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Human genetic variability is thought to account for a substantial fraction of individual 

biochemical characteristics – in biomedical sense, of individual drug response. However, only 

a handful of human genetic variants have been linked to medication outcomes. Here, we 

combine data on drug-protein interactions and human genome sequences to assess the 

impact of human variation on their binding affinity. Using data from the complexes of FDA-

drugs and drug-like compounds, we predict SNPs substantially affecting the protein-ligand 

binding affinities. We estimate that an average individual carries ~6 SNPs affecting ~5 

different FDA-approved drugs from among all of the approved compounds. SNPs affecting 

drug-protein binding affinity have low frequency in the population indicating that the 

genetic component for many ADEs may be highly personalized with each individual carrying 

a unique set of relevant SNPs. The reduction of ADEs, therefore, may primarily rely on the 

application of computational genome analysis in the clinic rather than the experimental 

study of common SNPs.  
 

Adverse drug effects (ADEs), instances when medication causes an unintended adverse response, 

substantially contribute to morbidity, the cost and time of treatment (Rodríguez-Monguió et al. 

2003; Boeker et al. 2013) often appear unpredictably (Jolivot el al. 2014; Evans et al. 2003). 

Pharmacogenomics approaches identified the basis of individual drug response to several drugs 

(Wang et al. 2011; Relling et al. 2015), including those used in chemotherapy (Patel et al. 2015; 

Hertz et al. 2015). Most approaches focus on the metabolic aspect of individual drug response, 

leading to different dosage requirements depending on the genetic variation that affects the rate of 

drug metabolism (Relling et al. 2015; Hertz et al. 2015; Zhou et al. 2015). However, our 

understanding of the contribution of genetics to the causes and the incidence of individual drug 
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response remains fragmented (Wang et al. 2011; Relling et al. 2015; Mooney 2015). Here we 

utilize a structural approach to the study of occurrence of genetic variation with probable effect on 

individual drug response in the human population. The molecular mechanism of action for 

therapeutic small molecular compounds is directly related to the strength of interaction of the drug 

with its intended target, typically a protein (Hopkins et al. 2011; Swinney et al. 2004). Thus, to 

assay the prevalence of human variability potentially affecting drug response we combined 

genome-wide data on human single nucleotide polymorphisms (SNPs) with structural data on 

drug-protein complexes. 

 

We obtained data on human SNPs from the 1000 genome project (Auton et al. 2015), which 

included polymorphism data from 2504 individuals. We then selected all small molecular 

compound-protein structural complexes from PDB (Berman et al. 2000) in which the compound 

was identical or highly similar (see Methods) to an FDA-approved or an FDA experimental drug. 

Using the drug-protein structural complexes we identified the binding sites of the protein in direct 

interaction with the drug, whereby the closest heavy atom of the amino acid residue was <6 Å 

away from the heavy atom of the drug. We then mapped the structural data to the human genome 

obtaining data on drug binding sites carrying polymorphisms among the 2504 sequenced 

individuals in our data. 

 

Results 
 

Drug-protein complexes were available for ~16% of FDA-approved drugs (296/1826), and for 170 

of them (~9% of the total) our approach identified a SNP in the drug binding interface. The fraction 

of available drug-protein complexes was substantially higher for FDA experimental drugs, ~45% 

(2204/4925), with ~20% of these drugs (958/4925) having a SNP in the binding interface in our 

data. Many of the SNPs in drug-binding sites may not influence the drug-protein interaction and, 

therefore, may not to contribute to ADEs or individual drug reactions.  

 

Therefore, our idea was to use a docking approach (Morris et al. 2009) to calculate the difference 

in the free energy of the drug and wild-type protein interaction and that of the drug with the protein 

sequencing incorporating the amino acid polymorphism (Table 1).  

 

 
 

Total Average/person 

Number of FDA drugs (in complex with with PDB 

structure, with a SNP in at least one binding site) 
FDA-approved: 1826 

(296, 170) 
FDA experimental: 

4925 (2204, 958) 
FDA all: 6751 (2500, 

1128) 

NA 

Number of SNPs at binding sites (homozygous / 

heterozygous) 
FDA-approved: 554 

(26/552)  
FDA experimental: 

2766 (186/2757) 
FDA all: 3052 

(199/3042)  

FDA-approved: 3.33 

(0.59/2.74) 
FDA experimental: 29.87 

(5.11/24.76)  
FDA all: 

31.47 (5.5/26) 
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Number of SNPs probably affecting drug-protein 

binding affinity (homozygous / heterozygous) 
FDA-approved: 

53  (0/53) 
FDA-experimental: 390 

(15/390) 
FDA all: 425 (15/425) 

FDA-approved: 0.03 

(0/0.03) 
FDA-experimental: 3.1 

(0.61/2.49)  
FDA all: 3.12 (0.61/2.51) 

Number of SNPs possibly affecting drug-protein 

binding affinity (homozygous / heterozygous) 
FDA-approved: 192 

(5/191) 
FDA-experimental: 835 

(41/833)  
FDA all: 956 (45/953) 

FDA-approved:0.81 

(0.1/0.71) 
FDA-experimental: 4.45 

(0.46/3.9)  
FDA all: 5 (0.55/4.45) 

Number of drugs probably (possibly) affected by a 

SNP  
FDA-approved: 30 (75) 
FDA experimental: 165 

(357) 
FDA all: 195 (432) 

FDA-approved: 0.04 (0.79) 
FDA-experimental : 3 (4.9) 

FDA-all : 3.04 (5.69) 

 

Table 1: The prevalence of SNPs in proteins in complex with FDA approved and experimental 

compounds. 

 

The difference in the free energy, ∆∆G, represents the difference in the strength of binding of the 

drug to the protein, which we then used as a measure of the impact of the SNP on the function of 

the protein target. A vast majority of the SNPs in drug-protein binding sites were predicted not to 

affect binding affinity. However, many more SNPs were predicted to decrease the strength of 

interaction rather than increase it (Figure 1). 
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Figure 1. The effect of SNPs in protein binding sites on the binding strength of drug ligands. X-

axis represents the ΔG of the drug-protein complex with the major allele in the polymorphic site. 

The Y-axis represents the ΔG of the same complex with the minor allele at the same site. 

 

Existing docking methods do not always provide an accurate estimate of the free energy of the 

interaction (Sousa et al. 2013). Therefore, we validated our method using two separate datasets. 

First, we used FDA guidelines on genotype (table of pharmacogenomic biomarkers in drug 

labeling) to obtain a list of compounds for which the FDA recommends genetic testing (FDA web, 

2016). From the list we selected 5 SNPs in two Cytochrome P450 proteins and in EGFR that are 

known to cause an individual response to 7 different FDA-approved compounds. For other 

examples cited by the FDA either the structure of the drug-protein complex was not available, the 

described SNPs did not occur in the drug-protein binding interface, or the FDA recommended 

screening for a haplotype containing several polymorphisms rather than a specific SNP. We found 

that all of the 7 interactions, from which contribution to ADEs is well documented (Marez et al. 

1997; Maekawa et al. 2006; Dai et al. 2014), the minor allele SNPs caused a > 0.6 change in ∆∆G, 

with the average effect being around 1.5 ∆∆G (Table 2), confirming that our method identifies 

SNPs known to affect individual drug response as having an effect on ∆∆G. 
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Chain Drug_ID Complex Target Emut Enat DD Description PDB Drug 

Name 

1XKK_A DB01259 1XKK_A_L858R_DB01259 EGFR -8.9 -11.2 2,3 A unique structure for 

epidermal growth factor 

receptor bound to Lapatinib 
Lapatinib 

4WNU_C DB00908 4WNU_C_I297L_DB00908 CYP2D6 -8.1 -9.7 1,6 Human Cytochrome P450 

2D6 Quinidine Complex Quinidine 

4WNU_C DB00908 4WNU_C_R296C_DB00908 CYP2D6 -8.5 -9.7 1,2 Human Cytochrome P450 

2D6 Quinidine Complex Quinidine 

4WNW_B DB00679 4WNW_B_I297L_DB00679 CYP2D6 -8.4 -9.2 0,8 Human Cytochrome P450 

2D6 Thioridazine Complex Thioridazine 

4WNW_B DB00679 4WNW_B_R296C_DB00679 CYP2D6 -8.6 -9.2 0,6 Human Cytochrome P450 

2D6 Thioridazine Complex Thioridazine 

1OG5_B DB00682 1OG5_B_G98V_DB00682 CYP2C9 -8.8 -10.7 1,9 Crystal Structure of Human 

Cytochrome P450 2C9 with 

Bound Warfarin 
Warfarin 

1OG5_B DB00682 1OG5_B_Q214L_DB00682 CYP2C9 -8.9 -10.7 1,8 Crystal Structure of Human 

Cytochrome P450 2C9 with 

Bound Warfarin 
Warfarin 

 

Table 2. Estimated ΔΔG of polymorphisms recommended to be genotyped by the FDA in certain 

drug prescriptions. 

 

Second, we obtained a list of mutations observed in human cancers by The Cancer Genome Atlas 

(TCGA) consortium (Weinstein et al. 2013). We reasoned that recurrent mutations in different 

human cancers, often predicted to be cancer driver mutations (Weinstein et al. 2013), are likely to 

have a stronger than average effect on the free energy of the binding of the protein with anticancer 

drugs or naturally occurring small molecular compounds. Alternatively, mutations that are found 

only occasionally in human cancers, likely cancer passenger mutations (Weinstein et al. 2013), 

should be less likely to affect the binding affinity of human proteins with small ligands. We found 

that mutations observed in >10 human cancers have a 2-fold higher impact on the binding of 

proteins with small molecular compounds than mutations found once or twice in the TCGA data 

(Figure 2), confirming that our method can distinguish between the binding strength of cancer 

driver and passenger mutations. 
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Figure 2. The average ΔΔG as a function of variant frequency. (a) The average effect of a cancer 

mutation on ΔΔG as a function of the number of cancers in which it was found. (b) The average 

effect of a SNP from the human population on ΔΔG as a function of the number of individuals in 

which the SNP was found. Error bars represent s.e.m. 

 

Taken together, these data indicate that our approach identifies SNPs that have an effect on the 

known drug-protein complexes. A change in ∆∆G |2.0| kJ typically corresponds to a change in 

binding affinity with a high probability (Trott et al. 2010), therefore, we classified SNPs with such 

an effect as probably affecting the interaction of the drug with the target protein. SNPs causing a 

weaker change in free energy, |1.0| ∆∆G < |2.0|, were classified as possibly influencing the drug-

protein interaction. All other SNPs, those predicted to have a < 1.0 effect on ∆∆G, were labeled as 

not likely to influence the drug-protein interaction. Our approach appears conservative, as even 

small changes in binding affinity, smaller than our cutoff values, are known to have an effect on 

the functional impact of the interaction of proteins and small molecular compounds (Hopkins et 

al. 2014). 

 

Among the 2504 available human genomes, our approach identified 53 SNPs that probably affect 

a drug-protein interaction with 30 FDA-approved drugs and 192 SNPs that possibly have this 

effect on 75 FDA-approved drugs (Figure 3, Table 3).  
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Figure 3. Structures of selected SNPs with a predicted effect on FDA-approved drugs. Structure 

with the major allele, corresponding to wild-type sequence, is shown in green, the minor allele in 

blue. (a) Diclofenac, (b) Testosterone, (c) Methotrexate and (d) Sildenafil are shown in yellow. 

 

 
 

PDB ID Drug Protein Substitution ΔΔG 

A 1DVX Diclofenac Transretinin T119M 2.2 

B 1JTV Testosterone 17beta-HSD1 S222N 5.2 

C 4KN0 Methotrexate FOLR2 R119H 3 

D 3JWQ Sildenafil PDE5 I778T 1.8 

 

Table 3. Selected polymorphisms with a predicted effect on FDA-approved drugs shown in 

Figure 3. 
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The number of SNPs predicted to have an effect on FDA experimental drugs was higher, with 390 

SNPs probably affecting 165 FDA experimental drugs and 835 SNPs possibly having affecting 

this effect on 357 FDA experimental drugs (Table 1). An average individual carries ~1 SNPs 

probably and possibly affecting an FDA-approved drug interaction and ~8 such SNPs affecting 

FDA experimental drugs of all the drugs in complex with a protein in our dataset (Table 1, Figure 

4).  

 

 

 
 

Figure 4. Distribution of the frequency of SNPs possibly or probably affecting a drug-protein 

binding affinity in human subpopulations. The distribution for (A) FDA-approved and (B) FDA 

experimental drugs are shown. Our data included 661 African (AFR), 347 American (AMR), 489 

South Asian (SAS), 503 European (EUR) and 504 East Asian (EAS) genomes. 

 

A majority of individuals in our data does not carry any SNPs with an effect on binding of FDA-

approved compound and only 7 out of 2504 carried 5 SNPs (Figure 4A). A direct extrapolation of 

the distribution of SNPs with an effect to all FDA-approved drugs is complicated by the 

availability of the drug-protein complex for only ~15% of such drugs. However, since the average 

density of SNPs was the same for genes coding for proteins crystallized in complex an FDA-

approved and FDA experimental drugs (4/296, 30/2204, Fisher’s exact test, p=0.2), and a drug-

protein complex is available for almost one half of all experimental drugs, we used the observed 

distribution for 2204 FDA experimental drugs to extrapolate the expected distribution for the 1826 

FDA-approved drugs.  
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We followed a bootstrapping approach, sampling 1826 out of 2204 FDA experimental drugs 100 

times, obtaining an expected distribution of the number of SNPs with an effect on FDA-approved 

drug binding (Figure 5A) and the number of different FDA-approved drugs an individual may 

have an individual reaction to (Figure 5B).  

 

 
Figure 5. Bootstrap sampling of 2204 FDA experimental drugs in complex with a protein. The 

distributions of (A) the number of polymorphisms per genome possibly or probably affecting drug-

protein binding affinity and (B) the number of drugs affected by such polymorphisms resulting 

from 1826 drugs sampled 100 times with replacement. 

 

We predict that an average individual carries ~6 SNPs that have the potential to lead to an 

individual reaction to ~5 FDA-approved drugs. Interestingly, 10% of the population is expected to 

carry twice as many SNPs modifying an interaction with twice as many FDA-approved drugs.  

 

SNPs with high frequency on average have a much lower effect on ∆∆G (Figure 2B). Conversely, 

the average frequency of SNPs probably, possibly and unlikely to have an effect was 8.4x10-3, 

5.2x10-3 and 1.2x10-2 respectively, suggesting that such SNPs are selected against in the human 

population, possibly because such polymorphisms also affect the protein interaction with naturally 

occurring low molecular compounds. Individuals with African ancestry showed a higher number 

of such polymorphisms (Figure 4), which is consistent with the overall higher frequency of SNPs 

in the African population (Tishkoff et al. 2002). The low frequency of such polymorphisms suggest 

that most individuals will carry their own set with a substantial effect on drug-protein binding. 

Therefore, their identification through genome wide association studies or clinical trials may be 

too costly, requiring computational approaches, such as the one described in the present work, to 

provide a cost-effective means for the prediction of SNPs contributing to adverse drug-protein 

interaction. 

 

Methods  
 

From 82494 protein-ligand structures available at Protein Data Bank, we extracted the structure of 

all low-molecular compounds (18535). All structures were converted from sdf to mol format using 

OpenBabel (O'Boyle et al. 2014), and were compared using molecular fingerprinting to 6751 FDA 
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Drugs structures obtained from DrugBank (Wishart et al. 2006) through MolPrint2D (Bender et 

al. 2004). A threshold for Tanimoto Coefficient higher than 0.9 was set. We then selected the 

binding residues of the protein for each complex based on a less than 6 Angstroms proximity 

among the protein and the ligand atoms according the coordinates in the three dimensional space. 

FASTA sequence for all human proteins was retrieved from Ensembl (Cunningham et al. 2015), 

and a sequence comparison to those protein chains from PDB was performed using unidirectional 

BLAST (Altschul et al. 1990). Only one human protein, the one with higher bit-score, was allowed 

per PDB chain, but the same human protein could match different PDB chains. To assure that the 

binding structure was preserved in the human proteins, all PDB proteins and human proteins were 

aligned using MUSCLE (Edgar  et al. 2004) and a filter, (length of alignment - gaps - 

mismatches)/length of alignment and length of alignment/PDBseq length > 0.9, was used.  

 

A drug-protein complex was included in our study only if all the binding residues found in the 

drug-PDB chain interaction were also found in the human protein sequence and at least three amino 

acid residues per complex were found in the binding site. Proteins found in PDB that bind the same 

ligand and have the same binding site pattern were counted once. 1000 genome data phase 3 was 

retrieved and mapped to binding sites. Pan-cancer data was obtained from The Cancer Genome 

Atlas (downloaded in beginning 2015), and was analyzed using Ensembl VEP! (McLaren et al. 

2010).  

 

∆G binding for all the drug-protein complexes (∆Gwt) was calculated using a docking procedure 

in AutoDock (Morris et al. 2009). For each SNP observed at a binding site we modeled the original 

complex replacing the original binding residue for the polymorphism observed in the population, 

using Modeller (Eswar et al. 2007). ∆G binding was then calculated again for complex of the 

protein with the same ligand (∆Gm). Finally, we subtracted the two energies obtaining ∆∆G. 

 

Discussion 
 

Some of the proteins in complex with FDA compounds are not the actual therapeutic targets.  

However, many of them may be clinically relevant because adverse drug reactions can happen due 

to a change in interaction of a non-therapeutical target (Wang et al. 2011; Relling et al. 2015) that 

can affect the drug metabolism or toxicity. Generally speaking, not all of binding proteins are equal 

to “final” proteins responsible for the pharmacological effect – but, any drug-protein interaction is 

important in terms of drugs ADME properties. Similarly, it is likely that for each of the drugs in 

the present study we considered only a fraction of the various interacting proteins, implying that 

the extrapolations presented here (Figures 5) are lower bound estimates. Finally, there are many 

important factors out of protein-coding regions - such as mutations in promoters, genome material 

rearrangements, and expression changes - that can affect disease-connected biochemical cascades 

and drug ADME and efficiency. Some of this factors my play the crucial role – but, in our project, 

we are focused on SNPs that have direct impact on proteins structures, functions and ligand 

binding. 

 

Our data suggest that SNPs with a plausible contribution to ADE are present in most individuals; 

however, most of such polymorphisms are rare requiring a personalized approach to their 

identification. Importantly, given the low frequency of such SNPs in the population it is unlikely 

that the design of new drugs can entirely eliminate the possibility of ADEs in a small fraction of 
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patients. Instead, the greater availability of genomic information for patients coupled with 

advancement of computational tools for the analysis of the effect of SNPs on drug binding may 

pave the way for decreasing the number of ADEs in the clinic. Specifically, clinicians should 

consider alternative medication if the patient carries a SNP in the drug-protein interface with the 

initial drug of choice, especially if the SNP is predicted to have a strong effect on the binding 

affinity. 
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