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Abstract 14 

We performed an integrated analysis of drug chemical structures and drug-induced transcriptional 15 

responses. We demonstrated that a network representing 3D structural similarities among 5,452 16 

compounds can be used to automatically group together drugs with similar scaffolds and mode-of-17 

action. We then compared the structural network to a network representing transcriptional 18 

similarities among a subset of 1,309 drugs for which transcriptional response were available in the 19 

Connectivity Map dataset. Analysis of structurally similar, but transcriptionally different, drugs 20 

sharing the same mode of action (MOA) enabled us to detect and remove weak and noisy 21 

transcriptional responses, greatly enhancing the reliability and usefulness of transcription-based 22 

approaches to drug discovery and drug repositioning. Analysis of transcriptionally similar, but 23 

structurally different drugs with unrelated MOA, led us to the identification of a “toxic” 24 

transcriptional signature indicative of lysosomal stress (lysosomotropism) and lipid accumulation 25 

(phospholipidosis) partially masking the target-specific transcriptional effects of these drugs. We 26 

further demonstrated by High Content Screening that this transcriptional signature is caused by the 27 

activation of the transcription factor TFEB, a master regulator of lysosomal biogenesis and 28 

autophagy. Our results show that chemical structures and transcriptional profiles provide 29 

complementary information and that combined analysis can lead to new insights on on- and off-30 

target effects of small molecules. 31 

 32 

Introduction 33 
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Chemo-informatics approaches to rational drug design have traditionally assumed that 34 

chemically similar molecules have similar activities. More recently, transcriptional responses of 35 

cells treated with small molecules have been used in the lead optimization phase of drug discovery 36 

projects1 and to reveal similarities among drugs, and quickly transfer indications for drug 37 

repositioning.2-6  38 

The Connectivity Map (CMAP), the largest peer-reviewed public database of gene 39 

expression profiles following treatment of five human cancer cell lines with 1,309 different bioactive 40 

small molecules2, 7, has been extensively used by both the academic and industrial communities.3, 8  41 

Whereas computational medicinal chemistry’s “pros” and “cons” have been extensively 42 

addressed over the recent years,9-17 on the contrary, the advantages and limits of methods based 43 

on transcriptional responses have not been thoroughly addressed.1, 3 So far, comparisons of the 44 

chemical versus transcriptional “landscape” of small molecules has been performed to elucidate 45 

and understanding mode of actions of existing drugs and revealing potential on-label and off-label 46 

applications.18-21 In this work, on the contrary, we addressed two still unanswered questions: (2) do 47 

transcriptional responses and chemical structures provide similar information on the drug 48 

mechanism of action and adverse effects? (2) If not, why does the information provided by 49 

transcriptional responses and chemical structures differ?  50 

In this work, we compared chemical structures to transcriptional responses in the CMAP 51 

dataset by first generating a “structural” drug network by connecting pairs of structurally similar 52 

drugs, as measured by 3D pharmacophore descriptors based on Molecular Interaction Fields.22, 23 53 

We then compared the structural drug network to a transcriptional drug network where drugs are 54 

connected if they induce a similar transcriptional profile.4, 24, 25 55 

Through the integrated analysis of chemical structures and transcriptional responses of 56 

small molecules, we revealed limitations and pitfalls of both transcriptional and structural 57 

approaches, and proposed ways to overcome them. Moreover, we found an unexpected link 58 

between drug-induced lysosomotropism and lipid accumulation, common adverse effects, and a 59 

specific transcriptional signature mediated by the transcription factor TFEB. 60 
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 61 

Results 62 

The CMAP dataset is a collection of transcriptional responses of human cell lines to small 63 

molecules. It includes transcriptional profiles following treatment of 1,309 small molecules across 64 

five different cell lines, selected to represent a broad range of activities, including both FDA–65 

approved drugs (670 out of 1309 (51%)) and non-drug bioactive ‘‘tool’’ compounds.2 An extension 66 

of this dataset to more than 5000 small molecules is being completed but it includes only 1,000 67 

genes and it has not been peer-reviewed yet (LINCS http://www.lincscloud.org).2, 7 We selected the 68 

small molecules present in the CMAP and in the upcoming LINCS resource for a total of 5,452 69 

compounds (Supplementary Fig. 1). We then performed a physico-chemical characterization of 70 

these 5,452 small molecules by computing 128 physico-chemical descriptors using 3D Molecular 71 

Interaction Fields (MIFs) derived from their chemical structures.26, 27 72 

Principal Component Analysis (PCA) of the 128 descriptors for all the 5,452 compounds in 73 

Supplementary Figure 2a reveals that the first two principal components (PC1 and PC2) explain 74 

most of the descriptors’ variance (53%). PC1 (36%) is related to descriptors of hydrophobic and 75 

aromatic properties (Supplementary Fig. 2b), whereas PC2 (17%) to molecular size and shape.  76 

Most of these small molecules follow the ‘Rule of Fives (RoFs)’, that is the set of physico-chemical 77 

features shared by biologically active drugs: MW ≤500 Da (89%); N.HBA≤10 (93%); N.HBD≤5 78 

(97%); LogP ≤5 (85%) (Supplementary Fig. 3).28, 29 79 

 80 

Chemical structure similarities induce a hierarchical network connecting drugs with 81 

similar scaffolds and mode of action. 82 

We derived a structural drug network where each small molecule is a node and an edge 83 

connects two small molecules if they have a similar 3D structures. To this end, we computed the 84 

structural distance between each pair of small molecules based on the similarity between their 3D-85 

pharmacophore quadruplet-based fingerprints (Methods and Supplementary Fig. 4).30 A short 86 
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structural distance (i.e. close to 0) between two compounds indicates that they are structurally 87 

similar.  88 

We obtained a symmetric 5,452x5,452 structure-based drug-distance matrix containing 89 

14,859,426 distances between all the possible pairs of drugs. We considered each compound as a 90 

node in the network and connected two nodes if their distance was below a threshold value 91 

(Methods). The resulting drug network consists of 5,312 nodes and 742,971 edges, corresponding 92 

to 5% of a fully connected network with the same number of nodes (14,859,426 edges) 93 

(http://chemantra.tigem.it). We subdivided the network into communities consisting of groups of 94 

densely interconnected nodes by means of the Affinity Propagation (AP) clustering algorithm 31, 32 95 

on the network matrix (Methods).4 We identified 288 communities (containing more than 3 drugs) 96 

across 5,302 drugs (out of 5,452) that group together compounds sharing similar chemical 97 

functionalities, scaffolds and sub-structural fragments. The AP clustering assigns to each 98 

community an “exemplar”, i.e. the drug whose structure best represents the structures of the other 99 

drugs in the community. By iteratively applying the AP clustering on the exemplars, we could 100 

further group communities into 42 Rich Clubs, i.e. clusters of drug communities that are structurally 101 

related but with distinct characteristic functional groups (Fig. 1).  102 

To assess the structural network, we collected the ATC (Anatomical Therapeutic Chemical) 103 

code, an alphanumerical hierarchical pharmacological classification, for 936 out of 5452 drugs 104 

(Methods). We then verified that drugs connected in the network tend to share the same ATC code 105 

(Supplementary Fig. 5). We also verified that drugs within a community share a common 106 

therapeutic application. Indeed, 230 out of 288 (80%) structural communities were significantly 107 

enriched for compounds sharing the same ATC code (p-values <0.05) (Supplementary Fig. 6). 108 

These results demonstrate that inspection of the structural drug network can provide useful 109 

information on the drug mechanism of action and possibly help in identifying candidates for drug 110 

repositioning. 111 

 112 
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Chemical similarity between drugs is largely uncorrelated with similarity in induced 113 

transcriptional responses in CMAP. 114 

In a previous study4,24 we reported on the construction of a “transcriptional network” among 115 

1,309 small-molecules part of the CMAP dataset2 (http://mantra.tigem.it) where two drugs are 116 

connected by an edge if they induce a similar transcriptional response. Briefly, in CMAP each 117 

transcriptional response is represented as a list of genes ranked according to their differential 118 

expression in the drug treatment versus control. Since each drug is associated to more than one 119 

ranked list (cell, dosage, etc.), to obtain the transcriptional network, we first computed a Prototype 120 

Ranked List (PRL) by merging together all the ranked lists referring to the same compound 121 

following the Borda Merging method to generate a single ranked list4. The PRL thus captures the 122 

consensus transcriptional response of a compound across different experimental settings, 123 

consistently reducing non-relevant effects due to toxicity, dosage, and cell line.4  Transcriptional 124 

similarity was then quantified among the 1,309 PRLs (one for each drug) by Gene Set Enrichment 125 

Analysis and represented as a distance (i.e. 0 for identical responses, and greater than 0 if 126 

dissimilar)4. The transcriptional network was obtained by connecting two nodes if their distance 127 

was below a significant threshold value chosen so that the total number of edges is equal to 5% of 128 

a fully connected network with the same number of nodes (856,086 edges). 129 

Here, we compared structural and transcriptional similarities among all pairs of drugs, part 130 

of the CMAP dataset, as shown in Figure 2, where each point is a drug-pair and its position in the 131 

plane represents the structural (x-axis) and transcriptional (y-axis) distance between the two drugs, 132 

for a total of 856,806 drug-pairs. The structural-transcriptional plane can be subdivided into four 133 

quadrants by straight lines representing the significance thresholds for the transcriptional (y-axis) 134 

and structural  (x-axis) distances: quadrant I (5.1% of drug-pairs) contains drug-pairs with similar 135 

structures but inducing different transcriptional responses; quadrant II (0.3% of drug-pairs) contains 136 

coherent drug-pairs that are both structurally and transcriptionally similar; quadrant III (4.0% of 137 

drug-pairs) consists of drug-pairs with different structures but inducing similar transcriptional 138 

responses; finally drug-pairs different both in structure and transcription are found in quadrant IV 139 
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(91% of drug pairs). This quadrant contains most drug-pairs since two random drugs usually have 140 

no common function at all. We call drug-pairs in quadrant I and III incoherent because of the 141 

discrepancies between structural and transcriptional similarities, whereas drug-pair in quadrant II 142 

and IV are coherent. 143 

Overall, Figure 2 shows that the information detected by transcriptional responses and 144 

chemical structures tend to be different and independent of each other. We therefore decided to 145 

investigate the causes for this lack of correlation. 146 

 147 

Chemically similar drugs do not induce similar transcriptional responses because of 148 

weak transcriptional effects. 149 

Drug pairs sharing highly similar chemical structures but very different transcriptional 150 

responses are found in Figure 2 (quadrant I). These drug-pairs exhibit an unexpected behaviour, 151 

since they are chemically similar molecules with the same therapeutic application (i.e. ATC code) 152 

but inducing very different transcriptional responses. 153 

The most surprising example was the betamethasone/dexamethasone drug-pair in Figure 2 154 

(quadrant I). Both drugs are glucocorticosteroids binding the Glucocorticoid Receptor (GR) with 155 

very high affinity and nearly identical in structural since they are enantiomers of each other. 156 

Transcriptionally, on the contrary, these two drugs appear to be completely different 157 

(Supplementary Fig. 8g).  158 

 One possible explanation is that these compounds cause weak transcriptional effects in 159 

the cell lines used in CMAP, and thus the measured transcriptional responses are too noisy to be 160 

informative. 161 

To assess whether a perturbation (e.g. drug treatment) leads to a strong and informative 162 

transcriptional response, we introduce the “transcriptional variability” score (TV). The TV score is 163 

based on the assumption that when the cellular context contains the necessary molecular milieu to 164 

make it responsive to a small molecule, then multiple treatments with the same compound will yield 165 

consistent and similar transcriptional responses.  166 
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We computed the TV of a small-molecule as follows: given M transcriptional responses to 167 

the same small-molecule in the same cell line (i.e. ranked list of differentially expressed genes as 168 

in CMAP), we evaluate the transcriptional distances between all the M(M-1)/2 pairs of 169 

transcriptional responses and then take their median value as a measure of TV (if M = 2 then TV is 170 

defined as the maximum distance). A TV close to 0 implies very similar transcriptional responses 171 

across replicates, indicating that the small molecule induces a reliable transcriptional response 172 

across all the experiments.  On the contrary, a high TV implies very different transcriptional 173 

responses across replicates, hence a weak and unreliable transcriptional signature. 174 

To assess whether TV is indeed able to detect informative versus non-informative 175 

transcriptional responses to small-molecules, we exhaustively computed the TV of 1165 CMAP 176 

drugs (out of 1309) for which at least two transcriptional responses in the same cell line were 177 

available (Supplementary Table 1). Out of the 1165, 858 (73%) have a TV score greater than the 178 

significance threshold implying that most drugs in CMAP induce a weak transcriptional response 179 

(Methods). 180 

We compared the TV of drugs belonging to different classes, which were chosen because 181 

of their expected activity, or lack thereof, in the CMAP human cancer cell lines (Fig. 3 and 182 

Supplementary Table 1). As expected, glucocorticosteroids exhibit higher values of TV when 183 

compared to the other classes of drugs. Similarly, antibiotics and NSAIDs induce very weak 184 

transcriptional responses (high TV values). Indeed, antibiotics target bacteria-specific proteins, 185 

whereas NSAIDs act on cell-specific enzymatic pathways with marginal effects on transcription. 186 

Most antihistamines and antipsychotics induce weak transcriptional responses since they target 187 

specific cell membrane receptors lowly, or not expressed, in CMAP cancer cell lines and with no 188 

direct transcriptional effects.  189 

We observed that drugs with a high TV, hence exhibiting a weaker transcriptional response, 190 

tend to have higher transcriptional distances from the other drugs in CMAP (i.e. they tend to be 191 

isolated in the network) and vice-versa (Supplementary Fig. 7). Consistently with this observation, 192 

compounds within these drug-classes tend to be found in drug-pairs belonging mostly in quadrant I 193 
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(structurally similar and transcriptionally different) and quadrant IV (structurally and transcriptionally 194 

different) as shown in Supplementary Fig. 8. 195 

Conversely, drugs with the lowest TV (Fig. 3 and Supplementary Table 1), and thus with 196 

strong transcriptional responses, consist mostly of lipophilic molecules acting as protein synthesis 197 

inhibitors, chemotherapeutic drugs and other DNA/RNA intercalating agents, and histone 198 

deacetylase inhibitors, which all have a strong activity in most cell types (Supplementary Fig. 9). 199 

Interestingly, several cardiac glycosides were also found to have a low TV. As shown in 200 

Supplementary Fig. 8, in this case drug-pairs consisting of compounds in these drug-classes tend 201 

to be found in quadrant III (structurally different but transcriptionally similar). 202 

 203 

Removing weak transcriptional responses from the CMAP dataset improves drug 204 

classification performances. 205 

We reasoned that by removing drugs with a high TV, the performance of computational 206 

approaches based on gene expression to elucidate the MoA of a drug should improve.4, 24 We thus 207 

partitioned the small molecules included in CMAP in two sets according to their TV score, obtaining 208 

a high-TV set and a low-TV set with the same number of drugs to facilitate the comparison. We 209 

then assessed the performance of the transcriptional distance between two drugs in correctly 210 

identifying those pairs sharing the same therapeutic application (i.e. the same ATC code), when 211 

using either drugs in the high-TV set or those in the low-TV set, as previously described.4 As 212 

shown in Figure 4, the low-TV set performance far exceeds the high-TV set performance, which is 213 

almost random. Moreover, the correlation between structural distance and transcriptional distance 214 

in the chemical-transcriptional landscape of small molecules in Figure 4 increases if only drugs in 215 

the low-TV set are used (Supplementary Fig. 10).  216 

Overall, these results show that the TV score can discriminate between informative and 217 

non-informative transcriptional responses that result from the activity, or lack thereof, of small 218 

molecules in a specific cell line. 219 

 220 
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Drugs with different chemical structures and modes of action may induce similar 221 

transcriptional responses related to lysosomal stress and phospholipidosis. 222 

Figure 2 (quadrant III) includes drug-pairs with very different molecular structures but which 223 

are transcriptionally similar. We identified two obvious causes for the discrepancy between 224 

transcriptional and structural similarities: (i) most of the drug-pairs in this region have at least one 225 

drug with a very large size (usually a natural compound) (Fig. 2 and Supplementary Fig. 11) 226 

hence, global  chemical similarity metrics, such as the one used here, may fail; (ii) the direct 227 

molecular targets of two drugs in a pair may be different but act in the same pathway (e.g. purine 228 

synthesis inhibitors methotrexate/mycophenolic-acid that act on different molecular targets but both 229 

block DNA synthesis, Supplementary Fig. 11) 33-35. 230 

Figure 2 (quadrant III), however, contains also a large fraction of drug-pairs that are not 231 

large molecules and do not act in the same pathway, nor share the same therapeutic application, 232 

but nevertheless have very similar transcriptional profiles. To investigate why this is the case, we 233 

ranked drug-pairs in this quadrant by their transcriptional distance in ascending order 234 

(Supplementary Table 2). We noticed that the top-ranked most transcriptionally similar drug-pairs 235 

included well known “lysosomotropic agents” inducing large vacuolization in cells such as 236 

astemizole, terfenadine and mefloquine (Table 1).36-38 Among these agents, astemizole and 237 

terfenadine are no longer in use because of cardio-toxicity caused by their potassium channel 238 

blocker activity (hERG encoded by KCNH2), which may lead to fatal cardiac arrhythmia.39, 40  The 239 

lysosomotropic effect of these small molecules has been attributed to their ability to cross 240 

lysosomal membrane and remain trapped within the lysosome by a mechanism known as pH 241 

partitioning.41 42-44 Most lysosomotropic agents belong to the class of cationic amphiphilic drugs 242 

(CADs) containing both a hydrophobic and a hydrophilic domain. CADs have increased probability 243 

to cause drug-induced phospolipidosis (PLD),45 a lysosomal storage disorder characterized by the 244 

accumulation of phospholipids within the lysosome by unclear molecular mechanisms, leading to 245 

cellular stress.46-50 Indeed among the lysosomotropic drugs involved in the most transcriptionally 246 
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similar drug-pairs (Table 1), there were also three known PLD inducing drugs (astemizole, 247 

suloctidil and trifluoperazine). 248 

We hypothesised that “lysosomotropic” stress induced by these compounds could explain 249 

their similarity in transcriptional responses. We therefore selected 187 CAD compounds present in 250 

CMAP according to their physico-chemical properties (LogP >3; pKa >7.4)43. Within these CAD 251 

compounds, we searched the literature for lysosomotropic drugs known to induce PLD,45 which, 252 

according to our hypothesis, should elicit a strong transcriptional response. We thus identified a 253 

total of 35 compounds (PLD/CAD) (Supplementary Table 3).  254 

We verified that PLD/CAD compounds tend to induce a stronger transcriptional response 255 

(i.e. a lower TV) (Supplementary Fig. 12) and they tend to be transcriptionally similar among them 256 

(but not structurally) despite having different mode of action and therapeutic applications 257 

(Supplementary Fig. 13).   258 

We next asked which genes were transcriptionally modulated by the majority of PLD/CAD 259 

compounds. We performed Drug Set Enrichment Analysis (DSEA),51 a computational approach we 260 

recently developed to identify gene-sets that are transcriptionally modulated by most drugs in a 261 

given set.  The most significant gene-set shared by the 35 PLD/CAD compounds, out of about 262 

5,000 gene-sets within the Gene Ontology (GO) database, was the GO-Cell Component term 263 

“lysosome” consisting mainly of genes coding for lysosomal enzymes and ion channels 264 

(p=5.03x10-8 – Supplementary Table 4), thus in agreement with the “lysosomotropic” effect of 265 

these drugs.  266 

Recently, the transcription factor E-box (TFEB) has been found to be a major player in the 267 

transcriptional control of lysosomal genes in response to a variety of cellular and environmental 268 

stresses.52 In normal nutrient conditions TFEB is phosphorylated by the mTORC1 complex on the 269 

lysosomal surface. This phosphorylation favours TFEB binding to 14-3-3 proteins and its retention 270 

in the cytoplasm.53-55 Upon stress signal, such as nutrient deprivation, mTOR is inhibited, the 271 

calcium-dependent phosphatase Calcineurin is activated, and TFEB is de-phosphorylated shuttling 272 

to the nucleus where it transcriptionally controls lysosomal biogenesis, exocytosis and 273 
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autophagy.53-59 Moreover, TFEB was shown to translocate to the nucleus upon amiodarone 274 

treatment, a well known lysosomotropic agent.60 We thus decided to investigate whether TFEB 275 

activation was responsible for the characteristic transcriptional response induced by PLD/CAD 276 

compounds. 277 

 278 

The transcriptional response of PLD-inducing compounds is mediated by TFEB 279 

We performed a panel of High Content Screening assays including the TFEB nuclear 280 

translocation assay (TFEB-NT)59 at 3h and 24h following drug administration at different 281 

concentrations (0.1µM, 1µM and 10µM) for 34 out of 35 PLD drugs (1 drug was not available to us 282 

at the time). Additional HCS assays at 24h included LAMP-1 immunostaining and Lysotracker dye 283 

to quantify lysosomal compartment (Methods), GM130 and PDI immunostaining to detect 284 

morphological changes in the Golgi and ER (Endoplasmic Reticulum) compartments, both of which 285 

have been recently suggested to be involved in PLD aetiology (Methods). We also performed the 286 

LipidTox assay at 48h to check for the accumulation of phospholipids to confirm PLD at least in 287 

vitro (Methods). 288 

Quantification of the HCS assays for the 34 PLD drugs are reported in Supplementary 289 

Figure 13 and Supplementary Table 5. Nuclear translocation of TFEB at 3h was observed for 18 290 

out of 34 drugs (53%) increasing to 29 drugs at 24h (85%). Out of these 29 drugs, 27 induced an 291 

increase in lysosome size and number as evidenced by LAMP1 and Lysotracker staining, and all 292 

29 drugs induced accumulation of phospholipids according to the Lipidtox assay (100%). Only 5 293 

drugs did not induce TFEB translocation at 24h, and just 1 out of these 5 drugs was positive in the 294 

Lysotracker assay, while 4 of them were positive in the Lipidtox assay. None of the drugs tested 295 

were positive for the Golgi marker and only 6 were positive for the ER marker, albeit marginally.  296 

Overall, HCS confirmed a concentration dependent nuclear translocation of TFEB for 29 out 297 

of 34 drugs (85% at 24h) with a concomitant perturbation of the lysosomal compartment for 28 out 298 

of 34 drugs (82%) occurring mostly at the highest dosage tested (10 µM). Furthermore, HCS 299 
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revealed an accumulation of lipid in vitro at 48h following treatment with the 34 drugs (100%) at the 300 

highest dosage tested (10 µM), as previously reported in the literature.45  301 

These results support the role of TFEB in shaping the transcriptional response of cells 302 

treated with PLD inducing drugs in a way completely unrelated to their MoA. We next asked 303 

whether the activation of TFEB (or TFE3, another member of the MiT family of transcription factors 304 

with similar functions) is a consequence of lysosomal stress upon compound treatment or if it is 305 

directly related to the induction of the PLD phenotype. Thus, we set up a HCS Lipidtox assay using 306 

TFEB wt versus TFEB/TFE3 KO in HeLa cell type, administering high dosage of chloroquine (50 307 

µM) known to induce lipids accumulation in cells at 48h. Supplementary Fig. 15a, b show no 308 

major differences in terms of spot intensity in the Lipidtox assay, thus confirming that TFEB 309 

activation is a consequence of lysosomal stress and not an inducer of PLD.  310 

As this manuscript was under review, Lu et al reported an increase in TFEB, TFE3 and 311 

MITF translocation to the nucleus in ARPE-19 cells together with lysosomal activation and lipid 312 

accumulation following treatment with 8 lysosomotropic compounds, well in agreement with our 313 

results. 50 314 

   315 

A PLD-specific transcriptional signature can predict compounds inducing lipid 316 

accumulation. 317 

We combined the transcriptional responses elicited by the 35 PLD/CAD compounds into a 318 

consensus transcriptional response (“PLD” signature) and computed its transcriptional distance 319 

from all the other 1274 (i.e. 1309-35) CMAP compounds (Methods). We reasoned that drugs 320 

inducing a transcriptional profile similar to the PLD signature should have a higher probability of 321 

inducing lipid accumulation than the other drugs. Surprisingly, 258 compounds out of 1274 (20%) 322 

cMAP compounds were found to be similar to the PLD signature (Supplementary Table 6). About 323 

a third of these drugs are CADs (77 out of 258 (30%)).  324 

Figure 5 reports a breakdown by ATC classes of drugs for which an ATC code was 325 

available and that were found to induce a transcriptional response similar to the PLD signature. 326 
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Some drug classes (ATC classes N05, N06 and R06 including antihistamines and antipsychotics) 327 

are enriched for known PLDs45, 47. Other classes cause global cellular stress responses not 328 

mediated by their physico-chemical properties, but rather because of their direct molecular targets, 329 

such as anticancer compounds that block cell-cycle (e.g. ATC class L01 composed of CDK2 and 330 

Topoisomerase I, II inhibitors). Antihelmintics (ATC P02) and antifungals (ATC D01), despite being 331 

neither CADs nor PLDs, were also found among the PLD node’s neighbours. Several recent 332 

reports in the literature have found antihelmintics to induce an anti-proliferative effect in cancer cell 333 

lines by indirectly inhibiting the mTOR pathway thus inducing TFEB activity, which may explain 334 

their PLD-like transcriptional response.55, 60-63 Calcium channel blockers were also found to induce 335 

a transcriptional response similar to PLDs, which may be expected since calcium signalling has 336 

been involved in autophagy regulation and lysosomal function.59 Interestingly, some cardenolides 337 

(ATC C01 and C07) were also found to contain the PLD signature, despite not being CADs 338 

(median distance equal to 0.71).64, 65 339 

To experimentally validate the usefulness of the PLD transcriptional signature in identifying 340 

novel PLD drugs, we selected the top quartile of the 258 drugs (i.e. 25% of 258=64 drugs) with the 341 

shortest transcriptional distance to the PLD node and performed HCS for lipid accumulation 342 

following drug treatment at three different concentrations (Lipidtox assay) (Supplementary Table 343 

7). Twenty-two out of the top 64 small molecules were present in our HCS small-molecule library. 344 

Overall 11 out of 22 (50%) compounds were positive to the Lipidtox assay (Supplementary Table 345 

7), including Terfenadine, a cardiotoxic lysosomotropic CAD, not reported to be a PLD inducer in 346 

the literature, which caused a strong accumulation of lipids, as shown in Figure 6 (LipiTox Intensity 347 

Spot: 450.93 at a concentration of 10μM).   348 

Overall, our data demonstrate the value of the PLD transcriptional signature in identifying 349 

compounds potentially inducing lysosomal stress and phospholipidosis. 350 

 351 

The PLD transcriptional signature affects transcriptional responses to drug treatment in a 352 

concentration dependent manner.  353 
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We next investigated whether the PLD expression signature was linked to the elevated drug 354 

concentration used in the CMAP experiments, in agreement with the HCS results indicating a dose 355 

dependent TFEB nuclear translocation (Supplementary Fig. 14). Indeed 5,747 out 6,100 CMAP 356 

gene expression profiles (94%) were measured at high drug concentrations ranging from 1µM to 357 

10 mM, while the remaining 353 (6%) at lower concentrations ranging from 10nM to 0.5 µM. We 358 

thus searched CMAP for PLD-inducing drugs for which both high and low concentration instances 359 

were present. We selected 5 drugs (out of 35 PLD) drugs: raloxifene (ER antagonist at 0.1 µM and 360 

7.8 µM), tamoxifen (ER antagonist at 1 µM and 7.0 µM), amitriptyline (antidepressant 1 µM and 361 

12.8 µM), thioridazine (antipsychotic at 1 µM and 10 µM) and chlorpromazine (antipsychotic at 1 362 

µM and 11.2 µM). We then generated two additional transcriptional responses (LOW and HIGH) 363 

for each of these 5 drugs by analysing separately the low and high concentration experiments 364 

(Methods, Supplementary Figure 15 and Supplementary Table 8).  365 

The HIGH transcriptional responses for the 5 drugs were more similar to the PLD signature 366 

than the corresponding LOW transcriptional responses (Supplementary Table 8), confirming an 367 

increased alteration of the transcriptional response caused by high drug dosages. Moreover, the 368 

HIGH transcriptional responses of 4 out of 5 drugs were connected to a much larger number of 369 

drugs in the transcriptional network when compared to their LOW transcriptional response 370 

counterparts (Supplementary Fig. 16). Raloxifen, a selective estrogen receptor modulator 371 

(SERM), is the only drug tested also at sub-micromolar concentrations (0.1 µM). When using the 372 

HIGH transcriptional response, raloxifene is predicted to be transcriptionally similar to 154 373 

compounds (Supplementary Fig. 16 and Supplementary Table 8), none of which behaving as a 374 

SERM, with the most similar being trifluoperazine, an antipsychotic drug with known PLD-inducing 375 

properties. On the contrary, when the LOW transcriptional response is used, raloxifene is predicted 376 

to be transcriptionally similar only to 4 compounds, the most similar one being tamoxifen, a well-377 

known SERM. 378 

 379 

Discussion  380 
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By analysing a large set of chemical structures, we generated a network representing 381 

structural similarities among compounds that can be used to automatically group together drugs 382 

with similar scaffolds and mode-of-action. Other methods to cluster drugs based on structural 383 

similarity have been proposed in the literature16 but no hierarchical classification of drugs in 384 

communities and rich-clubs based on the network structure has been previously performed.  By 385 

comparing the structural drug network with the transcriptional drug network, we observed broad 386 

differences between the two: drugs can be very similar in terms of the transcriptional response they 387 

induce, but with unrelated chemical structures, or vice-versa have very similar structures but 388 

induce diverse transcriptional responses.  389 

Here, we identified a set of confounding factors that can hinder the usefulness of 390 

transcriptional based methods. We introduced a simple but powerful measure, “Transcriptional 391 

Variability” (TV), to assess the strength and robustness of the transcriptional response of a cell to a 392 

drug treatment.  393 

In the original CMAP study,2 the authors indeed recognised that although gene-expression 394 

signatures can be highly sensitive, they may be uninformative if measured in cells that lack the 395 

appropriate physiological or molecular context, but offered no solution to identify such cases. We 396 

observed that glucocorticoids tend to have a high TV, hence uninformative transcriptional profiles. 397 

Indeed, MCF7,66, 67 HL60 and PC368, 69 cell lines used in CMAP may exhibit resistance to 398 

glucocorticosteroids2. Hence, if not filtered out, computational analysis of their transcriptional 399 

responses may be misleading and lead to wrong conclusions, e.g. such that betamethasone and 400 

dexamethansone have a different mode of action (Figure 2).  401 

We also uncovered a transcriptional signature common to a subset of transcriptionally 402 

similar but structurally distinct drugs profiled in CMAP that is not related to their mode of action, but 403 

rather to cellular toxicity caused by lysosomal stress and lipid accumulation. 404 

We further demonstrated by HCS that PLD inducing drugs have little effect on ER and Golgi 405 

morphology, but rather increase the number and size of lysosomes, as previously reported in the 406 

literature, and induce the nuclear translocation of the transcription factor TFEB, a master regulator 407 
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of lysosomal biogenesis and autophagy. We show that the transcriptional signature present in the 408 

transcriptional response of PLD inducing drugs is mainly driven by TFEB activation. These results 409 

may help in further elucidating the effect of lysosomotropic PLD-inducing drugs on autophagy.70 410 

Moreover, the PLD transcriptional signature may be a useful tool for identifying and repositioning 411 

drugs as inducers of TFEB activation and thus of authophagy.57 412 

Our findings are relevant for all those studies relying on CMAP transcriptional responses to 413 

determine drug mode of action and for drug repositioning. Here, we show that very high and not 414 

physiological compound concentrations, such as the ones used in the CMAP dataset, increase the 415 

chance of off-target effects including lysosomotropism and phospholipidosis. Somewhat 416 

surprisingly, despite the high concentrations used, only a minority of compounds in CMAP (~30%) 417 

have reproducible transcriptional responses (TV<0.8). Notwithstanding these limitations, the CMAP 418 

still contains relevant information on drug activity if properly analysed, allowing to correctly 419 

discriminate among different classes of drugs3 and it can provide complementary information to 420 

that obtained by HCS.4, 71-73  421 

Based on the results here presented, we suggest guidelines to prevent inconsistencies and 422 

erroneous conclusion when using transcriptional responses of small molecules for drug discovery 423 

and drug repositioning: (i) the transcriptional response elicited by a drug can be uninformative. 424 

Hence these responses must be detected and then excluded from further analyses. We 425 

demonstrated that this can be achieved by assessing the Transcriptional Variability (TV) of the 426 

drug–induced transcriptional response across multiple replicates; (ii) drug treatment can cause 427 

cellular stress unrelated to the drug MoA and thus affect the drug-induced transcriptional response 428 

by partially masking transcriptional changes directly related to the drug molecular targets. We 429 

generated a PLD transcriptional signature which can be used to detect these compounds. This 430 

signature is particularly strong if drug concentrations used to treat cells are above their clinically 431 

relevant concentrations. One way to avoid this is to use clinically relevant (sub-micromolar) 432 

concentrations; (iii) in the case of natural compounds, computational approaches based on 433 
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transcriptional responses maybe more informative than those based on structural approaches, 434 

because of the large size and molecular complexity of these compounds.  435 

 436 

Methods 437 

 438 

Compounds 439 

We retrieved the chemical structure of 5500 small-molecules part of the Library of Integrate 440 

Network-based Cellular Signatures (LINCS - http://lincscloud.org) project in the form of SMILES 441 

string annotations (Supplementary Information). 4719 out of 5500 SMILES strings were retrieved 442 

according to their annotated ChemSpider ID (CSID) and PubChem ID (PID) in the NIH LINCS 443 

database. The remaining 779 NHS LINCS structures, for which no CSID or PID annotation was 444 

found, were retrieved by a web-API search in ChemSpider according to the molecule names. Six 445 

compounds were restricted structures. Thus, a final collection of 4927 LINCS unique structures 446 

was obtained. In addition, we retrieved chemical structures for the 1309 small-molecules part of the 447 

CMAP dataset (Connectivity Map).2, 7 784 out of 1309 small-molecules were already present 448 

among the 4929 LINCS unique structures.  Thus only 523 unique CMAP structures were retrieved 449 

as described before (Supplementary Fig. 1). The total number of chemical structure used for 450 

further analysis was thus equal to 5452.  451 

The ChemAxon Standardizer tool (v. 14.9) was run to convert SMILES string annotations 452 

into 2D multi-SDF structural files.74 The “remove fragments” and “neutralize” options were used to 453 

fix all the molecular structures, to remove counter-ions and other various kinds of molecular 454 

fragments, which may be present in branded drug formulation but not useful in this work (e.g. 455 

besilates, mesilates, chlorides, bromides, sulphates, etc.). Protonation state of each structure was 456 

calculated with MoKa software v. 2.0 considering physiological pH 7.4.75  457 

Finally, 3D minimized conformations were generated with the MMFF4x force-field in the 458 

MOE software (v. 2013)76 and stored as 3D multi-SDF structural files. The MMFF4x is the standard 459 

force-field parameterised for small organic molecules such as drugs. Partial charges are based on 460 
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bond-charge increments. Conjugated nitrogens are considered as planar. Thus, a unique 3D multi-461 

SDF file was obtained and used as input file for all the subsequent analyses. 462 

 463 

Physicochemical and pharmacokinetic properties 464 

Starting from the 3D–coordinates multi-SDF file, each structure was the imported in the Volsurf+ 465 

v.1.5 software27 normalising their protonation state at pH 7.4. A set of 128 physicochemical and 466 

pharmacokinetic descriptors were calculated using Volsurf+ v. 1.5, using a grid spatial resolution of 467 

0.5 Å. A final matrix of 5452 objects (drugs and chemical substances) and 128 descriptors was 468 

thus obtained. The molecular descriptors matrix was then visualised through the Principal 469 

Component Analysis (PCA) tool integrated in Volsurf+. Only the first five PCs were considered for 470 

the analysis. PCA score and loading plots are shown in Supplementary Figure 2a and 2b. 471 

Analysis of the physicochemical descriptor distribution plots are shown in Supplementary Figure 472 

3. 473 

 474 

3D structural similarities by pharmacophore descriptors 475 

The software FLAP v. 2.030 was used to compute all-against-all pair-wise 3D structural 476 

similarities among the 5452 compounds. FLAP allows 3D molecular superimposition of two 477 

molecules and computes a pairwise similarity score based on Molecular Interaction Fields (MIFs), 478 

in order to evaluate type, strength, and direction of the interactions a molecule can have. The 479 

GRID tool,23 part of the FLAP software was used to compute the Molecular Interaction Fields 480 

based on three interaction probes: H, DRY and OH2. The hydrogen probe H is used to compute 481 

the shape of a small molecule. The hydrophobic probe DRY finds places at which hydrophobic 482 

atoms on the surface of a target molecule will make favourable interactions with hydrophobic 483 

ligand atoms. The probe OH2 represents polar and hydrophilic interactions mainly generated by 484 

hydrogen bond donor and acceptor functional groups and charges interactions. Four-point 485 

pharmacophores derived from the MIFs were used to align molecules with specific biological 486 

activity.30, 77, 78 The evaluation of MIF volume superimpositions between the two structures is 487 
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reported as a similarity score ranging from 0 to 1 for each of the three probes. A global score 488 

(GLOB-Sum) is then obtained as the sum of the three scores of the individual probes. Higher 489 

GLOB-S values correspond to more similar structures. For this study, we transformed the GLOB-490 

Sum similarity score matrix (S) of dimension 5452x5452 into a distance matrix defined as D=1-S/3. 491 

 Since the distance matrix is symmetric (i.e. the distance between A and B is the same as 492 

the distance between B and A), the total number of drug-pairs to consider is 14,859,426 (5452 x 493 

5451 /2).  494 

Construction of the drug network 495 

We ranked drug-pairs according to their structural distance in ascending order and 496 

considered as significant only those drug-pairs in the top 5% of the ranked list, as previously 497 

described by Iorio et. al.4 to reduce the total amount of egdes in the MANTRA network (The 498 

distance threshold is 0.51 when considering the 5452x5452 network or 0.65 when considering only 499 

the CMAP 1309x1309 sub-network). We then represented drugs as nodes connected by edges. 500 

The resulting Structural Drug Network has a giant connected component with 5312 nodes (i.e., 501 

drugs) out of 5,452 and 35,527 edges, corresponding to 5% of a fully connected network with the 502 

same number of nodes (14,859,426 edges) (Supplementary Fig. 4). In order to visualise and 503 

extract useful information from the SDN, we identified communities via the Affinity Propagation 504 

Clustering algorithm, as implemented in the R package apcluster (v. 1.3.5).32, 79 A community is 505 

defined as a group of nodes densely interconnected with each other and with fewer connections to 506 

nodes outside the group.80 Each community was coded with a numerical identifier, a colour, and 507 

one of its nodes was identified as the “exemplar” of the community, i.e., the drug whose effect best 508 

represents the effects of the other drugs in the community.4 509 

 510 

 511 

Validation of the Structural Drug Network 512 

To validate the drug structural network, we assessed whether pairs of drugs connected by 513 

an edge in the network (i.e. structurally similar according to our distance) shared a common clinical 514 
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application. To this end, we collected for each drug the correspondent Anatomical Therapeutic 515 

Chemical (ATC) code (version Index 2014). This drugs classification method developed by the 516 

World Health Organization in collaboration with the Drug Statistics Methodology (WHOCC),81 517 

hierarchically classifies compounds according to five different levels: (1st level) Organ or system 518 

on which they act; (2nd level) Therapeutic class; (3rd level) Pharmacological subgroup; (4th level) 519 

Chemical subgroup; (5th level) Compound identifier. ATC code collisions often occur for the same 520 

drug. For instance, Aspirin has three distinct ATC codes: A01AD05 (drug for alimentary tract and 521 

metabolism), B01AC06 (blood agent as platelet inhibitor) and N02BA01 (nervous system agent as 522 

analgesic and antipyretic). In such cases we considered multiple ATC codes for the same drug in 523 

the network. ATC codes available from the WHOCC were 936 out of 5452 drugs (17%). 524 

We then sorted drug-pairs according their structural distance in ascending order and for 525 

each drug-pair we checked whether they shared the same ATC to assess whether it was a True 526 

Positive (TP) or a False Positive (FP). Supplementary Figure 6 reports the PPV=TP/(TP+FP) 527 

versus the drug-pair distance for different ATC code levels.  528 

 Furthermore, in order to assess whether a community in the drug network was enriched for 529 

a common ATC code, we counted the number of drugs with the same ATC code at the 4th level 530 

(pharmacological subclass) in community. We then computed a p-value for each community by 531 

applying the hypergeometric probability distribution test. 532 

 533 

Transcriptional Variability score  534 

TV was computed for all the compounds having at least two profiles available in CMAP for 535 

the same cell line. The number of such small molecules for each cell line is: 1165 in MCF7, 398 in 536 

PC3, 32 in HL60, 2 in ssMCF7. We took advantage of the large majority of MCF7 experiments to 537 

avoid the problematic integration of TV values across different cell types and discarded all non-538 

MCF7 data. About 15% of the CMAP small molecules have more than two profiles in MCF7 cells, 539 

producing an average of 16.08 “within-molecule” profile pairs and a maximum of 630 (for 540 

tanespimycin). To obtain the TV for a small molecule we computed the median of all the distances 541 
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between such pairs. The pairwise distance is based on the enrichment of the top (bottom) genes of 542 

one profile among the top (bottom genes) of the other profile and vice-versa, as detailed in Iorio et. 543 

al.4 Since the TV is based on the same transcriptional distance measure used to derive the 544 

transcriptional network in Iorio et al4, we set as a significance threshold for the TV the same 545 

threshold used to derive the transcriptional network (TVth=0.8). 546 

 547 

 548 

Phospholipidosis stress signature 549 

The PLD stress signature was built by merging together 35 PRLs (prototype ranked lists), 550 

corresponding to drugs searched in the literature known to induce PLD,45 into a single node using 551 

the Kruskal Algorithm strategy and the Borda Merging Method implemented the online tool 552 

MANTRA (http://mantra.tigem.it) and previously described 3. Briefly, the algorithm first searches for 553 

the two ranked lists with the smallest Spearman’s Footrule distance. Then it merges them using 554 

the Borda Merging Method, obtaining a new ranked list of genes. The process restarts until only 555 

one list remains.  556 

 557 

HCS (High Content Screening) assays 558 

TFEB nuclear translocation: To quantify TFEB subcellular localization, a high-content assay 559 

upon the compound treatments indicated was performed using stable HeLa cells overexpressing 560 

TFEB-GFP according to our previous protocols (Medina et al, 2015). Lysosome, Golgi and 561 

Endoplasmic Reticulum assays: HeLa cells were seeded in a 384-well plate, incubated for 24h and 562 

treated with the different compounds at 0.1, 1 and 10 µM for additional 24h. After that cells were 563 

fixed with 4% paraformaldehyde (for LAMP1 and GM130 stainings) or ice-cold methanol (for PDI 564 

staining) and permeabilized/blocked with 0.05% (w/v) saponin, 0.5% (w/v) BSA and 50 mM NH4Cl 565 

in PBS (blocking buffer). LAMP-1, GM130 and PDI detection was performed by incubating with the 566 

corresponding primary antibodies (anti-LAMP1, Santa Cruz Biotechnology; anti-GM130 and anti-567 
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PDI, Cell Signaling Technology) followed by the incubation with an AlexaFluor-conjugated 568 

secondary antibodies (Life Technologies) diluted in blocking buffer. LysoTracker Red DND-99 (Life 569 

Technologies) staining was performed by the incubating the dye for the last 30 minutes before 570 

fixation. DAPI and CellMask Deep Red Plasma membrane Stain (Life Technologies) were used for 571 

nuclei and plasma membrane staining, respectively. Images of of lysosomes (LAMP-1 and 572 

LysoTracker Red DND-99), Golgi (GM130) and ER (PDI) were acquired using  an automated 573 

confocal microscopy (Opera High Content System, Perkin-Elmer). The fluorescent intensity and 574 

area of the different stainings were analyzed by using dedicated scripts developed in the Columbus 575 

Image Data Management and Analysis Software (Perkin-Elmer). 576 

High Content Lipid accumulation assay: LipidTOX green phospholipidosis detection reagent (Life 577 

Technologies) was added to the cells along with the different compounds at the indicated 578 

concentrations for 48h before fixation with 4% paraformaldehyde. DAPI and CellMask Deep Red 579 

Plasma membrane Stain (Life Technologies) were used for nuclei and plasma membrane staining, 580 

respectively. Lysosomal phospholipid accumulation was analyzed by measuring fluorescent dye 581 

intensity using an automated confocal microscopy (Opera High Content System, Perkin-Elmer) and 582 

a Columbus Image Data Management and Analysis Software (Perkin-Elmer). 583 

 584 

  585 
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Table 1: Drug-pairs with different chemical structures but inducing very similar 785 

transcriptional responses. Drug-pairs in Figure 2 (quadrant III) were ranked by transcriptional 786 

distance (Tr. Dist.). Only the top 20 ranked drugs pairs are shown together with their structural 787 

distance (Str. Dist.). Lysosomotropic drugs are shown in italic and phospholipidosis inducing drugs 788 

in bold. 789 

 790 

  791 

Drug A Drug B Tr. Dist. Str. Dist. 

digoxin lanatoside_C 0.131 0.693 

digoxin proscillaridin 0.166 0.758 

lanatoside_C proscillaridin 0.187 0.776 

rifabutin vorinostat 0.286 0.826 

astemizole terfenadine 0.337 0.724 

astemizole mefloquine 0.385 0.776 

doxorubicin mitoxantrone 0.414 0.651 

mefloquine terfenadine 0.421 0.767 

chlorzoxazone clindamycin 0.442 0.829 

chlorzoxazone glibenclamide 0.445 0.791 

terfenadine trifluoperazine 0.453 0.758 

irinotecan phenoxybenzamine 0.455 0.800 

suloctidil terfenadine 0.466 0.696 

astemizole trifluoperazine 0.469 0.718 

protriptyline trifluoperazine 0.472 0.713 

niclosamide trifluoperazine 0.472 0.688 

mefloquine trifluoperazine 0.478 0.674 

doxazosin sulconazole 0.481 0.776 

lomustine phenoxybenzamine 0.484 0.719 
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Figures legend 792 

 793 

Figure 1: The structural network among 5452 compounds. The network is partitioned into 794 

communities (groups of highly interconnected nodes) and rich-clubs (groups of communities) 795 

sharing common chemical structures and enriched for drugs with similar Mode of Action. Examples 796 

of three Rich Clubs are shown: a) The steroids rich-club (1: testosterone scaffold, 2: estradiol 797 

scaffold, 3: cortisone scaffold, 4: progesterone scaffold, 5 and 6: mixed steroids); b) The antibiotics 798 

rich-club (1 and 2: tetracycline scaffold, 3: cephalosporin scaffold, 4: penicillin scaffold); c) The 799 

CNS-acting drug rich-club (1 and 2: phenothiazine scaffold, 3-6: various tricyclic antidepressant 800 

scaffolds).  801 

 802 

Figure 2: Comparison of transcriptional and structural distances between 784 CMAP 803 

compounds having at least one ATC annotation. Each dot represents the structural (x-axis) and 804 

transcriptional (y-axis) distance between two compounds. A total of 306,936 drug-pairs are shown. 805 

Drug-pairs having the same clinical application as annotated by their ATC code are represented by 806 

red dots. Dashed lines represent the significance threshold for the transcriptional (horizontal line) 807 

and structural (vertical line) distance, splitting the plane into four quadrants. Representative 808 

examples of drug-pairs are shown for quadrants I, II and III: drug-pairs in quadrant I have similar 809 

structure but induce different transcriptional responses; drug-pairs in quadrant II exhibit both similar 810 

structure and similar transcriptional responses; drug-pairs in quadrant III have different structures 811 

but induce similar transcriptional responses.  812 

 813 

Figure 3: The Transcriptional Variability (TV) of different drug classes. Box-plots summarising 814 

the TV for drugs within each class. The bold line in each box represents the median, while the 815 

whiskers represent the 25th and the 75th percentile. Dots represent outliers. Prt.inh.: Protein 816 

synthesis inhibitors; HDAC: histone deacetylase inhibitors; Chemoth.: chemotherapeutic agents; 817 

Antibio.: antibiotics; NSAIDs: non-steroid antinflammatory agents; GC: glucocorticoids; Antipsych: 818 

antipsychotics; Antihist: antihistamines. 819 

 820 

Figure 4: Performance of the transcriptional distance in detecting drugs with the same ATC 821 

code. Compounds were divided into three sets: (All) the 1165 compounds in CMAP having at TV 822 

value; (High TV) 582 compounds with a TV higher than the median TV among all the compounds; 823 

(Low TV) 582 compounds with a TV lower than the median TV. For each set, the transcriptional 824 

distance of each drug-pair was computed. Drug-pairs were then sorted according to their 825 

transcriptional distance, with drug-pairs with the smallest distance towards the origin of the x-axis; 826 

the Positive Predictive Value (PPV) was computed as the percentage of True Positives over False 827 

Positives plus True Positives and shown on the y-axis. The PPV obtained by randomly sorting 828 

drugs is also shown (Random). 829 

Figure 5: Drugs inducing a lysosomotropic gene expression signature. The transcriptional 830 

responses elicited by 8 lysosomotropic compounds were combined into a single node in the 831 

transcriptional drug network (red triangle).  Transcriptional distances to this lysosomotropic gene 832 

expression signature were computed for all the 1309 drugs in CMAP. Only drugs with a 833 
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transcriptional distance below the significance threshold are shown (0.8) and colour-coded 834 

according to their ATC classification.  835 

 836 

Figure 6: Effects of drugs on TFEB nuclear translocation and LipidTOX assay. A) TFEB 837 

localization in stably HeLa cells overexpressing TFEB-GFP and treated with DMSO or the 838 

indicated drugs. B) Lipid accumulation in HeLa cells was detected by staining with LipidTOX 839 

reagent upon drug treatment. 840 

 841 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119990doi: bioRxiv preprint 

https://doi.org/10.1101/119990


RC42_C181 flupentixol
RC42_C181 thioproperazine

RC42_C181 fluvastatin

RC42_C181 thiethylperazine

RC42_C181 prochlorperazine

RC42_C181 piperacetazine

RC42_C181 perphenazine

RC42_C181 moracizine

RC42_C94 trimipramine

RC42_C94 desipramine

RC42_C94 clomipramine

RC42_C94 deptropine

RC42_C94 promazine

RC42_C94 maprotiline

RC42_C94 dosulepin

RC42_C181 trifluoperazine

RC42_C53 carbamazepine

RC42_C182 acepromazine

RC42_C182 mesoridazine

RC42_C182 tracazolate

RC42_C182 iocetamic_acid

RC42_C137 cyproheptadine

RC42_C94 amitriptyline

RC42_C94 imipramine

RC42_C94 mebhydrolin

RC42_C137 pizotifen

RC42_C53 quinisocaine

RC42_C182 triflupromazine

RC42_C42 chlorpromazine

RC42_C42 metixene

RC42_C53 nortriptyline

RC42_C53 norcyclobenzaprine

RC42_C53 cyclobenzaprine

RC42_C53 doxepin

RC42_C158 pempidine

RC42_C137 clozapine

RC42_C137 ketotifen

RC42_C158 selegiline

RC42_C137 loxapine

RC42_C137 pimethixene

RC42_C137 
diphemanil_metilsulfate 

RC42_C53 mianserin

RC42_C137 telenzepine

RC42_C182 halofantrine

RC42_C182 fluphenazine

RC42_C182 fluoxetine

RC42_C53 protriptyline

RC42_C158 bepridil

RC42_C158 mephentermine

RC42_C158 
bephenium_hydroxynaphthoate 

RC42_C158 pargyline
RC42_C158 dizocilpine

RC42_C158 naftifine

RC42_C158 ticlopidine

RC42_C158 clorgiline

RC42_C158 alverine

RC42_C158 gramine

RC42_C42 thioridazine

RC42_C42 alimemazine

RC42_C42 promethazine

RC42_C42 chlorprothixene

RC42_C42 pirenzepine

RC42_C42 levomepromazine

RC42_C42 profenamine

RC47_C34 ceftazidime
RC47_C23 Prestwick_692

RC47_C23 ramipril

RC47_C23 U0125

RC47_C23 HNMPA_AM_3RC47_C34 cefuroxime

RC47_C23 enalapril

RC47_C33 cefoxitin

RC47_C33 cefalexin

RC47_C33 cefalonium

RC47_C33 cefamandole

RC47_C33 ceforanide

RC47_C73 daunorubicin

RC47_C47 dicloxacillinRC47_C34 cefotaxime

RC47_C47 cloxacillin

RC47_C47 nafcillin

RC47_C74 rottlerin

RC47_C23 cyclopenthiazide

RC47_C23 bendroflumethiazide

RC47_C47 flucloxacillin

RC47_C16 azlocillin

RC47_C74 tenoxicam

RC47_C16 ampicillin
RC47_C193 yohimbic_acid

RC47_C172 tanespimycin

RC47_C68 alprostadil

RC47_C106 simvastatin

RC47_C68 
15(S)-15_methylprostaglandin_E2 

RC47_C16 
benzathine_benzylpenicillin 

RC47_C106 lovastatin

RC47_C68 dinoprostone

RC47_C33 cefsulodin

RC47_C33 cefaclor
RC47_C184 

tubocurarine_chloride 

RC47_C74 doxycycline
RC47_C33 cefadroxilRC47_C56 demeclocycline

RC47_C33 loracarbef

RC47_C73 doxorubicin

RC47_C33 cefazolin
RC47_C56 lymecycline

RC47_C56 chlortetracycline

RC47_C193 alpha_yohimbine
RC47_C193 tetrahydroalstonine

RC47_C193 yohimbine
RC47_C193 raubasine

RC47_C193 Prestwick_685

RC47_C193 corynanthine

RC47_C193 Prestwick_984

RC47_C68 meteneprost

RC47_C68 

RC47_C16 bacampicillin

RC47_C16 metampicillin
RC47_C16 pivampicillin

RC47_C16 benzylpenicillin

RC47_C16 ticarcillin

RC47_C16 talampicillin

RC47_C16 pivmecillinam

RC47_C16 ciclacillin

RC47_C16 eucatropine

RC47_C16 amoxicillin
RC47_C68 

16_phenyltetranorprostaglandin_E2 

RC47_C16 pheneticillinRC47_C68 dinoprostRC47_C68 
16,16_dimethylprostaglandin_E2 RC47_C172 geldanamycin

RC47_C56 minocycline

RC47_C74 oxytetracycline

RC47_C56 metacycline

RC47_C34 cefapirin

RC47_C56 tetracycline

RC47_C74 meclocycline

RC47_C56 rolitetracycline

RC47_C34 cefotiam
RC47_C34 cefalotin

RC47_C34 cefixime

RC47_C34 cefepime

RC152_C188 
ursodeoxycholic_acid RC152_C62 hexestrol

RC152_C26 betulin

RC152_C145 
methylprednisolone 

RC152_C63 digoxigenin

RC152_C152 progesterone

RC152_C62 dienestrol

RC152_C78 fulvestrant

RC152_C188 
dehydrocholic_acid 

RC152_C125 norethisterone
RC152_C145 prednisolone

RC152_C145 prednisone RC152_C145 alfadolone

RC152_C145 cortisone

RC152_C78 estrone
RC152_C78 estradiol

RC152_C78 equilinRC152_C78 estropipate

RC152_C188 lithocholic_acid

RC152_C78 estriol

RC152_C161 sitosterolRC152_C78 mestranol

RC152_C26 ursolic_acid

RC152_C26 betulinic_acid
RC152_C152 megestrol

RC152_C152 cyproterone

RC152_C152 ethisterone
RC152_C152 medrysone

RC152_C152 spironolactone

RC152_C152 pregnenolone

RC152_C152 finasteride

RC152_C152 nomegestrol
RC152_C152 dydrogesterone

RC152_C152 desoxycortone

RC152_C26 fusidic_acid

RC152_C63 digitoxigenin
RC152_C78 alpha_estradiol

RC152_C188 
chenodeoxycholic_acid 

RC152_C63 digoxin
RC152_C161 ifenprodil

RC152_C63 strophanthidin
RC152_C78 epitiostanol

RC152_C78 noretynodrel RC152_C144 prasterone

RC152_C144 androsterone

RC152_C144 wortmannin

RC152_C161 colecalciferol

RC152_C144 conessine

RC152_C144 epiandrosterone

RC152_C144 exemestane
RC152_C161 solasodine

RC152_C144 etiocholanolone

RC152_C161 hecogenin

RC152_C161 tomatidine

RC152_C125 lynestrenol

RC152_C188 glycocholic_acid
RC152_C125 levonorgestrel

RC152_C125 canrenoic_acid

RC152_C125 etynodiol

RC152_C125 danazol

RC152_C125 mifepristone

RC152_C125 testosterone

RC152_C145 flunisolide

RC152_C58 dexamethasone
RC152_C145 alfaxalone

RC152_C145 adrenosterone

RC152_C145 fludrocortisone
RC152_C62 diethylstilbestrol

RC152_C145 fludroxycortide

RC152_C58 rimexolone

RC152_C58 alclometasoneRC152_C58 fluocinonide

RC152_C58 mometasone

RC152_C58 flumetasone

RC152_C58 clobetasol

RC152_C58 budesonide

RC152_C58 prednicarbate
RC152_C58 fluticasone

RC152_C58 diflorasone

RC152_C58 beclometasone
RC152_C58 fluorometholone

RC152_C58 corticosterone

RC152_C58 hydrocortisone
RC152_C58 triamcinolone

RC152_C58 betamethasoneRC152_C58 isoflupredoneRC152_C58 halcinonide

Steroids Antibiotics CNS drugs

A B C

2
3

4

1 3

4

1

2

3

4

56

1

OH

H

HH

O

Testosterone

OH

H

HH

HO

17b-estradiol

OH

O

O

OH

O

Cortisone

H

O

O

O

H H

H

Progesterone

Steroid backbone

X

OH O

R1

R2

OH

R3 N(CH3)2

OH
O O

NH2

OH
H

N

Z

COOH

XO

ROCHN
HY

N

O

ROCHN
HH

S

COOH

N
H

S

R

X

N

aryl5

6

2

X

Y

N
R1

R

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119990doi: bioRxiv preprint 

https://doi.org/10.1101/119990


St= 0.001
Tr= 0.94

St= 0.16
Tr= 0.81

St= 0.29
Tr= 0.90

St= 0.46
Tr= 0.64

St= 0.34
Tr= 0.63

St= 0.37
Tr= 0.65

clomipramine imipramine

norfloxacin zoxazolamine

betamethasone dexamethasone

thioproperazine trifluoperazine

St= 0.69
Tr= 0.13

St= 0.78
Tr= 0.38

St= 0.80
Tr= 0.45

carmustine lomustine

albendazole fenbendazole

digoxin
lanatoside C

astemizole mefloquine

terfenadine trifluoperazine

h

OH

O

HO

F H

OH

H

h

OH

O

HO

F H

OH

H

b

Cl

N

b

N

I

II III

IV

F

N

N

N
H

N

O

N

F F
F

F

F
F

HO

HN

OH

N

OH N

S

F

F

F

N

N

O

OH

H

OHH

O
O

HO

HO

HO

O

OH

HO

HO

O

O

O

O

O

O

O

O

O

OH

H

H

HH

HO

HO

H

O

H

OH

O

O

HO

OH

HO

HO

H

N N

NH

O

HO

O

F

N N

N

N

NH

O

HO

O

N

S

N

N

S

N

OO

N

S

F

F

F

N

N

H
N

N

O

N

ClO

S

N

H
N

NH

O

O

S

N

H
N

NH

O

O

Cl

H
N

N

O

N

ClO

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119990doi: bioRxiv preprint 

https://doi.org/10.1101/119990


0.3

0.6

0.9

1.2

Prt.inh. Card.Glyc HDAC Chemoth. Antihist. Antipsych. GC Antibio. NSAID

TV

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119990doi: bioRxiv preprint 

https://doi.org/10.1101/119990


0 10 20 30 40 50

1
.0

1
.2

1
.4

1
.6

1
.8

Percentiles 

P
P

V
 (

%
)

All
Low TV 
High TV
Random

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119990doi: bioRxiv preprint 

https://doi.org/10.1101/119990


N05/N06
antipsychotics

R06
antihistamines

L01/L02/L04
anticancers

D01/G01
antifungals

C01/C07
cardiac therapy

C08
calcium channel

blockers

P01/P02
antiprotozoal, antihelmintics

G03
sex hormones

D07
corticosteroids

PLD+

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119990doi: bioRxiv preprint 

https://doi.org/10.1101/119990


DMSO                                  CHLOROQUINE                               ASTEMIZOLE                             TERFENADINE 

Li
p

id
TO

X
   

   
   

   
   

   
   

   
   

   
TF

EB
 N

T 
A 

B 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119990doi: bioRxiv preprint 

https://doi.org/10.1101/119990

