
From	
 word	
 models	
 to	
 executable	
 models	
 of	
 signaling	
 networks	
 using	

automated	
 assembly	

Benjamin M Gyori1*, John A Bachman1*, Kartik Subramanian1, Jeremy L Muhlich1, Lucian Galescu2,

Peter K Sorger1
1 Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
2 Institute for Human and Machine Cognition, Pensacola, USA
* These authors contributed equally to this work

Address correspondence to:

Peter K Sorger

peter_sorger@hms.harvard.edu, cc: christopher_bird@hms.harvard.edu

Harvard Medical School, WAB438, 200 Longwood Avenue, Boston, MA, 02115

Tel: 617-432-6901/6902

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

1

Abstract	

Word models (natural language descriptions of molecular mechanisms) are a common currency in

spoken and written communication in biomedicine but are of limited use in predicting the behavior of

complex biological networks. We present an approach to building computational models directly from

natural language using automated assembly. Molecular mechanisms described in simple English are

read by natural language processing algorithms, converted into an intermediate representation and

assembled into executable or network models. We have implemented this approach in the Integrated

Network and Dynamical Reasoning Assembler (INDRA), which draws on existing natural language

processing systems as well as pathway information in Pathway Commons and other online resources.

We demonstrate the use of INDRA and natural language to model three biological processes of

increasing scope: (i) p53 dynamics in response to DNA damage; (ii) adaptive drug resistance in BRAF-

V600E mutant melanomas; and (iii) the RAS signaling pathway. The use of natural language for

modeling makes routine tasks more efficient for modeling practitioners and increases the accessibility

and transparency of models for the broader biology community.

Keywords: computational modeling, natural language processing, signaling pathways

Running title: From word models to executable models

Standfirst text: INDRA uses natural language processing systems to read descriptions of molecular
mechanisms and assembles them into executable models.

Highlights:

• INDRA decouples the curation of knowledge as word models from model implementation
• INDRA is connected to multiple natural language processing systems and can draw on

information from curated databases
• INDRA can assemble dynamical models in rule-based and reaction network formalisms, as well

as Boolean networks and visualization formats
• We used INDRA to build models of p53 dynamics, resistance to targeted inhibitors of BRAF in

melanoma, and the Ras signaling pathway from natural language
 	

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

2

INTRODUCTION	
 	

 Biophysics and biochemistry are the foundations of quantitative reasoning about biological

mechanisms (Gunawardena, 2014a). Historically, systems of biochemical mechanisms were described in

reaction diagrams (familiar graphs involving forward and reverse arrows) and analyzed algebraically. As

such systems became more complex and grew to include large networks in mammalian cells, word

models (natural language descriptions) became the dominant way of describing biochemical processes;

word models are frequently illustrated using pictograms and informal schematics. However, formal

approaches are generally required to understand dynamics, multi-component switches, bistability etc.

Dynamical models and systems theory have proven extremely effective in elucidating mechanisms of

all-or-none response to apoptosis-inducing ligands (Albeck et al, 2008; Rehm et al, 2002), sequential

execution of cell cycle phases (Chen et al, 2004), the interplay of stochastic and deterministic reactions

in the control of cell fate following DNA damage (Purvis et al, 2012), drug sensitivity and disease

progression (Lindner et al, 2013; Fey et al, 2015), bacterial cell physiology (Karr et al, 2012), the

responses of ERK kinase (Chen et al, 2009) and the NFkB transcription factor (Hoffmann et al, 2002) to

environmental stimuli, and similar biological processes. The challenge arises in linking a rich ecology of

word models to computational representations of these models that can be simulated and analyzed. The

technical environments used to create and explore dynamical models remain unfamiliar to many

biologists and a substantial gap persists between the bulk of the literature and formal systems biology

models.

 A variety of methods have been developed to make mechanistic modeling more powerful and

efficient. These include fully integrated software environments (Loew & Schaff, 2001; Hoops et al,

2006), graphical formalisms (Le Novère et al, 2009; Kolpakov et al, 2006), tabular formats (Tiger et al,

2012), high-level modular and rule-based languages (Smith et al, 2009; Mallavarapu et al, 2009; Danos

et al, 2009), translation systems for generating Systems Biology Markup Language (SBML) models

from pathway information (Büchel et al, 2013; Ruebenacker et al, 2009) and specialized programming

environments such as PySB (Lopez et al, 2013). In addition, the BioModels database has provided a

means to retrieve and reuse existing models (Juty et al, 2015). Such tools have increased transparency

and reusability but not sufficiently to bridge the gap between verbal descriptions and computational

models.

 To date, most attempts to make modeling more accessible have focused on graphical interfaces

in which users draw reaction diagrams that are then used to generate equations. This approach is

attractive in principle, since informal diagrams are a mainstay of most scientific presentations, and

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

3

schematic diagrams are essential in engineering, but it has proven difficult in practice to accommodate

the simultaneous demands of accurately rendering individual biochemical reactions while also depicting

large numbers of interacting components. It is particularly difficult to create graphical interfaces that

model the combinatorially complex reactions encountered in animal cell signaling (Stefan et al, 2014).

 In this paper we explore the idea that natural language can serve as a direct input for dynamical

modeling. Natural language has many benefits as a means of expressing mechanistic information: in

addition to being familiar, it can concisely capture experimental findings about mechanisms that are

ambiguous and incomplete. Extensive work has been performed on the use of software to convert text

into computable representations of natural language, and such natural language processing (NLP) tools

are used extensively to mine the scientific literature (Fluck & Hofmann-Apitius, 2014; Krallinger et al,

2012). To our knowledge however, natural language has not been widely used as a direct input for

mechanistic modeling of biological or chemical processes. A handful of studies have explored the use of

formal languages resembling natural language for model creation (Wasik et al, 2013; Kahramanoğullari

et al, 2009) but these systems focus on capturing low-level reaction mechanisms and require that

descriptions conform to a precisely defined syntax.

 Three technical challenges must be overcome to convert natural language into executable

models. The first is reading text with a machine in a manner that reliably identifies mechanistic

assertions in the face of variation in how they are expressed. The second is designing an intermediate

knowledge representation that captures often-ambiguous and incomplete mechanisms without adding

unsubstantiated assumptions (thereby implementing the rule: “don’t know, don’t write”). This

intermediate representation must be compatible with existing machine-readable sources of network

information such as pathway databases. The third challenge is translating mechanistic assertions from

the intermediate representation into executable models involving different mathematical formalisms and

levels of detail; this involves supplying necessary assumptions left out of the original text.

 The method and software tool described in this paper, the Integrated Network and Dynamical

Reasoning Assembler (INDRA), addresses these challenges and makes it possible to construct different

types of executable models directly from natural language and fragmentary information in pathway

databases. In contrast to previous approaches to incorporating natural language in models, INDRA can

accommodate flexibility in style and syntax through the use of NLP algorithms that normalize variability

in expression into logical forms that effectively represent the underlying meaning (Box 1). Mechanisms

extracted from natural language and other sources are converted into Statements (the INDRA

intermediate representation) and then translated into one of several types of models depending on the

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

4

specific use case. We describe this process in some detail because it relates directly to how we

understand and communicate biological mechanisms in papers and conversations. The essential

challenge is converting the informality and ambiguity of language, which is frequently a benefit in the

face of incomplete information, into a precise set of statements (or equations) needed for an executable

mathematical model.

 As a test case, we show that INDRA can be used to automatically construct a model of p53

dynamics in response to DNA damage from a few simple English statements; we show that the

qualitative behavior of the INDRA model matches that of an existing mathematical model constructed

by hand. In a second, more challenging test, we show that an ensemble of models of the MAP kinase

pathway in cancer cells can be built using literature-derived text describing the interaction of BRAFV600E

and drugs used to treat melanoma (Box 4). Finally, we use natural language and INDRA to assemble a

large-scale model of the RAS pathway as defined by a community of RAS biology experts; we show

how this model can be updated using sentences gathered from the RAS community.

Glossary

Application programming interface (API): a standardized interface by which one software

system can use services provided by other software, often remotely; in the current context,

INDRA accesses NLP systems and pathway databases via APIs. INDRA exposes an API that

other software can build upon. API is used here interchangeably with Interface (e.g. INDRA’s

TRIPS Interface).

Molecular mechanism: used in this paper to refer to processes involved in changing the state of

a molecular entity or in describing its interaction with another molecular entity as represented by

a set of linked biochemical reactions. Descriptions of mechanisms are common in the biomedical

literature and key assertions are captured in databases in formats such as BioPAX. The

information we extract from such descriptions are interchangeably referred to as mechanistic

information, mechanistic assertions, mechanistic facts and mechanistic findings.

Processor: a module in INDRA that constructs INDRA Statements from a specific input format.

Template extraction: the process by which INDRA Processors extract INDRA Statements from

various input formats.

Assembler: a module in INDRA that constructs a model, network or other output from INDRA

Statements.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

5

Model assembly: the process of automatically generating a model in a given computational

formalism from an intermediate knowledge representation; in our context from INDRA

Statements.

Executable model: a computational model that can be simulated to reproduce the observable

dynamical behavior of a system; often, but not always, a system of linked differential equations.

Policies: user-defined settings which affect the automated assembly process.

Knowledge representation: a formalism that allows aggregation of information, potentially from

multiple sources, in a standardized computable format; in the current context, INDRA Statements

serve as a common knowledge representation for mechanistic information.

Natural language (NL): language that humans commonly use to communicate in speech and

writing; in the current context, restricted to the English language.

Natural language processing (NLP): the algorithmic process by which a computer interprets

natural language text.

Named entity recognition (NER): a sub-task of NLP concerned with the recognition of special

words in a text that are not part of the general language; in the current context NER is used to

identify proteins, metabolites, drugs, and other terms (which are generally referred to as named

entities).

Grounding: a sub-task of NLP related to NER which assigns unique identifiers to named entities

in text by linking them to ontologies and databases; in the current context this involves creating

links to databases such as UniProt, HGNC, GO or ChEBI.

Logical form (LF): a graph representing the meaning of a sentence; an intermediate output of

natural language processing in the TRIPS system (Box 1).

Extraction knowledge base (EKB): a collection of events and terms relevant to molecular

biology that is the result of natural language processing with TRIPS (Box 1).

RESULTS	

INDRA	
 decouples	
 the	
 curation	
 of	
 mechanistic	
 knowledge	
 from	
 model	
 implementation	

 A core concept in INDRA is that the identification, extraction and regularization of mechanistic

information (curation) is a distinct process from model assembly and implementation. Mechanistic

models demand a concrete set of assumptions (about catalytic mechanisms, stoichiometry, rate

constants, etc.) that are rarely expressed in a single paper or molecular interaction entry stored in a

database. Models must therefore combine relatively general assertions about mechanisms extracted from

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

6

available knowledge sources (e.g., that enzyme E “activates” substrate S) with information or

assumptions about molecular details (e.g., that the enzyme acts on the substrate S in a three-step ATP-

dependent mechanism involving an activating site on the substrate) derived from general knowledge

about biochemistry and biophysics. Precisely how such details are constructed depends on the

requirements of the mathematical formalism, the specific biological use case, and the nature of the

hypothesis being tested. A similar concept was recently introduced for rule-based modeling in Basso-

Blandin et al (2016) and in the context of graphical model diagrams in O’Hara et al (2016). In both

works, the authors make a distinction between the curation and representation of mechanistic knowledge

and its executable implementation.

 Text-to-model conversion in INDRA involves three coupled steps. First, text is processed into a

machine-interpretable form and the identities of proteins, genes and other biological entities are

grounded in reference databases. Second, the information is mapped onto an intermediate knowledge

representation (INDRA Statements) designed to correspond in both specificity and ambiguity to

descriptions of biochemistry as found in text (e.g. “MEK1 phosphorylates ERK2”). Third, the translation

of this intermediate representation into concrete reaction patterns and then into executable forms such as

networks of ordinary differential equations (ODEs) is performed in an assembly step. In this process,

Statements capture mechanistic information available from the knowledge source without additions or

assumptions, deferring interpretations of specific reaction chemistry that are often unresolved by the

knowledge source but must be made concrete to assemble a model.

Information	
 flow	
 from	
 natural	
 language	
 input	
 to	
 a	
 model	

 The three steps in text-to-model conversion are implemented in a three-layer software

architecture. An input layer comprising Interface and Processor modules (Figure 1A, block 1) is

responsible for communicating with language processing systems (e.g., the TRIPS NLP system, see Box

1) and pathway databases (e.g., the Pathway Commons database) to acquire information about

mechanisms. An intermediate layer contains the library of Statement templates (Figure 1A, block 2), and

an output layer contains Assembler modules that translate Statements into formats such as networks of

differential equations or protein-protein interaction graphs (Figure 1A, block 3). INDRA is written in

Python and available under the open-source BSD license. Source code and documentation are available

at http://indra.bio; documentation is also included in the Appendix.

 As an example of text being converted into an executable model, consider the sentence “MEK1

phosphorylates ERK2 at threonine 185 and tyrosine 187.” Figure 1B shows eight lines of Python code

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

7

implementing this example; the numbers alongside each code block correspond to the three layers of the

INDRA architecture in Figure 1A and implement the flow of information between the user, INDRA and

external tools shown in Figure 1C. The user first enters the sentence to be processed and calls the

process_text command in the INDRA TRIPS Interface. This function sends a request to the web service

exposed by the TRIPS NLP system (Allen et al, 2015) (Figures 1B and 1C, block 1). INDRA can also

call on the REACH NLP system, which has complementary capabilities (Valenzuela-Escarcega et al,

2015), but in this paper we focus exclusively on TRIPS. TRIPS parses the text into its logical form (Box

1, Appendix Figure S1A), and then extracts mechanisms relevant to molecular biology into an extraction

knowledge base (EKB; Box 1, Appendix Figure S1B). Included in this process are entity recognition

and grounding whereby MEK1 is recognized as a synonym of the HGNC gene name MAP2K1 and

grounded to UniProt Q02750, and Erk2 is grounded to MAPK1 and UniProt P28482. These terms are

explained in Box 1, in Appendix Section 2.1, and in (Allen et al, 2015). The TRIPS Processor in

INDRA extracts Statements directly from the EKB output returned by TRIPS (Figures 1B and 1C, block

2). The translation of Statements into concrete models is performed by an INDRA Assembler. In this

example, a PySB Assembler was used to build a rule-based model in PySB (Lopez et al, 2013) and

generate an SBML-compatible reaction network (Figures 1B and 1C, block 3). Because the

Phosphorylation Statements in this example are compatible with multiple concrete reaction patterns, the

user specifies a policy for assembly: here we used the “two-step” policy, which implements

phosphorylation with reversible enzyme-substrate binding (polices are described below). The resulting

reaction network was instantiated as a set of ODEs and simulated using default parameter values to

produce the temporal dynamics of all three phosphorylated forms of ERK2 (labeled MAPK1; Figure 1C,

bottom right). The same rule-based model can also be analyzed stochastically using network-free

simulators (Danos et al, 2007b; Sneddon et al, 2011).

Box 1: Natural language processing using TRIPS
 To convert text into computable representations that capture syntax and semantics INDRA

uses external NLP software systems exposed as web services. This paper focuses on DRUM

(Deep Reader for Understanding Mechanisms; http://trips.ihmc.us/parser/cgi/drum) which is

a version of the general-purpose TRIPS NLP system customized for extracting biological

mechanisms from natural language text. TRIPS has been developed over a period of decades

and used for natural language communication between humans and machines in medical

advice systems, robotics, mission planning, etc. (see for example Ferguson & Allen, 1998;

Chambers et al, 2005; Allen et al, 2006).

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

8

 The first step in processing natural language with TRIPS is a “shallow” or syntactic

analysis of text to identify grammatical relationships among words in a sentence, recognize

named entities such as proteins, amino acids, small molecules, cell lines, etc. and link these

entities to appropriate database identifiers (the process of grounding). TRIPS uses this

information to perform a “deep” semantic analysis and try to determine the meaning of a

sentence in terms of its logical structure. This process draws on a general purpose semantic

lexicon and ontology that defines a range of word senses and semantic relations among

words. The output of this process is represented as a logical form (LF) graph (Manshadi et al,

2008). The LF graph represents the sense of each word (e.g. “protein”) and captures the

semantic roles of relevant arguments (e.g. “affected”) for each predicate (e.g. “activation”).

The LF also represents tense, modality and aspect information — information that is crucial

for determining whether a statement expresses a stated fact, a conjecture or a possibility.

 The LF graph is then transformed into an extraction knowledge base (EKB) containing

extractions relevant for the domain, in this case molecular biology. LF graphs compactly

represent and normalize much of the variation and complexity in sentence structure; EKBs

can therefore be extracted from the LF using a relatively small set of rules. The EKB is an

XML file containing entries for terms (e.g., proteins, drugs), events (e.g., activation,

modification) involving those terms, and higher-level causal relations between the events.

The EKB also contains additional information such as the text from which a given term or

event was constructed.

 A more thorough technical description of TRIPS/DRUM is given in Appendix Section 2.1

and in (Allen et al, 2015); a broader overview of NLP systems can be found in (Allen, 2003).

INDRA	
 Statements	
 represent	
 mechanisms	
 from	
 multiple	
 sources	

 INDRA Statements serve as the bridge between knowledge sources and assembled models and

we therefore describe them in detail. Statements are implemented as a class hierarchy that groups related

mechanisms; a Unified Modeling Language (UML) diagram of existing Statement classes is shown in

Appendix Figure S2. Each INDRA Statement describes a mechanism involving one or more molecular

entities, along with information specific to the mechanism and any supporting evidence drawn from

knowledge sources. For example, the phosphorylation Statement shown schematically in Figure 2A

contains references to enzyme and substrate Agents (which in this case refers to MAP2K1 and MAPK1,

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

9

respectively), the phosphorylated residue and position on the substrate, and one or more Evidence

objects with supporting information. An Agent is an INDRA object that captures the features of the

molecular state necessary for a participant to take part in a molecular process (Figure 2B). This includes

necessary post-translational modifications, bound co-factors, mutations, cellular location and state of

activity (Figure 2B and Appendix Figure S4). Agents also include annotations that ground molecular

entities to unique identifiers in one or more databases or ontologies (e.g. HGNC, UniProt, ChEBI;

Figure 2B). Evidence objects contain references to supporting text, citations and relevant experimental

context (Figure 2C).

 An important feature of both Statements and Agents is that they need not be fully specified. If

there is no information in the source pertaining to a specific detail in a Statement or Agent then the

corresponding entry is left blank; this is an example of the “don’t know, don’t write” principle. INDRA

and the rule-based models it generates are designed to handle information that is incomplete in this way.

For example, the phosphorylation Statement shown in Figure 2A indicates that the phosphorylation of

substrate MAPK1 can occur when the enzyme MAP2K1 is phosphorylated at serine residues S218 and

S222, but other aspects of the state of MAP2K1 are left unspecified (e.g., whether MAP2K1 is

phosphorylated at S298, or bound to a scaffold protein such as KSR). Statements capture the ambiguity

inherent in the vast majority of statements about biological processes thereby permitting multiple

interpretations: for example, phosphorylation of MAP2K1 at S218 and S222 could be necessary and

sufficient for activity against MAPK1, necessary but not sufficient, sufficient but not necessary, or

neither sufficient nor necessary, depending on other molecular context outside the scope of the

Statement. The ability of Statements to capture knowledge from input sources while making as few

additional assumptions as possible is an essential feature of the text-to-model conversion process. It also

conforms closely to the way individual experiments are described and interpreted since single

experiments investigate only a subset of the facts pertaining to a biochemical mechanism and its

implementation in a model. The ambiguity in Statements is resolved during the assembly step by

explicitly declaring assumptions and generating a fully-defined executable model.

 Users can inspect INDRA Statements in several complementary ways: (i) by inspecting

Statements as Python objects; (ii) by rendering Statements visually as graphs (Appendix Figure S3A);

and (iii) by serializing Statements into a platform-independent JSON exchange format (Appendix Figure

S3B). The semantics of INDRA Statements as well as the semantics describing the role that Agents play

in each INDRA Statement are grounded in the Systems Biology Ontology (SBO) (Courtot et al, 2011)

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

10

facilitating integration and reuse in other applications. These capabilities are demonstrated in Appendix

Notebook 1.

Normalized	
 extraction	
 of	
 findings	
 from	
 diverse	
 inputs	
 using	
 mechanistic	
 templates	

 The principal technical challenge in extracting mechanisms from input sources is identifying and

normalizing information contained in disparate formats (e.g., BEL, BioPAX, TRIPS EKB) into a

common form that INDRA can use. INDRA queries input formats for patterns corresponding to existing

Statement types (templates), matching individual pieces of information from the source format to fields

in the Statement template. This procedure is implemented for each type of input, making it possible to

extract knowledge in a consistent form. Template-matching does not guarantee that every mechanism

found in a source can be captured by INDRA, but it does ensure that when a mechanism is recognized,

the information is captured in a normalized way that enables downstream model assembly. The process

is therefore configured for high precision at the cost of lower recall.

 INDRA implements template-matching extraction for each input format using a set of Processor

modules. In the case of natural language, the EKB (see Glossary and Box 1) output from TRIPS serves

as an input for the TRIPS Processor in INDRA. For a statement such as “MAP2K1 that is

phosphorylated on S218 and S222 phosphorylates MAPK1 at T185” the EKB extraction graph (Figure

3, top left) has a central node (red text) corresponding to a phosphorylation event that applies to three

terms: MAP2K1 as the agent for this event, MAPK1 as the entity affected by this event, and “threonine-

185” playing the specific role of being the site where the event occurs (green text depicts the grounding

in UniProt and HGNC identifiers). A second phosphorylation event (yellow box) involving S218/S222

of MAP2K1 is recognized by TRIPS as a nested property of MAP2K1 phosphorylation. It is a

precondition for the primary phosphorylation event on MAPK1.

 INDRA establishes that this extraction graph corresponds to an INDRA Phosphorylation

Statement and then exploits the fact that the template for such a Statement has entries for an enzyme, a

substrate, a residue and a position (Figure 2A). The AGENT in the TRIPS EKB is identified as the

enzyme which itself has a modification (phosphorylation) at specified positions (S218 and S222). The

AFFECTED portion of the TRIPS EKB is identified as the substrate MAPK1. The extracted INDRA

Statement collects this information along with target residue (“threonine”) and position (“185”) on the

substrate. The end result is a biochemically plausible depiction of a specific type of reaction from a

short fragment of text.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

11

 Extraction of a Phosphorylation Statement from databases using BioPAX or BEL follows the

same general procedure. The INDRA BioPAX Processor uses graph patterns to search for reactions in

which a substrate on the right-hand side gains a phosphorylation modification relative to the left-hand

side (Figure 3, center left). The Processor identifies this as a phosphorylation reaction and constructs a

Phosphorylation Statement for each such reaction that it finds.

 In the case of BEL, statements consisting of subject–predicate–object expressions describe the

relationships between molecular entities or biological processes (Box 2). INDRA’s BEL Processor

queries a BEL corpus (formatted as an RDF graph) for expressions consistent with INDRA Statement

templates. For example, Phosphorylation Statements are extracted by searching for expressions in which

the subject represents the kinase activity of a protein that directly increases an object representing a

modified protein (Figure 3, bottom left); directly increases is a predicate used when molecular entities

interact physically. Triples that fit this pattern are extracted into an INDRA Phosphorylation Statement

with the subject as the enzyme and the object as the substrate.

Box 2: BioPAX and BEL

BioPAX is a widely used format for describing biological interactions that facilitates

exchange and integration of pathway information from multiple sources (Demir et al, 2010).

BioPAX is the core exchange format underlying the Pathway Commons database, which

aggregates information from over 20 existing sources including Reactome, NCI-PID, KEGG,

PhosphoSitePlus, BioGRID and Panther (Cerami et al, 2011). Pathway Commons provides a

web service with an interface for submitting queries about pathways and recovering the result

as a BioPAX graph; a query could involve finding all proteins and interactions in the

neighborhood of a specified protein or finding all paths between two sets of proteins.

 BioPAX employs a Web Ontology Language (OWL) knowledge representation centered

around biochemical processes and reactants and is applicable to metabolic, signaling and

gene regulatory pathways. The representation of reactions in BioPAX is flexible: an arbitrary

set of complexes and standalone molecules on the left-hand side of a reaction can produce

complexes and molecules on the right hand side subject to one or more catalytic controllers.

 The Biology Expression Language (BEL) facilitates the curation of knowledge from the

literature in a machine-readable form. While BioPAX is designed to capture direct, molecular

interactions, BEL can express indirect effects and higher level cellular- or organism-level

processes; for example, BEL can represent results such as the abundance of BAD protein

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

12

increases apoptosis. Each BEL Statement records a scientific finding, such as the effect of a

drug or other perturbation on an experimental measurement, along with contextual

annotations such as organism, disease, tissue and cell type. BEL Statements are structured as

subject, predicate, object (RDF) triples: the subject and object are BEL Terms identifying

molecular entities or biological processes, and the predicate is a relationship such as

increases or decreases. BEL has been used to create both public and private knowledge bases

for machine reasoning; the BEL Large Corpus (see www.openbel.org) is currently the largest

openly-accessible BEL knowledge base and consists of about 80,000 statements curated from

over 16,000 publications.

Assembly	
 of	
 alternative	
 executable	
 models	
 from	
 mechanistic	
 findings	

 The role of INDRA Assemblers is to generate models from a set of Statements. This step is

governed not only by the relevant biology, but also by the requirements of the target formalism (e.g.

ODE systems, rule-based models or graphs) and decisions about model complexity (e.g., the number of

variables, parameters, or agents). INDRA has multiple Assemblers for different model formats; here we

focus on the PySB Assembler, which creates rule-based models that can either be simulated

stochastically or as networks of differential equations (Danos et al, 2007a; Faeder et al, 2009). Models

assembled by INDRA’s PySB Assembler can be exported into many widely used modeling formalisms

such as SBML, MATLAB, BNGL and Kappa using existing PySB functions (Lopez et al, 2013).

 Assembling an INDRA Phosphorylation Statement into executable form requires a concrete

interpretation of information that is almost always unspecified or ambiguous in the source text or

database object. We illustrate this process using four alternative ways to describe the phosphorylation of

MAPK1 by MAP2K1 (Figure 4). As a first step, the assembly of this Statement requires a concrete

interpretation of a partially specified state of the enzyme agent: MAP2K1 sites S218 and S222 are

specified as being phosphorylated but no information is available about other sites or binding partners.

In assembling rules, the PySB Assembler omits any unspecified context, exploiting the “don’t care don’t

write” convention (Box 3) so that the states of unspecified sites are treated as being irrelevant for rule

activity. The default interpretation is therefore that phosphorylation of MAP2K1 at S218 and S222 is

sufficient for kinase activity; whether or not it is also necessary is determined by other rules involving

MAP2K1 that may be in the model.

Box 3: Rule-based modeling and PySB

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

13

Accurate simulation of biochemical systems requires that every species be explicitly tracked

through time. The combinatorial nature of protein complex assembly, post-translational

modification and related processes causes the number of possible molecular states in many

signaling networks to explode and exceed the capacity for efficient simulation (Stefan et al,

2014). For example, full enumeration of complexes involved in EGF signaling would require

more than 1019 molecular species differing in their states of oligomerization, phosphorylation

and adapter protein binding (Feret et al, 2009). Rule-based modeling (RBM) languages such as

Kappa and BioNetGen (BNGL) address this challenge by allowing interactions among

macromolecules to be defined using “rules” specifying the local context required for a molecular

event to occur (Faeder et al, 2009; Danos et al, 2007a) . The molecular features that do not affect

the event are omitted from the rule, a convention known as “don’t care, don’t write.” Specifying

molecular interactions as rules has two chief benefits: (i) it makes the representation of a model

much more compact and transparent than a set of equations; (ii) it enables the simulation of very

complex systems using network-free methods (Danos et al, 2007b). RBMs can also be translated

into conventional modeling formalisms such as networks of ODEs.

 Executable model assembly in INDRA is built on PySB, a software system that embeds a rule-

based modeling language within Python, thereby enabling the use of macros and modules to

concisely express recurring patterns such as catalysis, complex assembly, sub-pathways, etc.

(Lopez et al, 2013). Rule-based modeling languages are well-suited to building executable

models from high-level information sources such as natural language because assertions about

mechanisms typically specify little molecular context. INDRA converts such assertions into one

or more model rules using policies that control the level of detail.

 The second step in the assembly of a Phosphorylation Statement is generating a concrete set of

biochemical reactions that constitute an executable model. The challenge here is that the concept of

protein “phosphorylation” can be realized in a model in multiple different ways. For example, a “one-

step” policy converts an INDRA Phosphorylation Statement into a single bimolecular reaction in which

a product (a phospho-protein) is produced in a single irreversible reaction without explicit consideration

of enzyme-substrate complex formation. One-step reactions can be modeled using a variety of rate laws

depending on modeling assumptions, including a pseudo-first-order rate law (Figure 4, “one-step policy,

pseudo-first-order” comprising one reaction rule and one free parameter) in which the rate of the

reaction is proportional to the product of the enzyme and substrate concentrations. Such a representation

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

14

is not biophysically realistic, since it does not reproduce behaviors such as enzyme saturation, but it has

the advantage of requiring only one free parameter. Alternatively, a one-step reaction can be modeled

with a Michaelis-Menten rate law (Figure 4, “one-step policy, Michaelis-Menten”) which generates one

reaction rule and two free parameters; this policy makes a quasi-steady-state assumption about the

enzyme-substrate complex (Chen et al, 2010). One-step mechanisms are convenient for modeling

coarse-grained dynamics and causal flows in complex signaling networks (Salazar & Höfer, 2006). A

“two-step policy” is more realistic and creates two rules: one for reversible enzyme-substrate binding

and one for product release (Figure 4, “two-step policy”; two reaction rules and three free parameters).

This is the most common interpretation of a phosphorylation reaction in existing dynamical models and

correctly captures enzyme saturation, substrate depletion, and other important mass-action effects.

However, the two-step policy does not explicitly consider ATP as a substrate, and cannot model the

action of ATP-competitive kinase inhibitors at the enzyme active site. The “ATP-dependent” policy

corrects for this and explicitly models the binding of ATP and substrate as separate reaction steps

(Figure 4, “ATP-dependent policy”) generating three reaction rules and five free parameters. Other

mechanistic interpretations of “phosphorylation” are also possible: for example, two-step or ATP-

dependent policies in which the product inhibits the enzyme by staying bound (or re-binding) after the

phospho-transfer reaction (Gunawardena, 2014b). Such rebinding can have a substantial impact on

kinase activity.

 It might appear at first glance that the most biophysically realistic policy is preferable in all

cases. However, a fundamental tradeoff always exists between model complexity and faithfulness to

underlying detail: as the biochemical representation becomes more detailed, the number of free

parameters and intermediate species increases, reducing the identifiability of the model (Raue et al,

2009). Given such a tradeoff, the benefit of having multiple assembly policies becomes clear: alternative

models can automatically be constructed from a single high-level biochemical assertion depending on

their suitability for a particular modeling task. The transparency and repeatability of model generation

using assembly policies is especially important for larger networks in which hundreds or thousands of

distinct species are subject to adjustment as the biophysical interpretation changes.

 To enable simulation of reaction networks as ODEs in the absence of data on specific rate

parameters, INDRA uses a set of biophysically plausible default parameters; for example, association

rates are diffusion limited (106 M-1s-1), off-rates default to 10-1 s-1 (yielding a default KD of 100 nM) and

catalytic rates default to 100 s-1. These parameter values can be adjusted manually or obtained by

parameter estimation. An extensive literature and wide range of tools exist for parameter estimation

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

15

using experimental data and they are directly applicable to models assembled by INDRA (Mendes &

Kell, 1998; Moles et al, 2003; Eydgahi et al, 2013; Thomas et al, 2015). For simplicity, we do not

discuss this important topic further and rely below either on INDRA default parameters or manually

adjusted parameters (as listed in the Appendix) to facilitate dynamical simulations.

Modeling	
 alternative	
 dynamical	
 patterns	
 of	
 p53	
 activation	

 As an initial test of using INDRA to convert a word model and accompanying schematic into an

executable model, we turned to a widely cited review in Cell that describes the canonical reaction

patterns controlling the responsiveness of mammalian signal transduction systems to stimulus (Purvis &

Lahav, 2013). Figure 5 of (Purvis & Lahav, 2013) depicts the dynamics of p53 response to single

stranded and double stranded DNA breaks (SSBs and DSBs). Using a schematic illustration, Purvis and

Lahav explain that pulsatile p53 dynamics arises in response to DSBs but sustained dynamics are

induced by SSBs. The difference is attributed to negative feedback from the Wip1 phosphatase to the

DNA damage sensing kinase ATM, but not to the related kinase ATR. We wrote a set of simple

declarative phrases (Figure 5B and C) corresponding to edges in the schematic diagram (Figure 5A) that

represent activating or inhibitory interactions between Mdm2 (an E3 ubiquitin-protein ligase), p53,

Wip1 and ATM (or ATR) (yellow numbers in Figure 5A, B and C). We then used INDRA to read the

text (the “word models”) and assemble executable models in PySB. These models were instantiated as

networks of ODEs and simulated numerically. For each model we plotted p53 activation over time using

standard Python libraries (Oliphant, 2007).

 We found that our initial word models (comprising sentences 1-5 in Figure 5B and sentences 1-6

in 5C) failed to reproduce the p53 dynamics expected for SSBs and DSBs: in our INDRA models SSBs

induced steady, low-level activation of p53 and DSBs failed to induce oscillation (Appendix Figure S6).

One feature not explicitly included in the Purvis and Lahav diagrams and hence missing from our initial

word models is negative regulation of Mdm2 and Wip1. Visual representations of signaling pathways

frequently omit such inhibitory mechanisms despite their impact on dynamics (Heinrich et al, 2002).

(Purvis and Lahav were aware of these inhibitory reactions since they are found in ODE-based models

of p53 dynamics from the same research group (Batchelor et al, 2011); because the diagram’s purpose

was to illustrate the specific role of negative feedback these reactions were likely omitted for clarity.)

The mechanisms that inactivate Mdm2 involve binding by the catalytic inhibitor p14ARF (Agrawal et

al, 2006) and those for Wip1 involve HIPK2-mediated phosphorylation and subsequent ubiquitin-

dependent degradation (Choi et al, 2013) (depicted by dotted arrows and pink numbers in Figure 5A).

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

16

We added these reactions to the model as simple natural language phrases (denoted by pink numbers in

5B and C).

 When the updated word models were assembled using INDRA and simulated as ODEs, p53

exhibited sustained activation in response to SSBs but did not oscillate in response to DSBs (Appendix

Figure S6). We then realized that the DSB response model lacked a fundamental property of an

oscillatory system, namely a time delay (Novák & Tyson, 2008). This delay had previously been

modeled by Lahav and colleagues (Batchelor et al, 2011) by using delay differential equations but time

delays can also be generated by positive feedback (Novák & Tyson, 2008). Both ATM and ATR are

known to undergo activating auto-phosphorylation (Bakkenist & Kastan, 2003; Liu et al, 2011). We

therefore added phrases describing auto-activation of ATM or ATR to the word models (denoted by

dotted arrow and green numbers in Figure 5A, corresponding to green numbers in B and C). When

assembled by INDRA, the extended word models successfully generated p53 oscillation in response to

DSBs (Figure 5C). The presence of oscillations was robust to changes in kinetic parameters and initial

conditions (Appendix Table 3 and Appendix Figure S6). Moreover, in the expanded model ATR-

dependent p53 activation by SSBs still resulted in sustained p53 activation (Figure 5B, Appendix Table

2 and Appendix Figure S6). The key point in this exercise is that features essential for the operation of a

dynamical system (e.g. degradation and auto-activation) were omitted from an informal diagram

focusing on feedback for reasons of brevity and clarity, but this had the unintended consequence of

decoupling the text from the pathway schematic and the schematic from the dynamics being described.

By converting word models directly into executable computational models, we ensure that verbal

descriptions and dynamical simulations are congruent.

 The p53 model offers an opportunity to test how robust INDRA (and the TRIPS reading system)

are to changes in the way input text is phrased. When we tested eight alternatives for the phrase “Wip1

inactivates ATM” ranging from “Wip1 has been shown to deactivate ATM” to “ATM is inactivated by

Wip1” (Figure 5D, right, green sidebar) and found that all eight generated the same INDRA Statement

and thus the same model as the original sentence. However, NLP is sensitive to spelling errors such as

“deaactivates” [sic] and to grammatical errors such as “Wip1 inactivate ATM”. In addition, some valid

linguistic variants are not recognized, representing a limitation of extraction into INDRA Statements

(Figure 5D, right, red sidebar). We also tested whether differences in the way biological entities are

named affects recognition and grounding; we found that Wip1, WIP-1, WIP1, PPM1D and Protein

phosphatase 1D as well as ATM, Atm and ataxia telangiectasia mutated all worked as expected (Figure

5D, bottom, green). However, the recognition of protein and gene names in text is challenging; for

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

17

instance, “PP2C delta” was not recognized as a synonym for Wip1 (Figure 5D, bottom, red), though the

more common variant “PP2Cd” is.

 We then used INDRA to assemble a more detailed and mechanistically realistic model of p53

activation following DSBs (Figure 5E; POMI1.0). While the model in Figure 5C contained only generic

activating and inhibitory reactions, the goal of POMI1.0 was to test INDRA concepts such as

phosphorylation, transcription, ubiquitination and degradation. We also used modifiers to describe the

molecular state required for a protein to participate in a particular reaction (e.g. “ubiquitinated p53 is

degraded”). The set of ten phrases shown in Figure 5E were assembled into 11 rules, 12 ODEs and 18

parameters (Appendix Table 4). When we simulated the resulting ODE model we observed the expected

oscillation in p53 activity (Figure 5E and Appendix Figure S6). By adding and removing different

aspects of the underlying mechanism using natural language we observed that including the mechanism

“Active ATM phosphorylates another ATM molecule” was essential for oscillation; the phrase “ATM

phosphorylates itself” generated a valid set of reactions but did not create oscillations for any of the

parameter values we sampled. The difference is that “Active ATM phosphorylates another ATM

molecule” corresponds to a trans-phosphorylation reaction (other phrasings also work, such as “Active

ATM trans-phosphorylates itself”)—i.e. one molecule of ATM phosphorylates another molecule of

ATM—which produces the non-linearity necessary for a time delay. In contrast, “ATM phosphorylates

itself” implies modification in cis, which is incapable of generating oscillations in the p53 network. It is

well known that ATM and ATR auto-phosphorylation occur in trans (Bakkenist & Kastan, 2003; Liu et

al, 2011), validating this aspect of the model. This result highlights a danger in the use of word models

alone: differences in mechanism that profoundly impact network dynamics can be obscured by

ambiguous and imprecise natural language. Such ambiguities are picked up by INDRA and can be

studied at intermediate stages of the extraction and assembly process (see Appendix iPython Notebook

1). The phrase “Active ATM phosphorylates another ATM molecule” is not particularly elegant English,

but it is unambiguous; understanding that “ATM phosphorylates itself” is insufficient for p53 oscillation

highlights the essential difference between trans and cis phosphorylation.

 The foregoing analysis of the Lahav and Purvis review illustrates several beneficial features of

direct text to model conversion: (i) the possibility of identifying subtle gaps and deficiencies in word

models with the potential to profoundly affect network dynamics and function; (ii) the ability to

maintain precise congruence between verbal, pictorial and computational representations of a network;

and (iii) a reminder to include neglected negative regulatory mechanisms when explaining network

dynamics. We propose that future figures of this type include accompanying declarative text (precisely

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

18

stated word models) on the basis of which graphs and dynamical models can be created. We have found

that it is remarkably informative to experiment with language and then render it in computational form:

it was this type of experimentation that led us to rediscover for ourselves the importance of negative

regulation and nonlinear positive feedback in generating p53 oscillations.

Modeling	
 resistance	
 to	
 targeted	
 therapy	
 by	
 vemurafenib	

 The MAPK/ERK signaling pathway is a key regulator of cell proliferation, differentiation and

motility and is frequently dysregulated in human cancer (Box 4). Multiple ATP competitive and non-

competitive (allosteric) inhibitors have been developed targeting kinases in this pathway. The most

clinically significant drugs bind RAF and MEK kinases in BRAF-mutant melanomas. For patients

whose tumors express an oncogenic BRAFV600E/K mutation, treatment with the BRAF inhibitor

vemurafenib (or, in more recent practice, a combination of the BRAF inhibitor dabrafenib and MEK

inhibitor trametinib) results in dramatic tumor regression. Unfortunately, this is often followed by drug-

resistance and disease recurrence 6 to 18 months later (Larkin et al, 2014). The mechanisms of drug

resistance are under intensive study and include an adaptive response whereby MAPK signaling is

reactivated in tumor cells despite continuous exposure to BRAF inhibitors (Shi et al, 2012a; Lito et al,

2012, 2013). Re-activation of MAPK signaling in drug-treated BRAFV600E/K cells is thought to involve

disruption of ERK-mediated negative feedback (Figure 6A). The biochemistry of this process has been

investigated in some detail and is subtle. For example, differential affinity of BRAF kinase inhibitors to

monomeric and dimeric forms of BRAF are partly responsible for the ERK rebound (Kholodenko, 2015;

Yao et al, 2015). Many of these processes have not been subjected to detailed kinetic modeling within

the scope of the MAPK signaling pathway, and several mechanistically distinct hypotheses have been

advanced to describe the same drug adaptation phenomenon. Adaptation to BRAF inhibitors therefore

represents a potentially valuable application of dynamical modeling to a rapidly moving field of cancer

biology (Kholodenko, 2015).

 We sought to use natural language to rapidly create models of MAPK signaling in melanoma

cells using mechanisms drawn from the literature, with a particular focus on a series of influential papers

from the Rosen lab (Joseph et al, 2010; Poulikakos et al, 2010; Lito et al, 2012; Yao et al, 2015). We

also sought to establish whether different biochemical hypotheses could be easily tested by modifying

models at the level of natural language.

Box 4: The MAPK pathway and vemurafenib resistance in cancer

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

19

In normal cells, signal transduction via MAPK is initiated when an extracellular growth

factor such as EGF induces dimerization of receptor tyrosine kinases (the EGFR RTK for

example) on the cell surface. Dimerization and subsequent activation of RTKs results in

assembly of signaling complexes at the plasma membrane and conversion of RAS-family

proteins (HRAS, KRAS, and NRAS) to an active, GTP-bound state. RAS-GTP activates

members of the RAF family of serine/threonine kinases (ARAF, BRAF, and RAF1), which

serve as the first tier in a three-tier MAP kinase signaling cascade: RAF proteins

phosphorylate MAP2K/MEK family proteins, which in turn phosphorylate the

MAPK/ERK family proteins that control transcription factor activity, cell motility and

other aspects of cell physiology. MAPK signaling is subject to regulation by feedback

mechanisms that include inhibitory phosphorylation of EGFR and SOS by ERK, inhibition

of the GRB2-mediated scaffold by the SPRY family of proteins, and inhibition of ERK by

DUSP proteins (Lito et al, 2012).

 MAPK/ERK signaling is a key regulator of cell proliferation and is mutated in a

variety of human cancers (Dhillon et al, 2007), with dramatic effects on cellular

homeostasis. Overall, ~20% of all cancers carry driver mutations in one of the genes that

encode MAPK pathway proteins (Stephen et al, 2014) and in the case of melanoma, 50%

of cancers carry activating point mutations in BRAF (most commonly BRAF V600E).

ATP-competitive inhibitors such as vemurafenib provide significant clinical benefit in

treating BRAF-mutant melanoma. However, remission of disease is transient, as tumors

and tumor-derived cell lines develop resistance to vemurafenib over time (Lito et al,

2012). Recent studies have identified feedback regulation, bypass mechanisms, and other

context-dependent factors responsible for restoring ERK signaling to pre-treatment levels

(Shi et al, 2012b; Lito et al, 2012, 2013). For example, in the BRAF-V600E cell line

A375, vemurafenib has been shown to suppress EGF-induced ERK phosphorylation

completely upon treatment (Lito et al, 2013) but ERK phosphorylation levels rebound

within 48 hours, with a concurrent increase in the level of RAS-GTP, the active form of

RAS (Lito et al, 2012). It is the biology of this adaptation that we aim to capture in an

INDRA model.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

20

 The baseline MAPK model (Melanoma ERK Model in INDRA; MEMI1.0) consists of 14

sentences describing canonical reactions involved in ERK activation by growth factors (Figure 6B,

MEMI1.0) and corresponds in scope to previously described models of MAPK signaling (Stites et al,

2007; Birtwistle et al, 2007). In the baseline model, BRAFV600E constitutively phosphorylates MEK as

long as it is not bound to vemurafenib (sentence 9: “BRAF V600E that is not bound to Vemurafenib

phosphorylates MEK”). A two-step policy involving reversible substrate binding was used to assemble

all phosphorylation and dephosphorylation reactions. For simplicity, we did not specify residue numbers

or capture multi-site phosphorylation, instead modeling each step in the MAPK cascades as a single,

activating phosphorylation event. With these assumptions, 14 sentences were processed by TRIPS to

yield 14 INDRA Statements that were assembled into 28 PySB rules and 99 differential equations; the

network of coupled ODEs was then simulated.

 A key property of vemurafenib-treated BRAFV600E cells as described by Lito et al. is that the

drug initially reduces pERK below its steady state level but pERK then rebounds despite the continued

presence of vemurafenib. Levels of RAS-GTP (the active form of RAS) also increase during the

rebound phase (Lito et al, 2012). In MEMI1.0, addition of EGF causes activation of RAS and

phosphorylation of ERK at steady state. Addition of vemurafenib rapidly reduces pERK levels (Figure

6B) but extended simulations under a range of EGF and vemurafenib concentrations show that the

amount of active RAS depends only on the amount EGF and is insensitive to the amount of

vemurafenib; moreover, no rebound in pERK is observed in the presence of vemurafenib (Figure 6B and

Appendix Figure S7A). Thus, MEMI1.0 fails to capture drug adaptation.

 In a series of siRNA-mediated knockdown experiments Lito et al. showed that pERK rebound

involves an ERK-mediated negative feedback on one or more upstream pathway regulators such as

Sprouty proteins (SPRY), SOS or EGFR. To identify a specific mechanism that might be involved we

used the BioPAX and BEL search capabilities built into INDRA. We queried Pathway Commons

(Cerami et al, 2011) for BioPAX reaction paths leading from ERK (MAPK1 or MAPK3) to SOS (SOS1

or SOS2) and obtained multiple INDRA Statements for a MAPK1 phosphorylation reaction that had one

or more residues on SOS1 as a substrate (including SOS1 sites S1132, S1167, S1178, S1193 and

S1197). However, Pathway Commons did not provide any information on the effects of these

phosphorylation events on SOS activity. To search for this we used INDRA’s BEL Interface to query

the BEL Large Corpus (Catlett et al, 2013, Box 2) for all curated mechanisms directly involving SOS1

and SOS2. We found evidence that ERK phosphorylates SOS and that ERK inactivates SOS (Corbalan-

Garcia et al, 1996). We did not find a precise statement in either database stating that phosphorylation of

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

21

SOS inactivates it, but the publication referred to in the BEL Large Corpus as evidence of this

interaction (Corbalan-Garcia et al, 1996) describes a mechanism whereby SOS phosphorylation

interferes with its association with the upstream adaptor protein GRB2. To include the inhibitory

phosphorylation of SOS by ERK we therefore modified three sentences (Figure 6C, Model 2, Sentences

4, 5, and 14) in Model 1 and added two new sentences (Figure 6C, Model 2, sentences 15 and 16).

Thus, although INDRA can assemble Statements derived from databases directly into models, in this

case human curation (via changes to the natural language text) was required to identify gaps in the

mechanisms available from existing sources.

 The inclusion of SOS-mediated feedback produced 16 declarative sentences that were translated

into a MEMI1.1 model having 34 rules and 275 ODEs. Assembly of MEMI1.1 involved imposing

assumptions to limit combinatorial complexity. For instance, in sentence 15 (Figure 6C) we specified

that ERK cannot be bound to DUSP6 for ERK to phosphorylate SOS. While it is not known whether or

not ERK can bind both DUSP6 and SOS at the same time, allowing for this possibility introduces a

“combinatorial explosion” (Faeder et al, 2005; Feret et al, 2009) in the number of reactions and makes

mass-action simulation difficult. It is common to make simplifying assumptions of this type in

dynamical models (see for instance (Chen et al, 2009)), and an advantage of using natural language is

that the assumptions are clearly stated. When MEMI1.1 was simulated we observed that, given a

sufficient level of basal activity by addition of EGF, addition of vemurafenib resulted in dose-dependent

increases in active RAS over pre-treatment levels (Appendix Figure S7B). However, pERK levels

remained low, suggesting that negative feedback alone (at least as modeled in MEMI1.1) is insufficient

to explain the rebound phenomenon observed by Lito et al. (Figure 6C, Appendix Figure S7B).

 It has been suggested that RAF dimerization plays an important role in cellular responsiveness to

RAF inhibitors (Lavoie et al, 2013; Yao et al, 2015). Both wild-type and BRAFV600E dimers have a

lower affinity for vemurafenib as compared to their monomeric forms (Yao et al, 2015). Moreover, Lito

et al. observed that the reactivation of ERK following vemurafenib treatment was coincident with

formation of RAF dimers, leading to the suggestion that vemurafenib-insensitive dimers in cells play a

role in the re-activation of ERK signaling (Kholodenko, 2015). To model this possibility, we created

MEMI1.2 in which binding of vemurafenib to monomeric or dimeric BRAF is explicitly specified by

separate sentences, allowing the effects of different binding affinities to be explored (Figure 6D).

Assembly of this model yielded 353 ODEs, many of which were required to represent the combinatorial

complexity of BRAF dimerization and vemurafenib binding (Appendix Figure S8). Simulation showed

that RAS activation increases and settles at a higher level following vemurafenib treatment, with the

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

22

magnitude of the increase dependent on the amount of EGF and the concentration of drug (Figure 6D,

Appendix Figure S7C). Following a period of pERK suppression, rebound in pERK levels to ~30% of

their maximum is observed (Figure 6D) effectively recapturing the key findings of Lito et al.

Subsequent work has shown that resistance to vemurafenib can also involve proteins such as DUSP,

SPRY2 (Lito et al, 2013) and CRAF (Montagut et al, 2008). These mechanisms do not feature in the

models described here, but could be included in MEMI by adding a few phrases to the word model.

This example demonstrates that it is possible to use INDRA to model signaling systems of

practical interest at a scope and level of detail at which interesting biological hypotheses can be explored

and tested. Comparison of models MEMI1.0 to 1.2 suggests that both feedback and BRAF dimerization

are necessary for vemurafenib adaption and pERK rebound, in line with experimental evidence. The

number of free parameters in these models varies, and we have not performed formal model calibration

or verification, so the conclusion that MEM1.2 is superior to 1.0 is not rigorously proven. However,

INDRA-assembled rule sets represent a solid starting point for such downstream analysis.

One issue we encountered in assembling these models was controlling complexity arising from

the formation of multiple protein complexes from a single set of reactants. This is a known challenge in

dynamical modeling of biochemical networks with poorly understood implications for cellular

biochemistry (Faeder et al, 2005; Harmer et al, 2010; Sneddon et al, 2011). From the perspective of an

INDRA user, this is likely to manifest itself as a property that can be diagnosed at the level of PySB

rules or ODE networks, which can be inspected interactively (see Appendix Notebook 2). Unwanted

combinatorial complexity can be resolved in two ways: (i) by using natural language to make additional

assumptions about molecular context, and (ii) by choosing assembly policies minimizing combinatorial

complexity by reducing complex formation (i.e. Michaelis-Menten instead of two-step policy). Both

strategies are illustrated in Appendix Notebook 2.

An	
 extensible	
 and	
 executable	
 map	
 of	
 the	
 RAS	
 signaling	
 pathway	

 The BRAF pathway described above is part of a larger immediate-early signal transduction

network with multiple receptors as inputs and transcription, cell motility and cell fate determination as

outputs. RAS is a central node in this network and is an important oncogenic driver (Stephen et al,

2014). The ubiquity of RAS mutations in cancer has led to renewed efforts to target oncogenic RAS and

RAS effectors. As a resource for the community of RAS researchers, the NCI RAS Initiative has created

a curated pathway diagram that defines the scope of the RAS pathway as commonly understood by a

community of experts (Stephen et al, 2014). Such pathway diagrams can serve as useful summaries, but

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

23

unless they are backed by an underlying computable knowledge representation they are of limited use in

quantitative data analysis.

 We used INDRA to describe the RAS signaling network and automatically generated a diagram

(Figure 7A, right) corresponding to the community-curated Ras Pathway v1.0 diagram (available at

http://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/what-do-we-mean-ras-pathway). We

described the interactions in natural language (Figure 7A left, full text shown in Appendix Section 2.4)

and used TRIPS to convert the description into INDRA Statements. A node-edge graph was generated

using INDRA’s Graph Assembler and rendered using Graphviz (Figure 7A, right). Although different

stylistically, the pathway map assembled using INDRA matches the original one drawn by hand in the

following ways: it (i) includes the same set of proteins; (ii) represents the same set of interactions among

these proteins; and (iii) recapitulates the semantics and level of mechanistic detail of the original

diagram in that interactions are represented as directed positive and negative edges or undirected edges

indicating complex formation. The pathway map is also visually comparable to one drawn by hand, and

allows natural language-based editing and extension of the underlying set of mechanisms. For example,

following distribution of v1.0 RAS diagram, the RAS Initiative solicited verbal feedback from a large

number of RAS biologists both in person and via a discussion forum. Suggestions from the community

consisted largely of corrections and pathway extensions. Using INDRA, these revisions of the network

can be made directly, simply by editing the natural language source material. For example, one

contributor noted that in the published pathway diagram (Figure 7A, right), P90RSK is activated by the

mTORC2 complex, whereas in fact it is actually a substrate of MAPK1 and MAPK3

(https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2014/what-do-we-mean-ras-

pathway#comment-1693526648). To account for this correction, we modified the natural language

description by replacing the sentence “mTORC2 activates P90RSK” with “MAPK1 and MAPK3 activate

P90RSK.” The pathway map obtained following automated assembly of the revised text correctly

reflects the change suggested by the contributor (Figure 7B).

 Several readers also suggested expanding the pathway map to include other relevant proteins.

Extensions of this type are easy to achieve using natural language: for example, we extended the v1.0

RAS diagram to include JNK, a MAP kinase that is activated in many cells by cytokines and stress

(Anafi et al, 1997; Antonyak et al, 1998; Wagner & Nebreda, 2009). This was achieved by adding four

sentences (Figure 7C, top) including “MAP3K7 activates MKK4 and MKK7” and “MKK4 and MKK7

activate JNK1 and JNK2”. The subnetwork appended to the diagram is shown in Figure 7C (bottom).

Note that we used common names for the JNK pathway kinases in the word model but INDRA

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

24

canonicalized these to their official gene names (e.g., “HPK1”, “MKK4”, and “JNK1” were converted to

MAP4K1, MAP2K4, and MAPK8, respectively).

 The set of mechanisms used to generate the diagrams in Figures 7A-C can also be translated into

a qualitative predictive model. We used the Simple Interaction Format (SIF) Assembler in INDRA to

generate a Boolean network corresponding to the natural language pathway description in Figure 7A

(see Appendix Section 2.4 for the rules comprising the network). Such a Boolean network can be used to

predict the effects of perturbations such as ligand or drug addition. For example, we simulated the

effects of adding growth factors and MEK inhibitors on phosphorylated c-Jun. The Boolean network

simulation correctly predicted that c-Jun would be phosphorylated in the presence and absence of MEK

inhibitor (Figure 7D, blue). We then instantiated the extended network in Figure 7C (which identifies

the JNK pathway as a possible contributor to c-Jun phosphorylation). In this case joint inhibition of JNK

and MEK was required to fully inhibit c-Jun phosphorylation (Figure 7D, green). The biology in this

example is relatively straightforward but it demonstrates that natural language descriptions of

mechanisms, along with automated assembly into executable forms, can be used as an efficient and

transparent way of creating extensible knowledge resources for data visualization and analysis.

DISCUSSION	

 In this paper, we described a software system, INDRA, for constructing executable models of

signal transduction directly from text. The process uses natural language reading software (TRIPS, in

this paper) to convert text into a computer-intelligible form, identifies biochemical mechanisms and then

casts these mechanisms in an intermediate knowledge representation that is decoupled from both input

and output formats. The intermediate representation, comprising a library of INDRA Statements, is then

used to assemble computational models of different types including networks of ODEs, Boolean

networks, and interaction graphs according to user-specified policies that determine the level of

biophysical detail. We have applied INDRA to three successively more ambitious use cases: (i)

translating a diagram and accompanying text describing p53 regulation by DNA damage; (ii) modeling

adaptive drug resistance in BRAFV600E melanoma cells exposed to the BRAF inhibitor vemurafenib; and

(iii) constructing a large-scale model of RAS-mediated immediate-early signaling based on a crowd-

sourced schematic drawing. These examples demonstrate the surprising but encouraging ability of

machines to exploit the flexibility and ambiguity of natural language and then add prior knowledge

about reaction mechanisms needed to create well-defined executable models.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

25

 The p53 POMI model represents a use case corresponding in scope to the mechanistic

hypotheses typically presented in the literature in verbal or graphical form. We based POMI on a word

model found in a review and found it necessary to add several additional mechanisms to reproduce the

described oscillations in p53 (these include negative regulatory reactions and a positive feedback step

involving auto-phosphorylation of ATM in trans). Editing and updating the model to explore alternative

hypotheses was accomplished strictly at the level of the natural language description. This example

highlights the potential of natural language, assembled into executable model form, to expose important

and frequently overlooked differences between a formal representation of a mechanism (in this case, a

network for ODEs) and a diagram that purports to describe it. Direct conversion of text into models via

INDRA helps to minimize such mismatches while keeping the description in an accessible and easily

editable natural language form. We propose that pathway schematics found in the conclusions of

molecular biology papers include a set of declarative statements that match the schematic and any

depiction of dynamics arising from simulation. Ensuring congruence among these representations will

improve general understanding of cellular biology and make schematics and their underlying

assumptions accessible to machines.

 The BRAFV600E MEMI model involved a much greater number of molecular species and

reactions due to the combinatorics of complex formation among BRAF, Vemurafenib, MEK, and RAS.

In INDRA, formation of unlikely polymers in the model assembled by INDRA was controlled by

providing stricter molecular context on mechanisms in the form of natural language (e.g., “DUSP6

dephosphorylates ERK that is not bound to SOS”). While managing combinatorial complexity is a key

challenge in building models of signaling, a benefit of using INDRA is that assumptions made regarding

combinatorial complexity are made explicit either in the form of the natural language description or the

policies chosen for model assembly (e.g., one-step Michaelis-Menten vs. two-step). The broader RAS

pathway is the largest network tackled in this paper, but by restricting the mechanisms to positive and

negative regulation and binding it remains manageable. Such a model could in principle be solicited

directly from the community and we plan to release the INDRA RAS model to the same group of

experts that helped Frank McCormick and colleagues build and improve the original RAS schematic

(Stephen et al, 2014).

Challenges in generating executable models from text and databases

 Automating the construction of detailed biochemical models from text involves overcoming

three technical challenges. The first is turning text into a computable form that correctly captures the

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

26

biochemical events described in a sentence (typically verbs or actions) and the precise biomolecules

involved (typically the subjects and objects of a phrase or sentence). This is possible in our system

because TRIPS can extract meaning from sentences describing complex causal relationships in the face

of variations in syntax (Box 1). TRIPS performs an initial shallow syntactic search to identify and

ground named entities (genes, proteins, drugs, etc.) and then uses generic ontologies to perform “deep”

semantic analysis, determining the meaning of a sentence in terms of its logical structure.

 The second challenge involves extracting and normalizing information about mechanisms

contained in NLP output. INDRA extracts mechanistic information from graphs generated by TRIPS by

searching for matches to a predefined set of templates corresponding to biochemical processes (e.g.,

phosphorylation, transcription, binding, activation, etc.; Figure 3). These templates regularize the

description of biochemistry in text by capturing relevant information in pre-determined fields: for

example, a template for phosphorylation is structured to have a protein kinase, a phosphorylated

substrate, and a target site. Information extracted by this template matching procedure is stored in

corresponding fields in Statements, INDRA’s intermediate representation; missing fields are left blank.

INDRA Statements currently encompass terms and reactions commonly found in signal transduction

pathways and gene regulation; however, the system is being extended to include a wider variety of

biochemical processes.

 The third challenge in text-to-model conversion is assembling an executable model from high-

level mechanistic facts acquired from input sources. Knowledge of reaction type and reactant identity is

insufficient to construct a biophysical model: additional information derived from an understanding of

classes of biochemical mechanism is almost always required. For example, the conversion of a

phosphorylation Statement into a reaction network can involve one-step kinetics, reversible two-step

kinetics or two-step kinetics with explicit ATP binding. Conversion of Statements into explicit models is

controlled by the imposition of assembly policies (Figure 4). Greater biophysical realism comes at the

cost of increased model complexity and reduced parameter identifiability. Thus, there is no single

optimal approach to model instantiation: the level of detail is determined by the purpose of the model

and the way it will be formulated mathematically.

 Constructing executable models of signaling networks from pathway databases using BioPAX or

BEL presents several challenges, despite the fact that this information is structured and often manually

curated by experts. BioPAX reactions and BEL statements often lack the uniqueness (i.e., many

variants of the same mechanism are curated) and context (i.e., participants in curated mechanisms are

missing necessary molecular state) required to build coherent executable models automatically. For

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

27

instance, Pathway Commons contains a multitude of representations of the reaction whereby MAPK21

phosphorylates and activates MAPK1 (Appendix Figure S10). These reactions differ in their molecular

details including which phosphorylation sites are involved and what the assumptions about the state

(activity, modification, bound cofactors) of MAP2K1 are. These reactions cannot simultaneously be

included in a single, coherent model as they would result in causal inconsistencies. We therefore require

the user to determine which INDRA Statements extracted from a database should be included in a given

model. INDRA then subjects this information to an analogous process as text, using templates and

assembly policies to control the generation of specific reaction patterns. In the future, manual selection

of relevant BioPAX or BEL statements could be replaced by, or supplemented with, automated tools

ensuring the selection of coherent subsets of mechanisms to be included in a model.

Separating Model Content and Implementation

 Most approaches to modeling biological networks directly couple the specification of scope and

collection of relevant facts to the mathematical implementation. For example, in an ODE-based model,

molecular species are directly instantiated as variables and related to each other using one or more

differential equations containing terms determined by each mass action reaction (Figure 8A “Ordinary

differential equations” and Figure 8B, left). Although conceptually straightforward, the lack of

separation between content and implementation (an issue also discussed in (Basso-Blandin et al, 2016))

makes it difficult to update a model with new findings from the literature or new hypotheses, to change

the level of biophysical detail or to switch mathematical formalisms. Programmatic modeling overcomes

some of these problems by allowing the construction of models at a higher level of abstraction in which

users implement reusable and composable macros and modules (Figure 8A “PySB Macro” and Figure

8B, center) (Lopez et al, 2013; Mallavarapu et al, 2009; Smith et al, 2009; Pedersen & Plotkin, 2008).

The mathematical equations necessary for simulation are then generated automatically from the abstract

representations.

 INDRA introduces a further level of abstraction whereby a user describes a set of reactions in

natural language or searches for related mechanisms in pathway databases and then uses a machine to

turn these facts into executable models (Figure 8A “Natural language” and Figure 8B, right). In this

process, a user has full control over the content of the model and the level of detail, as specified by

policies, but model assembly happens automatically. Such decoupling simplifies the creation of

dynamical models from natural language descriptions, enables the creation of closely related models

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

28

differing in detail or mathematical formalism and makes sure that verbal and mathematical descriptions

of the same process are in correspondence (Figure 8B, right).

 The decoupling of biological knowledge from specific applications reflects the way in which

biologists gather mechanistic information and apply it to specific research questions. We acquire

informal knowledge through years of reading and experience, but this knowledge remains highly

flexible; it allows for uncertainty about particular details and can be applied to a diverse set of problems

in the lab. The ambiguity inherent in verbal descriptions of mechanisms conforms closely to the way in

which individual experiments are designed and interpreted: it is extremely rare for one experiment to

elucidate the status of all relevant sites of post translational modification, regulatory subunit binding or

allosteric regulation of an enzyme. Natural language allows biologists to communicate provisional and

changing knowledge without prematurely resolving ambiguities or presupposing the biological context

or experimental format in which the knowledge might be applied.

Relationship to previous work

 Several software tools have been developed to partially automate the construction of executable

models from bioinformatics databases such as KEGG, Pathway Commons etc. (Ruebenacker et al, 2009;

Wrzodek et al, 2013; Büchel et al, 2013; Turei et al, 2016a). Automating model translation in this way

increases throughput and maintains links between model assumptions and curated findings in databases,

eliminating the need for labor-intensive annotations of hand-built models (Le Novère et al, 2005). Such

approaches have been particularly successful in the field of metabolism in which knowledge about

enzyme-substrate reactions is well curated and closely corresponds in level of detail to what is required

for mechanistic modeling (Büchel et al, 2013). In signal transduction, curation is less complete, the

number of molecular states and interactions is far higher and networks vary dramatically from one cell

type to the next. This complexity has been addressed for the most part by using strictly qualitative

formalisms that describe positive and negative influences between nodes (Büchel et al, 2013; Turei et al,

2016b). In contrast INDRA uses an intermediate representation that encompasses both mechanistic

processes (e.g., phosphorylation) and empirical causal influences (e.g., activation and inhibition). The

model assembly procedure makes use of mechanistic information where available, but can incorporate

qualitative influence relationships when mechanisms are not known. In its use of an intermediate

representation to bridge the gap between elements of mechanistic knowledge and executable models,

INDRA Statements are related to the graphical meta-model for rule-based modeling developed by

Basso-Blandin et al., which represents binding and modification actions at the level of structural features

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

29

within agents (e.g., domains and key residues) (Basso-Blandin et al, 2016). In this way, their framework

is complementary to INDRA Statements, and the two approaches could be productively integrated.

 INDRA’s ability to assemble information from knowledge sources into annotated, exchangeable

and extensible models relies heavily on the existence of community standards such as SBO (Courtot et

al, 2011) and MIRIAM (Le Novère et al, 2005), and on structured resources including identifiers.org

(Juty et al, 2012), UniProt (The UniProt Consortium, 2015), CHEBI (Degtyarenko et al, 2008), etc. For

an extensive overview of the role of these resources in building large, reusable models, we refer the

reader to (Waltemath et al, 2016). Early instances of software systems for converting input and output

formats allowed one-to-one conversion from BioPAX to SBML (Ruebenacker et al, 2009). Cell

Designer (Funahashi et al, 2008) accepts input in formats such as BioPAX and makes plugins such as

SBML Squeezer (Dräger et al, 2015) available for export into SBML. Similarly, Cytoscape (Cline et al,

2007) makes it possible to import protein interactions from multiple databases and output the results to

SBML. More recent one-to-many tools translate information from a single knowledge source into

multiple output formats (Wrzodek et al, 2013), while many-to-one tools aggregate pathway information

from many sources but target a single output format (Turei et al, 2016a).

 By uncoupling knowledge-level statements from a particular formal implementation, whether

graphical or mathematical, natural language modeling is complementary to and compatible with a wide

variety of input and output formats. In the case of INDRA, an intermediate representation enables a wide

variety of many-to-many conversions involving text, BioPAX, BEL, PySB, BNGL, SBML, ODEs,

logical models and graph-based formats such as SBGN (an INDRA-assembled SBGN graph of the

model presented in Figure 5C is shown in Supplementary Figure S9). Further integration of natural

language and graphical modeling, for example by coupling INDRA to SBGNViz graphical interface

(Sari et al, 2015), will improve the quality of human-machine interaction and further facilitate model

assembly and exploration.

Limitations and future extensions of INDRA

 An appealing feature of using natural language to build models is that it is immediately

accessible to all biologists. However, this does not necessarily imply that INDRA will allow modeling

laypersons to directly build and use sophisticated models, as the use of natural language does not in and

of itself address many of the other challenges in developing a meaningful dynamical model, including

determination of parameter sensitivity, investigation of network dynamics, insight into combinatorial

complexity, multistability, oscillations, etc. We therefore propose that natural language modeling would

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

30

be useful in facilitating collaboration between biologists with domain-specific expertise and

computational biologists. The advantage of natural language in this context is that it makes it easy for

teams to communicate about biological hypotheses and mechanisms without becoming mired in details

of model implementation. For experienced modelers, INDRA offers a means to efficiently build

multiple model types from a single set of high-level assumptions, provided that the model can be

described in terms of molecular mechanisms and assembled using available policies. By design, the

software does not perform parameter estimation, simulation or model analysis, leaving these tasks to the

many existing tools and methods.

 Limitations in model construction using INDRA can be grouped into two categories: (i) issues

relating to the reading natural language by external NLP systems, and (ii) limitations in the

representation and assembly of mechanisms in INDRA. In this paper, we construct models using simple

declarative sentences that lack much of the complexity and ambiguity of spoken language and the

scientific literature. Declarative language can express a wide variety of biological mechanisms at

different levels of detail and ambiguity and it reduces many of the difficulties associated with NLP-

based extraction of biological mechanisms. Although TRIPS and INDRA are robust to variation in

syntax and naming conventions, they cannot understand all possible ways a concept can be stated; for

example, “Wip1 makes ATM inactive” is not recognized as a substitute for “Wip1 inactivates ATM”

(Figure 5). In such cases rephrasing is usually successful.

 The TRIPS system (as well as other NLP systems we tried, such as REACH) can be used to

process the more complex and ambiguous language used in scientific publications and they are both

state of the art systems with different strengths and weaknesses. Empirical results presented in (Allen et

al, 2015) show that TRIPS compares favorably in precision and recall to ten other NLP systems on an

event extraction task from biomedical publications, and reaches precision and recall levels close to those

produced by human curators. While reading from the biomedical literature is less robust as compared to

reading the declarative language used in this paper, the fundamental challenge in generating models

directly from literature information is not reading but knowledge assembly. The assembly challenge

involves multiple interconnected issues, including: (i) the large amount of full and partial redundancy of

knowledge generated when mechanisms are read at scale (e.g. MEK phosphorylates ERK vs. MEK1

phosphorylates ERK); (ii) inconsistencies between knowledge collected from multiple sources which

may or may not be resolvable based on context; (iii) the distinction between direct physical interactions

and indirect effects; and (iv) technical errors such as erroneous entity disambiguation and normalization.

In the approach described here, human experts simplify machine reading and assembly by paraphrasing

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

31

statements about mechanisms into simplified, declarative language. As illustrated in the POMI models

of p53 dynamics, the use of simplified language is not only useful for machines, it helps to clarify

complex issues for humans as well. However, we are actively working to extend INDRA so it can

assemble information from the primary scientific literature into coherent models.

 The domains of knowledge covered by INDRA are limited by the scope of the natural language

processing, intermediate representation and assembly procedures developed to date, which do not

include all types of biological mechanisms (e.g., lipid biology, microRNA function, epigenetic

regulation remain future extensions). However, INDRA can extract and represent comparable

proportions of reactions in signaling, transcriptional regulation, and metabolism, which are widely

curated in existing databases (Appendix Table 1). To further extend this coverage, we are (i) updating

processors to retrieve a wider range of information; (ii) adding new Statement types; and (iii) creating

new assembly procedures. Other areas of future development include automated retrieval of binding

affinities and kinetic rates for parameter estimation. Encouragingly, the Path2Models software has

shown that automated retrieval of kinetic parameters from databases is feasible for metabolic models

(Büchel et al, 2013), and this approach may be adaptable to signaling pathways as well. Another

planned extension involves capturing more abstract observations in addition to mechanistic information.

For instance, the experimental finding “IRS-1 knockdown resulted in reduction of insulin stimulated

Akt1 phosphorylation at Ser 473.” (Varma & Khandelwal, 2008) cannot be directly represented as a

molecular mechanism. Literature and databases contain a wealth of such indirect, non-mechanistic

information that could be used as biological constraints to infer or verify mechanistic models. However,

we expect that INDRA will primarily remain a tool for investigating properties of linked biochemical

reactions rather than as a general-purpose mathematical modeling tool. As illustrated in the p53

modeling example above (Figure 5) this emphasis requires the modeler to provide an explicit molecular

basis for phenomenological properties such as oscillations, switches, delays, etc.

 A system such as INDRA allowing biologists to “talk” to a machine about a biological pathway

in natural language suggests the possibility that an improved machine could also “talk back” to the

human user in a manner analogous to Apple’s Siri (Carvunis & Ideker, 2014). At its most basic level,

such a system would allow humans and machines to jointly curate knowledge, thereby resolving

ambiguities or errors in NLP or assembly. A more sophisticated machine would use its internal

knowledge base to autonomously identify relevant reactions, inconsistencies in a user’s input, or novel

hypotheses arising from model simulation. A computer agent could interact with many human experts

simultaneously, facilitating curation and modeling efforts by communities of biologists. We anticipate

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

32

that such human-machine collaborative systems will be increasingly valuable in making sense of the

large and complex datasets and fragmentary mechanistic knowledge that characterize modern

biomedicine.

MATERIALS	
 AND	
 METHODS	

Software	
 and	
 model	
 availability	
 	

INDRA is available under the open-source BSD license. Code and documentation are available via

http://indra.bio; the documentation is also included as part of the Appendix. The TRIPS/DRUM system

for extracting mechanisms from natural language is available at http://trips.ihmc.us/parser/cgi/drum.

INDRA version 1.4.2 was used to obtain all results in the manuscript. INDRA can be imported in a

Python environment and integrated with existing Python-based tools directly. To allow the integration of

INDRA with non-Python tools, including graphical modeling environments, a REST API is available,

through which all input processing and assembly functionalities of INDRA can be used (for more details

on the REST API, see the INDRA documentation attached as part of the Appendix).

 The POMI1.0 and MEMI1.0-1.2 models are provided as Appendix attachments in SBML,

BNGL, Kappa and PySB formats, in addition to the natural language text files used to build them. The

RAS pathway model and its extension are provided in SIF and Boolean network formats as Appendix

attachments. Code used to generate these models is part of the INDRA repository and can be found in

the models folder of https://github.com/sorgerlab/indra.

TRIPS	
 Interface	

The INDRA TRIPS Interface is invoked using the top-level function process_text. This function queries

the TRIPS/DRUM web service via HTTP request, sending the natural language content as input and

retrieving extracted events in the EKB-XML format. The Interface then creates an instance of the

TripsProcessor class, which is then used to iteratively search the EKB-XML output, via XPath queries,

for entries corresponding to INDRA Statements. Extracted Statements are stored in the statements

property of the TripsProcessor, which is returned by the Interface to the calling function.

BioPAX/Pathway	
 Commons	
 Interface	

INDRA’s BioPAX Interface either queries the Pathway Commons web service or reads an offline

BioPAX OWL file (Box 2). The Interface contains three functions that can be used to query the Pathway

Commons database via the web service: 1) process_pc_neighborhood, which returns the reactions

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

33

containing one or more query genes, 2) process_pc_pathsbetween, which returns reaction paths

connecting the query genes, subject to a path length limit, and 3) process_pc_pathsfromto, which returns

reaction paths from a source gene set to a target gene set, subject to a path length limit. The BioPAX

Interface processes the resulting OWL files using PaxTools (Demir et al, 2013), yielding a BioPAX

model as a Java object accessible in Python via the pyjnius Python-Java bridge

(https://github.com/kivy/pyjnius). INDRA’s BioPAX Processor then uses the BioPAX Patterns package

(Babur et al, 2014) to query the BioPAX object model for reaction patterns corresponding to INDRA

Statements.

BEL/NDEx	
 Interface	

INDRA’s BEL Interface either reads an offline BEL-RDF file or obtains BEL-RDF from the BEL Large

Corpus via the Network Data Exchange (NDEx) web service (Pratt et al, 2015). Subnetworks of the

BEL Large Corpus are obtained by calling the method process_ndex_neighborhood, which retrieves

BEL Statements involving one or more query genes. The BEL Processor then uses the Python package

rdflib to query the resulting RDF object for BEL Statements corresponding to INDRA Statements via

the SPARQL Protocol and RDF Query Language (SPARQL; https://www.w3.org/TR/sparql11-

overview).

Assembly	
 of	
 rule-­‐based	
 models	

Assembly of rule-based models is performed by instances of the PySB Assembler class. Given a set of

INDRA Statements and assembly policies as input, the make_model method of the PySB Assembler

assembles models in two steps. First, information is collected about all molecular entities referenced by

the set of Statements. This defines the activity types, post-translational modification sites, binding sites,

and mutation sites for each Agent, which can then be used to generate the agent “signatures” for the

rule-based model. In PySB, the molecular entities of the model are represented by a set of instances of

the PySB Monomer class. Because assembly policies chosen by the user govern the nature of binding

interactions (e.g., one-step vs. two-step modification), the binding sites and agent signatures must be

generated in accordance with the chosen policies at this step. For policies involving explicit binding

between proteins (e.g., the two-step policy for post-translational modifications), each PySB Monomer is

given a unique binding site for each interacting partner. The second step is the generation of reaction

rules corresponding to each of the input Statements. The PySB Assembler iteratively processes each

Statement, calling the assembly function specific to the Statement type and chosen policy. Depending on

the Statement type and policy, one or more PySB rules may be generated and added to the PySB model.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

34

The PySB model returned by the make_model function can then be converted into other formats (Kappa,

BNG, SBML, Matlab, etc.) depending on the type of simulation or analysis to be performed (Lopez et

al, 2013). Importantly, the PySB Assembler adds annotations to the generated PySB model that link

molecular entities referenced in the model to their identities in reference ontologies (e.g., HGNC and

UniProt). These annotations are in turn propagated into SBML and other model formats by existing

PySB model export routines.

Models	
 of	
 p53	
 activation	
 in	
 response	
 to	
 single-­‐	
 and	
 double	
 strand	
 break	
 DNA	
 damage	

The text defining each model was submitted to the TRIPS web service for processing via INDRA’s

TRIPS Interface. The TRIPS system returned Extraction Knowledge Base graphs (Box 1 and Appendix

Section 2.1) from which INDRA’s TRIPS Processor extracted INDRA Statements. These Statements

were then assembled using INDRA’s PySB Assembler into a rule-based model. The default “one-step”

assembly policy was used, which generates rules in which the subject of an activation, inhibition, and

modification changes the state of the object without binding.

 The 8 sentences constituting the SSB damage response model (Figure 5B) resulted in 8 INDRA

Statements (each of type Activation or Inhibition). For example, the sentence “Active p53 activates

Mdm2” was represented as an Activation Statement with an additional condition on the Agent

representing p53, requiring that it be active. During INDRA Statement construction, names of genes are

standardized to their HGNC gene symbol (Eyre et al, 2006), thus, the Agent representing “Mdm2” is

renamed “MDM2”, and the Agent representing “p53” is renamed “TP53”. Default initial conditions

(10,000 molecules, based on a default concentration of 10-8 Molar in a typical HeLa cell volume of 1.6 x

10-12 L) generated by the PySB Assembler were used for each protein in its inactive state and simulations

were started with an initial 1 active ATR molecule to initiate the activation pathway. The forward rates

for activation and inhibition rules were set to 10-7 molec-1s-1 (using a conversion rate of 105 M-1s-1 in a

typical HeLa cell volume, as above). The forward rate of the rules corresponding to ATR auto-activation

and p53 inactivation by Wip1 were modified to be 5 x 10-7 molec-1s-1, that is, faster than the forward rate

of other rules (a summary of all rules and rates is given in the Appendix Section 2.3). PySB’s reaction

network generation and simulation functions were then used to instantiate the model as a set of 8

ordinary differential equations. The model was simulated using the scipy package’s built-in vode solver

for up to 20 hours of model time while tracking the amount of active p53, which was then plotted

(Figure 5B). Natural language processing for this model took 10 seconds (here and in the following this

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

35

includes network traffic time to and from the web service); the assembly and simulation of the model

took less than 1 second.

 The method for constructing the simple DSB response model (Figure 5C) with ATM was

analogous to the SSB model. The same initial amounts and forward rate constants were used as in the

previous model, except in this case an initial condition of 1 active ATM molecule was used, and the

inactivation of ATM by Wip1 was given a forward rate of 10-5 molec-1s-1. For this model, the 9 natural

language sentences were captured in 9 INDRA Statements and generated into a model of 9 rules and

finally 9 ODEs. The model was again simulated up to 20 hours while observing the active form of p53.

Similar to the SSB response model, natural language processing for this model took around 10 seconds,

with assembly and simulation taking less than 1 second.

 The POMI1.0 model (Figure 5E) extends the basic DSB response model by specifying the

activation/inhibition processes in more mechanistic detail. The model is described in 10 sentences

yielding 12 INDRA Statements and a model containing 11 PySB rules and 12 ODEs (via the PySB

Assembler using the “one-step” policy). The same rate constants were used as in the simple DSB

response model; additionally, the degradation rate of Mdm2 was set to 8 x 10-2 s-1 and the rate of

synthesis of Mdm2 by p53 to 2 x 10-2 molec-1s-1 (a full list of rules and associated rate constants is given

in the Appendix Section 2.3). Natural language processing for this model took 14 seconds; assembly and

simulation took less than 1 second.

Models	
 of	
 response	
 to	
 BRAF	
 inhibition	

The sentences for the MEMI1.0, 1.1 and 1.2 models were processed with the TRIPS web service via

INDRA’s TRIPS Interface. Natural language processing took 37 seconds for MEMI1.0, 60 seconds for

MEMI1.1, and 75 seconds for MEMI1.2. The resulting INDRA Statements were then assembled using

INDRA’s PySB Assembler module into a rule-based model using the “two-step” policy for assembling

post-translational modifications. Kinetic rate constants were set manually and the initial amounts of each

protein were set to correspond in their order of magnitude to typical absolute copy numbers measured

across a panel of cancer cell lines in Table S5 of (Shi et al, 2016). A summary of the kinetic rates and

initial amounts is given in Appendix Tables 5-7. Each model was instantiated as a system of ordinary

differential equations and simulated using the scipy Python package’s built-in vode solver. Each model

was started from an initial condition with all proteins in an inactive, unmodified and unbound state. The

models were run to steady state and the values of GTP-bound RAS (active RAS) and phosphorylated

ERK were saved. Another simulation was then started from the steady state values with vemurafenib

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

36

added and the time courses of active RAS and phosphorylated ERK were normalized against their

unperturbed steady state values and plotted.

Extensible	
 and	
 executable	
 RAS	
 pathway	
 map	
 	

The pathway map was created by processing 47 sentences with TRIPS (see Appendix Section 2.5) to

generate 141 INDRA Statements. Reading and extraction of Statements took a total of 160 seconds. The

Statements were then assembled using INDRA’s Graph Assembler, which produced a network that was

laid out using Graphviz (Ellson et al, 2002) as shown in Figure 7A. The same set of Statements was then

assembled using the INDRA SIF Assembler which produced a list of positive and negative interactions

between genes that can be interpreted by network visualization software (Shannon et al, 2003) and

Boolean network simulation tools. The logical functions for each node were generated by combining the

state of parent nodes such that the presence of any activating input in an on state and the absence of any

inhibitory inputs in an on state resulted in the node’s value taking an on state at the next time step

(logical rules are given in Appendix Section 2.5). Boolean network simulations were performed using

the boolean2 package (Albert et al, 2008). First, 100 independent traces were simulated using

asynchronous updates on the nodes (which results in stochastic behavior) and the average of the value of

each node (with 0 corresponding to the low and 1 to the high state of each node) was taken across all

simulations to produce the time course plots in Figure 7D.

ACKNOWLEDGEMENTS	

This work was funded by ARO grants W911NF-14-1-0397 and W911NF-15-1-0544 to PKS and

W911NF-14-1-0391 to LG under the DARPA Big Mechanism and Communicating with Computers

programs, and by NIGMS grant P50GM107618 to PKS. We would like to acknowledge Russ Harmer,

Walter Fontana and Dexter Pratt for useful discussions and their valuable suggestions, as well as James

Allen, Choh Man Teng and Will de Beaumont for their contribution to the development of the TRIPS

NLP system.

AUTHOR	
 CONTRIBUTIONS	

BMG and JAB designed and implemented INDRA. BMG, JAB, KS, JM, LG and PKS conceived the

overall approach. BMG, JAB, KS, and PKS wrote the paper.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

37

	

CONFLICT	
 OF	
 INTEREST	

The authors declare that they have no conflict of interest.

	

REFERENCES	

Agrawal A, Yang J, Murphy RF & Agrawal DK (2006) Regulation of the p14ARF-Mdm2-p53 pathway:

An overview in breast cancer. Exp. Mol. Pathol. 81: 115–122

Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA & Sorger PK (2008) Quantitative

Analysis of Pathways Controlling Extrinsic Apoptosis in Single Cells. Mol. Cell 30: 11–25

Albert I, Thakar J, Li S, Zhang R & Albert R (2008) Boolean network simulations for life scientists.

Source Code Biol. Med. 3: 16

Allen J, de Beaumont W, Galescu L & Teng CM (2015) Complex Event Extraction using DRUM. In

ACL-IJCNLP pp 1–11. Beijing, China

Allen J, Ferguson G, Blaylock N, Byron D, Chambers N, Dzikovska M, Galescu L & Swift M (2006)

Chester: Towards a personal medication advisor. J. Biomed. Inform. 39: 500–513

Allen JF (2003) Natural language processing. Encycl. Comput. Sci.: 1218–1222

Anafi M, Kiefer F, Gish GD, Mbamalu G, Iscove NN & Pawson T (1997) SH2/SH3 adaptor proteins

can link tyrosine kinases to a Ste20-related protein kinase, HPK1. J. Biol. Chem. 272: 27804–

27811

Antonyak MA, Moscatello DK & Wong AJ (1998) Constitutive activation of c-Jun N-terminal kinase by

a mutant epidermal growth factor receptor. J Biol Chem 273: 2817–2822

Babur Ö, Aksoy BA, Rodchenkov I, Sümer SO, Sander C & Demir E (2014) Pattern search in BioPAX

models. Bioinformatics 30: 139–140

Bakkenist CJ & Kastan MB (2003) DNA damage activates ATM through intermolecular

autophosphorylation and dimer dissociation. Nature 421: 499–506

Basso-Blandin A, Fontana W & Harmer R (2016) A knowledge representation meta-model for rule-

based modelling of signalling networks. EPTCS 204: 47–59

Batchelor E, Loewer A, Mock C & Lahav G (2011) Stimulus-dependent dynamics of p53 in single cells.

Mol. Syst. Biol. 7: 488

Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike B a, Hoek JB & Kholodenko BN (2007) Ligand-

dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

38

Syst. Biol. 3: 144

Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, Mittag F, Schubert M, Glont

M, Golebiewski M, van Iersel M, Keating S, Rall M, Wybrow M, Hermjakob H, Hucka M, Kell

DB, Müller W, Mendes P, Zell A, et al (2013) Path2Models: large-scale generation of

computational models from biochemical pathway maps. BMC Syst. Biol. 7: 116

Carvunis AR & Ideker T (2014) Siri of the cell: What biology could learn from the iPhone. Cell 157:

534–538

Catlett NL, Bargnesi AJ, Ungerer S, Seagaran T, Ladd W, Elliston KO & Pratt D (2013) Reverse causal

reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data.

BMC Bioinformatics 14: 340

Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur Ö, Anwar N, Schultz N, Bader GD & Sander C

(2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39:

685–690

Chambers N, Allen J, Galescu L & Jung H (2005) A dialogue-based approach to multi-robot team

control. Multi-Robot Syst. From: 1–7

Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B & Tyson JJ (2004) Integrative analysis of

cell cycle control in budding yeast. Mol. Biol. Cell 15: 3841–62

Chen WW, Niepel M & Sorger PK (2010) Classic and contemporary approaches to modeling

biochemical reactions. Genes Dev. 24: 1861–1875

Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA & Sorger PK (2009)

Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained

against dynamic data. Mol. Syst. Biol. 5: 239

Choi D, Na W, Kabir M, Yi E, Kwon S, Yeom J, Ahn JW, Choi HH, Lee Y, Seo K, Shin M, Park SH,

Yoo H, Isono K ichi, Koseki H, Kim ST, Lee C, Kwon Y & Choi C (2013) WIP1, a Homeostatic

Regulator of the DNA Damage Response, Is Targeted by HIPK2 for Phosphorylation and

Degradation. Mol. Cell 51: 374–385

Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I,

Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono

K, Pavlovic V, Pico AR, et al (2007) Integration of biological networks and gene expression data

using Cytoscape. Nat. Protoc. 2: 2366–82 Available at:

http://www.ncbi.nlm.nih.gov/pubmed/17947979%5Cnhttp://www.pubmedcentral.nih.gov/articleren

der.fcgi?artid=PMC3685583

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

39

Corbalan-Garcia S, Yang SS, Degenhardt KR & Bar-Sagi D (1996) Identification of the mitogen-

activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2.

Mol. Cell. Biol. 16: 5674–5682

Courtot M, Juty N, Knüpfer C, Waltemath D, Zhukova A, Dräger A, Dumontier M, Finney A,

Golebiewski M, Hastings J, Hoops S, Keating S, Kell DB, Kerrien S, Lawson J, Lister A, Lu J,

Machne R, Mendes P, Pocock M, et al (2011) Controlled vocabularies and semantics in systems

biology. Mol. Syst. Biol. 7: 543 Available at:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3261705&tool=pmcentrez&rendertype

=abstract

Danos V, Feret J, Fontana W, Harmer R & Krivine J (2007a) Rule-based modelling of cellular

signalling. In CONCUR 2007–Concurrency Theory pp 17–41. Springer

Danos V, Feret J, Fontana W, Harmer R & Krivine J (2009) Rule-based modelling and model

perturbation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) pp 116–137.

Danos V, Feret J, Fontana W & Krivine J (2007b) Scalable simulation of cellular signaling networks.

Program. Lang. Syst.: 139–157

Degtyarenko K, De matos P, Ennis M, Hastings J, Zbinden M, Mcnaught A, Alcántara R, Darsow M,

Guedj M & Ashburner M (2008) ChEBI: A database and ontology for chemical entities of

biological interest. Nucleic Acids Res. 36:

Demir E, Babur Ö, Rodchenkov I, Aksoy BA, Fukuda KI, Gross B, Sümer OS, Bader GD & Sander C

(2013) Using Biological Pathway Data with Paxtools. PLoS Comput. Biol. 9:

Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P, Schaefer C, Luciano

J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-

Fuentes AC, Mi H, Pichler E, Rodchenkov I, et al (2010) BioPAX -- A Community Standard for

Pathway Data Sharing. Nat Biotechnol 28:

Dhillon AS, Hagan S, Rath O & Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene

26: 3279–3290

Dräger A, Zielinski DC, Keller R, Rall M, Eichner J, Palsson BO & Zell A (2015) SBMLsqueezer 2:

context-sensitive creation of kinetic equations in biochemical networks. BMC Syst. Biol. 9: 68

Available at: http://www.biomedcentral.com/1752-0509/9/68

Ellson J, Gansner E, Koutsofios L, North SC & Woodhull G (2002) Graphviz – Open Source Graph

Drawing Tools. Graph Draw.: 483–484

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

40

Eydgahi H, Chen WW, Muhlich JL, Vitkup D, Tsitsiklis JN & Sorger PK (2013) Properties of cell death

models calibrated and compared using Bayesian approaches. Mol. Syst. Biol. 9: 644

Eyre TA, Ducluzeau F, Sneddon TP, Povey S, Bruford EA & Lush MJ (2006) The HUGO Gene

Nomenclature Database, 2006 updates. Nucleic Acids Res. 34: D319–D321

Faeder JR, Blinov ML, Goldstein B & Hlavacek WS (2005) Combinatorial complexity and dynamical

restriction of network flows in signal transduction. Syst. Biol. (Stevenage). 2: 5–15

Faeder JR, Blinov ML & Hlavacek WS (2009) Rule-Based Modeling of Biochemical Systems with

BioNetGen. In Methods in Molecular Biology, Systems Biology pp 83–89.

Feret J, Danos V, Krivine J, Harmer R & Fontana W (2009) Internal coarse-graining of molecular

systems. Proc. Natl. Acad. Sci. U. S. A. 106: 6453–6458

Ferguson G & Allen J (1998) TRIPS: An integrated intelligent problem-solving assistant. Aaai/Iaai:

567–572

Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, Munoz AG, Pilkington R, Fischer M,

Westermann F, Kolch W, Kholodenko BN & Croucher DR (2015) Signaling pathway models as

biomarkers  : Patient-specific simulations of JNK activity predict the survival of neuroblastoma

patients. Science (80-.). 8: RA130

Fluck J & Hofmann-Apitius M (2014) Text mining for systems biology. Drug Discov. Today 19: 140–

144

Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N & Kitano H (2008) CellDesigner 3.5: A

versatile modeling tool for biochemical networks. Proc. IEEE 96: 1254–1265

Gunawardena J (2014a) Models in biology: “accurate descriptions of our pathetic thinking”. BMC Biol.

12: 29

Gunawardena J (2014b) Time-scale separation - Michaelis and Menten’s old idea, still bearing fruit.

FEBS J. 281: 473–488

Harmer R, Danos V, Feret J, Krivine J & Fontana W (2010) Intrinsic information carriers in

combinatorial dynamical systems. Chaos 20:

Heinrich R, Neel BG & Rapoport TA (2002) Mathematical models of protein kinase signal transduction.

Mol Cell 9: 957–970

Hoffmann A, Levchenko A, Scott ML & Baltimore D (2002) The IkappaB-NF-kappaB signaling

module: temporal control and selective gene activation. Science 298: 1241–1245

Hoops S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P & Kummer U (2006)

COPASI - A COmplex PAthway SImulator. Bioinformatics 22: 3067–3074

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

41

Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, Halilovic E, Persaud Y, Xing F,

Viale A, Tsai J, Chapman PB, Bollag G, Solit DB & Rosen N (2010) The RAF inhibitor PLX4032

inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl

Acad Sci U S A 107: 14903–14908

Juty N, Ali R, Glont M, Keating S, Rodriguez N, Swat MJ, Wimalaratne SM, Hermjakob H, Le Nov??re

N, Laibe C & Chelliah V (2015) BioModels: Content, features, functionality, and use. CPT

Pharmacometrics Syst. Pharmacol. 4: 55–68

Juty N, Le Nover??e N & Laibe C (2012) Identifiers.org and MIRIAM Registry: Community resources

to provide persistent identification. Nucleic Acids Res. 40:

Kahramanoğullari O, Cardelli L & Caron E (2009) An Intuitive Automated Modelling Interface for

Systems Biology. Electron. Proc. Theor. Comput. Sci. 9: 73–86

Karr JR, Sanghvi JC, MacKlin DN, Gutschow M V., Jacobs JM, Bolival B, Assad-Garcia N, Glass JI &

Covert MW (2012) A whole-cell computational model predicts phenotype from genotype. Cell

150: 389–401

Kholodenko BN (2015) Drug Resistance Resulting from Kinase Dimerization Is Rationalized by

Thermodynamic Factors Describing Allosteric Inhibitor Effects. Cell Rep. 12: 1939–1949

Kolpakov F, Puzanov M & Koshukov A (2006) BioUML: visual modeling, automated code generation

and simulation of biological systems. In Proceedings of The Fifth International Conference on

Bioinformatics of Genome Regulation and Structure pp 281–284.

Krallinger M, Leitner F, Vazquez M, Salgado D, Marcelle C, Tyers M, Valencia A & Chatr-aryamontri

A (2012) How to link ontologies and protein--protein interactions to literature: text-mining

approaches and the BioCreative experience. Database 2012: bas017

Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L,

Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Sovak MA, Chang I,

Choong N, Hack SP, McArthur GA & Ribas A (2014) Combined vemurafenib and cobimetinib in

BRAF-mutated melanoma. N. Engl. J. Med. 371: 1867–76

Lavoie H, Thevakumaran N, Gavory G, Li JJ, Padeganeh A, Guiral S, Duchaine J, Mao DY, Bouvier M,

Sicheri F & Therrien M (2013) Inhibitors that stabilize a closed RAF kinase domain conformation

induce dimerization. Nat Chem Biol

Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, Boland K, Kehoe J,

McNamara DA, Murray F, Kay EW, Hector S, Green DR, Huber HJ & Prehn JHM (2013) Systems

analysis of BCL2 protein family interactions establishes a model to predict responses to

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

42

chemotherapy. Cancer Res. 73: 519–528

Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M, Huang A, Wong WL, Callahan

MK, Merghoub T, Wolchok JD, de Stanchina E, Chandarlapaty S, Poulikakos PI, Fagin JA &

Rosen N (2012) Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors

Attenuates Their Activity in BRAFV600E Melanomas. Cancer Cell 22: 668–682

Lito P, Rosen N & Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19:

1401–9

Liu S, Shiotani B, Lahiri M, Maréchal A, Tse A, Leung CCY, Glover JNM, Yang XH & Zou L (2011)

ATR Autophosphorylation as a Molecular Switch for Checkpoint Activation. Mol. Cell 43: 192–

202

Loew LM & Schaff JC (2001) The Virtual Cell: A software environment for computational cell biology.

Trends Biotechnol. 19: 401–406

Lopez CF, Muhlich JL, Bachman JA & Sorger PK (2013) Programming biological models in Python

using PySB. Mol. Syst. Biol. 9: 646

Mallavarapu A, Thomson M, Ullian B & Gunawardena J (2009) Programming with models: modularity

and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface 6: 257–270

Manshadi MH, Allen J & Swift M (2008) Toward a universal underspecified semantic representation. In

13th Conference on Formal Grammar (FG 2008), Hamburg, Germany

Mendes P & Kell DB (1998) Non-linear optimization of biochemical pathways: Applications to

metabolic engineering and parameter estimation. Bioinformatics 14: 869–883

Moles CG, Mendes P & Banga JR (2003) Parameter estimation in biochemical pathways: A comparison

of global optimization methods. Genome Res. 13: 2467–2474

Montagut C, Sharma S V., Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H,

Lee DY, Singh A, Drew L, Haber DA & Settleman J (2008) Elevated CRAF as a potential

mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68: 4853–4861

Novák B & Tyson JJ (2008) Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9:

981–91

Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J, Crampin EJ, Halstead M,

Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD & Wanner BL (2005)

MIRIAM, Minimum information requested in the annotation of biochemical models. Nat

Biotechnol 23:

Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI,

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

43

Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A,

Boyd SE, Calzone L, Courtot M, et al (2009) The Systems Biology Graphical Notation. Nat.

Biotechnol. 27: 735–741

O’Hara L, Livigni A, Theo T, Boyer B, Angus T, Wright D, Chen SH, Raza S, Barnett MW, Digard P,

Smith LB & Freeman TC (2016) Modelling the Structure and Dynamics of Biological Pathways.

PLoS Biol. 14:

Oliphant TE (2007) SciPy: Open source scientific tools for Python. Comput. Sci. Eng. 9: 10–20

Pedersen M & Plotkin G (2008) A language for biochemical systems. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) pp 63–82.

Poulikakos PI, Zhang C, Bollag G, Shokat KM & Rosen N (2010) RAF inhibitors transactivate RAF

dimers and ERK signalling in cells with wild-type BRAF. Nature 464: 427–430

Pratt D, Chen J, Welker D, Rivas R, Pillich R, Rynkov V, Ono K, Miello C, Hicks L, Szalma S,

Stojmirovic A, Dobrin R, Braxenthaler M, Kuentzer J, Demchak B & Ideker T (2015) NDEx, the

Network Data Exchange. Cell Syst. 1: 302–305

Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A & Lahav G (2012) p53 Dynamics Control

Cell Fate. Science (80-.). 336: 1440–1444

Purvis JE & Lahav G (2013) Encoding and decoding cellular information through signaling dynamics.

Cell 152: 945–956

Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U & Timmer J (2009) Structural

and practical identifiability analysis of partially observed dynamical models by exploiting the

profile likelihood. Bioinformatics 25: 1923–1929

Rehm M, Düßmann H, Jänicke RU, Tavaré JM, Kögel D & Prehn JHM (2002) Single-cell fluorescence

resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid

process: Role of caspase-3. J. Biol. Chem. 277: 24506–24514

Ruebenacker O, Moraru II, Schaff JC & Blinov ML (2009) Integrating BioPAX pathway knowledge

with SBML models. IET Syst. Biol. 3: 317–328

Salazar C & Höfer T (2006) Kinetic models of phosphorylation cycles: A systematic approach using the

rapid-equilibrium approximation for protein-protein interactions. In BioSystems pp 195–206.

Sari M, Bahceci I, Dogrusoz U, Sumer SO, Aksoy BA, Babur Ö & Demir E (2015) SBGNViz: A tool

for visualization and complexity management of SBGN process description maps. PLoS One 10:

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B & Ideker T

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

44

(2003) Cytoscape: A software Environment for integrated models of biomolecular interaction

networks. Genome Res. 13: 2498–2504

Shi H, Moriceau G, Kong X, Lee M-K, Lee H, Koya RC, Ng C, Chodon T, Scolyer RA, Dahlman KB,

Sosman JA, Kefford RF, Long G V, Nelson SF, Ribas A & Lo RS (2012a) Melanoma whole-

exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor

resistance. Nat. Commun. 3: 724

Shi H, Moriceau G, Kong X, Lee M-K, Lee H, Koya RC, Ng C, Chodon T, Scolyer RA, Dahlman KB,

Sosman JA, Kefford RF, Long G V, Nelson SF, Ribas A & Lo RS (2012b) Melanoma whole-

exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor

resistance. Nat. Commun. 3: 724 Available at:

http://www.nature.com/authors/editorial_policies/license.html#terms%5Cnhttp://www.pubmedcent

ral.nih.gov/articlerender.fcgi?artid=3530385&tool=pmcentrez&rendertype=abstract

Shi T, Niepel M, McDermott JE, Gao Y, Nicora CD, Chrisler WB, Markillie LM, Petyuk VA, Smith

RD, Rodland KD, Sorger PK, Qian W-J & Wiley HS (2016) Conservation of protein abundance

patterns reveals the regulatory architecture of the EGFR-MAPK pathway. Sci. Signal. 9: 1–14

Smith LP, Bergmann FT, Chandran D & Sauro HM (2009) Antimony: A modular model definition

language. Bioinformatics 25: 2452–2454

Sneddon MW, Faeder JR & Emonet T (2011) Efficient modeling, simulation and coarse-graining of

biological complexity with NFsim. Nat. Methods 8: 177–183

Stefan MI, Bartol TM, Sejnowski TJ & Kennedy MB (2014) Multi-state Modeling of Biomolecules.

PLoS Comput. Biol. 10:

Stephen AG, Esposito D, Bagni RK & McCormick F (2014) Dragging ras back in the ring. Cancer Cell

25: 272–281

Stites EC, Trampont PC, Ma Z & Ravichandran KS (2007) Network analysis of oncogenic Ras

activation in cancer. Science (80-.). 318: 463–467

The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res. 43: D204-12

Available at: http://nar.oxfordjournals.org/cgi/content/long/43/D1/D204

Thomas BR, Chylek LA, Colvin J, Sirimulla S, Clayton AHA, Hlavacek WS & Posner RG (2015)

BioNetFit: A fitting tool compatible with BioNetGen, NFsim and distributed computing

environments. Bioinformatics 32: 798–800

Tiger CF, Krause F, Cedersund G, Palmer R, Klipp E, Hohmann S, Kitano H & Krantz M (2012) A

framework for mapping, visualisation and automatic model creation of signal-transduction

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

45

networks. Mol Syst Biol 8: 578

Turei D, Korcsmaros T & Saez-Rodriguez J (2016a) OmniPath: guidelines and gateway for literature-

curated signaling pathway resources. Nat Meth 13: 966–967

Turei D, Korcsmaros T & Saez-Rodriguez J (2016b) OmniPath: guidelines and gateway for literature-

curated signaling pathway resources. Nat Meth 13: 966–967 Available at:

http://dx.doi.org/10.1038/nmeth.4077

Valenzuela-Escarcega MA, Gus H-P, Thomas H & Surdeanu M (2015) A Domain-independent Rule-

based Framework for Event Extraction. Proc. 53rd Annu. Meet. Assoc. Comput. Linguist. 7th Int.

Jt. Conf. Nat. Lang. Process. (Volume 1 Long Pap.: 127–132

Varma S & Khandelwal RL (2008) Overexpression of Akt1 upregulates glycogen synthase activity and

phosphorylation of mTOR in IRS-1 knockdown HepG2 cells. J. Cell. Biochem. 103: 1424–1437

Wagner EF & Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer

development. Nat Rev Cancer 9: 537–549

Waltemath D, Karr JR, Bergmann FT, Chelliah V, Hucka M, Krantz M, Liebermeister W, Mendes P,

Myers CJ, Pir P, Alaybeyoglu B, Aranganathan NK, Baghalian K, Bittig AT, Burke PEP, Cantarelli

M, Chew YH, Costa RS, Cursons J, Czauderna T, et al (2016) Toward Community Standards and

Software for Whole-Cell Modeling. IEEE Trans. Biomed. Eng. 63: 2007–2014

Wasik S, Prejzendanc T & Blazewicz J (2013) ModeLang: A new approach for experts-friendly viral

infections modeling. Comput. Math. Methods Med. 2013:

Wrzodek C, Büchel F, Ruff M, Dräger A & Zell A (2013) Precise generation of systems biology models

from KEGG pathways. BMC Syst. Biol. 7: 15 Available at:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3623889&tool=pmcentrez&rendertype

=abstract

Yao Z, Torres NM, Tao A, Luo L, Abdel-wahab OI, Solit D, Poulikakos P & Rosen N (2015) BRAF

mutants evade ERK dependent feedback by different mechanisms that determine their sensitivity to

pharmacologic inhibition. Cancer Cell: 370–383

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

46

FIGURE	
 LEGENDS	

Figure 1. Building a model from natural language with INDRA.

(A) The architecture of INDRA consists of three layers of modules (1-3). In layer (1), Interfaces collect

mechanisms from natural language processing systems (e.g. TRIPS Interface) and pathway databases

(e.g. Pathway Commons Interface) and Processors (e.g. TRIPS Processor, BioPAX Processor) extract

INDRA Statements from their outputs. Statements, the internal representation in INDRA constitute layer

(2). In layer (3), INDRA Statements are assembled into various model formats by Assembler modules

(e.g. PySB Assembler, Graph Assembler).

(B) A Python script is used to assemble and simulate a model from the text “MEK1 phosphorylates

ERK2 at threonine 185 and tyrosine 187”. The process_text method of INDRA’s TRIPS Processor is

called to send the text to the TRIPS NLP system (1) and then process the output of TRIPS to construct

INDRA Statements (2). Then, a PySB Assembler is constructed, the Statements are added to it, and an

executable model is assembled using the PySB Assembler’s make_model method with a “two-step”

policy (3). Finally, the model is simulated for 300 seconds using PySB’s odesolve function.

(C) User input, INDRA modules and external tools form a sequence of events to turn a natural language

sentence into a model and simulation. The natural language description from the user is passed to

INDRA’s TRIPS Interface, which sends the text to TRIPS (1). The TRIPS system processes the text and

creates an Extraction Knowledge Base graph (Results column; yellow box). INDRA receives the results

from TRIPS and constructs two INDRA Statements from it, one for each phosphorylation event (Results

column), which are returned to the user (2). The user then instantiates a PySB Assembler and instructs it

to assemble an executable model (3) from the given INDRA Statements (a schematic biochemical

reaction network shown in Results column). Finally, the user calls an ODE solver via PySB’s odesolve

function to simulate the model for 300 seconds (simulation output shown in Results column).

Figure 2. INDRA Statements represent molecular agents and biochemical mechanisms.

(A) The mechanism “MAP2K1 that is phosphorylated at S218 and S222 phosphorylates MAPK1 on

T185” is represented in INDRA as a Phosphorylation Statement with an enzyme Agent (MAP2K1), a

substrate Agent (MAPK1), a residue (Threonine), and a position (185) argument. The state of the

MAP2K1 Agent is expanded in panel (B). A Statement can have one or more Evidences associated with

it, with an example expanded in panel (C).

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

47

(B) The Agent representing “MAP2K1 that is phosphorylated at S218 and S222” has two modification

conditions: serine-phosphorylation at 218 and serine-phosphorylation at 222. The grounding to the

UniProt and HGNC databases associated with the Agent is also shown.

(C) An Evidence object is shown which is associated with an INDRA Statement obtained from the BEL

Large Corpus (see Box 2) as the source. The Evidence object represents the evidence text for the entry

(“c-Raf activates MEK1 by phosphorylating at serine residues 218 and 222”), the citation associated

with the entry (PubMed identifier 8621729), the original BEL statement (shown under Source ID) and

any annotations that are available, including the organism (in this example, 9606, which is the identifier

for Homo sapiens). In some cases, epistemic information is known about the Statement, such as whether

it is an assertion or a hypothesis, and the Evidence object has a corresponding field to carry this

information.

Figure 3. INDRA Statements constructed from TRIPS NLP extractions, BioPAX and BEL.

An identical INDRA Statement is constructed from three knowledge sources. A corresponding fragment

of each source format (representing the phosphorylated state of MAP2K1 on S222) is highlighted in

blue.

Top left: A TRIPS EKB (see Box 1) graph is shown for the sentence “MAP2K1 that is phosphorylated

on S218 and S222 phosphorylates MAPK1 at T185”. The main phosphorylation event has agent,

affected and site arguments, each of them referring to a term. The agent term resolves to a gene with

name MAP2K1 and database references to UniProt and HGNC. The MAP2K1 term also refers to an

additional event in which it is affected (yellow background). This additional event represents the

phosphorylated state at two molecular sites: serine 218 and serine 222. The affected term associated with

the main phosphorylation event is MAPK1 with its associated UniProt and HGNC references. Finally,

the site argument of the main event is a molecular-site resolving to threonine 185.

Middle left: A BioPAX Biochemical Reaction is shown with unmodified MAPK1 on the left-hand side

and MAPK1 with a Sequence Modification Feature of phosphorylation at threonine 185 on the right-

hand side. Both the left and the right-hand sides use the same Cross Reference to a UniProt identifier. A

Catalysis is associated with the Biochemical Reaction with MAP2K1 as the controller. MAP2K1 has

two Sequence Modification Features: phosphorylation at serines 218 and 222. MAP2K1 also refers to a

UniProt identifier via a Cross Reference. Two alternative visual representations of the same BioPAX

Reaction are given in Appendix Figure S5.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

48

Bottom left: A graphical representation of a BEL statement is shown in which the subject is the Kinase

Activity of the Protein Abundance of the modified MAP2K1 (with phosphorylations at serines 218 and

222). The object of the statement is the Protein Abundance of modified MAPK1 (phosphorylation at

threonine 185) with the predicate being Directly Increases. Below the graphical representation, the

statement is also given in BEL script format.

Right: All example mechanisms from the three knowledge sources are constructed as the same INDRA

Phosphorylation Statement with MAP2K1 as the enzyme (subject to modification conditions) and

MAPK1 and the substrate. The Evidence associated with the INDRA Statement (not shown) constructed

would be different for each knowledge source.

Figure 4. INDRA Statements are assembled into biochemical rules via assembly policies

The flow from representation and model content to implementation is governed by assembly policies

and biochemical rule templates (top). A Phosphorylation INDRA Statement with enzyme (MAP2K1)

and substrate (MAPK1) can be assembled using several policies including one-step policy with pseudo-

first-order rate law (center, top), one-step policy with Michaelis-Menten rate law (center, second from

top), two-step policy (center, second from bottom) and ATP-dependent policy (center, bottom). Each

policy corresponds to a template for a generic enzyme (E) and a substrate (S). The one-step policies

assume that the enzyme catalyzes the phosphorylation of the substrate in a single step such that that the

transient enzyme-substrate complex is not modeled. This is represented as a single rule irrespective of

the associated rate laws (Rule 1; red boxes and PySB rules). The two-step policy assumes the reversible

formation of an enzyme-substrate complex and an irreversible catalysis and product release step

corresponding to two overlapping rules (Rules 1-2; red boxes). The ATP-dependent policy assumes a

template in which the enzyme has to bind both the substrate and ATP but can bind them in an arbitrary

order. This corresponds to two rules: one for ATP binding and one for substrate binding. A third rule

describes the release of the phosphorylated substrate from the enzyme-substrate complex (Rules 1-3; red

boxes).

Figure 5. Modeling patterns of p53 activation dynamics from natural language

(A) Patterns of p53 activation dynamics upon double strand break DNA damage (left) and single strand

break DNA damage (right), adapted from (Purvis & Lahav, 2013). Edges with yellow numbers

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

49

correspond to the original diagram in (Purvis & Lahav, 2013), pink and green numbers correspond to

mechanisms added subsequently, as described in the text.

(B) Natural language descriptions of the mechanisms involved in single strand break DNA damage

(SSB) response corresponding to the diagram on the left-hand side of (A) and dynamical simulation of

p53 activity from the corresponding INDRA-assembled model (below).

(C) Natural language descriptions of the mechanisms involved in double strand break DNA damage

(DSB) response corresponding to the diagram on the right-hand side of (A) and dynamical simulation of

p53 activity from the corresponding INDRA-assembled model (below).

(D) For the base sentence “Wip1 inactivates ATM”, variants in the names of entities are shown below

with four examples that produce the intended result (green sidebar) and one example that does not (red

sidebar). To the right, eleven linguistic variants of the sentence are shown with eight producing the

intended result (green sidebar) and three that do not, including one with a grammatical error and one

with a spelling error (red sidebar).

(E) The POMI1.0 model is a mechanistically more detailed variant of the double strand break response

model (which is shown in the right-hand side diagram of (A), with its natural language description

shown in (B)). The model assembled with INDRA produces oscillations in p53 activity over time when

simulated (bottom).

Figure 6. INDRA-built models of vemurafenib resistance in response to growth factor signals.

(A) Simplified schematic representation of the observed ERK phosphorylation phenomena in BRAF-

V600E mutants that are hypothesized to be the basis of adaptive resistance. In untreated BRAF-V600E

cells (left) mutant BRAF is constitutively active independently of RAS and leads to higher ERK

phosphorylation levels (thick green edge) and stronger negative feedback to SOS (thick red edge). Upon

vemurafenib treatment, in the short term (center) ERK phosphorylation is decreased due to BRAF

V600E inhibition (thin green edge). Over time, resistance develops (right); the ERK-SOS feedback loop

becomes weaker (thin red edge) and increased RAS activity induces RAF dimerization, leading to a

rebound in ERK phosphorylation (thick green edge).

(B) MEMI1.0 is described in 14 sentences which are assembled into 28 PySB rules and 99 ordinary

differential equations. Simulation of phosphorylated ERK (blue) and active RAS (green) are shown

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

50

relative to their respective values at time 0, when vemurafenib is added. The model simulation shows

that upon vemurafenib addition, the amount of phosphorylated ERK is quickly reduced and stays at a

low level, while the amount of active RAS is unchanged.

(C) In MEMI1.1, by extending three existing sentences (4, 5, 14) and adding two new ones (15, 16)

(changes shown in orange), the ERK-SOS negative feedback is modeled and assembled into 34 rules

and 275 ODEs. The model simulation (right) reproduces RAS reactivation (green) upon vemurafenib

treatment, however, the experimentally observed rise in ERK phosphorylation (blue) is not reproduced.

(D) MEMI1.2 extends MEMI1.1 by adding a sentence (17) and replacing an existing sentence with two

new sentences (8A and 8B) (changes shown in green). INDRA produces a model consisting of 37 rules

and 353 ODEs. Model simulations are able to reproduce the expected rise in RAS activation (green) and

the increased phosphorylation of ERK (blue).

Figure 7. An INDRA-assembled extensible and executable pathway map of RAS signaling.

(A) Positive and negative activations as well as complex formation between proteins is written in natural

language (left) to describe simplified interactions in the RAS pathway (for full text see Appendix

Section 2.5). The INDRA-assembled graph is shown on the right showing activations (black),

inhibitions (red) and binding (blue).

(B) A correction on the pathway map is made by editing the original text. One sentence is removed (red

sentence) and is replaced by another one (green sentence) as a basis for the updated assembly whose

relevant parts are shown as a graph below. P90RSK is removed as a substrate of mTORC2 and added as

a substrate of MAPK1 and MAPK3 (green highlight).

(C) The pathway map is extended with a new branch by adding four additional sentences describing

JNK signaling. The newly added pathway (green highlight; gene names appearing as their standard gene

symbols, for instance “HPK1” in the original sentences is represented as the node MAP4K1) provides a

parallel path from EGFR to the JUN transcription factor, both of which were included in the original

model.

Figure 8. Approaches to building dynamical models of biochemical mechanisms.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

51

(A) Stages of describing a mechanism from concept to implementation. The mechanism “an enzyme

binds a substrate” is shown at different levels of abstraction from mechanistic concept to equation-level

implementation. The conceptual description can be expressed in natural language, which can be

formalized as an INDRA Statement between an enzyme and a substrate Agent. The PySB description

and a corresponding BioNetGen description (see Box 3) describe a particular implementation of this

mechanism in terms of a single rule, which corresponds to a “low-level” instance of three differential

equations describing the temporal behavior of the enzyme, substrate and their complex in time.

(B) Comparison of “classical” mathematical modeling (left), programmatic modeling with PySB

(center) and modeling with INDRA (right). In each paradigm, red arrows show processes that are done

by the user and green arrows show ones that are automatically generated.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

A
Natural language

Executable model Protein interaction graph

Pathway databases

Assemblers

INDRA Statements

Interfaces and
Processors

TRIPS Interface

TRIPS Processor

PySB Assembler Graph Assembler

Pathway Commons Interface

BioPAX Processor

INDRA
Statements

...

...

...

... # Simulate the model
time = linspace(0, 300)
sim_result = odesolve(model, time)

Parse a natural language description of
a mechanism into INDRA statements
trips_processor = indra.trips.process_text(text)

text = 'MEK1 phosphorylates ERK2 at
 threonine 185 and tyrosine 187.'

statements = trips_processor.statements

Assemble statements into an executable model
pa = indra.assemblers.PysbAssembler()
pa.add_statements(statements)
model = pa.make_model(policies='two_step')

1

3

2

B

Natural
language

description

Read text /
Extract events

(TRIPS)

'MEK1 phosphorylates ERK2
 at threonine 185 and tyrosine 187.'

User INDRA External Tools

Assemble
executable model

Result

Process to extract
Statements

indra.trips.
process_text(...)

C

pa.make_model(...)

odesolve(...) Simulate
(PySB, VODE)

Query TRIPS
via web Interface

Phosphorylation(MAP2K1(), MAPK1(), T, 185)
Phosphorylation(MAP2K1(), MAPK1(), Y, 187)

(EVENT PHOSPHORYLATION)

(MOLECULAR-SITE)

(aggregate AND)

(MOLECULAR-SITE THR-185)

(MOLECULAR-SITE TYR-187)

(GENE MAPK1)(GENE MAP2K1)

:AFFECTED:AGENT
:site

MAP2K1

MAPK1.uu

MAPK1.up

MAPK1.pu

MAPK1.pp

MAP2K1 MAP2K1

MAP2K1

Time

A
m

ou
nt MAPK1.uu

MAPK1.p
MAPK1.pp

statements = ...

1

3

2

1

3

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

A MAP2K1 phosphorylated on S218 and S222
phosphorylates MAPK1 at T185.

NamePhosphorylation

Name

Residue

Position

Threonine

185

Enzyme

C

Text

Source API BEL

Citation

Epistemics

Source ID

Annotations

PubMed: 8621729

“c-Raf activates MEK1 by
phosphorylating at serine residues
218 and 222”

Organism: 9606

kinaseActivity(proteinAbundance
(HGNC:RAF1)) directlyIncreases
proteinAbundance(HGNC:MAP2K1,
proteinModification(P,S,218))

MAP2K1

MAPK1

NameAgent

Modifications

Type

Residue

Position

Phosphorylation

Serine

218

Type

Residue

Position

Phosphorylation

Serine

222

MAP2K1

Substrate

Evidence ...

B MAP2K1 phosphorylated on S218 and S222

...

Grounding

UniProt

HGNC

Q02750

6840

...

...
...

Evidence

Evidence

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

EVENT (PHOSPHORYLATION)

TERM (GENE) TERM (GENE) TERM (MOLECULAR-SITE)

AGENT AFFECTED SITE

UniProt: Q02750
HGNC: 6840

inevent

MAP2K1

name
dbrefs

UniProt: P28482
HGNC: 6871

MAPK1

name dbrefs

Name: THR-185
Code: T
Pos: 185

TRIPS

BioPAX

INDRA Statement

MAPK1 MAPK1

MAP2K1

Sequence Modification Feature
Type: phosphorylation
Residue: threonine
Location: 185

Sequence Modification Feature
Type: phosphorylation
Residue: serine
Location: 218

Biochemical Reaction

Cross Reference
UniProt:P28482

Catalysis

Cross Reference
UniProt:Q02750

BEL

DirectlyIncreases

ProteinAbundance

KinaseActivity

ProteinAbundance

MAPK1MAP2K1
Modification(p, T, 185)

TRIPS Processor

BioPAX Processor

BEL Processor

EVENT (PHOSPHORYLATION)

Sequence Modification Feature
Type: phosphorylation
Residue: serine
Location: 222

Modification(p, S, 218)
Modification(p, S, 222)

TERM (MOLECULAR-SITE)

SITE

Name: SER-218
Code: S
Pos: 218

TERM (MOLECULAR-SITE)

Name: SER-222
Code: S
Pos: 222

AFFECTED

“MAP2K1 that is phosphorylated on S218 and S222 phosphorylates MAPK1 at T185.”

kin(p(HGNC:MAP2K1, pmod(p, S, 218), pmod(p, S, 222))) => p(HGNC:MAPK1, pmod(p, T, 185))

NamePhosphorylation

Name

Residue

Position

Threonine

185

Enzyme

Substrate

Modifications

Type

Residue

Position

Phosphorylation

Serine

218

Type

Residue

Position

Phosphorylation

Serine

222

MAP2K1

MAPK1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

S

S
One-step policy

(pseudo-first
-order)

Two-step
policy

Rule(’MAP2K1_phos_MAPK1’,
 MAP2K1(S218=’p’, S222=’p’) +
 MAPK1(T185=’u’) >>
 MAP2K1(S218=’p’, S222=’p’) +
 MAPK1(T185=’p’),
 kc)

Rule(’MAP2K1_phos_MAPK1’,
 MAP2K1(mapk1=1, S218=’p’, S222=’p’) %
 MAPK1(map2k1=1, T185=’u’) >>
 MAP2K1(mapk1=None, S218=’p’, S222=’p’) +
 MAPK1(map2k1=None, T185=’p’),
 kc)

Rule(’MAP2K1_bind_MAPK1’,
 MAP2K1(mapk1=None, S218=’p’, S222=’p’) +
 MAPK1(map2k1=None) <>
 MAP2K1(mapk1=1, S218=’p’, S222=’p’) %
 MEK(map2k1=1),
 kf, kr)

Representation /
Model content

ImplementationAssembly policies and
templates

E

P

P

kc

kf, kr

kc

E

S

SE

SE

E

SE

S

S
P

kc

E

E

E
ATP

ATP

ATP-dependent
policy

S

SE
ATP

ATP

Rule 1

Rule 1

Rule 2

Rule 1 Rule 2

Rule 3

Rule(’MAP2K1_phos_MAPK1’,
 MAP2K1(mapk1=1, atp=2, S218=’p’, S222=’p’) %
 MAPK1(map2k1=1, T185=’u’) % ATP(b=2) >>
 MAP2K1(mapk1=None, atp=2, S218=’p’, S222=’p’) +
 MAPK1(map2k1=None, T185=’p’) + ATP(b=None),
 kc)

Rule(’MAP2K1_bind_ATP’,
 MAP2K1(atp=None, S218=’p’, S222=’p’) +
 ATP(b=None) <>
 MAP2K1(atp=1, S218=’p’, S222=’p’) %
 ATP(b=1),
 kfa, kra)

Rule(’MAP2K1_bind_MAPK1’,
 MAP2K1(mapk1=None, S218=’p’, S222=’p’) +
 MAPK1(map2k1=None) <>
 MAP2K1(mapk1=1, S218=’p’, S222=’p’) %
 MEK(map2k1=1),
 kfs, krs)

kfa, kra kfs, krs

INDRA Statement

NamePhosphorylation

Name

Residue

Position

Threonine

185

Enzyme

Substrate

Modifications

Type

Residue

Position

Phosphorylation

Serine

218

Type

Residue

Position

Phosphorylation

Serine

222

MAP2K1

MAPK1

One-step policy
(Michaelis-Menten)

S

E

P

S

Rule 1

Km, kc

Rule(’MAP2K1_phos_MAPK1’,
 MAPK1(T185=’u’) >>
 MAPK1(T185=’p’),
 Expression(kc * MAP2K1(S218=’p’, S222=’p’) *
 MAPK1(T185=’u’) /
 (Km + MAPK1(T185=’u’)))

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

C

1 Active ATM activates p53.
2 Active p53 activates Wip1.
3 Active p53 activates Mdm2.
4 Active Wip1 inactivates p53.
5 Active Wip1 inactivates ATM.
6 Active Mdm2 inactivates p53.
7 Active P14ARF inactivates Mdm2.
8 Active HIPK2 inactivates Wip1.
9 Active ATM activates ATM.

1 Active ATR activates p53.
2 Active p53 activates Wip1.
3 Active p53 activates Mdm2.
4 Active Wip1 inactivates p53.
5 Active Mdm2 inactivates p53.
6 Active P14ARF inactivates Mdm2.
7 Active HIPK2 inactivates Wip1.
8 Active ATR activates ATR.

A

D

Wip1 inactivates
ATM.

Wip1 deactivates ATM.

Wip1 inhibits ATM.

ATM is inactivated by Wip1.

ATM is known to be inactivated by Wip1.

Wip1 has been shown to deactivate ATM.

It has been shown that Wip1 inhibits ATM.

Wip1 leads to the inactivation of ATM.

Wip1 results in the inhibition of ATM.

Wip1 makes ATM inactive.

Wip1 inactivate ATM.

Wip1 deaactivates ATM.

Varying
phrasing

Varying
entity names

WIP1 inactivates ataxia telangiectasia mutated.
Protein phosphatase 1D inactivates ATM.

PPM1D inactivates Atm.

WIP-1 inactivates ATM.

PP2C delta inactivates ATM.

E

Active ATM phosphorylates another ATM molecule,
 and phosphorylated ATM is active.
Active ATM activates p53.
p53 is transcribed and active p53
 transcribes MDM2.
MDM2 is degraded.
Active p53 activates Wip1.
Active Wip1 inactivates p53.
Active Wip1 dephosphorylates ATM.
MDM2 ubiquitinates p53 and
 ubiquitinated p53 is degraded.
HIPK2 inactivates Wip1.

p53Mdm2 Wip1

single strand break (SSB)
UV

double strand break (DSB)
γ-radiation

p5
3

p5
3

ATM

p53Mdm2 Wip1

ATR

sustained

timetime

pulsatile

1

23

4

5

61

23

45

B Word model for DSBWord model for SSB

Final model (POMI1.0)

8 9

p14ARF HIPK2

6 7

p14ARF HIPK2

7 8

Impact of phrasing

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

0.0

0.5

1.0

1.5

2.0

2.5

Fo
ld

-c
ha

ng
e

ov
er

am
ou

nt
at

t =
0

A

17. RAS-bound BRAF V600E binds RAS-bound BRAF V600E.

8A. Vemurafenib binds BRAF V600E that is not bound to BRAF V600E.

8B. Vemurafenib binds BRAF V600E that is bound to BRAF V600E.

Active RAS
Phospho-ERK

37 rules
54 parameters

353 ODEs

Add
vemurafenib

1. The growth factor ligand EGF binds EGFR.
2. The EGFR-EGF complex binds another EGFR-EGF complex.
3. The EGFR-EGFR complex binds GRB2.
4. EGFR-bound GRB2 binds SOS.
5. GRB2-bound SOS binds RAS that is not bound to BRAF V600E.
6. SOS-bound RAS binds GTP.
7. GTP-bound RAS that is not bound to SOS binds BRAF V600E.
8. Vemurafenib binds BRAF V600E.
9. BRAF V600E that is not bound to vemurafenib phosphorylates MEK.
10. PP2A-alpha dephosphorylates MEK that is not bound to ERK.
11. Phosphorylated MEK is activated.
12. Active MEK that is not bound to PP2A-alpha phosphorylates ERK.
13. Phosphorylated ERK is activated.
14. DUSP6 dephosphorylates ERK.

MEMI 1.0

MEMI 1.1 = MEMI 1.0 + ERK-SOS feedback

MEMI 1.2 = MEMI 1.1 + BRAF dimerization

B

C

D

Add
vemurafenib

Add
vemurafenib

EGFR

RAS

ERK

BRAF
V600E

P

EGFR

RAS

ERK

BRAF
V600E

P

BRAF
V600E

Development of
resistance over time

vemurafenib

0.0

0.4

0.6

0.8

1.0

1.2

Fo
ld

-c
ha

ng
e

ov
er

am
ou

nt
at

t =
0

0.2

Time (a.u)

Time (a.u)

4. EGFR-bound GRB2 binds SOS that is not phosphorylated
 on a serine.
5. GRB2-bound SOS that is not phosphorylated on serine
 binds RAS that is not bound to BRAF V600E.
14. DUSP6 dephosphorylates ERK that is not bound to SOS.
15. SOS not bound to RAS is phosphorylated on Serine by
 active ERK not bound to DUSP6.
16. A phosphatase dephosphorylates SOS on serine.

34 rules
50 parameters

275 ODEs

28 rules
41 parameters

99 ODEs

0.0

0.4

0.6

0.8

1.0

1.2

Fo
ld

-c
ha

ng
e

ov
er

am
ou

nt
at

t =
0

0.2

Time (a.u)

EGFR

RAS

ERK

BRAF
V600E

P

Adding
vemurafenib

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

A

-

TRIPS NLP
INDRA
Graph Assembler

B

C

Growth-factor proteins activate EGFR, ERBB2 and FGFR.
...
SOS and RASGRF activate HRAS, NRAS and KRAS.
RASGRP activates HRAS, KRAS and NRAS.
SPRY deactivates HRAS, KRAS and NRAS.
The RASA-ARHGAP35 complex deactivates HRAS, NRAS and KRAS.
...
HRAS, NRAS and KRAS activate ARAF, BRAF and RAF1.
ARAF, BRAF and RAF1 activate MAP2K1 and MAP2K2.
MAP2K1 and MAP2K2 activate MAPK1 and MAPK3.
MAPK1 and MAPK3 activate ETS, JUN and FOS.
KSR binds ARAF, BRAF and RAF1.
KSR binds MAP2K1 and MAP2K2.
KSR binds MAPK1 and MAPK3.
ETS, FOS and JUN activate MDM2, CCND1 and DUSP.
MDM2 deactivates TP53.
CCND1 activates CDK4 and CDK6.
CDK4 and CDK6 deactivate pRB.
DUSP deactivates MAPK1 and MAPK3.
SOS and RASGRF activate RHOA and RHOB.
AKT deactivates TSC1 and TSC2.
TSC1 and TSC2 deactivate RHEB.
RHEB activates mTORC2.
STK11 activates AMPK.
AMPK deactivates mTORC2.
mTORC2 deactivates EIF4EBP1.
mTORC2 activates P90RSK.
TIAM activates RAC and RAC activates PAK.

+ GRB2 activates HPK1, and HPK1 activates MAP3K7.
+ MAP3K7 activates MKK4 and MKK7.
+ MKK4 and MKK7 activate JNK1 and JNK2.
+ JNK1 and JNK2 activate JUN.

MAP4K1

MAP3K7

MAP2K4 MAP2K7

MAPK8 MAPK9

GRB2

EGFR

JUN

- mTORC2 activates P90RSK.
+ MAPK1 and MAPK3 activate P90RSK.

AMPK

mTORC2

EIF4EBP1

RHEB
MAPK1 MAPK3

ETSFOSJUN

DUSP

...
P90RSK

D

0 5 10 15 20
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

JU
N

ac
tiv

ity

Basic model, no inhibitor
Basic model, MEK inhibitor
Extended model, no inhibitor
Extended model, MEK inhibitor
Extended model, MEK+JNK inhibitor

...

...

...

GROWTH-FACTOR

FGFR EGFR ERBB2 PDGFR ALK MET ROS1

GRB2

SHC

RASGRFSOS

KRASHRAS NRAS RHOC RHOARHOB

RALGDSRAF1 ARAFBRAF PI3K ROCK1ROCK2

RALARALBMAP2K1 MAP2K2 PIP-3

RASGRP SPRY RASA/ARHGAP35 RASALSPRED/NF1

MAPK1

MAPK3

FOS

ETS JUN

DUSP

MDM2CCND1

TP53CDK4CDK6

KSR

RB1

TIAMPDPK1

AKT RAC

TSC1TSC2

PTEN

PAK

RHEB

mTORC2

EIF4EBP1 P90RSK

STK11

AMPK

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

INDRA

Pathway
database

Modeling with INDRAProgrammatic modelingMathematical modeling

Automatically generated

Curated or implemented by user

PySB program

Rule-based model

User

An enzyme binds
a substrate.

bind(E, “b”, S, “b”,
 (kf, kr))

d[E]/dt = -kf[E][S] + kr[ES]
d[S]/dt = -kf[E][S] + kr[ES]
d[ES]/dt = kf[E][S] - kr[ES]

E(b)+ S(b) <->
E(b!1).S(b!1), kf, kr

User

Natural
language

User

Model equations Model equations

PySB model

Concept Implementation

A

B

Complex(Agent(E), Agent(S))

Natural language INDRA Statement PySB macro BNGL rule Ordinary differential equations

Rule-based model

Model equations

PySB model

Other model types

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

From word models to executable models
of signaling networks using automated assembly

Appendix

B. M. Gyori1,∗, J. A. Bachman1,∗, K. Subramanian1, J. L. Muhlich1, L. Galescu2, P. K. Sorger1,3

∗ Authors contributed equally to this work
1 Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Ave, Boston MA 02115, USA

2 IHMC, Pensacola, USA

3 To whom correspondence should be addressed

Email: Peter Sorger - peter sorger@hms.harvard.edu;

Contents

1 Appendix Figures 2

2 Appendix Methods 12

2.1 The TRIPS/DRUM natural language processing system 12

2.2 Querying databases to extract INDRA Statements 13

2.3 Modeling alternative dynamical patterns of p53 activation 13

2.4 Modeling resistance to targeted therapy by vemurafenib 15

2.5 An extensible and executable map of the RAS pathway 18

References 20

Appendix Notebook 1 21

Appendix Notebook 2 26

INDRA Software Documentation 32

1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

1 Appendix Figures

A

GRB2 binds tyrosine-phosphorylated EGFR.
(LF)

DUSP6 dephosphorylates ERK2 that is not bound to SOS1.
(LF)

B

GRB2 binds tyrosine-phosphorylated EGFR.
(EKB)

E DUSP6 dephosphorylates ERK2 that is not bound to SOS1.
(EKB)

F

C D

MEK1 phosphorylates ERK2 at threonine 185 and tyrosine 187
(LF)

MEK1 phosphorylates ERK2 at threonine 185 and tyrosine 187
(EKB)

Figure S1. TRIPS logical form (LF) and extraction knowledge base (EKB) graphs.
(A) The LF graph for the sentence “MEK1 phosphorylates ERK2 at threonine 185 and tyrosine 187”.
(B) The EKB graph for the sentence “MEK1 phosphorylates ERK2 at threonine 185 and tyrosine 187”.
(C) The LF graph for the sentence “GRB2 binds tyrosine-phosphorylated EGFR”.
(D) The EKB graph for the sentence “GRB2 binds tyrosine-phosphorylated EGFR” shows the main BIND
event with GRB2 and EGFR as its arguments. EGFR is further affected by a PHOSPHORYLATION
sub-event with the site specified as a tyrosine amino-acid residue.
(E) The LF graph for the sentence “DUSP6 dephosphorylates ERK2 that is not bound to SOS1”.
(F) The EKB graph for the sentence “DUSP6 dephosphorylates ERK2 that is not bound to SOS1” has a
main event PHOSPHORYLATION which is negated by a modifier to represent dephosphorylation and which
has ERK2 affected by DUSP6 as its arguments. ERK2 is further affected by a negated binding sub-event
with SOS1.

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Statement

evidence : Evidence

Phosphorylation

Modification

enzyme : Agent
substrate : Agent
residue : string
position : string

"is a" (inheritance)
composition (has one or more, life-cycle dependence)

Statements
Agent and components

Agent

name : string
mods : list[ModCondition]
mutations : list[MutCondition]
bound_conditions : list [BoundCondition]
location : string
activity : ActivityCondition
db_refs : dict

Hydroxylation Dehydroxylation

Ubiquitination Deubiquitination

Dephosphorylation

Acetylation Deacetylation

Glycosylation Deglycosylation

Sumoylation Desumoylation

SelfModification

enzyme : Agent
residue : string
position : string Autophosphorylation

ActiveForm

agent : Agent
activity_type : string
is_active : boolean

Conversion
subj : Agent
obj_from : list[Agent]
obj_to : list[Agent]

Activation

Transphosphorylation

Gef

gef : Agent
gtpase : Agent
gef_activity : string

Gap

gap : Agent
gtpase : Agent
gap_activity : string

ModCondition

mod_type : string
residue : string
position : string
is_modified : boolean

MutCondition

from_residue : string
to_residue : string
position : string

BoundCondition

agent : Agent
is_bound : string

Farnesylation

ActivityCondition

activity_type : string
is_active : boolean

Inhibition

RegulateActivity

subject : Agent
object : Agent
obj_activity : string

RegulateAmount

subject : Agent
object : Agent

Evidence

text : string
source_api : string
source_id : string
pmid : string
annotations : dict
epistemics : dict

IncreaseAmount

DecreaseAmount

Ribosylation Deribosylation

Defarnesylation

Geranylgeranylation Degeranylgeranylation

Palmitoylation Depalmitoylation

Myristoylation Demyristoylation

Other

AddModification

RemoveModification

Methylation Demethylation

Complex

members : list[Agent]

Translocation

agent : Agent
from_location : Agent
to_location : string

Figure S2 Unified Modeling Language (UML) diagram of INDRA Statements and associated classes. All
INDRA Statements inherit from the Statement class. Each Statement has one or more Agents associated
with them. An Agent represents molecular context through additional attributes (e.g. location) and associ-
ated classes including ModCondition (for post-translational modifications), MutCondition (for mutations),
BoundCondition (for bound co-factors) and ActivityCondition (for active/inactive state). Some Statement
types also have attributes (e.g. residue, position) in addition to their Agent arguments. Each Statement has
one or more Evidences associated with it.

3

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

A

B

Figure S3 INDRA Statement visualized as graph and serialized as JSON. INDRA allows displaying the
data structure of Statements as graphs (A), and provides a JSON exchange format (B) for inspection and
reuse in a platform-independent way.

4

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Name

Modifications

Bound to

Grounding

BRAF

UniProt

HGNC

P15056

1097

PhosphorylationType

Residue

Site

Serine

365

Type Ubiquitination

not

BRAF that is ubiquitinated, phosphorylated at S365
and not bound to NRAS

C

Agent Name NRAS

...

Agent

Active TP53 in the nucleusA

Name

Location

Grounding

TP53

UniProt

HGNC

P04637

11998

Agent

nucleus

Activity True

KRAS-G12V that is not farnesylatedB

Name

Grounding

KRAS

UniProt

HGNC

P01116

6407

Agent

Modifications

FarnesylationType

Is modified False

Mutations

GlycineFrom residue

ValineTo residue

600Position

Figure S4 Examples of INDRA Agents representing molecular state.
(A) Agent representing active TP53 in the nucleus
(B) Agent representing KRAS-G12V that is not farnesylated
(C) Agent representing BRAF that is ubiquitinated, phosphorylated at S365 and not bound to NRAS.

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

ModificationFeature_8064846058a48e28c0c4b7c0e84c5d23
http://pathwaycommons.org/pc2/ModificationFeature_8064846058a48e28c0c4b7c0e84c5d23

SequenceModificationVocabulary_ac5aeb4d5f08ef74331fc7aa49f56564
http://pathwaycommons.org/pc2/SequenceModificationVocabulary_ac5aeb4d5f08ef74331fc7aa49f56564
bp:term "O-phospho-L-serine"^^xsd:string

 bp:modificationType

SequenceSite_336a7b082fb14af94eafab12546e5ae6
http://pathwaycommons.org/pc2/SequenceSite_336a7b082fb14af94eafab12546e5ae6
bp:positionStatus "EQUAL"^^xsd:string
bp:sequencePosition "218"^^xsd:int

 bp:featureLocation

Protein_b37010217c6b159f67711e5f02553b5d
http://pathwaycommons.org/pc2/Protein_b37010217c6b159f67711e5f02553b5d
bp:name "ERK2"^^xsd:string

ModificationFeature_7802c2b3ea8c78893362e2c8d6399d13
http://pathwaycommons.org/pc2/ModificationFeature_7802c2b3ea8c78893362e2c8d6399d13

 bp:feature

P28482
http://identifiers.org/uniprot/P28482

 bp:entityReference

SequenceModificationVocabulary_19e589bf6af29a55d33c2c0d05386925
http://pathwaycommons.org/pc2/SequenceModificationVocabulary_19e589bf6af29a55d33c2c0d05386925
bp:term "O-phospho-L-threonine"^^xsd:string

 bp:modificationType

SequenceSite_6f164c1b67f14c9030675e81e1937d4a
http://pathwaycommons.org/pc2/SequenceSite_6f164c1b67f14c9030675e81e1937d4a
bp:positionStatus "EQUAL"^^xsd:string
bp:sequencePosition "185"^^xsd:int

 bp:featureLocation

Protein_79cfbeed00aaf2ff3f85c67362751d30
http://pathwaycommons.org/pc2/Protein_79cfbeed00aaf2ff3f85c67362751d30
bp:displayName "MEK1"^^xsd:string

 bp:feature

ModificationFeature_b141a8448e1bbfa91c0c4dc3a1c0cb75
http://pathwaycommons.org/pc2/ModificationFeature_b141a8448e1bbfa91c0c4dc3a1c0cb75

 bp:feature

Q02750
http://identifiers.org/uniprot/Q02750

 bp:entityReference

 bp:modificationType

SequenceSite_206544110e2aa2810c5b831e3ea888c2
http://pathwaycommons.org/pc2/SequenceSite_206544110e2aa2810c5b831e3ea888c2
bp:positionStatus "EQUAL"^^xsd:string
bp:sequencePosition "222"^^xsd:int

 bp:featureLocation

Catalysis_50de2cf5203dcafbf42faca8f817afc5
http://pathwaycommons.org/pc2/Catalysis_50de2cf5203dcafbf42faca8f817afc5
bp:catalysisDirection "LEFT_TO_RIGHT"^^xsd:string
bp:controlType "ACTIVATION"^^xsd:string

 bp:controller

BiochemicalReaction_3fe03cdf8209058bd5028115322afd5d
http://pathwaycommons.org/pc2/BiochemicalReaction_3fe03cdf8209058bd5028115322afd5d

 bp:controlled

 bp:right

Protein_dc5ab17d714a6d78c1555710b41976d8
http://pathwaycommons.org/pc2/Protein_dc5ab17d714a6d78c1555710b41976d8
bp:name "ERK2"^^xsd:string

 bp:left

 bp:entityReference

Figure S5 BioPAX representations of the mechanism double-phosphorylated MEK1 phosphorylates ERK2
as a ChIBE [1] graph (above) and an object model graph (below).

6

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

A

B

C

D

E

F

G H POMI1.0

Active ATM activates p53.
Active p53 activates Wip1.
Active p53 activates Mdm2.
Active Wip1 inactivates p53.
Active Wip1 inactivates ATM.
Active Mdm2 inactivates p53.

Active ATR activates p53.
Active p53 activates Wip1.
Active p53 activates Mdm2.
Active Wip1 inactivates p53.
Active Mdm2 inactivates p53.

Active ATR activates p53.
Active p53 activates Wip1.
Active p53 activates Mdm2.
Active Wip1 inactivates p53.
Active Mdm2 inactivates p53.
HIPK2 inactivates Wip1.
P14ARF inactivates Mdm2.

Active ATR activates p53.
Active p53 activates Wip1.
Active p53 activates Mdm2.
Active Wip1 inactivates p53.
Active Mdm2 inactivates p53.
HIPK2 inactivates Wip1.
P14ARF inactivates Mdm2.
Active ATR activates ATR.

Active ATM activates p53.
Active p53 activates Wip1.
Active p53 activates Mdm2.
Active Wip1 inactivates p53.
Active Wip1 inactivates ATM.
Active Mdm2 inactivates p53.
HIPK2 inactivates Wip1.
P14ARF inactivates Mdm2.

Active ATM activates p53.
Active p53 activates Wip1.
Active p53 activates Mdm2.
Active Wip1 inactivates p53.
Active Wip1 inactivates ATM.
Active Mdm2 inactivates p53.
HIPK2 inactivates Wip1.
P14ARF inactivates Mdm2.
Active ATM activates ATM.

Active ATM phosphorylates itself, and phosphorylated ATM is active.
Active ATM activates p53.
p53 is transcribed and active p53 transcribes MDM2.
MDM2 is degraded.
Active p53 activates Wip1.
Active Wip1 inactivates p53.
Active Wip1 dephosphorylates ATM.
MDM2 ubiquitinates p53 and ubiquitinated p53 is degraded.
HIPK2 inactivates Wip1.

Active ATM phosphorylates ATM, and phosphorylated ATM is active.
Active ATM activates p53.
p53 is transcribed and active p53 transcribes MDM2.
MDM2 is degraded.
Active p53 activates Wip1.
Active Wip1 inactivates p53.
Active Wip1 dephosphorylates ATM.
MDM2 ubiquitinates p53 and ubiquitinated p53 is degraded.
HIPK2 inactivates Wip1.

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Time (a.u.)

A
ct

iv
e

p5
3

Figure S6 The dynamics of active p53 under 100 simulation conditions (gray, some samples highlighted in
colors), with parameters randomly sampled from uncorrelated log-normal distributions around their nominal
values. The simulation dynamics with nominal parameters are shown in red. (A) SSB model from yellow
numbered edges in Figure 5A.
(B) SSB model with Wip1 and Mdm2 inactivation added.
(C) SSB model with ATR activation added.
(D) DSB model from yellow numbered edges in Figure 5A.
(E) DSB model with Wip1 and Mdm2 inactivation added.
(F) DSB model with ATM activation added.
(G) Detailed DSB model with ATM cis-autophosphorylation.
(H) POMI1.0: Detailed DSB model with ATM trans-autophosphorylation.

7

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Active RAS pERK rebound

Min

Max

Min

Max

[Vemurafenib]

[E
G

F]

[Vemurafenib]

[E
G

F]

[Vemurafenib]

Active RAS

[E
G

F]

pERK rebound

Min

Max

Min

Max

[Vemurafenib]

[E
G

F]

Active RAS pERK rebound

Min

Max

Min

Max

[Vemurafenib]

[E
G

F]

[Vemurafenib]

[E
G

F]

MEMI1.0

MEMI1.1

MEMI1.2

A

B

C

Figure S7 Heat maps showing steady state values of active RAS (left) and phospho-ERK rebound (right)
upon varying doses of EGF and vemurafenib.
(A) Dose response heat maps for MEMI1.0 (B) Dose response heat maps for MEMI1.1 (C) Dose response
heat maps for MEMI1.2

8

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

B

BV

BM

BGR

BGRV

BMV

BGMR

BR

BBGGRR

BBGGRRV

BBGGMRR

BBGGMRRV

BBGRR

BBGRRV

BBGMRR

BBGMRRV

BRV

BBGGRRVV
BBGGMRRVV

BBGRRVV BBGMRRVV

BGMRV

BMR

BBGGMMRR

BBGGMMRRV

BBGMMRR

BBGMMRRV

BMRV

BBGGMMRRVV BBGMMRRVV

BBRR

BBRRV

BBMRR

BBMRRV

BBGR

BBGRV

BBGMR

BBGMRV

BBR

BBRV

BBMR

BBMRV

BBRRVV

BBMRRVV

BBGRVV

BBGMRVV

BBRVV

BBMRVV

BBMMRR

BBMMRRV

BBGMMR

BBGMMRV

BBMMR

BBMMRV

BBMMRRVV
BBGMMRVV

BBMMRVV

BB

BBV

BBM

BBMV

BBVV

BBMVV

BBMM

BBMMV

BBMMVV

Figure S8 Biochemical reactions involving BRAF in the MEMI1.2 model. Each node corresponds to an
individual molecular species with the label composed of the first letters of the monomers the species consists
of: BRAF (B), RAS (R), GTP (G), vemurafenib (V) and MEK (M). Each directed edge corresponds to a
reaction which produces the target species from the source species. The network visualization is simplified
as it omits modification states and merges complexes with a given set of constituents that have different
topologies.

9

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Figure S9 INDRA-assembled SBGN model of p53 activation upon DSB. This model was assembled from
the natural language shown in Figure 5C (main text) using INDRA’s SBGN Assembler module. The SBGN
graph was visualized and layout was set manually in the SBGNViz online editor [2]

.

10

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Figure S10 Selected BioPAX BiochemicalReactions involving MAPK1/3 and MAP2K1 in Pathway Com-
mons, displayed using the Chisio BioPAX Editor (ChIBE) [1]

.

11

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

2 Appendix Methods

2.1 The TRIPS/DRUM natural language processing system

In this section we provide more technical details on the TRIPS/DRUM system [3] which INDRA
uses to process natural language text (note that in the main text we refer to the system as
TRIPS). The DRUM (Deep Reader for Understanding Mechanisms) system is an instance of the
TRIPS general deep language understanding system [4], customized for reading and
understanding scientific text in molecular biology.

To process natural language input, first a suite of shallow NLP tools performs annotations on the
text, including: a) sentence splitting; b) named entity recognition; c) derivational analysis (e.g.,
prefixes, pertainyms); and d) statistical parsing. Critically, DRUM uses a number of
domain-specific named entity taggers to identify genes, proteins, protein families, drugs and
chemicals, cell lines, diseases, etc.; successful matches are annotated with IDs in the original
resources, and are also mapped to internal ontology types. At this stage all matches are
annotated; there is no attempt to disambiguate among alternatives. Other domain-specific
annotators use regular expressions to identify, for example, molecular sites and mutations.
Statistical parsers – CoreNLP [5] and Enju [6] – are used to find constituent boundaries; only
those constituents on which both parsers agree are used.

The output of all these specialized preprocessors is sent to the TRIPS parser, which uses it as
advice during its search for the optimal parse of each sentence. The TRIPS parser is at the core
of our approach; it uses a hand-built lexicalized context-free grammar, augmented with feature
structures and feature unification, and domain-general selectional restrictions (encoded in the
lexicon and ontology) to eliminate semantically anomalous sense combinations. The parser
constructs from the input a logical form (LF), which is a semantic representation that captures an
unscoped modal logic [7, 8]. The logical form includes the surface speech act, semantic types,
semantic roles for predicate arguments, and dependency relations. Lexical entities in the LF
represent word senses and ontology types, as well as tense, modality and aspect information –
information that is crucial for determining, for example, whether a statement expresses a stated
fact, a conjecture or a possibility. The parser draws on a general purpose semantic lexicon and
ontology which define a range of word senses and lexical semantic relations. The core semantic
lexicon was constructed by hand and contains approximately 7, 500 lemmas (generating
approximately three times that many words) and 2, 000 concepts in the ontology. The ontology is
organized hierarchically and each ontology concept has associated with it possible semantic roles
and selectional preferences that further refine the concept. The core lexicon is extended to cover
virtually all words in WordNet [9] by adding lexical entries with plausible semantic and syntactic
structures through a dynamic mapping between the WordNet hypernym hierarchy and that of the
TRIPS ontology. Ontology-based lexical expansion – using WordNet as well as all the
terminology extracted from the biological resources – is the main tool by which we can customize
our generic, relatively low coverage semantic parser to attain the broad coverage needed to
process text in as lexically rich a domain as that of molecular biology.

Finally, the LFs produced by the parser are used to extract the content relevant for the domain, in
this case concepts (e.g., molecular entities), events (e.g., activation, modification) involving those
concepts, causal relations between events, as well as additional information about events, such as

12

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

polarity, modality (e.g., possibility, necessity, various epistemic and evidential modals). Because
much of the variation and complexity in sentence constructions is handled by the TRIPS parser,
and the LF terms are grounded in the TRIPS ontology, we are able to use a relatively compact
rule set for defining the events and relationships of interest. The extraction rules were developed
from general principles rather than based on specific training samples; thus, even though most of
the text used for development was extracted from papers on the Ras signaling pathways, we
expect the system to have good performance on any input describing biomolecular mechanisms.

2.2 Querying databases to extract INDRA Statements

To benchmark the ability of INDRA to extract Statements from pathway databases, we used
INDRA’s BioPAX and BEL APIs to search for the neighborhood of 20 genes or metabolites in
Pathway Commons and the BEL Large Corpus, respectively. In the case of BioPAX we counted
the total number of controlled BiochemicalReactions and TemplateReactions (used to represent
gene transcription) as reference, and in the case of BEL we counted all direct statements (i.e.
with predicate directlyIncreases/directlyDecreases). We then determined how many of these
source entries in each case were extracted and represented as INDRA Statements, as constructed
by INDRA’s BioPAX and BEL Processors. We selected 5 representative genes or metabolites
from signaling, gene regulation, metabolism (protein controller) and metabolism (metabolite) to
perform the analysis. The results of this analysis are shown in Table 1.

2.3 Modeling alternative dynamical patterns of p53 activation

Tables 2 – 4 list the PySB rules and the associated kinetic rates constituting the three models for
the activation dynamics of p53 with Table 2 corresponding to the model in Figure 5(B), Table 3
to the model in Figure 5(C) and Table 4 to the model in Figure 5(E).

Rule Forward kinetic rate

ATR(activity=’active’) + TP53(activity=’inactive’) >> ATR(activity=’active’) + TP53(activity=’active’) 10−7 molec−1s−1

TP53(activity=’active’) + PPM1D(activity=’inactive’) >> TP53(activity=’active’) + PPM1D(activity=’active’) 10−7 molec−1s−1

TP53(activity=’active’) + MDM2(activity=’inactive’) >> TP53(activity=’active’) + MDM2(activity=’active’) 10−7 molec−1s−1

ATR(activity=’active’) + ATR(activity=’inactive’) >> ATR(activity=’active’) + ATR(activity=’active’) 5 · 10−7 molec−1s−1

PPM1D(activity=’active’) + TP53(activity=’active’) >> PPM1D(activity=’active’) + TP53(activity=’inactive’) 5 · 10−7 molec−1s−1

MDM2(activity=’active’) + TP53(activity=’active’) >> MDM2(activity=’active’) + TP53(activity=’inactive’) 10−7 molec−1s−1

HIPK2() + PPM1D(activity=’active’) >> HIPK2() + PPM1D(activity=’inactive’) 10−7 molec−1s−1

CDKN2A() + MDM2(activity=’active’) >> CDKN2A() + MDM2(activity=’inactive’) 10−7 molec−1s−1

Table 2: Rules and parameters for the SSB (ATR-driven) p53 activation model.

Rule Forward kinetic rate

ATM(activity=’active’) + TP53(activity=’inactive’) >> ATM(activity=’active’) + TP53(activity=’active’) 10−7 molec−1s−1

TP53(activity=’active’) + PPM1D(activity=’inactive’) >> TP53(activity=’active’) + PPM1D(activity=’active’) 10−7 molec−1s−1

TP53(activity=’active’) + MDM2(activity=’inactive’) >> TP53(activity=’active’) + MDM2(activity=’active’) 10−7 molec−1s−1

ATM(activity=’active’) + ATM(activity=’inactive’) >> ATM(activity=’active’) + ATM(activity=’active’) 5 · 10−7 molec−1s−1

PPM1D(activity=’active’) + TP53(activity=’active’) >> PPM1D(activity=’active’) + TP53(activity=’inactive’) 5 · 10−7 molec−1s−1

PPM1D(activity=’active’) + ATM(activity=’active’) >> PPM1D(activity=’active’) + ATM(activity=’inactive’) 10−5 molec−1s−1

MDM2(activity=’active’) + TP53(activity=’active’) >> MDM2(activity=’active’) + TP53(activity=’inactive’) 10−7 molec−1s−1

HIPK2() + PPM1D(activity=’active’) >> HIPK2() + PPM1D(activity=’inactive’) 10−7 molec−1s−1

CDKN2A() + MDM2(activity=’active’) >> CDKN2A() + MDM2(activity=’inactive’) 10−7 molec−1s−1

Table 3: Rules and parameters for the DSB (ATM-driven) p53 activation model.

13

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Gene / metabolite BioPAX
total

BioPAX
extracted

BioPAX
%

BEL total BEL ex-
tracted

BEL %

AKT1 1341 1182 88% 38 35 92%
MAPK1 1683 1555 92% 110 110 100%
CTNNB1 283 177 63% 32 17 53%
GNAS 73 47 64% 14 13 93%
JAK1 491 232 47% 15 15 100%
STAT3 386 313 81% 43 33 77%
FOXO3 393 383 98% 43 37 86%
TP53 963 919 95% 75 66 88%
JUN 3915 3881 99% 23 17 74%
MYC 2947 2942 100-% 21 17 81%
DHFR 33 28 85% 0 - -
NOS1 31 25 81% 5 3 60%
GLUL 32 27 84% 0 - -
PFKL 18 13 72% 2 2 100%
IDH1 27 17 63% 0 - -
glutamine (CHEBI:28300) 11 11 100% 0 - -
β-D-fructofuranose-6-
phosphate (CHEBI:16084)

13 12 92% 0 - -

5,6,7,8-tetrahydrofolic acid
(CHEBI:20506)

15 6 40% 0 - -

pyruvic acid (CHEBI:32816) 82 36 44% 0 - -
nitric oxide (CHEBI:16480) 16 8 50% 0 - -

Table 1: Statistics for the extraction of INDRA Statements from Pathway Commons (in BioPAX format)
and the BEL Large Corpus. Molecules are grouped into four categories with 5 test examples each: signaling,
gene regulation, metabolism (protein controller) and metabolism (metabolite). BioPAX total and BEL total
show the number of entries in each source around the neighborhood of the given molecule.

Rule Forward kinetic rate

ATM(phospho=’p’) + ATM(phospho=’u’) >> ATM(phospho=’p’) + ATM(phospho=’p’) 5 · 10−7 molec−1s−1

PPM1D(activity=’active’) + ATM(phospho=’p’) >> PPM1D(activity=’active’) + ATM(phospho=’u’) 10−5 molec−1s−1

MDM2() + TP53(ub=’n’) >> MDM2() + TP53(ub=’y’) 1e-06 molec−1s−1

ATM(phospho=’p’) + TP53(activity=’inactive’) >> ATM(phospho=’p’) + TP53(activity=’active’) 10−7 molec−1s−1

TP53(activity=’active’) + PPM1D(activity=’inactive’) >> TP53(activity=’active’) + PPM1D(activity=’active’) 10−7 molec−1s−1

PPM1D(activity=’active’) + TP53(activity=’active’) >> PPM1D(activity=’active’) + TP53(activity=’inactive’) 5 · 10−7 molec−1s−1

HIPK2() + PPM1D(activity=’active’) >> HIPK2() + PPM1D(activity=’inactive’) 10−7 molec−1s−1

MDM2() >> None 8 · 10−2 s−1

TP53(ub=(y’) >> None 2 · 10−5 s−1

None >> TP53(ub=’n’, activity=’inactive’) 2 molec s−1

TP53(activity=’active’) >> TP53(activity=’active’) + MDM2() 2 · 10−2 s−1

Table 4: Rules and parameters for the detailed DSB (ATM-driven) p53 activation model (POMI1.0).

14

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

2.4 Modeling resistance to targeted therapy by vemurafenib

Rule Forward rate

EGF(erbb=None) + EGFR(egfr ligand=None) >> EGF(erbb=1) % EGFR(egfr ligand=1) 1.0 molec−1s−1

EGF(erbb=1) % EGFR(egfr ligand=1) >> EGF(erbb=None) + EGFR(egfr ligand=None) 0.1 s−1

EGFR(egfr ligand=ANY, erbb=None) + EGFR(egfr ligand=ANY, erbb=None) >> EGFR(egfr ligand=ANY, erbb=1)
% EGFR(egfr ligand=ANY, erbb=1)

1.0 molec−1s−1

EGFR(erbb=1) % EGFR(erbb=1) >> EGFR(erbb=None) + EGFR(erbb=None) 0.1 s−1

EGFR(erbb=ANY, grb2=None) + GRB2(erbb=None) >> EGFR(erbb=ANY, grb2=1) % GRB2(erbb=1) 1.0 molec−1s−1

EGFR(grb2=1) % GRB2(erbb=1) >> EGFR(grb2=None) + GRB2(erbb=None) 0.1 s−1

GRB2(erbb=ANY, sos=None) + SOS(grb2=None) >> GRB2(erbb=ANY, sos=1) % SOS(grb2=1) 1.0 molec−1s−1

GRB2(sos=1) % SOS(grb2=1) >> GRB2(sos=None) + SOS(grb2=None) 0.1 s−1

SOS(grb2=ANY, ras=None) + RAS(map3k=None, sos=None) >> SOS(grb2=ANY, ras=1) % RAS(map3k=None, sos=1) 1.0 molec−1s−1

SOS(ras=1) % RAS(sos=1) >> SOS(ras=None) + RAS(sos=None) 50.0 s−1

RAS(sos=ANY, gtp=None) + GTP(ras=None) >> RAS(sos=ANY, gtp=1) % GTP(ras=1) 50.0 molec−1s−1

RAS(gtp=1) % GTP(ras=1) >> RAS(gtp=None) + GTP(ras=None) 0.5 s−1

RAS(map3k=None, sos=None, gtp=ANY) + BRAF(ras=None, V600=’E’) >> RAS(map3k=1, sos=None, gtp=ANY) %
BRAF(ras=1, V600=’E’)

1.0 molec−1s−1

RAS(map3k=1) % BRAF(ras=1, V600=’E’) >> RAS(map3k=None) + BRAF(ras=None, V600=’E’) 0.5 s−1

VEMURAFENIB(map3k=None) + BRAF(V600=’E’, vemurafenib=None) >> VEMURAFENIB(map3k=1) %
BRAF(V600=’E’, vemurafenib=1)

10.0 molec−1s−1

VEMURAFENIB(map3k=1) % BRAF(V600=’E’, vemurafenib=1) >> VEMURAFENIB(map3k=None) +
BRAF(V600=’E’, vemurafenib=None)

1.0 s−1

PPP2CA(map2k=None) + MEK(mapk=None, phospho=’p’, ppp2=None) >> PPP2CA(map2k=1) % MEK(mapk=None,
phospho=’p’, ppp2=1)

1.0 molec−1s−1

PPP2CA(map2k=1) % MEK(mapk=None, phospho=’p’, ppp2=1) >> PPP2CA(map2k=None) + MEK(mapk=None,
phospho=’u’, ppp2=None)

10.0 s−1

PPP2CA(map2k=1) % MEK(ppp2=1) >> PPP2CA(map2k=None) + MEK(ppp2=None) 0.001

MEK(mapk=None, phospho=’p’, ppp2=None) + ERK(map2k=None, phospho=’u’) >> MEK(mapk=1, phospho=’p’,
ppp2=None) % ERK(map2k=1, phospho=’u’)

1.0 molec−1s−1

MEK(mapk=1, phospho=’p’, ppp2=None) % ERK(map2k=1, phospho=’u’) >> MEK(mapk=None, phospho=’p’,
ppp2=None) + ERK(map2k=None, phospho=’p’)

10.0 s−1

MEK(mapk=1) % ERK(map2k=1) >> MEK(mapk=None) + ERK(map2k=None) 0.1 s−1

DUSP6(mapk=None) + ERK(phospho=’p’, sos=None, dusp=None) >> DUSP6(mapk=1) % ERK(phospho=’p’,
sos=None, dusp=1)

1.0 molec−1s−1

DUSP6(mapk=1) % ERK(phospho=’p’, sos=None, dusp=1) >> DUSP6(mapk=None) + ERK(phospho=’u’, sos=None,
dusp=None)

10.0 s−1

DUSP6(mapk=1) % ERK(dusp=1) >> DUSP6(mapk=None) + ERK(dusp=None) 0.001 s−1

BRAF(V600=’E’, vemurafenib=None, map2k=None) + MEK(phospho=’u’, map3k=None) >> BRAF(V600=’E’, vemu-
rafenib=None, map2k=1) % MEK(phospho=’u’, map3k=1)

1.0 molec−1s−1

BRAF(V600=’E’, vemurafenib=None, map2k=1) % MEK(phospho=’u’, map3k=1) >> BRAF(V600=’E’, vemu-
rafenib=None, map2k=None) + MEK(phospho=’p’, map3k=None)

3.0 s−1

BRAF(V600=’E’, map2k=1) % MEK(map3k=1) >> BRAF(V600=’E’, map2k=None) + MEK(map3k=None) 0.1 s−1

Table 5: Rules and parameters for MEMI1.0

15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Rule Forward rate

EGF(erbb=None) + EGFR(egfr ligand=None) >> EGF(erbb=1) % EGFR(egfr ligand=1) 1.0 molec−1s−1

EGF(erbb=1) % EGFR(egfr ligand=1) >> EGF(erbb=None) + EGFR(egfr ligand=None) 0.1 s−1

EGFR(egfr ligand=ANY, erbb=None) + EGFR(egfr ligand=ANY, erbb=None) >> EGFR(egfr ligand=ANY, erbb=1)
% EGFR(egfr ligand=ANY, erbb=1)

1.0 molec−1s−1

EGFR(erbb=1) % EGFR(erbb=1) >> EGFR(erbb=None) + EGFR(erbb=None) 0.1 s−1

EGFR(erbb=ANY, grb2=None) + GRB2(erbb=None) >> EGFR(erbb=ANY, grb2=1) % GRB2(erbb=1) 1.0 molec−1s−1

EGFR(grb2=1) % GRB2(erbb=1) >> EGFR(grb2=None) + GRB2(erbb=None) 0.1 s−1

RAS(sos=ANY, gtp=None) + GTP(ras=None) >> RAS(sos=ANY, gtp=1) % GTP(ras=1) 50.0 molec−1s−1

RAS(gtp=1) % GTP(ras=1) >> RAS(gtp=None) + GTP(ras=None) 0.5 s−1

RAS(sos=None, gtp=ANY, map3k=None) + BRAF(V600=’E’, ras=None) >> RAS(sos=None, gtp=ANY, map3k=1)
% BRAF(V600=’E’, ras=1)

1.0 molec−1s−1

RAS(map3k=1) % BRAF(V600=’E’, ras=1) >> RAS(map3k=None) + BRAF(V600=’E’, ras=None) 0.5 s−1

VEMURAFENIB(map3k=None) + BRAF(V600=’E’, vemurafenib=None) >> VEMURAFENIB(map3k=1) %
BRAF(V600=’E’, vemurafenib=1)

10.0 molec−1s−1

VEMURAFENIB(map3k=1) % BRAF(V600=’E’, vemurafenib=1) >> VEMURAFENIB(map3k=None) +
BRAF(V600=’E’, vemurafenib=None)

1.0 s−1

GRB2(erbb=ANY, sos=None) + SOS(S=(u’u’, WILD), grb2=None) >> GRB2(erbb=ANY, sos=1) % SOS(S=(u’u’,
WILD), grb2=1)

1.0 molec−1s−1

GRB2(sos=1) % SOS(grb2=1) >> GRB2(sos=None) + SOS(grb2=None) 0.1 s−1

SOS(ras=None, S=(u’u’, WILD), grb2=ANY) + RAS(sos=None, map3k=None) >> SOS(ras=1, S=(u’u’, WILD),
grb2=ANY) % RAS(sos=1, map3k=None)

1.0 molec−1s−1

SOS(ras=1) % RAS(sos=1) >> SOS(ras=None) + RAS(sos=None) 50.0 s−1

PPP2CA(map2k=None) + MEK(mapk=None, phospho=’p’, ppp2=None) >> PPP2CA(map2k=1) %
MEK(mapk=None, phospho=’p’, ppp2=1)

1.0 molec−1s−1

PPP2CA(map2k=1) % MEK(mapk=None, phospho=’p’, ppp2=1) >> PPP2CA(map2k=None) + MEK(mapk=None,
phospho=’u’, ppp2=None)

10.0 s−1

PPP2CA(map2k=1) % MEK(ppp2=1) >> PPP2CA(map2k=None) + MEK(ppp2=None) 0.001 s−1

MEK(mapk=None, phospho=’p’, ppp2=None) + ERK(map2k=None, phospho=’u’) >> MEK(mapk=1, phospho=’p’,
ppp2=None) % ERK(map2k=1, phospho=’u’)

1.0 molec−1s−1

MEK(mapk=1, phospho=’p’, ppp2=None) % ERK(map2k=1, phospho=’u’) >> MEK(mapk=None, phospho=’p’,
ppp2=None) + ERK(map2k=None, phospho=’p’)

10.0 s−1

MEK(mapk=1) % ERK(map2k=1) >> MEK(mapk=None) + ERK(map2k=None) 0.1 s−1

DUSP6(mapk=None) + ERK(phospho=’p’, sos=None, dusp=None) >> DUSP6(mapk=1) % ERK(phospho=’p’,
sos=None, dusp=1)

1.0 molec−1s−1

DUSP6(mapk=1) % ERK(phospho=’p’, sos=None, dusp=1) >> DUSP6(mapk=None) + ERK(phospho=’u’, sos=None,
dusp=None)

10.0 s−1

DUSP6(mapk=1) % ERK(dusp=1) >> DUSP6(mapk=None) + ERK(dusp=None) 0.001 s−1

BRAF(V600=’E’, vemurafenib=None, map2k=None) + MEK(phospho=’u’, map3k=None) >> BRAF(V600=’E’, vemu-
rafenib=None, map2k=1) % MEK(phospho=’u’, map3k=1)

1.0 molec−1s−1

BRAF(V600=’E’, vemurafenib=None, map2k=1) % MEK(phospho=’u’, map3k=1) >> BRAF(V600=’E’, vemu-
rafenib=None, map2k=None) + MEK(phospho=’p’, map3k=None)

3.0 s−1

BRAF(V600=’E’, map2k=1) % MEK(map3k=1) >> BRAF(V600=’E’, map2k=None) + MEK(map3k=None) 0.1 s−1

ERK(phospho=’p’, sos=None, dusp=None) + SOS(ras=None, S=’u’, mapk=None) >> ERK(phospho=’p’, sos=1,
dusp=None) % SOS(ras=None, S=’u’, mapk=1)

10−5 molec−1s−1

ERK(phospho=’p’, sos=1, dusp=None) % SOS(ras=None, S=’u’, mapk=1) >> ERK(phospho=’p’, sos=None,
dusp=None) + SOS(ras=None, S=’p’, mapk=None)

1.0 s−1

ERK(sos=1) % SOS(mapk=1) >> ERK(sos=None) + SOS(mapk=None) 0.0001 s−1

PHOSPHATASE(sos=None) + SOS(S=’p’, phosphatase=None) >> PHOSPHATASE(sos=1) % SOS(S=’p’, phos-
phatase=1)

1.0 molec−1s−1

PHOSPHATASE(sos=1) % SOS(S=’p’, phosphatase=1) >> PHOSPHATASE(sos=None) + SOS(S=’u’, phos-
phatase=None)

0.0001 s−1

PHOSPHATASE(sos=1) % SOS(phosphatase=1) >> PHOSPHATASE(sos=None) + SOS(phosphatase=None) 0.1 s−1

Table 6: Rules and parameters for MEMI1.1

16

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Rule Forward rate

EGF(erbb=None) + EGFR(egfr ligand=None) >> EGF(erbb=1) % EGFR(egfr ligand=1) 1.0 molec−1s−1

EGF(erbb=1) % EGFR(egfr ligand=1) >> EGF(erbb=None) + EGFR(egfr ligand=None) 0.1 s−1

EGFR(egfr ligand=ANY, erbb=None) + EGFR(egfr ligand=ANY, erbb=None) >> EGFR(egfr ligand=ANY, erbb=1)
% EGFR(egfr ligand=ANY, erbb=1)

1.0 molec−1s−1

EGFR(erbb=1) % EGFR(erbb=1) >> EGFR(erbb=None) + EGFR(erbb=None) 0.1 s−1

EGFR(erbb=ANY, grb2=None) + GRB2(erbb=None) >> EGFR(erbb=ANY, grb2=1) % GRB2(erbb=1) 1.0 molec−1s−1

EGFR(grb2=1) % GRB2(erbb=1) >> EGFR(grb2=None) + GRB2(erbb=None) 0.1 s−1

RAS(sos=ANY, gtp=None) + GTP(ras=None) >> RAS(sos=ANY, gtp=1) % GTP(ras=1) 50.0 molec−1s−1

RAS(gtp=1) % GTP(ras=1) >> RAS(gtp=None) + GTP(ras=None) 0.5 s−1

RAS(sos=None, gtp=ANY, map3k=None) + BRAF(V600=’E’, ras=None) >> RAS(sos=None, gtp=ANY, map3k=1)
% BRAF(V600=’E’, ras=1)

1.0 molec−1s−1

RAS(map3k=1) % BRAF(V600=’E’, ras=1) >> RAS(map3k=None) + BRAF(V600=’E’, ras=None) 0.5 s−1

GRB2(erbb=ANY, sos=None) + SOS(S=(u’u’, WILD), grb2=None) >> GRB2(erbb=ANY, sos=1) % SOS(S=(u’u’,
WILD), grb2=1)

1.0 molec−1s−1

GRB2(sos=1) % SOS(grb2=1) >> GRB2(sos=None) + SOS(grb2=None) 0.1 s−1

SOS(ras=None, S=(u’u’, WILD), grb2=ANY) + RAS(sos=None, map3k=None) >> SOS(ras=1, S=(u’u’, WILD),
grb2=ANY) % RAS(sos=1, map3k=None)

1.0 molec−1s−1

SOS(ras=1) % RAS(sos=1) >> SOS(ras=None) + RAS(sos=None) 50.0 s−1

BRAF(V600=’E’, ras=ANY, map3k=None) + BRAF(V600=’E’, ras=ANY, map3k=None) >> BRAF(V600=’E’,
ras=ANY, map3k=1) % BRAF(V600=’E’, ras=ANY, map3k=1)

10.0 molec−1s−1

BRAF(V600=’E’, map3k=1) % BRAF(V600=’E’, map3k=1) >> BRAF(V600=’E’, map3k=None) + BRAF(V600=’E’,
map3k=None)

1.0 s−1

VEMURAFENIB(map3k=None) + BRAF(V600=’E’, map3k=None, vemurafenib=None) >> VEMU-
RAFENIB(map3k=1) % BRAF(V600=’E’, map3k=None, vemurafenib=1)

10.0 molec−1s−1

VEMURAFENIB(map3k=1) % BRAF(V600=’E’, vemurafenib=1) >> VEMURAFENIB(map3k=None) +
BRAF(V600=’E’, vemurafenib=None)

1.0 s−1

VEMURAFENIB(map3k=None) + BRAF(V600=’E’, map3k=ANY, vemurafenib=None) >> VEMU-
RAFENIB(map3k=1) % BRAF(V600=’E’, map3k=ANY, vemurafenib=1)

0.0001 molec−1s−1

PPP2CA(map2k=None) + MEK(mapk=None, phospho=’p’, ppp2=None) >> PPP2CA(map2k=1) %
MEK(mapk=None, phospho=’p’, ppp2=1)

1.0 molec−1s−1

PPP2CA(map2k=1) % MEK(mapk=None, phospho=’p’, ppp2=1) >> PPP2CA(map2k=None) + MEK(mapk=None,
phospho=’u’, ppp2=None)

10.0 s−1

PPP2CA(map2k=1) % MEK(ppp2=1) >> PPP2CA(map2k=None) + MEK(ppp2=None) 0.001

MEK(mapk=None, phospho=’p’, ppp2=None) + ERK(map2k=None, phospho=’u’) >> MEK(mapk=1, phospho=’p’,
ppp2=None) % ERK(map2k=1, phospho=’u’)

1.0 s−1

MEK(mapk=1, phospho=’p’, ppp2=None) % ERK(map2k=1, phospho=’u’) >> MEK(mapk=None, phospho=’p’,
ppp2=None) + ERK(map2k=None, phospho=’p’)

10.0 molec−1s−1

MEK(mapk=1) % ERK(map2k=1) >> MEK(mapk=None) + ERK(map2k=None) 0.1 s−1

DUSP6(mapk=None) + ERK(phospho=’p’, sos=None, dusp=None) >> DUSP6(mapk=1) % ERK(phospho=’p’,
sos=None, dusp=1)

1.0 molec−1s−1

DUSP6(mapk=1) % ERK(phospho=’p’, sos=None, dusp=1) >> DUSP6(mapk=None) + ERK(phospho=’u’, sos=None,
dusp=None)

10.0 s−1

DUSP6(mapk=1) % ERK(dusp=1) >> DUSP6(mapk=None) + ERK(dusp=None) 0.001 s−1

BRAF(V600=’E’, vemurafenib=None, map2k=None) + MEK(phospho=’u’, map3k=None) >> BRAF(V600=’E’, ve-
murafenib=None, map2k=1) % MEK(phospho=’u’, map3k=1)

1.0 molec−1s−1

BRAF(V600=’E’, vemurafenib=None, map2k=1) % MEK(phospho=’u’, map3k=1) >> BRAF(V600=’E’, vemu-
rafenib=None, map2k=None) + MEK(phospho=’p’, map3k=None)

3.0 s−1

BRAF(V600=’E’, map2k=1) % MEK(map3k=1) >> BRAF(V600=’E’, map2k=None) + MEK(map3k=None) 0.1 s−1

ERK(phospho=’p’, sos=None, dusp=None) + SOS(ras=None, S=’u’, mapk=None) >> ERK(phospho=’p’, sos=1,
dusp=None) % SOS(ras=None, S=’u’, mapk=1)

10−5 molec−1s−1

ERK(phospho=’p’, sos=1, dusp=None) % SOS(ras=None, S=’u’, mapk=1) >> ERK(phospho=’p’, sos=None,
dusp=None) + SOS(ras=None, S=’p’, mapk=None)

1.0 s−1

ERK(sos=1) % SOS(mapk=1) >> ERK(sos=None) + SOS(mapk=None) 0.0001 s−1

PHOSPHATASE(sos=None) + SOS(S=’p’, phosphatase=None) >> PHOSPHATASE(sos=1) % SOS(S=’p’, phos-
phatase=1)

1.0 molec−1s−1

PHOSPHATASE(sos=1) % SOS(S=’p’, phosphatase=1) >> PHOSPHATASE(sos=None) + SOS(S=’u’, phos-
phatase=None)

0.0001 s−1

PHOSPHATASE(sos=1) % SOS(phosphatase=1) >> PHOSPHATASE(sos=None) + SOS(phosphatase=None) 0.1 s−1

Table 7: Rules and parameters for MEMI 1.2

A Pathway Commons query was performed with INDRA to obtain paths from MAPK1 or
MAPK3 to SOS1 or SOS2. This yielded the following list of INDRA Statements

• Phosphorylation(MAPK1(), SOS1(), S, 1132),

• Phosphorylation(MAPK1(), SOS1(), S, 1197),

• Phosphorylation(MAPK1(), SOS1(), S, 1193),

• Phosphorylation(MAPK1(), SOS1(), S, 1178)

17

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Monomer Copy number

EGF 103

EGFR 105

GRB2 105

SOS 103

GTP 107

RAS 2 · 105

BRAF-V600E 105

MEK 105

ERK 105

PPP2CA 105

DUSP6 103

Phosphatase 102

Table 8: Total amounts of molecular species (monomers) for MEMI1.0-1.2 shown in copy numbers per cell

This indicates that MAPK1 phosphorylates SOS1 on several serine residues.

We queried the BEL Large Corpus using a neighborhood search around SOS1 and SOS2. This
returned the following relevant mechanisms:

• Phosphorylation(MAPK1(), SOS1(), S, 1178),

• Phosphorylation(MAPK1(), SOS1(), S, 1167),

• Inhibition(MAPK1(activity=’kinase’), SOS1(), ’catalytic’)

All three mechanisms refer to PMID8816480, Identification of the mitogen-activated protein
kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2 [10] as their
source evidence. This implies that the serine-phosphorylation of SOS1 by MAPK1 reduces its
affinity to bind to GRB2 thereby resulting in its loss of activity.

2.5 An extensible and executable map of the RAS pathway

The following text was used to assemble the RAS pathway map.

Growth-factor proteins activate EGFR, ERBB2 and FGFR.
Growth-factor proteins activate PDGFR.
Growth-factor proteins activate MET, ROS1 and ALK.
EGFR, ERBB2, PDGFR, MET, ROS1, ALK and FGFR activate
GRB2 and SHC.
GRB2 and SHC activate RASGRF and SOS.
GRB2 binds SHC.
SOS and RASGRF activate HRAS, NRAS and KRAS.
RASGRP activates HRAS, KRAS and NRAS.
SPRY deactivates HRAS, KRAS and NRAS.
The RASA-ARHGAP35 complex deactivates HRAS, NRAS and
KRAS.
RASAL deactivates HRAS, NRAS and KRAS.
The SPRED-NF1 complex deactivates HRAS, NRAS and KRAS.
The RASA-ARHGAP35 complex deactivates RHOA, RHOB and
RHOC.
RASAL deactivates RHOA, RHOB and RHOC.

The SPRED-NF1 complex deactivates RHOA, RHOB and RHOC.
HRAS, NRAS and KRAS activate RALGDS.
RALGDS activates RALA and RALB.
HRAS, NRAS and KRAS activate ARAF, BRAF and RAF1.
ARAF, BRAF and RAF1 activate MAP2K1 and MAP2K2.
MAP2K1 and MAP2K2 activate MAPK1 and MAPK3.
MAPK1 and MAPK3 activate ETS, JUN and FOS.
KSR binds ARAF, BRAF and RAF1.
KSR binds MAP2K1 and MAP2K2.
KSR binds MAPK1 and MAPK3.
ETS, FOS and JUN activate MDM2, CCND1 and DUSP.
MDM2 deactivates TP53.
CCND1 activates CDK4 and CDK6.
CDK4 and CDK6 deactivate pRB.
DUSP deactivates MAPK1 and MAPK3.
SOS and RASGRF activate RHOA and RHOB.
SOS and RASGRF activate RHOC.

18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

RHOA activates ROCK1 and ROCK2.
RHOB and RHOC activate ROCK1 and ROCK2.
HRAS, NRAS and KRAS activate PI3K.
PI3K activates PIP3.
PTEN deactivates PIP3.
PIP3 activates PDPK1, AKT and TIAM.
PDPK1 activates AKT.
AKT deactivates TSC1 and TSC2.

TSC1 and TSC2 deactivate RHEB.
RHEB activates mTORC2.
STK11 activates AMPK.
AMPK deactivates mTORC2.
mTORC2 deactivates EIF4EBP1.
mTORC2 activates P90RSK.
TIAM activates RAC and RAC activates PAK.

Below is the set of logical functions that define the update steps of the Boolean network
automatically assembled from the RAS pathway map.

mTORC2* = (RHEB) and not (AMPK)
EGFR* = GROWTH-FACTOR
TIAM* = PIP-3
RHOC* = (RASGRF or SOS) and not (RASAL or SPRED or RASA)
ARAF* = KRAS or HRAS or NRAS
AKT* = PDPK1 or PIP-3
EIF4EBP1* = not (mTORC2)
SHC* = EGFR or PDGFR or ALK or ERBB2 or MET or FGFR or
ROS1
JUN* = MAPK1 or MAPK3
ROCK2* = RHOB or RHOC or RHOA
TP53* = not (MDM2)
CCND1* = ETS or JUN or FOS
RHOA* = (RASGRF or SOS) and not (RASAL or SPRED or RASA)
CDK4* = CCND1
TSC2* = not (AKT)
RAC* = TIAM
MAP2K2* = RAF1 or BRAF or ARAF
BRAF* = KRAS or HRAS or NRAS
PAK* = RAC
ROCK1* = RHOB or RHOC or RHOA
GRB2* = EGFR or PDGFR or ALK or ERBB2 or MET or FGFR or
ROS1
AMPK* = STK11
ROS1* = GROWTH-FACTOR
RHEB* = not (TSC2 or TSC1)
MAP2K1* = RAF1 or BRAF or ARAF
MDM2* = ETS or JUN or FOS
RB1* = not (CDK4 or CDK6)

HRAS* = (RASGRF or RASGRP or SOS) and not (RASA or SPRY
or RASAL or SPRED)
MAPK3* = (MAP2K1 or MAP2K2) and not (DUSP)
PI3K* = KRAS or HRAS or NRAS
MET* = GROWTH-FACTOR
FGFR* = GROWTH-FACTOR
RAF1* = KRAS or HRAS or NRAS
ETS* = MAPK1 or MAPK3
RALA* = RALGDS
PIP-3* = (PI3K) and not (PTEN)
RALB* = RALGDS
SOS* = SHC or GRB2
KRAS* = (RASGRF or RASGRP or SOS) and not (RASA or SPRY
or RASAL or SPRED)
NRAS* = (RASGRF or RASGRP or SOS) and not (RASA or SPRY
or RASAL or SPRED)
RASGRF* = SHC or GRB2
ALK* = GROWTH-FACTOR
ERBB2* = GROWTH-FACTOR
RHOB* = (RASGRF or SOS) and not (RASAL or SPRED or RASA)
PDGFR* = GROWTH-FACTOR
MAPK1* = (MAP2K1 or MAP2K2) and not (DUSP)
TSC1* = not (AKT)
DUSP* = ETS or JUN or FOS
CDK6* = CCND1
RALGDS* = KRAS or HRAS or NRAS
PDPK1* = PIP-3
P90RSK* = mTORC2
FOS* = MAPK1 or MAPK3

Boolean network simulations were performed using the boolean2 package available from
https://github.com/ialbert/booleannet [11]. We simulated 100 traces using asynchronous updates
on the nodes (which results in stochastic behavior) and then took the average of the value of each
node (with 0 corresponding to the low and 1 to the high state of each node).

19

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://github.com/ialbert/booleannet
https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

References

1. O. Babur, U. Dogrusoz, E. Demir, C. Sander, Bioinformatics 26, 429 (2010).

2. M. Sari, et al., PloS one 10, e0128985 (2015).

3. J. Allen, W. de Beaumont, L. Galescu, C. M. Teng, ACL-IJCNLP 2015 p. 1 (2015).

4. J. F. Allen, M. Swift, W. De Beaumont, Proceedings of the 2008 Conference on Semantics in
Text Processing (Association for Computational Linguistics, 2008), pp. 343–354.

5. C. D. Manning, et al., ACL (System Demonstrations) (2014), pp. 55–60.

6. T. Hara, Y. Miyao, J. Tsujii, IJCNLP (Springer, 2005), pp. 199–210.

7. J. F. Allen, G. Ferguson, B. Miller, E. Ringger (1995).

8. M. H. Manshadi, J. Allen, M. Swift, 13th Conference on Formal Grammar (FG 2008),
Hamburg, Germany (2008).

9. C. Fellbaum, WordNet (Wiley Online Library, 1998).

10. S. Corbalan-Garcia, S. Yang, K. Degenhardt, D. Bar-Sagi, Molecular and cellular biology 16,
5674 (1996).

11. I. Albert, J. Thakar, S. Li, R. Zhang, R. Albert, Source Code for Biology and Medicine 3, 1
(2008).

20

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Appendix Notebook 1: Inspecting INDRA Statements and
assembled models
In this example we look at how intermediate results of the assembly process from word models to executable models can be
inspected. We first import the necessary modules of INDRA.

In [1]: %pylab inline
import json
from indra.sources import trips
from indra.statements import draw_stmt_graph, stmts_to_json

Collecting Statements from reading
First, we use the TRIPS system via INDRA's trips module to read two sentences which describe distinct mechanistic hypotheses
about ATM phosphorylation.

In [2]: text = 'Active ATM phosphorylates itself. Active ATM phosphorylates another ATM molecul
e.'
tp = trips.process_text(text)

Here tp is a TripsProcessor object whose extracted Statements can be accessed in a list.

Printing Statements as objects
It is possible to look at the string representation of the extracted INDRA Statements as below.

In [3]: tp.statements

The first Statement, obtained by reading "Active ATM phosphorylates itself", represents the Autophosphorylation of ATM with ATM
being in an active state. Here activity stands for generic molecular activity and True indicates an active as opposed to an
inactive state.

The second Statement, obtained from "Active ATM phosphorylates another ATM molecule" is a Phosphorylation with the enzyme
ATM being in an active state phosphorylating another ATM as a substrate.

Drawing Statements as graphs
Next, we can use the draw_stmt_graph function to display the Statements produced by reading and INDRA input processing as a
graph. The root of each tree is the type of the Statement, in this case Autophosphorylation. The arguments of the Statement branch
off from the root. In this case the enzyme argument of Autophosphorylation is an Agent with name ATM. Its database references can
be inspected under the db_refs property.

Populating the interactive namespace from numpy and matplotlib

Out[3]: [Autophosphorylation(ATM(activity: True)),
 Phosphorylation(ATM(activity: True), ATM())]

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

In [4]: pylab.rcParams['figure.figsize'] = (12, 8)
draw_stmt_graph(tp.statements[1:])

Printing / exchanging Statements as JSON
INDRA Statements can be serialized into JSON format. This is a human-readable and editable form of INDRA Statements which is
independent of Python and can therefore be used as a platform-independent data exchange format for Statements. The function
stmts_to_json in the indra.statements module takes a list of Statements and returns a JSON as a dictionary. Below we
pretty-print this JSON as a string with indentations.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

In [5]: statements_json = stmts_to_json(tp.statements)
print(json.dumps(statements_json, indent=1))

[
 {
 "type": "Autophosphorylation",
 "enz": {
 "name": "ATM",
 "activity": {
 "activity_type": "activity",
 "is_active": true
 },
 "db_refs": {
 "TEXT": "ATM",
 "HGNC": "795",
 "UP": "Q13315",
 "NCIT": "C17924"
 },
 "sbo": "http://identifiers.org/sbo/SBO:0000460"
 },
 "evidence": [
 {
 "source_api": "trips",
 "text": "Active ATM phosphorylates itself."
 }
],
 "id": "35362b6c-2229-436a-862f-fec499713a9d",
 "sbo": "http://identifiers.org/sbo/SBO:0000216"
 },
 {
 "type": "Phosphorylation",
 "enz": {
 "name": "ATM",
 "activity": {
 "activity_type": "activity",
 "is_active": true
 },
 "db_refs": {
 "TEXT": "ATM",
 "HGNC": "795",
 "UP": "Q13315",
 "NCIT": "C17924"
 },
 "sbo": "http://identifiers.org/sbo/SBO:0000460"
 },
 "sub": {
 "name": "ATM",
 "db_refs": {
 "TEXT": "ATM",
 "HGNC": "795",
 "UP": "Q13315",
 "NCIT": "C17924"
 },
 "sbo": "http://identifiers.org/sbo/SBO:0000015"
 },
 "evidence": [
 {
 "source_api": "trips",
 "text": "Active ATM phosphorylates another ATM molecule."
 }
],
 "id": "cb1fae70-41b8-4be0-b1d2-aa8ebcbb20a3",
 "sbo": "http://identifiers.org/sbo/SBO:0000216"
 }
]

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Inspecting assembled rule-based models
We now assemble two PySB models, one for each Statement.

In [6]: from indra.assemblers import pysb_assembler
pa = pysb_assembler.PysbAssembler()
pa.add_statements([tp.statements[0]])
model1 = pa.make_model()

We can examine the properties of the PySB model object before exporting it. As seen below, the model has a single Monomer and
Rule, and two Parameters.

In [7]: model1

We can look at the ATM Monomer and its sites. ATM has an activity site which can be either active of inactive. It also has a
phospho site with u and p states.

In [8]: model1.monomers['ATM']

The rule representing ATM autophosphorylation can be inspected below. The rule is parameterized by the forward rate
kf_a_autophos_1.

In [9]: model1.rules[0]

We now assemble a model for the second Statement.

In [10]: pa = pysb_assembler.PysbAssembler()
pa.add_statements([tp.statements[1]])
model2 = pa.make_model()

In [11]: model2

In [12]: model2.monomers['ATM']

In [13]: model2.rules[0]

Out[7]: <Model 'None' (monomers: 1, rules: 1, parameters: 2, expressions: 0, compartments: 0) a
t 0x109364240>

Out[8]: Monomer('ATM', ['activity', 'phospho'], {'activity': ['inactive', 'active'], 'phospho':
['u', 'p']})

Out[9]: Rule('ATM_autophospho_ATM_phospho', ATM(activity='active', phospho='u') >> ATM(activity
='active', phospho='p'), kf_a_autophos_1)

Out[11]: <Model 'None' (monomers: 1, rules: 1, parameters: 2, expressions: 0, compartments: 0) a
t 0x1216ab358>

Out[12]: Monomer('ATM', ['activity', 'phospho'], {'activity': ['inactive', 'active'], 'phospho':
['u', 'p']})

Out[13]: Rule('ATM_phosphorylation_ATM_phospho', ATM(activity='active') + ATM(phospho='u') >> AT
M(activity='active') + ATM(phospho='p'), kf_aa_phosphorylation_1)

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

As we see, the rule assembled for this model contains two distinct ATMs on each side, one acting as the kinase and the other as the
substrate.

Inspecting assembled model annotations
Finally, models assembled by INDRA carry automatically propagated annotations. Below, the grounding of ATM in the UniProt, HGNC
and NCIT databases is annotated; the semantic role of monomers in each rule are also annotated, and finally, the unique ID of the
INDRA Statement that a rule was derived from is annotated.

In [14]: model1.annotations

In [15]: model2.annotations

Out[14]: [Annotation(ATM, 'http://identifiers.org/hgnc/HGNC:795', 'is'),
 Annotation(ATM, 'http://identifiers.org/uniprot/Q13315', 'is'),
 Annotation(ATM, 'http://identifiers.org/ncit/C17924', 'is'),
 Annotation(ATM_autophospho_ATM_phospho, 'ATM', 'rule_has_subject'),
 Annotation(ATM_autophospho_ATM_phospho, 'ATM', 'rule_has_object'),
 Annotation(ATM_autophospho_ATM_phospho, '35362b6c-2229-436a-862f-fec499713a9d', 'from_
indra_statement')]

Out[15]: [Annotation(ATM, 'http://identifiers.org/hgnc/HGNC:795', 'is'),
 Annotation(ATM, 'http://identifiers.org/uniprot/Q13315', 'is'),
 Annotation(ATM, 'http://identifiers.org/ncit/C17924', 'is'),
 Annotation(ATM_phosphorylation_ATM_phospho, 'ATM', 'rule_has_subject'),
 Annotation(ATM_phosphorylation_ATM_phospho, 'ATM', 'rule_has_object'),
 Annotation(ATM_phosphorylation_ATM_phospho, 'cb1fae70-41b8-4be0-b1d2-aa8ebcbb20a3', 'f
rom_indra_statement')]

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

Appendix Notebook 2: Model complexity, context specification and
assembly policies
In this notebook we explore the effects of specified conditions on Agents (e.g. bound conditions, modification conditions) and
assembly policies on the combinatorial complexity of dynamical models.

First, we import INDRA's TRIPS input API and PySB model assembler.

In [1]: from indra.sources import trips
from indra.assemblers import PysbAssembler

Below is some bookkeeping code needed to display reaction network graphs
%matplotlib inline
from pysb.tools import render_reactions
import pygraphviz, subprocess
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
def draw_reaction_network(model):
 pygraphviz.AGraph(render_reactions.run(model)).draw('model.png', prog='dot')
 img = mpimg.imread('model.png')
 plt.figure(figsize=(50, 50))
 plt.imshow(img)
 plt.xticks([])
 plt.yticks([])

Model1: RAF to ERK without specifying agent context
In the first case, two binding events and a phosphorylation is described with no additional context specified on any of the proteins.

In [2]: tp = trips.process_text('RAF binds Vemurafenib, RAF phosphorylates MEK and MEK phosphory
lates ERK.')

This yields 3 INDRA Statements, as follows. Here empty parentheses after the Agent names indicate that there is no additional
context specified on them.

In [3]: tp.statements

Assembly with one-step policy
We now assemble this model using the default one_step policy and store it in the model1_one variable.

In [4]: pa = PysbAssembler()
pa.add_statements(tp.statements)
pa.make_model(policies='one_step')

In [5]: model1_one = pa.model

Out[3]: [Complex(RAF(), VEMURAFENIB()),
 Phosphorylation(RAF(), MEK()),
 Phosphorylation(MEK(), ERK())]

Out[4]: <Model 'None' (monomers: 4, rules: 4, parameters: 8, expressions: 0, compartments: 0) a
t 0x1216fa5f8>

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

The model has 4 Monomers and 4 Rules.

In [6]: model1_one.monomers

In [7]: model1_one.rules

Let's examine the last rule which corresponds to MEK phosphorylating ERK. Here, MEK() appears without additional context
specified. This means that the rule will apply to any form of MEK, for instance, MEK that is unphosphorylated.

We now generate the rule-based model into a reaction network form using PySB's interface to BioNetGen.

In [8]: from pysb.bng import generate_equations
generate_equations(model1_one)

We can now plot the reaction network to examine the model. Each colored node of the reaction network is a molecular species,
reactions are represented by gray nodes, and arrows show species being consumed and produced by each reaction.

In [9]: draw_reaction_network(model1_one)

We see from the reaction network that RAF is able to phosphorylate MEK whether or not it is bound to Vemurafenib, and MEK
phosphorylates ERK whether or not it is phosphorylated.

Assembly with two-step policy
Let's now assemble the same model with the two-step policy. This will result in a more detailed model in which MEK first binds
ERK reversibly, and phosphorylated ERK is released from the MEK-ERK complex. We will store this model in the model1_two
variable.

Out[6]: ComponentSet([
 Monomer('MEK', ['phospho'], {'phospho': ['u', 'p']}),
 Monomer('ERK', ['phospho'], {'phospho': ['u', 'p']}),
 Monomer('RAF', ['vemurafenib']),
 Monomer('VEMURAFENIB', ['map3k']),
])

Out[7]: ComponentSet([
 Rule('RAF_VEMURAFENIB_bind', RAF(vemurafenib=None) + VEMURAFENIB(map3k=None) >> RAF(ve
murafenib=1) % VEMURAFENIB(map3k=1), kf_rv_bind_1),
 Rule('RAF_VEMURAFENIB_dissociate', RAF(vemurafenib=1) % VEMURAFENIB(map3k=1) >> RAF(ve
murafenib=None) + VEMURAFENIB(map3k=None), kr_rv_bind_1),
 Rule('RAF_phosphorylation_MEK_phospho', RAF() + MEK(phospho='u') >> RAF() + MEK(phosph
o='p'), kf_rm_phosphorylation_1),
 Rule('MEK_phosphorylation_ERK_phospho', MEK() + ERK(phospho='u') >> MEK() + ERK(phosph
o='p'), kf_me_phosphorylation_1),
])

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

In [10]: pa.make_model(policies='two_step')

In [11]: model1_two = pa.model

In [12]: model1_two.monomers

In [13]: for rule in model1_two.rules:
 print(rule.rule_expression)

We can now generate the reaction network for model1_two and inspect the reaction network that is created.

In [14]: generate_equations(model1_two)

In [15]: model1_two.species

Out[10]: <Model 'None' (monomers: 4, rules: 8, parameters: 12, expressions: 0, compartments: 0)
 at 0x1216fa630>

Out[12]: ComponentSet([
 Monomer('MEK', ['phospho', 'map3k', 'mapk'], {'phospho': ['u', 'p']}),
 Monomer('ERK', ['phospho', 'map2k'], {'phospho': ['u', 'p']}),
 Monomer('RAF', ['vemurafenib', 'map2k']),
 Monomer('VEMURAFENIB', ['map3k']),
])

RAF(vemurafenib=None) + VEMURAFENIB(map3k=None) >> RAF(vemurafenib=1) % VEMURAFENIB(map
3k=1)
RAF(vemurafenib=1) % VEMURAFENIB(map3k=1) >> RAF(vemurafenib=None) + VEMURAFENIB(map3k=
None)
RAF(map2k=None) + MEK(phospho='u', map3k=None) >> RAF(map2k=1) % MEK(phospho='u', map3k
=1)
RAF(map2k=1) % MEK(phospho='u', map3k=1) >> RAF(map2k=None) + MEK(phospho='p', map3k=No
ne)
RAF(map2k=1) % MEK(map3k=1) >> RAF(map2k=None) + MEK(map3k=None)
MEK(mapk=None) + ERK(phospho='u', map2k=None) >> MEK(mapk=1) % ERK(phospho='u', map2k=
1)
MEK(mapk=1) % ERK(phospho='u', map2k=1) >> MEK(mapk=None) + ERK(phospho='p', map2k=Non
e)
MEK(mapk=1) % ERK(map2k=1) >> MEK(mapk=None) + ERK(map2k=None)

Out[15]: [MEK(phospho='u', map3k=None, mapk=None),
 ERK(phospho='u', map2k=None),
 RAF(vemurafenib=None, map2k=None),
 VEMURAFENIB(map3k=None),
 RAF(vemurafenib=1, map2k=None) % VEMURAFENIB(map3k=1),
 MEK(phospho='u', map3k=1, mapk=None) % RAF(vemurafenib=None, map2k=1),
 ERK(phospho='u', map2k=1) % MEK(phospho='u', map3k=None, mapk=1),
 MEK(phospho='u', map3k=1, mapk=None) % RAF(vemurafenib=2, map2k=1) % VEMURAFENIB(map3k
=2),
 ERK(phospho='u', map2k=1) % MEK(phospho='u', map3k=2, mapk=1) % RAF(vemurafenib=None,
 map2k=2),
 ERK(phospho='u', map2k=1) % MEK(phospho='u', map3k=2, mapk=1) % RAF(vemurafenib=3, map
2k=2) % VEMURAFENIB(map3k=3),
 MEK(phospho='p', map3k=None, mapk=None),
 ERK(phospho='p', map2k=None),
 ERK(phospho='u', map2k=1) % MEK(phospho='p', map3k=None, mapk=1)]

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

In [16]: draw_reaction_network(model1_two)

The two-step policy produced a total of 13 molecular species and 19 reactions. ERK now appears in 6 possible forms:

ERK(phospho='u', map2k=None)
ERK(phospho='p', map2k=None)
ERK(phospho='u', map2k=1) % MEK(phospho='u', map3k=None, mapk=1)
ERK(phospho='u', map2k=1) % MEK(phospho='p', map3k=None, mapk=1)
ERK(phospho='u', map2k=1) % MEK(phospho='u', map3k=2, mapk=1) % RAF(vemurafenib=None, map2k=2)
ERK(phospho='u', map2k=1) % MEK(phospho='u', map3k=2, mapk=1) % RAF(vemurafenib=3, map2k=2) %
VEMURAFENIB(map3k=3)

This means that our initial description allowed for the possibility of ERK, MEK, RAF and Vemurafenib all simultaneously being in a
complex. While the existence of such a complex is not impossible, we can introduce additional assumptions to refine the model.

Model2: RAF to ERK with specifying context
In this model we introduce additional assumptions (by explicitly making them part of the model definition) to the previous model. In
particular, we add additional context on the agents to make causal structure explicit and simplify the model.

Assembly with two-step policy

In [17]: tp = trips.process_text('RAF binds Vemurafenib. '
 'RAF not bound to Vemurafenib phosphorylates MEK. '
 'Phosphorylated MEK not bound to RAF phosphorylates ERK.')

The INDRA Statements extracted by processing this text are shown below.

In [18]: tp.statements

We see that some agents are now subject to additional conditions, for instance, RAF(bound: [VEMURAFENIB, False]) specifies
that RAF should not be bound to Vemurafenib in order to phosphorylate MEK.

Let's now assemble the model and generate the reaction network.

Out[18]: [Complex(RAF(), VEMURAFENIB()),
 Phosphorylation(RAF(bound: [VEMURAFENIB, False]), MEK()),
 Phosphorylation(MEK(mods: (phosphorylation), bound: [RAF, False]), ERK())]

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

In [19]: pa = PysbAssembler()
pa.add_statements(tp.statements)
pa.make_model(policies='two_step')

In [20]: generate_equations(pa.model)

In [21]: draw_reaction_network(pa.model)

The model is now significantly simpler with a total of 7 reactions down from 19 in the previous model.

Assembly with one-step policy and Michaelis-Menten rate law

As an alternative to the two-step policy, we can assemble the same model using a simpler, one-step policy.

In [22]: pa.make_model(policies='one_step')

In [23]: generate_equations(pa.model)

In [24]: draw_reaction_network(pa.model)

As we see, this model contains 7 individual species with 3 reactions in total.

One issue with the simple one-step policy is that enzymatic catalysis is modeled with pseudo-first order kinetics. Alternatively, we
can use a Michaelis-Menten policy in with case both phosphorylation processes are still effectively modeled as one-step but their
kinetic rates will account for enzyme saturation. As seen below, the model still retains the same structure as under the one-step
policy, only kinetic rates change.

Out[19]: <Model 'None' (monomers: 4, rules: 8, parameters: 12, expressions: 0, compartments: 0)
 at 0x1216faa90>

Out[22]: <Model 'None' (monomers: 4, rules: 4, parameters: 8, expressions: 0, compartments: 0) a
t 0x1216fa9b0>

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

In [25]: pa.make_model(policies='michaelis_menten')

In [26]: draw_reaction_network(pa.model)

Out[25]: <Model 'None' (monomers: 4, rules: 4, parameters: 10, expressions: 2, compartments: 0)
 at 0x117ef4080>

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/119834doi: bioRxiv preprint

https://doi.org/10.1101/119834
http://creativecommons.org/licenses/by-nc/4.0/

	INDRA_manuscript_revised
	figure1_IndraOverview.ai
	figure2_IndraStatements.ai
	figure3_InputSources.ai
	figure4_Assembly.ai
	figure5_p53Model.ai
	figure6_BrafModel.ai
	figure7_RasPathway.ai
	figure8_ModelingApproach.ai
	INDRA_appendix
	Appendix Figures
	Appendix Methods
	The TRIPS/DRUM natural language processing system
	Querying databases to extract INDRA Statements
	Modeling alternative dynamical patterns of p53 activation
	Modeling resistance to targeted therapy by vemurafenib
	An extensible and executable map of the RAS pathway

	References
	Appendix Notebook 1
	Appendix Notebook 2
	INDRA Software Documentation

