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Abstract15

Reproduction is a defining feature of living systems. To reproduce, aggregates of biological16

units (e.g., multicellular organisms or colonial bacteria) must fragment into smaller parts. Frag-17

mentation modes in nature range from binary fission in bacteria to collective-level fragmentation18

and the production of unicellular propagules in multicellular organisms. Despite this apparent19

ubiquity, the adaptive significance of fragmentation modes has received little attention. Here, we20

develop a model in which groups arise from the division of single cells that do not separate but21

stay together until the moment of group fragmentation. We allow for all possible fragmentation22

patterns and calculate the population growth rate of each associated life cycle. Fragmentation23

modes that maximise growth rate comprise a restrictive set of patterns that include production of24

unicellular propagules and division into two similar size groups. Life cycles marked by single-cell25
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bottlenecks maximise population growth rate under a wide range of conditions. This surprising26

result offers a new evolutionary explanation for the widespread occurrence of this mode of repro-27

duction. All in all, our model provides a framework for exploring the adaptive significance of28

fragmentation modes and their associated life cycles.29

Author Summary30

Mode of reproduction is a defining trait of all organisms, including colonial bacteria and multicellular31

organisms. To produce offspring, aggregates must fragment by splitting into two or more groups. The32

particular way that a given group fragments defines the life cycle of the organism. For instance, insect33

colonies can reproduce by splitting or by producing individuals that found new colonies. Similarly,34

some colonial bacteria propagate by fission or by releasing single cells, while others split in highly35

sophisticated ways; in multicellular organisms reproduction typically proceeds via a single cell bottle-36

neck phase. The space of possibilities for fragmentation is so vast that an exhaustive analysis seems37

daunting. Focusing on fragmentation modes of a simple kind we parametrise all possible modes of38

group fragmentation and identify those modes leading to the fastest population growth rate. Two kinds39

of life cycle dominate: one involving division into two equal size groups, and the other involving pro-40

duction of a unicellular propagule. The prevalence of these life cycles in nature is consistent with our41

null model and suggests that benefits accruing from population growth rate alone may have shaped42

the evolution of fragmentation mode.43

Introduction44

A requirement for evolution – and a defining feature of life – is reproduction [1, 2, 3, 4]. Perhaps the45

simplest mode of reproduction is binary fission in unicellular bacteria, whereby a single cell divides46

and produces two offspring cells. In more complex organisms, such as colonial bacteria, reproduction47

involves fragmentation of a group of cells into smaller groups. Bacterial species demonstrate a wide48

range of fragmentation modes, differing both in the size at which the parental group fragments and49

the number and sizes of offspring groups [5]. For example, in the bacterium Neisseria, a diplococcus,50

two daughter cells remain attached forming a two-celled group that separates into two groups of two51

cells only after a further round of cell division [6]. Staphylococcus aureus, another coccoid bacterium,52
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divides in three planes at right angles to one another to produce grape-like clusters of about 20 cells53

from which single cells separate to form new clusters [7]. Magnetotactic prokaryotes form spherical54

clusters of about 20 cells, which divide by splitting into two equally sized clusters [8].55

These are just a few examples of a large number of diverse fragmentation modes, but why should56

there be such a wide range of life cycles? Do fragmentation modes have adaptive significance or are57

they simply the unintended consequences of particular cellular processes underpinning cell division?58

If adaptive, what selective forces shape their evolution? Can different life cycles simply provide59

different opportunities to maximise population growth rate?60

A starting point to answer these questions is to consider benefits and costs of group living in cell61

collectives. Benefits may arise for various reasons. Cells within groups may be better able to withstand62

environmental stress [9], escape predation [10, 11], or occupy new niches [12, 13]. Also, via density-63

dependent gene regulation, cells within groups may gain more of a limiting resource than they would64

if alone [14, 15]. On the other hand, cells within groups experience increased competition and must65

also contend with the build up of potentially toxic waste metabolites [16, 17]. Thus, it is reasonable66

to expect an optimal relationship between group size and fragmentation mode that is environment and67

organism dependent [18, 19, 20, 21].68

Here we formulate and study a matrix population model [22] that considers all possible modes69

of group fragmentation. By determining the relationship between life cycle and population growth70

rate, we show that there is, overall, a narrow class of optimal modes of fragmentation. When the71

process of fragmentation does not involve costs, optimal fragmentation modes are characterised by72

a deterministic schedule and binary splitting, whereby groups fragment into exactly two offspring73

groups. Contrastingly, when a cost is associated with fragmentation, it can be optimal for a group to74

fragment into multiple propagules.75

Our results show that the range of life cycles observed in simple microbial populations are likely76

shaped by selection for intrinsic growth rate advantages inherent to different modes of group fragmen-77

tation. While we do not consider complex life cycles, our results can contribute to understanding the78

emergence of life cycles underpinning the evolution of multicellular life.79
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Table 1: List of variables

Xi a group of size i cells

xi abundance of groups of size i

x vector of abundances xi

bi birth rate of cells in a group of i cells

di death rates of groups of i cells

n maximal group size

ζi the number of partitions of integer i

πi(κ) the number of parts equal to i in the partition κ

A projection matrix

λ1 population growth rate

M maximal benefit under monotonic fitness landscapes

α degree of complementarity under monotonic fitness landscapes

Methods80

Group formation and fragmentation81

We consider a population in which a single type of cell (or unit or individual) can form groups (or82

complexes or aggregates) of increasing size by cells staying together after reproduction [18]. We83

assume that the size of any group is smaller than n, and denote groups of size i by Xi (see the list of84

used variables in Table 1). Groups die at rate di and cells within groups divide at rate bi; hence groups85

grow at rate ibi. The vectors of birth rates b = (b1, . . . , bn−1) and of death rates d = (d1, . . . , bn−1)86

make the costs and benefits associated to the size of the groups explicit, thus defining the “fitness87

landscape” of our model.88

Groups produce new complexes by fragmenting (or splitting), i.e., by dividing into smaller groups.89

We further assume that fragmentation is triggered by growth of individual cells within a given group.90

Consider a group of size i growing into a group of size i+ 1. Such a group can either stay together or91

fragment. If it fragments, it can do so in one of several ways. For example, a group of size 4 can give92

rise to the following five “fragmentation patterns”: 4 (the group does not split, but stays together), 3+193

(the group splits into two offspring groups: one of size 3, and one of size 1), 2+2 (the group splits into94
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Figure 1: Life cycles and fragmentation modes. A Cells within groups of size i divide at rate

bi, hence groups grow at rate ibi; groups die at rate di. The sequences bi and di define the fitness

landscape of the model. We consider an exhaustive set of possible fragmentation modes, comprising

both pure and mixed life cycles. In general, when growing from size i to size i + 1, groups stay

together with probability qi, or fragment according to fragmentation pattern κ with probability qκ.

Each fragmentation pattern (determining the number and size of offspring groups) can be identified

with a partition of i + 1, i.e., a way of writing i + 1 as a sum of positive integers, that we denote by

κ ` i + 1. B Pure fragmentation modes are strategies with degenerate probability distributions over

the set of partitions (so that qκ = 1 for exactly one fragmentation pattern, including staying together).

Here we illustrate the pure fragmentation mode 2 + 1 + 1, for which q2 = q3 = q2+1+1 = 1, and

qκ = 0 for all other κ.

two groups of size 2), 2+1+1 (the group splits into one group of size 2 and two groups of size 1), and95

1+1+1+1 (the group splits into four independent cells). Mathematically, such fragmentation patterns96
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correspond to the five partitions of 4 (a partition of a positive integer i is a way of writing i as a sum97

of positive integers without regard to order; the summands are called parts [23]). We use the notation98

κ ` ` to indicate that κ is a partition of `, for example 2 + 2 ` 4. The number of partitions of ` is99

given by ζ`, e.g., there are ζ4 = 5 partitions of 4.100

We consider an exhaustive set of fragmentation modes (or “fragmentation strategies”) implement-101

ing all possible ways groups of maximum size n can grow and fragment into smaller groups, including102

both pure and mixed modes (Fig. 1). A pure fragmentation mode is characterised by a single partition103

κ ` `, i.e., groups of size i < ` grow up to size ` and then fragment according to partition κ ` `.104

The partition κ can then be used to refer to the associated pure strategy. The total number of pure105

fragmentation strategies is
∑n

`=2(ζ` − 1), which grows quickly with n: There are 128 pure fragmen-106

tation modes for n = 10, but 1,295,920 for n = 50. A mixed fragmentation mode is given by a107

probability distribution over the set of pure fragmentation modes. The relationship between pure and108

mixed fragmentation modes is hence similar to the one between pure strategies and mixed strategies109

in evolutionary game theory [24]. One of our main results is that mixed fragmentation modes are al-110

ways dominated by pure fragmentation modes. Hence, we focus our exposition on pure fragmentation111

modes, and leave the details of how to specify mixed fragmentation modes to Appendix A.112

Biological reactions and population dynamics113

Together with the fitness landscape given by the vectors of birth rates b and death rates d, each114

fragmentation strategy specifies a set of biological reactions. Consider the pure mode κ ` `, whereby115

groups grow up to size ` and then split according to fragmentation pattern κ. A set of reactions116

Xi
di−→ 0, i = 1, . . . , `− 1 (1)

models the death of groups; an additional set of reactions117

Xi
ibi−→ Xi+1, i = 1, . . . , `− 2 (2)

models the growth of groups (without splitting) up to size `− 1. Finally, one reaction of the type118

X`−1
(`−1)b`−1−−−−−−→

`−1∑
i=1

πi(κ)Xi, (3)

models the growth of the group from size ` − 1 to size ` and its immediate fragmentation in a way119

described by fragmentation pattern κ ` `, where parts equal to i appear a number πi(κ) of times. For120
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instance, for the pure fragmentation mode 2 + 1 + 1 ` 4, Eq. (3) becomes121

X3
3b3−−→ X2 + 2X1,

which stipulates that groups of size 3 grow to size 4 at rate 3b3 and split into one group of size 2 and122

two groups of size 1; here, π1(2 + 1 + 1) = 2, π2(2 + 1 + 1) = 1, π3(2 + 1 + 1) = 0.123

The sets of reactions (1), (2), and (3) give rise to the system of differential equations

ẋ1 = −(b1 + d1)x1 + (`− 1)b`−1π1(κ)x`−1,

ẋi = (i− 1)bi−1xi−1 − (ibi + di)xi + (`− 1)b`−1πi(κ)x`−1, i = 2, . . . , `− 1

where xi denotes the abundance of groups of size i. This is a linear system that can be represented in124

matrix form as125

ẋ = Ax, (4)

where x = (x1, x2, . . . , x`−1) is the vector of abundances of the groups of different size and126

A =



−b1 − d1 0 · · · 0 (`− 1)b`−1π1(κ)

b1 −2b2 − d2 0
... (`− 1)b`−1π2(κ)

0 2b2 −3b3 − d3 0 (`− 1)b`−1π3(κ)

0 0
. . . . . .

...

0 0 · · · (`− 2)b`−2 (`− 1)b`−1 (π`−1(κ)− 1)− d`−1


is the projection matrix determining the population dynamics.127

Population growth rate128

For any fragmentation mode and any fitness landscape, the projection matrix A is “essentially non-129

negative” (or quasi-positive), i.e., all the elements outside the main diagonal are non-negative [25].130

This implies that A has a real leading eigenvalue λ1 with associated non-negative left and right eigen-131

vectors v and w. In the long term, the solution of Eq. (4) converges to that of an exponentially growing132

population with a stable distribution, i.e.,133

lim
t→∞

x(t) = eλ1tw.

The leading eigenvalue λ1 hence gives the total population growth rate in the long term, and its asso-134

ciated right eigenvector w = (w1, . . . , wm−1) gives the stable distribution of group sizes so that, in135

the long term, the fraction xi of complexes of size i in the population is proportional to wi.136
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Dominance and optimality137

For a given fitness landscape {b,d}, we can take the leading eigenvalue λ1(κ;b,d) as a measure of138

fitness of fragmentation mode κ, and consider the competition between two different fragmentation139

modes, κ1 and κ2. Indeed, under the assumption of no density limitation, the evolutionary dynamics140

are described by two uncoupled sets of differential equations of the form (4): one set for κ1 and one141

set for κ2. In the long term, κ1 is not outcompeted by κ2 if λ1(κ1;b,d) ≥ λ1(κ2;b,d); we then say142

that fragmentation mode κ1 dominates fragmentation mode κ2. We also say that strategy κi is optimal143

for given birth rates b and death rates d if it achieves the largest growth rate among all possible144

fragmentation modes.145

Two classes of fitness landscape: fecundity landscapes and survival landscapes146

Fitness landscapes capture the many advantages or disadvantages associated with group living. These147

advantages may come either in the form of additional resources available to groups depending on their148

size or as an improved protection from external hazards. For our numerical examples, we consider149

two classes of fitness landscape, each representing only one of these factors. In the first class, that we150

call “fecundity landscapes”, group size affects only the birth rates of cells (while we impose di = 0151

for all i). In the second class, that we call “survival landscapes”, group size affects only death rates152

(and we impose bi = 1 for all i).153

Examples for n = 3154

To fix ideas, consider all pure fragmentation modes with a maximum group size n = 3. These are 1+1155

(“binary fission”, a partition of 2), 2+1 (“unicellular propagule”, a partition of 3), and 1+1+1 (“ternary156

fission” a partition of 3). The three associated projection matrices are given by157

A1+1 =
(
b1 − d1

)
,A2+1 =

−b1 − d1 2b2

b1 −d2

 ,A1+1+1 =

−b1 − d1 6b2

b1 −2b2 − d2

 .
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The three growth rates are158

λ1+1
1 = b1 − d1, (5a)

λ2+1
1 =

−(b1 + d1 + d2) +
√

(b1 + d1 − d2)2 + 8b1b2

2
, (5b)

λ1+1+1
1 =

−(b1 + 2b2 + d1 + d2) +
√
b21 + 2b1(10b2 + d1 − d2) + (2b2 − d1 + d2)2

2
. (5c)

In the particular case of a fecundity landscape given by b1 = 1 and b2 = 15/8 (and d1 = d2 = 0), these159

growth rates reduce to λ1+1
1 = 1, λ2+1

1 = 3/2 and λ1+1+1
1 = 5/4, and we have λ2+1

1 > λ1+1+1
1 >160

λ1+1
1 . We then say that ternary and binary fission are dominated by the unicellular propagule strategy.161

Results162

Mixed fragmentation modes are dominated163

Although for simplicity we focus our exposition on pure fragmentation strategies, we also consider164

mixed fragmentation strategies, i.e., probabilistic strategies mixing between different pure modes. A165

natural question to ask is whether a mixed fragmentation mode can achieve a larger growth rate than166

a pure mode. We find that the answer is no. For any fitness landscape and any maximum group size167

n, mixed fragmentation modes are dominated by a pure fragmentation mode (see Appendix B). Thus,168

the optimal fragmentation mode for any fitness landscape is pure.169

As an example, consider fragmentation modes 1+1 and 2+1, and a mixed fragmentation mode170

mixing between these two so that with probability q splitting follows fragmentation pattern 2+1 and171

with probability 1 − q it follows fragmentation pattern 1+1. For any mixing probability q and any172

fitness landscape, the growth rate of the mixed fragmentation mode is given by173

λq1 =
b1(1− 2q)− (d1 + d2) +

√
(d1 + d2 − (1− 2q)b1)2 + 4b1(2qb2 + (1− 2q)d2)

2
,

which can be shown to always lie between the growth rates of the pure fragmentation modes, i.e., either174

λ1+1
1 ≤ λq1 ≤ λ

2+1
1 or λ2+1

1 ≤ λq1 ≤ λ
1+1
1 holds and the mixed fragmentation mode is dominated (see175

Appendix C).176

To further illustrate our analytical findings, consider groups of maximum size n = 4 and a fe-177

cundity landscape given by b = (1, 2, 1.4). We randomly generated 107 mixed fragmentation modes178

by drawing the probabilities for growth without splitting from an uniform distribution and letting the179
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Figure 2: The optimal fragmentation mode is pure and characterised by binary fragmentation.

A Mixed fragmentation strategies are dominated. Here we show the empirical probability distribution

of the growth rate of mixed fragmentation modes for n = 4 (generated from a sample of 107 randomly

generated fragmentation modes) subject to the fitness landscape {b,d} = {(1, 2, 1.4), (0, 0, 0)}. The

growth rates of all seven pure fragmentation modes for n = 4 are indicated by arrows. In this case,

2+2 achieves the maximal possible growth rate among all possible fragmentation modes. B Optimal

fragmentation modes are characterised by binary splitting. Population growth rate (λ1) for all seven

pure fragmentation modes for n = 4 subject to the fitness landscape {b,d} = {(1, b2, 1.4), (0, 0, 0)}

as a function of the birth rate of groups of size 2, b2. Each of the four fragmentation modes charac-

terised by binary fragmentation (1+1, 2+1, 2+2, and 3+1) can be optimal depending on the value of

b2. Contrastingly, nonbinary fragmentation modes (1+1+1, 1+1+1+1, and 2+1+1) are never optimal.

probabilities of splitting according to a given fragmentation pattern be proportional to exponential180

random variables with rate parameter equal to one. We then calculated the growth rate of these mixed181

strategies together with the growth rate of the seven pure fragmentation modes available for n = 4,182

i.e., 1+1, 2+1, 1+1+1, 3+1, 2+2, 2+1+1, and 1+1+1+1 (Fig. 2A). In line with our analysis, a pure183

fragmentation mode (namely 2+2, whereby groups grow up to size 4 and then immediately split into184

two bicellular groups) achieves a higher growth rate than the growth rate of any mixed fragmentation185

mode, and the highest growth rate overall.186
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Optimal fragmentation modes are characterised by binary splitting187

Having shown that mixed fragmentation modes are dominated, we now ask which pure modes might188

be optimal. We find that, within the set of pure modes, “binary” fragmentation modes (whereby189

groups split into exactly two offspring groups) dominate “nonbinary” fragmentation modes (whereby190

groups split into more than two offspring groups). To illustrate this result, consider the simplest case191

of n = 3 and the three modes 1+1, 2+1, and 1+1+1, out of which 1+1 and 2+1 are binary, and 1+1+1192

is nonbinary. Comparing their growth rates (as given in Eq. (5)), we find that λ1+1
1 ≥ λ1+1+1

1 holds if193

b1−b2 ≥ d1−d2 and that λ2+1
1 ≥ λ1+1+1

1 holds if b1−b2 ≤ d1−d2. Thus, for any fitness landscape,194

1+1+1 is dominated by either 2+1 or by 1+1. More generally, we can show that for any nonbinary195

fragmentation mode, one can always find a binary fragmentation mode achieving a greater or equal196

growth rate under any maximum group size n and fitness landscape (see Appendices D and E). Taken197

together, our analytical results imply that the set of optimal fragmentation modes is countable and,198

even for large n, relatively small. Consider the proportion of pure fragmentation modes that can be199

optimal, which is defined by the ratio between the number of binary fragmentation modes and the total200

number of pure fragmentation modes. While this ratio is relatively high for small n (e.g., 2/3 ≈ 0.67201

for n = 3 or 4/7 ≈ 0.57 for n = 4), it decreases sharply with increasing n (e.g., 25/128 ≈ 0.20 for202

n = 10 and 625/1295920 ≈ 0.00048 for n = 50).203

Fig. 2B shows the growth rate of the seven pure modes for n = 4 for a fecundity landscape given204

by b = (1, b2, 1.4) as a function of b2. In line with our analysis, only binary fragmentation modes205

(1+1, 2+1, 2+2, and 3+1) can be optimal, while nonbinary fragmentation modes (1+1+1, 2+1+1, and206

1+1+1+1) are dominated. Which particular binary mode is optimal depends on the particular value207

of the birth rate of groups of two cells. For small values (b2 . 0.45), the fecundity of such groups208

is too low, and the optimal fragmentation mode is 1+1. For intermediary values (0.45 . b2 . 1.11),209

the reproduction efficiency of groups of three cells mitigates the inefficiency of cell pairs, and the210

mode 3+1 becomes optimal. For larger values (1.11 . b2 . 3.52), the optimal fragmentation mode211

is 2+2, where no single cells are produced. Finally, for very large values (b2 & 3.52), the optimal212

fragmentation mode is 2+1; this ensures that one offspring group emerges at the most productive213

bicellular state.214

More generally, which particular fragmentation mode within the class of binary splitting strate-215

gies is optimal depends on all birth rates and death rates characterising the fitness landscape. To216
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further explore this issue, we identified the optimal fragmentation modes for general fecundity and217

survival landscapes for the simple case of n = 4 (Fig. 3; Appendix F). Since we can set b1 = 1 and218

min(d) = 0 without loss of generality (see Appendix D), we represent fitness landscapes as points219

in a two-dimensional parameter space with coordinates b2/b1 and b3/b1 for fecundity landscapes, and220

coordinates d2−d1 and d3−d1 for survival landscapes. The exact boundaries of the parameter regions221

where a given fragmentation mode is optimal are often nontrivial mathematical expressions. Never-222

theless, we identify general patterns dictating which fragmentation mode will be optimal. Consider223

first the optimality map for fecundity landscapes (Fig. 3A). A sufficient condition for the unicellular224

life cycle 1+1 to be optimal is that the birth rate of single cells is larger than the birth rate of pairs and225

triplets of cells (b1 > b2 and b1 > b3). In this case, there is no apparent reason why a fragmentation226

mode different than 1+1 would be optimal. Perhaps less trivially, 1+1 can also be optimal in cases227

where single cells are less fertile than groups of three cells, i.e., even if b1 < b3 holds. This requires228

the birth rate b2 to be so small that the fecundity benefits accrued when reaching the size of three cells229

are not enough to compensate for the unavoidable penalty of passing through the less prolific state of230

two cells. Turning now to fragmentation mode 2+1, a necessary condition for this mode to be optimal231

is that pairs of cells have the largest birth rate, i.e., that b2 > b1 and b2 > b3 holds. Similarly, mode232

3+1 can only be optimal if b3 > b1 and b3 > b2, so that groups of three have the largest birth rate. In233

these two cases, the optimal fragmentation mode (either 2+1 or 3+1) keeps one of the two offspring234

groups at the most productive size. Finally, for fragmentation mode 2+2 to be optimal, it is necessary235

that single cells have the lowest birth rate, i.e., that b2 > b1 and b3 > b1 holds. In this case, the236

fragmentation mode ensures that the life cycle of the organism never goes through the least produc-237

tive unicellular phase. Under survival landscapes, fitness increases as death rates decrease. Taking this238

qualitative difference into account, the map of optimal fragmentation modes under survival landscapes239

(Fig. 3B) follows similar qualitative patterns as the one under fecundity landscapes.240

Costly fragmentation allows for optimal nonbinary fragmentation and multicellularity241

without group benefits242

So far we have assumed that fragmentation is costless. However, fragmentation processes can be costly243

to the parental group undergoing division. This is particularly apparent in cases where some cells need244

to die in order for fragmentation of the group to take place. Examples in simple multicellular forms245
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Figure 3: Optimal fragmentation modes for fecundity and survival landscapes (costless frag-

mentation). A Life cycles achieving the maximum population growth rate for n = 4 under fecundity

landscapes (i.e., d1 = d2 = d3 = 0). In this scenario, fragmentation mode 2+2 is optimal for most

fitness landscapes. B Life cycles achieving the maximum population growth rate for n = 4 under

survival landscapes (i.e., b1 = b2 = b3 = 1). In this scenario, fragmentation modes emitting a uni-

cellular propagule (1+1, 2+1, 3+1) are optimal for most parameter values. We use ratios of birth rates

and differences between death rates as axes because one can consider b1 = 1 and min(d1, d2, d3) = 0

without loss of generality (see Appendix D). Shaded areas are obtained from the direct comparison of

numerical solutions, lines are found analytically (see Appendix F).

include Volvox, where somatic cells constituting the outer layer of the group die upon releasing the246

offspring colonies and are not passed to the next generation [26], the breaking of filaments in colonial247

cyanobacteria [27], and the fragmentation of “snowflake-like” clusters of the yeast Saccharomyces248

cerevisiae [28]. Fragmentation costs may also be less apparent. For instance, fragmentation may cost249

resources that would otherwise be available for the growth of cells within a group.250

To investigate the effect of fragmentation costs on the set of optimal fragmentation modes, we251

consider two cases: proportional costs and fixed costs. For proportional costs, we assume that π − 1252

cells die in the process of a group fragmenting into π parts. This case captures the fragmentation253

process of filamentous bacteria, where filament breakage entails the death of cells connecting the254
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newly formed fragments [27]. For fixed costs, we assume that exactly one cell is lost upon each255

fragmentation event. This scenario is loosely inspired by yeast colonies with a tree-like structure,256

where cells can be connected with many other cells, so the death of a single cell may release more257

than two offspring colonies [28, 19]. Mathematically, both cases imply that fragmentation patterns are258

described by partitions of a number smaller than the size of the parent group (see Appendix G).259

For both kinds of costly fragmentation, we can show that mixed fragmentation modes are still260

dominated by pure fragmentation modes (the proof given in Appendix B also holds in this case).261

Moreover, for proportional costs the optimal fragmentation mode is also characterised by binary frag-262

mentation, as it is the case for costless fragmentation (see Appendix H). This makes intuitive sense, as263

the addition of a penalty for splitting into many fragments should further reinforce the optimality of264

binary splitting (whereby only one cell per fragmentation event is lost). In contrast, we find that under265

fragmentation with fixed costs the optimal fragmentation mode can involve nonbinary fragmentation,266

i.e., division into more than two offspring groups. This result can be readily illustrated for the case of267

n = 4 where the nonbinary mode 1+1+1 is optimal for a wide range of fitness landscapes (Fig. 4).268

Another interesting feature of costly fragmentation (implemented via either proportional or fixed269

costs) is that fragmentation modes involving the emergence of large groups can be optimal even if270

being in a group does not grant any fecundity or survival advantage to cells. If fragmentation is cost-271

less, as we assumed before, fitness landscapes for which groups perform worse than unicells (that is,272

bi/b1 ≤ 1 for fecundity landscapes or di− d1 ≥ 0 for survival landscapes) lead to optimal fragmenta-273

tion modes where splitting occurs at the minimum possible group size i = 2, so that no multicellular274

groups emerge in the population (cf. Fig. 3). In contrast, under costly fragmentation some of these275

fitness landscapes allow for the evolutionary optimality of fragmentation modes according to which276

groups split at the maximum size n = 4 (2+1 under proportional costs, and 1+1+1 under fixed costs),277

and hence for life cycles where multicellular phases are persistent. This seems paradoxical until one278

realises that by staying together as long as possible groups delay as much as possible the inevitable279

cell loss associated to a fragmentation event. Thus, even if groups are less fecund or die at a higher280

rate than independent cells, staying together might be adaptive if splitting apart is too costly.281
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Figure 4: Optimal fragmentation modes for fecundity and survival landscapes (costly fragmen-

tation). For proportional costs (panels A and B), splitting into π parts involves the loss of π− 1 cells.

In this case, and for n = 4, only two pure modes are possible: 2+1 (whereby a 4-unit group splits into

a pair of cells and a single cell and loses one cell) and 1+1 (whereby a group of three splits into two

single cells and loses one cell). For fixed costs (panels C and D), splitting involves the loss of a single

cell, no matter the kind of partition. In this case, and for n = 4, an additional mode is possible: 1+1+1

(whereby a 4-unit group splits into three single cells and loses one cell). This last nonbinary mode can

be optimal under a wide range of parameters.

Synergistic interactions between cells promote the production of unicellular propagules,282

while diminishing returns promote equal binary fragmentation283

Next, we focus on fitness landscapes for which either the birth rate of cells increases with group size284

(fecundity landscapes where larger groups are always more productive) or the death rate of groups285
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decreases with group size (survival landscapes where larger groups always live longer). In this case,286

and for a maximum group size n = 4, the set of optimal modes is given by 2+2 and 3+1 if there287

are no fragmentation costs (Fig. 3), by 2+1 if fragmentation costs are proportional to the number of288

fragments (Fig. 3A-B), and by 2+1 and 1+1+1 if fragmentation involves a fixed cost of one cell (Fig.289

4C-D).290

To investigate larger maximum group sizes n in a simple but systematic way, we consider fecundity291

landscapes with birth rates given by bi = 1 +Mgi and survival landscapes with death rates given by292

di = M(1 − gi), where gi = [(i − 1)/(n − 2)]α [29] models the fecundity or survival benefits293

associated to group size i and M > 0 is the maximum benefit (Fig. 5). The parameter α is the degree294

of complementarity between cells; it measures how important the addition of another cell to the group295

is in producing the maximum possible benefit M [30]. For low degrees of complementarity (α < 1),296

the sequence gi is strictly concave and each additional cell contributes less to the per capita benefit of297

group living [31] and groups of all sizes achieve the same functionality as α tends to zero. If α = 1,298

the sequence gi is linear, and each additional cell contributes equally to the fecundity or survival of the299

group. Finally, for high degrees of complementarity (α > 1), the sequence gi is strictly convex and300

each additional cell improves the performance of the group more than the previous cell did. In the limit301

of large α, the advantages of group living materialise only when complexes achieve the maximum size302

n− 1 [31].303

We numerically calculate the optimal fragmentation modes for n = 20 (costless fragmentation) or304

n = 21 (costly fragmentation) and the fitness landscapes described above for parameter values taken305

from 0.01 ≤ α ≤ 100 and 0.02 ≤ M ≤ 50 (Figs. 6 and 7). In line with our general analytical306

results, optimal fragmentation modes are always characterised by binary splitting when fragmentation307

is costless or when it involves proportional costs, while nonbinary splitting can be optimal only if308

fragmentation involves a fixed cost. We also find that, for each value of α and M , and for both309

costless and costly fragmentation, the optimal fragmentation mode is one where fragmentation occurs310

at the largest possible size. This is expected since the benefit sequence is increasing in group size311

and thus groups of maximum size perform better, either by achieving the largest birth rate per unit312

(fecundity landscapes) or the lowest death rate (survival landscapes). Which particular fragmentation313

mode maximizes the growth rate depends nontrivially on whether fragmentation is costless or costly314

(and in the latter case also on how such costs are implemented), on the kind of group size benefits315
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Figure 5: Advantages of group living. Group size benefit gi = [(i − 1)/(n − 2)]α as a function of

group size for different values of the degree of complementarity α. If α < 1, gi is concave; if α = 1,

gi is linear; if α > 1, gi is convex.

(fecundity or survival), on the maximum possible benefit M , and on the degree of complementarity316

α. Despite this apparent complexity, some general patterns can be identified.317

Let us focus on the case of fecundity landscapes and first fasten attention on the scenario of costless318

fragmentation (Fig. 6A). A salient feature of this case is the prominence of two qualitatively different319

fragmentation modes: the “equal binary fragmentation” strategy 10+10 (whereby offspring groups320
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Figure 6: Optimal life cycles under monotonic fecundity landscapes. Birth rates are given by

bi = 1 +Mgi where gi = [(i − 1)/(n − 2)]α. A Costless fragmentation, n = 20. B Fragmentation

with proportional costs, n = 21. C Fragmentation with fixed costs, n = 21. For costless fragmentation

and fragmentation with proportional costs, only binary modes 19+1, 18+2,..., 10+10 are optimal. In

these cases, diminishing returns (α < 1) make equal binary fragmentation (10+10) optimal. Also,

optimality of the unicellular propagule strategy (19+1) requires increasing returns (α > 1). For

fragmentation with fixed costs, nonbinary modes 7+7+6,...,1+...+1 can also be optimal.

have sizes as similar as possible) and the “unicellular propagule” strategy 19+1 (whereby offspring321

groups have sizes as different as possible). A sufficient condition for equal binary fragmentation to322

be optimal is that increase in size is characterised by diminishing returns. The intuition behind this323

result is that, if the degree of complementarity is small, then groups (complexes of size i ≥ 2) have324

similar performance, while independent cells (i = 1) are at a significant disadvantage. Therefore, the325

optimal strategy is to ensure that both offspring groups are as large as possible, and hence of the same326

size. However, equal binary fragmentation can be also optimal for synergistic interactions, provided327

that complementarity is not too high. In contrast, the unicellular propagule strategy is optimal only328

for relatively high degrees of complementarity. This is because when complementarity is high only329

the largest group can reap the benefits of group living; in this case, the optimal mode is to have at330

least one offspring of very large size. Compared to 19+1 and 10+10, other binary splitting strategies331

are optimal in smaller regions of the parameter space, and in all cases only for synergetic interactions332

between cells.333
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Consider now the effects of introducing fragmentation costs proportional to the number of frag-334

ments (Fig. 6B). Here, the region where the unicellular propagule strategy is optimal shrinks to the335

corner of the parameter space where benefits of group living and degree of complementarity are max-336

imum, while the region of optimality for equal binary fragmentation expands. This makes intuitive337

sense. With fragmentation costs, the largest offspring group resulting from fragmenting according338

to the unicellular propagule strategy is of size 19, and hence always on the brink of fragmentation339

(once it grows to size 21) and incurring one cell loss. When group benefits are not high and syner-340

gistic enough, the unicellular propagule strategy is dominated by fragmentation modes (in particular,341

equal binary fragmentation) having smaller offspring for which the costs of fragmentation are not so342

immediate.343

Finally, if costs of fragmentation are not proportional but fixed (Fig. 6C), then two classes of344

nonbinary splitting become optimal in regions of the parameter space where equal binary fragmenta-345

tion was optimal under proportional costs: (i) “multiple fission” (1+1+...+1) which is in general fa-346

vored for small maximum benefit and increasing returns, and (ii) “multiple groups” (modes 2+2+...+2,347

3+3+3+3+3+3+2, 4+4+3+3+3+3, 4+4+4+4+4, 5+5+5+5, and 7+7+6) which are often optimal for di-348

minishing returns.349

Fig. 7 show the results for survival landscapes. The main difference in this case is that the uni-350

cellular propagule strategy can be the optimal strategy even when group living is characterised by351

diminishing returns. In general, fecundity benefits make equal binary fragmentation optimal under352

more demographic scenarios, while survival benefits make the unicellular propagule strategy optimal353

under more demographic scenarios.354

Discussion355

Reproduction is such a fundamental feature of living systems that the idea that the mode of reproduc-356

tion may be shaped by natural selection is easily overlooked. Here, we analysed a matrix population357

model that captures the demographic dynamics of complexes that grow by staying together and re-358

produce by fragmentation. The costs and benefits associated with group size ultimately determine359

whether or not a single cell fragments into two separate daughter cells upon cell division, or whether360

those daughter cells remain in close proximity, with fragmentation occurring only after subsequent361
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Figure 7: Optimal life cycles under monotonic survival landscapes. Death rates are given by di =

M(1− gi) where gi = [(i− 1)/(n− 2)]α. A Costless fragmentation, n = 20. B Fragmentation with

proportional costs, n = 21. C Fragmentation with fixed costs, n = 21. For costless fragmentation and

fragmentation with proportional costs, only binary modes 19+1, 18+2,..., 10+10 are optimal. In these

cases, diminishing returns to scale (α < 1) make equal binary fragmentation (10+10) optimal. Also,

optimality of the unicellular propagule strategy (19+1) requires increasing returns to scale (α > 1).

For fragmentation with fixed costs, nonbinary modes 7+7+6,...,1+...+1 can also be optimal.

rounds of division. We allowed for a vast and complete space of fragmentation strategies, including362

pure modes (specifying all possible combinations of size at fragmentation and fragmentation pattern)363

and mixed modes (specifying all probability distributions over the set of pure modes), and identified364

those modes achieving a maximum growth rate for given fecundity and survival size-dependent rates.365

Our research questions and methodology thus resonates with previous studies in life history theory366

[32, 33]. In the language of this field, our fragmentation strategies specify both the size at first repro-367

duction and clutch size, where the latter is subject to a very specific trade-off between the number and368

size of offspring mathematically given by integer partitions.369

We found that for any fitness landscape, the optimal life cycle is always a deterministic fragmen-370

tation mode involving the regular schedule of group development and fragmentation. This makes371

intuitive sense given our assumption that the environment is constant. However, this result might not372

hold if the environment is variable so that the fitness landscape changes over time. In this case differ-373

ent pure fragmentation modes will be optimal at different times, and natural selection might favour life374
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cycles that randomly express a subset of locally optimal fragmentation patterns. Indeed, the evolution375

of variable phenotypes in response to changing environmental conditions (also known as bet hedging376

[34, 35]) has been demonstrated in other life history traits, such as germination time in annual plants377

[36], and capsulation in bacteria [37]. The extent to which mixed fragmentation modes can evolve378

via a similar mechanism is beyond the scope of this paper, but it can be addressed in future work by379

applying existing theory on matrix population models in stochastic environments [22].380

We found that when fragmentation is costless, only strategies involving binary splitting (i.e., frag-381

mentation into exactly two parts) are optimal. This result holds for all possible fitness landscapes,382

and hence any specification of how fecundity or survival benefits might accrue to group living. In383

particular, the optimal fragmentation mode under monotonic fitness landscapes is generally one of384

two types: equal binary fragmentation, which involves fission into two equal size groups, and the uni-385

cellular propagule strategy, which involves the production of two groups, one comprised of a single386

cell. Equal fragmentation is favoured when there is a significant advantage associated with formation387

of even the smallest group, whereas production of a unicellular propagule is favoured when the bene-388

fits associated with group size are not evident until groups become large. This makes intuitive sense:389

when advantages arise when groups are small, it pays for offspring to be in groups (and not single390

cells). Conversely, when there is little gain until group size is large, it makes sense to maintain one391

group that reaps this advantage. Interestingly, two bacteria that form groups and are well studied from392

a clinical perspective, Neisseria gonorrhoeae and Staphylococcus aureus, both show evidence of the393

above binary splitting fragmentation modes: Neisseria gonorrhoeae divide into groups of two equal394

sizes [6], while Staphylococcus aureus divide into one large group plus a unicellular propagule [7].395

This leads to questions concerning the nature of the fitness landscape occupied by these bacteria and396

the basis of any collective level benefit as assumed by our model.397

Once cell loss upon fragmentation is incorporated as a factor in collective reproduction, a wider398

range of fragmentation patterns becomes optimal. When fragmentation costs are fixed to a given399

number of cells, optimal fragmentation modes include those where splitting involves the production400

of multiple offspring. Among these, a prominent fragmentation strategy is multiple fission, where a401

group breaks into multiple independent cells. Such a fragmentation mode is reminiscent of palintomy402

in the volvocine algae[38]. A key difference between our “multiple fission” and palintomy is that403

the former involves a group of cells growing up to a threshold size at which point fragmentation404
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happens, while the latter involves a single reproductive cell growing to many times its initial size405

and then undergoing several rounds of division. However, reinterpreting birth rates of cells in groups406

as growth rates of unicells of different sizes allows us to use our analysis to determine conditions407

under which such a mode of fragmentation is more adaptive than, say, the more standard strategy of408

growing to twice the initial size and then dividing in two (which for arbitrary sizes of offspring groups409

is equivalent to our “equal binary fragmentation” mode). Our results suggest that palintomy is favored410

over binary fission (and any other fragmentation mode) under a wide range of demographic scenarios411

(Fig. 6C).412

Many multicellular organisms are characterised by a life cycle whereby adults develop from a sin-413

gle cell [39]. Passing through such a unicellular bottleneck is a requirement for sexual reproduction414

based on syngamy, but life cycles with unicellular stages are also common in asexual reproduction415

modes such as those used by multicellular algae and ciliates [40], and colonial bacteria such as S.416

aureus [7]. If multicellularity evolved because of the benefits associated to group living, why do417

so many asexual multicellular organisms begin their life cycles as solitary (and potentially vulnera-418

ble) cells? Explanatory hypotheses include the purge of deleterious mutations and the reduction of419

within-organism conflict [41, 39]. Our results make the case for an alternative (and perhaps more420

parsimonious) explanation: often, a life cycle featuring a unicellular bottleneck is the best way to421

guarantee that the “parent” group remains as large as possible to reap maximum fecundity and/or sur-422

vival advantages of group living. Indeed, our theoretical results resonate with previous experimental423

work demonstrating that single-cell bottlenecks can be adaptive simply because they constitute the life424

history strategy that maximises reproductive success [42].425

Previous theoretical work has explored questions related to the evolution of multicellularity using426

matrix population models similar to the one proposed in this paper. In a seminal contribution, Roze and427

Michod [43] explored the evolution of propagule size in the face of deleterious and selfish mutations.428

In their model, multicellular groups first grow to adult size and then reproduce by splitting into equal429

size groups, so that fragmentation mode strategies can be indexed by the size of the propagule. In430

our terminology, this refers to either “multiple fission” or “multiple groups”. An important finding431

of Roze and Michod [43] is that, even if large groups are advantageous, small propagules can be432

selected because they are more efficient at eliminating detrimental mutations. We did not study the433

effects of mutations, but allowed for general fitness landscapes and fragmentation modes, including434
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cases of asymmetric binary division (e.g., the unicellular propagule strategy) neglected by Roze and435

Michod [43]. Our results indicate that modes of fragmentation involving single cells can lead to436

growth rate maximisation even when small propagule sizes divide less efficiently or die at a higher437

rate. In particular, we have shown that if fragmentation is costly, a strategy consisting of a multiple438

fragmentation mode with a propagule size of one (i.e., the small propagule strategy studied by Roze439

and Michod [43]) can be adaptive for reasons other than the elimination of deleterious mutations.440

Closer to our work, Tarnita et al. [18] investigated the evolution of multicellular life cycles via441

two alternative routes: “staying together” (ST, whereby offspring cells remain attached to the parent)442

and “coming together” (CT, whereby cells of different origins aggregate in a group). In particular,443

they studied the conditions under which a multicellular strategy that produces groups via ST can444

outperform a solitary strategy whereby cells always separate after division. The way they modelled445

group formation and analyzed the resulting population dynamics (by means of biological reactions and446

matrix models) is closely related to our approach. Indeed, their solitary strategy is our binary mode447

1+1, while their ST strategy corresponds to a particular kind of binary mixed fragmentation mode.448

However, the questions we ask are different. Tarnita et al. [18] were concerned with the conditions449

under which (multicellular) strategies that form groups can invade and replace (unicellular) strategies450

that remain solitary. Contrastingly, we aimed to understand the optimal fragmentation mode out of the451

vast space of fragmentation strategies comprising all possible deterministic and probabilistic pathways452

by which complexes can stay together and split apart. A key finding is that, for any fitness landscape453

and if the environment is constant, mixed fragmentation modes such as some of the ST strategies454

considered by Tarnita et al. [18] will be outperformed by at least one pure fragmentation mode.455

More recently, Rashidi et al. [20] developed a conceptual framework to study the competition456

of life cycles that involved five different life cycles defined by fragmentation patterns of the form457

1+1+...+1 and an associated genetic control. Their model, which explicitly considers growing cells458

of different size, showed that depending on the fitness landscape, each of their five life cycles could459

prevail. By extending the range of life cycles to encompass all possible fragmentation modes (albeit460

with less detailed attributes), we have shown that certain life cycles will be suboptimal for any given461

fitness landscape.462

In line with many studies in life history theory [32, 33], we made the simplifying assumption463

that the phenotype consists of demographic traits (in our case, probabilities of fragmenting into given464
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fragmentation patterns) linked by trade-offs which interact to determine fitness (growth rate). This al-465

lowed us to predict the optimal phenotype at equilibrium at the expense of leaving unspecified whether,466

due to genetic constraints, such an equilibrium will be possible in an actual biological system. The467

question that inevitably arises is whether, given a presumptive genotype-phenotype mapping, it is pos-468

sible for evolution to fine tune life cycles with group-level properties (such as specific fragmentation469

patterns) so that optimal fragmentation modes will be obtained as the endpoint of an evolutionary470

process. While a complete answer requires a more sophisticated analysis, we see no conceptual ob-471

struction preventing seemingly arbitrary fragmentation modes to evolve. Firstly, genotype-phenotype472

maps of existing organisms can be complex and offer opportunity for adaptation, involving important473

qualitative behavioral changes [44, 45, 46]. Secondly, small genotypic changes can produce major474

phenotypic changes. For instance, Hammerschmidt et al. [3] observed the emergence of collective-475

level properties in a previously unicellular organism that was caused by a small number of mutations.476

Thirdly, even if a current set of genes cannot provide an appropriate template for given phenotypic477

traits, new genes can emerge de novo [47, 48, 49, 50, 51]. Finally, theoretical arguments suggest that478

genetic constraints can be effectively overcome in phenotypic evolution provided there is a rich variety479

of new mutant alleles [52]. We thus think that, both in the field and in the laboratory, multicellular480

organisms will be able to evolve a phenotype close to the optimal fragmentation mode in the (very)481

long run.482
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Appendix485

A Mixed fragmentation modes486

A mixed fragmentation mode assigns a probability qκ to each possible fragmentation pattern (or par-487

tition) κ ` 2, . . . , κ ` n, where n is the maximum group size. Such probabilities satisfy
∑

κ`j qκ = 1488

for j = 2, . . . , n, i.e., when growing from size j− 1 to j one of the partitions κ ` j (including staying489

together without splitting, κ = j) will certainly occur. Additionally, we impose qn = 0 so that, when490

growing from size n− 1 to size n, a group can no longer stay together and will necessarily fragment.491

It follows that a given life cycle or fragmentation mode can be represented by a set of vectors of the492

form493

q =

(q2, q1+1︸ ︷︷ ︸
κ`2

), (q3, q2+1, q1+1+1︸ ︷︷ ︸
κ`3

), . . . , (qn, qn−1+1, qn−2+2, . . . , q1+1+...+1︸ ︷︷ ︸
κ`n

)

 . (6)

Pure life cycles are a particular case where splitting probabilities qκ are either zero or one, so that only494

one fragmentation pattern with more than one offspring group occurs.495

A mixed life cycle can be understood as a set of reactions. A number n − 1 of reactions, of the496

type497

Xi
di−→ 0 (7)

model the death of groups; these are independent of the fragmentation mode. An additional number498

of reactions, one per each non-zero element of the vector q, models the birth of units and the growth499

or fragmentation of groups. These reactions are of the type500

Xi
ibiqκ−−−→

i+1∑
j=1

πj(κ)Xj , (8)

whereby a group of size i turns into a group of size i + 1 at rate ibj , and then instantly divides with501

probability qκ into offspring groups in a way described by fragmentation pattern κ ` i+1, where parts502

equal to ` appear a number π`(κ) of times. These reactions depend on the life cycle, which specifies503

the probabilities of fragmentation patterns. For instance, the reaction504

X3
3b3q2+1+1−−−−−−→ X2 + 2X1,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will split with probability q2+1+1 into505

one group of size 2 and two groups of size 1. The growth of a group without fragmentation is also506
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incorporated in the set of reactions given by (8). For instance, the reaction507

X3
3b3q4−−−→ X4,

stipulates that groups of size 3, which grow to size 4 at rate 3b3, will not split with probability q4.508

The sets of reactions (7) and (8) give rise to the system of differential equations509

ẋi =

n−1∑
j=1

∑
κ`j+1

qκπi(κ)jbjxj − ibixi − dixi, i = 1, 2, . . . , n− 1, (9)

where xi denotes the abundance of groups of size i. This linear system can be represented in matrix510

form as511

ẋ = Ax, (10)

where x = (x1, x2, . . . , xn−1) is the vector of abundances of the groups of different size and A is a512

(n− 1)× (n− 1) matrix with elements given by513

ai,j = jbj
∑
κ`j+1

qκπi(κ)− δi,j (ibi + di) , (11)

where δi,j is the Kronecker delta. Since πi(κ) = 0 for κ ` j+1 and i > j+1 (a partition of a number514

has no parts larger than the number), the entries of A below the subdiagonal are zero. As an example,515

consider n = 4. The projection matrix for this case is given by516

A =


b1
∑
κ`2

qκπ1(κ)− b1 − d1 2b2
∑
κ`3

qκπ1(κ) 3b3
∑
κ`4

qκπ1(κ)

b1
∑
κ`2

qκπ2(κ) 2b2
∑
κ`3

qκπ2(κ)− 2b2 − d2 3b3
∑
κ`4

qκπ2(κ)

0 2b2
∑
κ`3

qκπ3(κ) 3b3
∑
κ`4

qκπ3(κ)− 3b3 − d3

 . (12)

B Mixed fragmentation modes are dominated517

For any fitness landscapes, mixed fragmentation modes are dominated by at least one pure life cycle.518

In other words, the optimal life cycle is pure.519

To prove this result, consider the set of partitions κ ` j for a given j, fix the probabilities of520

fragmentation patterns ν ` i 6= j to arbitrary values, and focus attention on the function521

λj1 : Sj → R,

mapping probability distributions in the ζj-simplex Sj ⊂ Rζj (specifying the probabilities of all522

partitions κ ` j) to the dominant eigenvalue λj1 of the associated projection matrix A. Our goal is to523
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show that, for any j, λj1 is a quasiconvex function, i.e., that524

λj1(ηx1 + (1− η)x2) ≤ max
{
λj1(x1), λ

j
1(x2)

}
holds for all x1,x2 ∈ Sj and η ∈ [0, 1]. Quasiconvexity of λj1 implies that λj1 achieves its maximum525

at an extreme point of Sj , i.e., at a probability distribution that puts all of its mass in a single frag-526

mentation pattern. Quasiconvexity of λj1 for all j then implies that the maximum growth rate λ1 is527

achieved by a pure fragmentation mode, and that mixed fragmentation modes are dominated.528

To show that λj1 is quasiconvex, we restrict the function to an arbitrary line and check quasicon-529

vexity of the resulting scalar function [53, p. 99]. More precisely, we aim to show that the function530

f(t) = λj1 (u+ tv) ,

is quasiconvex in t for any u ∈ Sj and v ∈ Rζj such that u+ tv ∈ Sj . We hence need to verify that531

f(τt1 + (1− τ)t2) ≤ max {f(t1), f(t2)} (13)

holds for τ ∈ [0, 1].532

To show this, note that the function f(t) = λj1(u + tv) is given implicitly by the largest root of533

the characteristic polynomial534

p(λ) = det (A− λI) , (14)

where the probabilities of fragmentation specified by u + tv appear in the (j − 1)-th column of the535

projection matrix A (see Eqs. (11) and (12)).536

The right hand side of Eq. (14) can be written using a Laplace expansion along the (j − 1)-th537

column of A− λI:538

det(A− λI) =
n−1∑
i=0

(−1)i+j−1(ai,j−1 − δi,j−1λ)Mi,j−1, (15)

where δi,j−1 is the Kronecker delta and Mi,j−1 is the (i, j − 1) minor of A, i.e., the determinant of539

the submatrix obtained from A by deleting the i-th row and (j − 1)-th column. Each minor Mi,j−1540

is independent of t because the only entries of A that depend on t appear in the (j − 1)-th column.541

Moreover, each entry ai,j−1 is either zero or a linear function of t. Hence, p(λ) is a polynomial on λ542

with coefficients that are linear in t, i.e., of the form543

p(λ) =
n−1∑
k=0

(αk + βkt)λ
k, (16)
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for some αk, βk. Moreover, since the leading coefficient must be (−1)n−1 (the matrix A is (n− 1)×544

(n− 1)), it follows that αn−1 = (−1)n−1 and βn−1 = 0.545

Denote by pτ (λ), p1(λ), and p2(λ) the characteristic polynomials corresponding to, respectively,546

the probability distributions given by u+ [τt1 + (1− τ)t2]v, u+ t1v, and u+ t2v. From Eq. (16),547

these are given by548

pτ (λ) =

n−1∑
k=0

(αk + βk [τt1 + (1− τ)t2])λk =
n−1∑
k=0

αkλ
k + [τt1 + (1− τ)t2]

n−1∑
k=0

βkλ
k, (17a)

p1(λ) =

n−1∑
k=0

(αk + βkt1)λ
k =

n−1∑
k=0

αkλ
k + t1

n−1∑
k=0

βkλ
k, (17b)

p2(λ) =
n−1∑
k=0

(αk + βkt2)λ
k =

n−1∑
k=0

αkλ
k + t2

n−1∑
k=0

βkλ
k. (17c)

Subtracting Eq. (17b) from Eq. (17a), and Eq. (17c) from Eq. (17a), we can write549

pτ (λ)− p1(λ) = (t2 − t1)(1− τ)
n−1∑
k=0

βkλ
k,

pτ (λ)− p2(λ) = (t1 − t2)τ
n−1∑
k=0

βkλ
k.

Note that the signs of these differences are always different, i.e., either (i) pτ (λ) − p1(λ) ≥ 0 and550

pτ (λ) − p2(λ) ≤ 0, or (ii) pτ (λ) − p1(λ) ≤ 0 and pτ (λ) − p2(λ) ≥ 0. In the first case, we have551

p1(λ) ≤ pτ (λ) ≤ p2(λ) and in the second we have p2(λ) ≤ pτ (λ) ≤ p1(λ), i.e., for each λ, pτ (λ)552

lies between p1(λ) and p2(λ), or, equivalently553

pτ (λ) ≤ max {p1(λ), p2(λ)} , (18)

for all λ. Since λj1 is the largest root of p(λ), and since pτ (λ), p1(λ), and p2(λ) all have the same554

sign in the limit when λ tends to infinity (their leading coefficients are all equal to αn−1 = (−1)n−1),555

condition (18) implies condition (13), thus proving our claim. See Fig. 8 for an illustration.556

C Mixing between 1+1 and 2+1 is dominated557

To show that the life cycle mixing between fragmentation modes 1+1 and 2+1 with probability q558

represented in vector form as559

q = {(q2, q1+1), (q3, q2+1, q1+1+1)} = {(q, 1− q), (0, 1, 0)} (19)
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Figure 8: Population growth rate λ1 is quasiconvex. Consider two fragmentation modes q1 and q2 which

differ only in the probabilities of fragmentation patterns at a single size j. Then, for any 0 ≤ τ ≤ 1 and

corresponding fragmentation mode qτ = τq1 + (1 − τ)q2, the polynomials p(λ) given by Eq. (14) satisfy

either p1(λ) ≤ pτ (λ) ≤ p2(λ) or p2(λ) ≤ pτ (λ) ≤ p1(λ). Thus, qτ leads to a lower growth rate than either

q1 or q2, i.e., either λτ1 ≤ λ11, or λτ1 ≤ λ21 holds. Here, j = 3, q1 =
{
(0.9, 0.1), (0.5, 0.5, 0), (0, 0, 0, 1, 0)

}
,

q2 =
{
(0.9, 0.1), (0.5, 0, 0.5), (0, 0, 0, 1, 0)

}
, and τ = 0.6. The fitness landscape is given by bi = 1/i, di = 0

for all i.
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is dominated, consider its growth rate λq1 as a function of q, as given by the solution of characteristic560

equation561

λq1 =
b1(1− 2q)− (d1 + d2) +

√
(d1 + d2 − (1− 2q)b1)2 + 4b1(2qb2 + (1− 2q)d2)

2
.

We have λq1(0) = λ1+1
1 and λq1(1) = λ2+1

1 . A sufficient condition for q to be dominated by either 1+1562

or 2+1 is then that λq1(q) is monotonic in q. To show that this is the case, note that the derivative of λq1563

with respect to q is given by564

dλq1
dq

= b1

(
−1 + (2q − 1)b1 + 2b2 + d1 − d2√

((2q − 1)b1 + d1 + d2)2 + 4b1(2qb2 − (2q − 1)d2)− 4d1d2

)
,

and that such expression is equal to zero if and only if565

b1 − b2 = d1 − d2 (20)

which is independent of q. It follows that λq1 is either nonincreasing or nondecreasing in q, and hence566

that it attains its maximum at either q = 0, q = 1, or (when (20) is satisfied) at any q ∈ [0, 1]. Hence,567

q is dominated by either 1+1 or 2+1.568

D Characteristic equation of a pure fragmentation mode569

Consider the pure fragmentation mode κ ` `, whereby groups grow up to size ` and then fragment570

according to fragmentation pattern κ. The projection matrix is a (`− 1)× (`− 1) matrix of the form571

A =



−b1 − d1 0 · · · 0 (`− 1)b`−1π1(κ)

b1 −2b2 − d2 0
... (`− 1)b`−1π2(κ)

0 2b2 −3b3 − d3 0 (`− 1)b`−1π3(κ)

0 0
. . . . . .

...

0 0 · · · (`− 2)b`−2 (`− 1)b`−1 (π`−1(κ)− 1)− d`−1


.

The population growth rate is given by the leading eigenvalue λ1 of A, i.e., the largest solution of572

the characteristic equation573

det (A− λI) = 0. (21)

By using a Laplace expansion along the last column of A − λI, we can rewrite the left hand side of574
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the above expression (i.e., the characteristic polynomial of A) as575

det (A− λI) =
`−2∑
i=1

(−1)i+`−1(`− 1)b`−1πi(κ)Mi,`−1 (22)

+ (−1)2(`−1) [(`− 1)b`−1π`−1(κ)− (`− 1)b`−1 − d`−1 − λ]M`−1,`−1

=

`−1∑
i=1

(−1)i+`−1(`− 1)b`−1πi(κ)Mi,`−1 − [(`− 1)b`−1 + d`−1 + λ]M`−1,`−1 (23)

where Mi,`−1 is the (i, ` − 1)-th minor of A − λI. For all i = 1, . . . , ` − 1, the minor Mi,`−1 is576

the determinant of a block diagonal matrix, and hence equal to the product of the determinants of the577

diagonal blocks. Moreover, each diagonal block is either a lower triangular or an upper triangular578

matrix, whose determinant is given by the product of the elements in their main diagonals. We can579

then write580

Mi,`−1 =
i−1∏
j=1

(−jbj − dj − λ)
`−2∏
j=i

jbj . (24)

Substituting Eq. (24) into Eq. (23) and simplifying, we obtain581

det (A− λI) = (−1)`−2
`−1∑
i=1

(`− 1)b`−1πi(κ)
i−1∏
j=1

(jbj + dj + λ)
`−2∏
j=i

jbj

− (−1)`−2 ((`− 1)b`−1 + d`−1 + λ)
`−2∏
j=1

(jbj + dj + λ)

= (−1)`−2
`−1∏
j=1

jbj

`−1∑
i=1

πi(κ)
i−1∏
j=1

(
1 +

dj + λ

jbj

)− `−1∏
j=1

(
1 +

dj + λ

jbj

) .

Replacing this expression into the characteristic equation (21), dividing both sides by (−1)`−1
∏`−1
j=1 jbj ,582

and simplifying, we finally obtain that the characteristic equation (21) can be written as583

F`(λ)−
`−1∑
i=1

πi(κ)Fi(λ) = 0, (25)

where584

Fi(λ) =

i−1∏
j=1

(
1 +

dj + λ

jbj

)
. (26)

Note that the following two transformations:585

d→ d− r, λ→ λ+ r, r ≤ min(d),

and586

d→ sd, b→ sb, λ→ sλ, s > 0.
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preserve the solution of Eq. (25) This allows us to set b1 = 1 and min(d) = 0 without loss of587

generality.588

E Fragmentation modes are dominated by binary splitting589

We can show that, for any fitness landscape, binary fragmentation achieves a larger growth rate than590

splitting into more than two offspring groups. To prove this, consider (i) positive integers m, j, and k591

such thatm > j+k, (ii) an arbitrary partition τ ` m−j−k, and (iii) the following three fragmentation592

modes:593

1. κ1 = j + k + τ ` m, whereby a complex of size m fragments into one complex of size j, one594

complex of size k, and a number of offspring complexes given by partition τ .595

2. κ2 = (j+ k)+ τ ` m, whereby a complex of size m fragments into one complex of size j+ k,596

and a number of offspring complexes given by partition τ .597

3. κ3 = j + k ` (j + k), a binary splitting fragmentation mode whereby a complex of size j + k598

fragments into two offspring complexes: one of size j, and one of size k.599

Fragmentation mode κ1 leads to a number of offspring groups equal to600

n1 = 2 +

m−j−k∑
`=1

π`(τ),

fragmentation mode κ2 to a number of offspring groups equal to601

n2 = 1 +

m−j−k∑
`=1

π`(τ) = n1 − 1,

and fragmentation mode κ3 to a number of offspring groups equal to two. Denoting by λi1 the growth602

rate of fragmentation mode κi, we can show that, for any fitness landscape, either λ11 ≤ λ21 or λ11 ≤ λ31603

holds, i.e., a fragmentation mode with more than two parts is dominated by either a fragmentation604

mode with one part less or by a fragmentation mode with exactly two parts. By induction, this implies605

that the optimal life cycle is always one within the class of binary fragmentation modes.606

To prove that either λ11 ≤ λ21 or λ11 ≤ λ31 holds, let us denote by pi(λ) the characteristic polynomial607

associated to mode κi, as given by the left hand side of Eq. (25) after the replacement κ = κi. The608

32

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/120097doi: bioRxiv preprint 

https://doi.org/10.1101/120097
http://creativecommons.org/licenses/by/4.0/


growth rate λi1 of mode κi is hence the largest root of pi(λ). The polynomials p1(λ), p2(λ), and p3(λ)609

are then given by610

p1(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj(λ)− Fk(λ), (27a)

p2(λ) = Fm(λ)−
m−j−k∑
`=1

π`(τ)F`(λ)− Fj+k(λ), (27b)

p3(λ) = Fj+k(λ)− Fj(λ)− Fk(λ). (27c)

These polynomials satisfy the following two properties. First,611

lim
λ→∞

pi(λ) =∞, (28)

as the leading coefficient of the left hand side of Eq. (25) is always positive. Second, we can write612

p1(λ) = p2(λ) + p3(λ). (29)

Now, evaluating Eq. (29) at λ11, and since p1(λ11) = 0, it follows that p2(λ11) = −p3(λ11). Hence, only613

one of the following three scenarios is satisfied: (i) p2(λ11) < 0 < p3(λ
1
1), (ii) p2(λ11) = p3(λ

1
1) = 0, or614

(iii) p2(λ11) > 0 > p3(λ
1
1). If p2(λ11) < 0 < p3(λ

1
1), and by Eq. (28) and Bolzano’s theorem, λ11 ≤ λ21615

holds. Likewise, if p2(λ11) > 0 > p3(λ
1
1), then λ11 ≤ λ31 holds. Finally, if p2(λ11) = p3(λ

1
1) = 0,616

then both λ11 ≤ λ21 and λ11 ≤ λ31 hold. See Fig. 9 for a graphical illustration of these arguments. We617

conclude that either λ11 ≤ λ21 or λ11 ≤ λ31 must hold, which proves our result.618

F Optimality maps for n = 4619

For n = 4 there are four pure fragmentation modes: 1+1, 2+1, 2+2, and 3+1. From Eq. (25), their620

characteristic polynomials are respectively given by621

p1+1(λ) = F2(λ)− 2F1(λ), (30a)

p2+1(λ) = F3(λ)− F2(λ)− F1(λ), (30b)

p2+2(λ) = F4(λ)− 2F2(λ), (30c)

p3+1(λ) = F4(λ)− F3(λ)− F1(λ). (30d)

The optimality maps shown in Fig. 3 of the main text were obtained by comparing the largest622

root of these characteristic polynomials, which we computed numerically. For fecundity landscapes,623
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Figure 9: The population growth rate induced by a fragmentation mode with more than two offspring

groups is dominated. Consider the characteristic polynomials pi(λ1) for partitions κ1 = 2+1+1, κ2 = 3+1

and κ3 = 2 + 1. Left: Fitness landscape b = (1, 1, 1.4), d = (0, 0, 0). Since p2(λ11) < 0, κ1 is dominated

by κ2 (λ11 < λ21 holds). Center: Fitness landscape b = (1, 2.6 −
√
1.3, 1.4), d = (0, 0, 0). Since p1(λ11) =

p1(λ
2
1) = p1(λ

3
1), κ1 is weakly dominated by κ2 (λ11 ≤ λ21 holds). Right: Fitness landscape b = (1, 1.9, 1.4),

d = (0, 0, 0). Since p3(λ11) < 0, κ1 is dominated by κ3 (λ11 < λ31 holds).

we tested fitness landscapes of the form {b,d} = {(1, b2, b3), (0, 0, 0)} with b2 and b3 taken from a624

rectangular grid of size 300 by 300 with b2 ∈ [0, 5] and b3 ∈ [0, 5]. For viability landscapes, we tested625

fitness landscapes of the form {b,d} = {(1, 1, 1), (5, d2, d3)}with d2 and d3 taken from a rectangular626

grid of size 300 by 300 with d2 ∈ [0, 10] and d3 ∈ [0, 10].627

The boundaries between areas of optimality can still be computed analytically. They are given by628

the fitness landscapes at which two fragmentation modes have the same population growth rate.629

The following are the boundaries between areas of optimality under fecundity fitness landscape630

(assuming b1 = 1 for simplicity):631

• Between fragmentation modes 1+1 and 2+1: b2 = 1, b3 < 1.632

• Between fragmentation modes 1+1 and 3+1: b3 = 2
3

(
1 + 1

2b2

)
, b2 < 1.633

• Between fragmentation modes 2+1 and 2+2: b3 =
ζ(2b2+ζ)
3(2b2−ζ) , where ζ =

√
1+8b2−1

2 , and b2 > 1.634

• Between fragmentation modes 3+1 and 2+2: b3 = 2
3b2 (2b2 − 1)

(
2− 1

2b2

)
and b2 > 1635

The following are the boundaries between areas of optimality under viability fitness landscape636

(assuming d1 = 0 for simplicity):637

• Between fragmentation modes 1+1 and 2+1: d2 = 0, d3 > 0.638
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• Between fragmentation modes 1+1 and 3+1: d3 = 3
d2+3 − 1, d2 > 0.639

• Between fragmentation modes 2+1 and 2+2: d3 = 32−d2−ζ
2+d2+ζ

− ζ, where ζ =

√
d22−2d2+9−1−d2

2 ,640

and d2 < 0.641

• Between fragmentation modes 3+1 and 2+2: d3 = 32−d2−ζ
2+d2+ζ

− ζ, where ζ =

√
d22−6d2+1+1−d2

2642

and d2 < 0643

G Costly fragmentation644

For costly fragmentation, some cells are lost upon the fragmentation event. In this case the biological645

reactions are still given by Eqs. (7) and (8). However, under costly fragmentation the sum of sizes of646

offspring groups is smaller than the size of the parent group. Therefore, in Eq. (8), κ is a partition647

of i′ ≤ i + 1 (and not strictly of i + 1 as it was under costless fragmentation). Indeed, i′ = i + 1648

in the case of trivial partitions with one part (when a group grows without splitting), but i′ < i + 1649

for nontrivial partitions with two or more parts (where the group grows in size by one cell and then650

splits). In this latter case, i′ = i − π + 2 (where π is the number of offspring groups) for the case of651

proportional costs, and i′ = i for the case of fixed costs.652

To illustrate the difference in the available sets of partitions for each of the three scenarios we653

investigate (costless fragmentation, fragmentation with proportional cost, fragmentation with fixed654

cost), consider the following possible reactions for a 4-cell group growing into a 5-cell group. For655

costless fragmentation, we have656

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q4+1−−−−−→ X4 +X1 4 + 1 ` 5 (no cell is lost),

X4
4b4q3+2−−−−−→ X3 +X2 3 + 2 ` 5 (no cell is lost),

X4
4b4q3+1+1−−−−−−→ X3 + 2X1 3 + 1 + 1 ` 5 (no cell is lost),

X4
4b4q2+2+1−−−−−−→ 2X2 +X1 2 + 2 + 1 ` 5 (no cell is lost),

X4
4b4q2+1+1+1−−−−−−−−→ X2 + 3X1 2 + 1 + 1 + 1 ` 5 (no cell is lost),

X4
4b4q1+1+1+1+1−−−−−−−−−→ 5X1 1 + 1 + 1 + 1 + 1 ` 5 (no cell is lost).
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For fragmentation with fixed cost, we have657

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q3+1−−−−−→ X3 +X1 3 + 1 ` 4 (1 cell is lost),

X4
4b4q2+2−−−−−→ 2X2 2 + 2 ` 4 (1 cell is lost),

X4
4b4q2+1+1−−−−−−→ X2 + 2X1 2 + 1 + 1 ` 4 (1 cell is lost),

X4
4b4q1+1+1+1−−−−−−−−→ 4X1 1 + 1 + 1 + 1 ` 4 (1 cell is lost).

Finally, for fragmentation with proportional cost, we have658

X4
4b4q5−−−→ X5 5 ` 5 (no cell is lost),

X4
4b4q3+1−−−−−→ X3 +X1 3 + 1 ` 4 (1 cell is lost),

X4
4b4q2+2−−−−−→ 2X2 2 + 2 ` 4 (1 cell is lost),

X4
4b4q1+1+1−−−−−−→ 3X1 1 + 1 + 1 ` 3 (2 cells are lost).

The combined probability of all outcomes of aggregate growth must be equal to one. In the case659

of costless fragmentation, this condition has been given by
∑

κ`i+1 qκ = 1 for i = 1, . . . , n− 1. For660

costly fragmentation this condition changes to
∑

κ`i′ qκ = 1 for i = 1, . . . , n − 1, with i′ as defined661

above. The expressions for the system of differential equations and the projection matrix for general662

mixed strategies (Eqs. (9) and (12)) are changed accordingly. For pure fragmentation modes, the663

projection matrix given in the main text and the characteristic equation given in Eq. (25) remain valid,664

but κ is no longer a partition of i+ 1 but of i′ as defined above.665

H With proportional costs, fragmentation modes are dominated by bi-666

nary splitting667

For fragmentation with proportional costs, a group fragmenting into π offspring groups incurs a cost668

of π − 1 cells. In this case, similarly to the case for costless fragmentation, nonbinary fragmentation669

modes are dominated by binary fragmentation modes. To prove this, consider (i) positive integers670

m, j, and k such that m > j + k + 4, (ii) an arbitrary partition τ with π ≥ 2 parts such that671

τ ` m− j − k − π − 2, and (iii) the following three fragmentation modes:672
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1. κ1 = j+ k+ τ ` m−π− 1, whereby a complex of size m fragments into one complex of size673

j, one complex of size k, and π complexes given by partition τ , and π + 1 cells die.674

2. κ2 = (j + k + 1) + τ ` m − π, whereby a complex of size m fragments into one complex of675

size j + k + 1 and π complexes given by partition τ , and π cells die.676

3. κ3 = j + k ` (j + k), a binary fragmentation mode whereby a complex of size j + k + 1677

fragments into two offspring complexes (one of size j and one of size k), and one cell dies.678

Note that fragmentation mode κ1 leads to π+2 offspring groups, fragmentation mode κ2 leads to π+1679

offspring groups, and fragmentation mode κ3 leads to a number of offspring groups equal to two. The680

rest of the proof is analogous to the one given in Appendix E for the case of costless fragmentation681

and will be omitted.682
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