual alleles can have a direct effect on the variability of a trait  

Genetic variance heterogeneity is a somewhat abstract concept, since variance only has a 

meaning for groups, not for individuals. What does it mean that a certain allele increases the 

variance of a trait? One way to illustrate this is by using the results from Ayroles et al12, a 

study of variability in locomotor handedness in fruit flies. In this study, it was demonstrated 

that the degree of variability in how flies turn left and right in a Y-shaped maze was heritable. 

Further, some lines of flies displayed high levels of intragenotypic variability among 
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individuals, whereas other lines had a low variability. This difference could in part be 

explained by the flies carrying different alleles at the Ten-a gene, altering the function of a 

specific subcircuit within the central complex of the brain. This illustrates how 

polymorphisms in a single gene can result in genetic variance heterogeneity for a complex 

behavioral trait.  

 

Linkage-disequilibrium can lead to genetic variance heterogeneity in a population 

Genetic variance heterogeneity can be observed in a population where two, or more, alleles 

that have different effects on a trait are linked. The reason for this is as follows. A common 

assumption when estimating the effect of a particular locus on a trait, regardless of whether it 

is on the mean or the variance, is that it is bi-allelic. When analyzing a population it is, 

however, not possible to measure the effect closely linked functional polymorphisms 

independently. This as the test for association to a marker will capture the joint effect of all 

mutations that are in linkage disequilbrium (LD) with the alleles at the tested locus in the 

population. If there is LD between more than two polymorphisms that affect the tested trait, 

genetic variance heterogeneity might emerge. If it will does ultimately depend on the LD-

pattern between the functional alleles, and on their phenotypic effects. To illustrate this, we 

will use our findings when dissecting a variance-heterogeneity locus in A. Thaliana. There we 

found that the genetic variance heterogeneity was due to an extended LD across multiple 

polymorphic sites near the gene MOT1, which all affected the plants ability to accumulate 

molybdenum from the soil15. Several marker alleles across this locus were in LD with three 

different functional alleles: two that increased and one that decreased the molybdenum 

concentration in the leaves when compared to the major alleles at these three loci that were in 

LD with the alternative alleles at the markers. The plants that carry marker-alleles, which tags 

the three functional alleles that either increase or decrease the phenotype, thus have a more 

variable phenotype than the plants with the opposite marker-alleles. The resulting variance 

heterogeneity was very strong, with a sevenfold difference in phenotypic variance between 

the groups of accessions that carried the alternative alleles.  

 

The two examples above illustrate two empirically revealed genetic mechanisms that can lead 

to genetic variance heterogeneity in a population. In the remainder of this paper, we focus on 

a third possible explanation – epistasis – to clarify its connection to genetic variance-

heterogeneity as this has not previously been discussed in detail in the literature. This will be 

done by first briefly recapitulating the concept of genotype-to-phenotype (GP) mapping 
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across multiple loci, and then use this as a tool to illustrate how different types of theoretical 

and empirically evidenced genetic interactions (epistasis) will, or will not, lead to genetic 

variance-heterogeneity at the interacting loci. This will provide a deeper insight into how 

these two genetic concepts are related. 

 

Results 
For a complex trait, affected by many alleles across multiple loci, the genotype to phenotype 

(GP) space, i.e. the phenotype produced by every possible genotype, can be extremely large. 

This is because the number of possible multi-locus genotypes, the full space of genotypic 

possibilities, grows exponentially with the number of loci that regulate the trait. In the 

presence of epistasis, each of these multi-locus genotypes can in theory have their own unique 

phenotypic effects, giving rise to an almost infinitely complex map from genotype to 

phenotype. In practice, it is difficult to empirically characterize more than small fraction of 

this genotypic space. Partially for practical reasons, genetic studies therefore often either 

ignore genetic interactions completely to focus on the marginal effect of contributing loci, or 

focus on a smaller subset of the possible multi-locus genotypes. 

	

Variance-heterogeneity as an emerging property of epistatic gene-action 

The marginal additive effect of a locus is the change in the phenotype due to an allele-

substitution at this locus, averaged across all genetic backgrounds in the population. It can be 

thought of as a projection from the multi-dimensional GP-space, down to one dimension. Fig. 

2 illustrates this for a theoretical GP-space involving only two loci A and B. In this example, 

locus B capacitates (turn on) the effect of locus A, so that A displays a phenotypic effect only 

when combined with the allele B2. The result is that under many allele frequencies, locus A 

will display a substantial marginal effect, but locus B will not. The marginal effect displayed 

by locus A is “diluted” compared to its full potential effect on the phenotype of an individual 

carrying it. It might, however, still be large enough for the locus to contribute substantial 

additive genetic variance in a population, as there will be a mean difference in the trait 

between the groups of individuals that carry the alternative alleles. It is also worth noting that 

while locus B does not have a measurable marginal effect on the phenotypic mean, there is a 

difference in variance between the genotypes. Thus, in this particular example, locus A does 

not display genetic variance heterogeneity, but locus B does. As a result, locus A might be 

detected in a conventional Genome Wide Association (GWA) or Quantitative Trait Locus 
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(QTL) analyses for additive marginal effects, but locus B will not. Locus B might however be 

detected in an analysis looking specifically for genetic variance heterogeneity11,13.  

 

[Figure 2 about here] 

 

Fig. 3 presents another theoretical GP-space involving two loci. In this example, the genotype 

A2B2 has an effect of two on an arbitrarily chosen phenotypic scale, whereas the other three 

genotypes have an effect of zero. The result is that both loci display a marginal effect on both 

the mean and the variance. Just like in the previous example (Fig. 2), the marginal effect on 

the mean is diluted compared to its full effect on the phenotype of an individual carrying it. 

Under most allele frequencies, both loci will however contribute additive genetic variance. 

Conventional GWA and QTL analysis methods, as well as analyzes looking for marginal 

effects on the phenotypic variability, might in cases like this identify the two loci. Which of 

the two analysis approaches, looking for mean or variance effects, that has the best power will 

depend on the allele frequencies at the two loci. 

 

[Figure 3 about here] 

 

Fig. 4 illustrates a theoretical GP-space where the direction of the phenotypic effect of an 

allele is completely reversed depending on the genetic background at the other locus. When 

combined with the B1 allele, A1 increases and A2 decreases the phenotype. When combined 

with the B2 allele, the effects are reversed. When estimating the marginal effect of a locus in 

such a GP-space the averaging across genetic backgrounds will lead to much, or all, of the 

phenotypic effect being canceled. At certain allele frequencies, 50% in this case, none of the 

loci will display any marginal effect on the mean or the variance. They will therefore not be 

detectable by their marginal effects, regardless of whether the scan is looking for effects on 

the mean or the variance of the trait. In order to identify the two loci as important contributors 

to the phenotype, alternative analysis methods such as a two dimensional scan for epistatic 

interactions16,17 are needed.  

 

[Figure 4 about here] 

 

Multi-locus epistasis and variance-heterogeneity 
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Unlike the theoretical examples in Fig. 2-4, most complex traits are affected by more than two 

loci. This means that even if one considers two-locus epistasis, this will in practice likely be a 

simplification of the true GP-space for the studied trait. In mathematical terms, one would be 

studying a projection from the high dimensional GP-space, down to a lower set of 

dimensions. But as with the marginal effects, this lower dimensional “shadow” might provide 

important insights to the genetic regulation of the trait. It can for instance facilitate the 

identification of causal alleles at multiple loci, as well as reveal functional dependencies 

between them.  

 

In a recent study, we re-analyzed a large population of haploid yeast segregants to find a 

strong connection between high-order epistasis and variance-heterogeneity at the individual 

interacting loci18. In short, the size of the experimental population allowed us to fully 

characterize GP-spaces of up to 6 loci, consisting of 26 = 64 genotypes, for multiple traits. 

Using these, we could evaluate how epistatic gene action contributed to the multi-locus GP-

space and also identify how many of the multi-locus genotypes gave rise to phenotypes far 

from additive expectations. In particular, we identified several cases of capacitating epistasis 

where certain loci acted by moderating (i.e. turning on and off) the phenotypic effects of 

many other loci. Despite epistatic gene-action being common in the high-order GP-spaces, the 

additive genetic variance (VA) was much larger than the epistatic variance for all of the 

analyzed traits, illustrating how VA can be an emergent property from epistatic gene action. 

These multi-locus GP-spaces can also be used to illustrate how marginal additive and 

variance-heterogeneity effects emerged from epistatic gene-action. An example from the 

analyses of this yeast population is provided in Fig. 5. There, we show the GP-space, the 

phenotype associated with every possible genotype, of 6 QTLs that regulate yeast growth in 

manganese sulfate containing growth-medium. One of the 6 QTLs capacitates the effect of the 

other 5, i.e. it is an empirical multi-locus example of what was theoretically illustrated in Fig. 

2. Due to this capacitating effect (Fig 5A), the capacitor QTL displays pronounced genetic 

variance heterogeneity (Fig 5B). The other 5 QTLs display much lower levels of genetic 

variance heterogeneity (Fig 5C and D).  

 

[Figure 5 about here] 

 

The examples above together illustrate that how epistatic gene can cause genetic variance 

heterogeneity and that the increased variance is the result of alleles at one locus moderating 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 23, 2017. ; https://doi.org/10.1101/119727doi: bioRxiv preprint 

https://doi.org/10.1101/119727
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9	

the effects of alleles at another locus. The genetic variance heterogeneity is here a “side 

effect” or “emergent property” of epistasis. It arises when studying the marginal effects of 

alleles when one should really be estimating their joint effect with alleles at other loci18. 

Screens of the genome looking for loci displaying genetic variance heterogeneity could 

therefore be a potential “short cut” to detect epistasis11,19–21, but as illustrated above not all 

types of epistatic gene action will lead to genetic variance heterogeneity. This strategy to 

detect epistatic loci can therefore not be expected to reveal all interacting loci in the genome. 

 

Discussion 
The full GP-space underlying high-level biological traits is likely to be too complex to be 

directly studied in most species and populations. Genetic analyses will therefore need to rely 

on studies of different marginal effects of the contributing loci, emerging from the functional 

effects of alleles in the multi-locus genotypes of the true GP-space. When interpreting such 

marginal effects, for example from GWA or QTL analyses, it is important to be aware that 

they will often be of limited use for making direct inferences about the functional effects of 

individual alleles in the GP-space. Marginal effects can be very misleading in relation to the 

effects of alleles on the phenotypes of individuals carrying them. It is important to keep this in 

mind, especially if the aim of a genetic study where only marginal effects can be revealed 

intends to use these for prediction of individual phenotypes, such as in precision breeding or 

personalized medicine. When traits are regulated by genetic interactions the discrepancy 

between the GP-space and the marginal effects can be large. We illustrated this in Fig. 2-5, 

which shows that in many cases it might be impossible to make correct inferences about the 

contributions of a locus to the expression of a trait based on its marginal effect.  

 

In the examples above we illustrate how some, but not all, types of epistatic gene-action can 

lead to marginal genetic variance-heterogeneity at the interacting loci. Further, we also show 

how it can emerge from other genetic mechanisms than epistasis. A genetic variance-

heterogeneity signal can thus not immediately be used to identify the genetic mechanisms 

underlying it. But despite this, it does provide valuable information for researchers that want 

to interpret results from a genetic study. When a locus displays genetic variance 

heterogeneity, it indicates that further explorations are needed to evaluate which of the 

possible explanations for this signal causes it, and interpret other estimated genetic effects, 

such as additivity or two-way epistasis, in this context. This as it is likely that, for example, 

estimates of additive effects reported for loci with genetic variance heterogeneity might be 
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sensitive to genetic background, allele-frequencies and LD-patterns among the studied 

individuals15,18. 

 

Genome-wide screens for epistasis requires large samples, and the need for extensive 

multiple-testing corrections decreases power further. One-dimensional genome-scans for 

marginal variance-heterogeneity effects have therefore been suggested as an alternative 

approach to detect epistatic loci11,13,14,21. We have here illustrated that some types of epistatic 

gene-action will produce marginal variance-heterogeneity effects at the interacting loci, but 

also that other interacting loci might not display such a signal. Analyses of genetic variance 

heterogeneity can therefore not replace full epistatic analyses to reveal all interactions that 

contribute to a trait. They can however be an important indication that the genetic architecture 

of a studied trait needs to be explored beyond the marginal effects. 

 

As illustrated in Fig. 2 and 5, genetic capacitors will often display high-levels of genetic 

variance heterogeneity. As has been discussed in detail elsewhere, capacitating epistasis is a 

mechanism contributing hidden, or cryptic, genetic variation in a population22–25. This as 

many alleles might be silently segregating in a given population, sometimes having their 

effects suppressed by genetic capacitors (Fig. 5), to only display their phenotypic effects upon 

certain changes in the genetic background. Signals of genetic variance heterogeneity might 

thus indicate that the population harbors hidden genetic potential that is not currently showing 

its phenotypic effect. Searching for such signals can therefore also be a valuable tool to 

identify and study cryptic genetic variation. 

 

We have here theoretically and empirically illustrated the connection between genetic 

interactions (epistasis) and genetic variance heterogeneity. The two concepts are often, but not 

always, related and we have discussed their implications in relation to mapping and 

interpretation of genetic effects in genome-wide studies. We believe that by looking for 

genetic variance heterogeneity, valuable information can be gained in studies aiming to 

dissect the genetic architectures of complex traits. 
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Figure legends 
Figure 1. Illustration of the phenotypic distributions for the three genotypes at a locus 

displaying genetic variance heterogeneity. Individuals with the genotype C/C display a 

narrow phenotypic distribution, whereas individuals with the genotypes C/T and T/T display 

more variable phenotypes. There is no mean difference between the two genotypes, and 

although the genetic effect of the locus influences the total phenotypic variance in the 

population, it does not contribute any additive genetic variance and consequently does not 

contribute to the narrow-sense heritability for the trait. 

 

Figure 2. Theoretical example of pairwise capacitating epistatic gene action leading to a 

marginal additive effect for one, and a variance heterogeneity effect for the other, 

interacting locus. The alternative alleles at the two loci A and B in a haploid, or inbred, 

organism are denoted A1/A2 and B1/B2, respectively. Panels A and C show the phenotype 

associated with each of the four genotypes, i.e. the full GP-space. Panels B and D show the 

marginal distributions of the phenotype for the different alleles at loci A and B, obtained by 

comparing individuals with one allele (grey) to individuals with the opposite allele (green) at 

the respective loci. Locus B capacitates (turn on) the effect of locus A, so that A displays a 

phenotypic effect only when combined with the allele B2. Because of this, locus A displays a 

marginal effect on the phenotypic mean, but not on the variance, when the allele frequencies 

are 0.5 for the alleles at both loci. Locus B displays no marginal mean effect, but an effect on 

the phenotypic variance, i.e. genetic variance heterogeneity, when the allele frequencies are 

0.5 for the alleles at both loci (D).  

 

Figure 3. Theoretical example of pairwise epistatic gene action leading to marginal 

additive and genetic variance heterogeneity effects at both interacting loci. The 

alternative alleles at the two loci A and B in a haploid, or inbred, organism are denoted A1/A2 

and B1/B2 respectively. Panels A and C show the phenotype associated with each of the four 

genotypes, i.e. the full GP-space. Panels B and D show the marginal phenotypic distributions 

of locus A and B, obtained by comparing individuals with one allele (grey) to individuals with 

the opposite allele (green) at the respective loci. With this underlying Genotype-Phenotype 

space, both loci will display both marginal additive (mean) and variance heterogeneity effects 

when the allele frequencies are 0.5 for the alleles at both loci.  
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Figure 4. Theoretical example of pairwise epistatic gene action where no marginal 

additive or variance-heterogeneity effects are observed. The alternative alleles at the two 

loci A and B in a haploid, or inbred, organism are denoted A1/A2 and B1/B2 respectively. 

Panels A and C show the phenotype associated with each of the four genotypes, i.e. the full 

GP-space. Panels B and D show the marginal phenotypic distributions of locus A and B, 

obtained by comparing individuals with one allele (grey) to individuals with the opposite 

allele (green) at the respective loci. The direction of the phenotypic effect is completely 

reversed, depending on the genetic background at the other locus. Because of this, none of the 

loci display any marginal additive or variance heterogeneity effect when the allele frequencies 

are 0.5 for the alleles at both loci.  

 

Figure 5. High order epistasis regulating growth in yeast leads to genetic variance-

heterogeneity at the interacting loci. An epistatic network involving multiple QTLs 

regulates the growth of yeast colonies on media containing manganese sulfate (full details on 

the analysis done to identify this network is available in18). The full GP-space of a 6-locus 

network of these QTLs, made up of 26 = 64 genotypes, is shown in panels A and C. The 

interactions in the epistatic network are illustrated in panels B and D by circles corresponding 

to QTLs and connections to pairwise interactions. Each boxplot in panels A and C shows the 

phenotype associated with one multi-locus genotype, as in Fig. 2-4, but with added 

information about the variability within each genotype class. One QTL in the epistatic 

network (large green/grey circle in the network in panel B) capacitates the phenotypic effects 

of the other QTLs (blue circles in network in B). Panel B then shows the marginal phenotypic 

distributions (in grey and green) for the groups of yeast segregants carrying the alternative 

alleles at this capacitor locus. Panel D shows the marginal phenotypic distributions (in green 

and grey) for the groups of segregants carrying alternative alleles at one of the other 

interacting, non-capacitor QTL (green/grey large circle in network). The capacitor locus 

displays a strong marginal variance heterogeneity effect (B), whereas the non-capacitor locus 

displays mostly a marginal additive effect on the phenotypic mean (D).   
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Figures 
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Figure 4 
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Figure 5 
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