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Abstract

Genomic sequence mutations in both the germline and somatic
cells can be pathogenic. Several authors have observed that often the
same genes are involved in cancer when mutated in somatic cells and
in genetic diseases when mutated in the germline. Recent advances
in high-throughput sequencing techniques have provided us with large
databases of both types of mutations, allowing us to investigate this
issue in a systematic way. Here we show that high-throughput data
about the frequency of somatic mutations in the most common cancers
can be used to predict the genes involved in abnormal phenotypes
and diseases. The predictive power of somatic mutation patterns is
largely independent of that of methods based on germline mutation
frequency, so that they can be fruitfully integrated into algorithms
for the prioritization of causal variants. Our results confirm the deep
relationship between pathogenic mutations in somatic and germline
cells, provide new insight into the common origin of cancer and genetic
diseases and can be used to improve the identification of new disease
genes.
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1 Introduction

Cancer has been called a disease of the genome since in most cases it is ini-
tiated by mutations occurring in somatic cells leading to uncontrolled prolif-
eration and eventually to metastatic invasion of other tissues. On the other
hand many diseases, both rare and common, can be caused or favored by
mutations in the germline genome. It is thus natural to ask to what extent
the same mutations can be associated to cancer and genetic diseases when
occurring respectively in somatic or germline cells.

Indeed many cases are known of genes involved in both types of diseases:
for example Rasopathies [1] are a family of developmental diseases caused
by germline mutations in genes of the Ras/MAPK pathway, which is also
recurrently mutated in many cancer types [2]. A recent review [3] pointed
out the role of mutations of chromatin remodelers in both cancer and neu-
rodevelopmental disorders. However, to our knowledge, the extent to which
the mutational spectrum of cancer and genetic disorders overlap has never
been investigated in a systematic way.

Recent development in sequencing technologies allow the determination
of mutations in patients in a fast and cost-effective way, especially when the
sequencing is limited to exons, so that sequencing is now routinely used as
a diagnostic and prognostic tool in both genetic diseases and cancer. These
development have also allowed the creation of large databases of mutations
including many thousands of individuals, providing us with the means to
investigate the relationship between somatic and germline pathogenic muta-
tions in a systematic and statistically controlled way.

We thus decided to investigate whether patterns of somatic mutations
detected in cancer samples contain information that can be used to predict
the involvment of genes in genetic diseases. We chose to tackle the issue in
a machine-learning framework, that is to reframe the question as whether
it is possible to predict the involvement of a gene in a genetic disease (or
more generally an abnormal phenotype due to germline mutations) using
the frequency of its somatic mutations in a set of common cancers. In this
way we can take advantage of the statistical methods developed in machine
learning to accurately quantify the predictive power of the model, and to
determine whether such cancer-based predictors can provide new information
when combined with more traditional disease-gene prioritization methods,
based for example on the frequency spectrum of germline mutations.
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2 Results

2.1 Frequency of somatic mutations in cancer predicts
involvement in abnormal phenotypes

We obtained from the TCGA [4] project the frequency of somatic, exonic,
non-silent mutations for 18499 protein-coding genes in 29 cancers. From
the Human Phenotype Ontology (HPO) [5] we obtained the association be-
tween 1007 phenotypes and 3229 genes (we considered only phenotypes with
more than 50 associated genes to avoid problems in fitting logistic models.
Moreover we limited the analysis to HPO terms classified as “abnormal phe-
notypes” but not as “neoplasms”).

We first considered, for each gene, the total number of somatic mutations
observed in cancer, summed over all 29 cancer types (Total Somatic Muta-
tions - TSM in the following). For each of the 1007 phenotypes we fitted a
univariate logistic model in which the regressor is the TSM and the regressed
binary variable is the involvment of the gene in the phenotype according to
the HPO annotation. The performance of the models were evaluated by their
Area Under the Receiver Operating Characteristic (ROC) curve (AUC), and
their statistical significance by a Mann-Whitney U test.

We found that for most abnormal phenotypes (658 out of 1007) the TSM
is indeed a significant predictor of gene involvment (Bonferroni-corrected
P < 0.05). For almost all of these (654 out of 658) the coefficient of the
logistic model is positive, that is TSM is positively associated to involvement
in the disease. The exceptions are phenotypes related to exercise intolerance
and mitochondrial function (Exercise intolerance, Abnormality of the mito-
chondrion, Abnormality of mitochondrial metabolism and Lactic acidosis):
the genes involved in these phenotypes are characterized by low TSM, pos-
sibly due to negative selection operating, in tumors, on these genes. These
results do not depend strongly on the precise choice of the regressor vari-
able, as essentially identical numbers are obtained using the total frequency
of somatic mutations (in which the number of mutations for each cancer
type is divided by the number of samples available in the TCGA), or by log-
transforming total occurrences or frequencies before summing over cancer
types.
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2.2 Comparison with germline-based predictors

Several predictors of disease genes have been developed, often based, as it
is natural, on germline mutation frequencies. For example the “Residual
Variation Intolerance Score” (RVIS) derived in [6] uses data from a large
sample of whole exome sequencing (of germline DNA) data to determine a
score predicting the likelihood of a gene to be involved in a disease. Sim-
ilarly the authors of [7] estimated for all genes the probabilities of being
tolerant of both homozygous or heterozygous loss-of-function variants. We
thus compared the power of TSM in predicting HPO annotations to these
germline-based scores: it turns out that TMS is a slightly more powerful
predictor than either germline-derived indicators, as shown in Fig. 1.

Figure 1: Distribution of AUCs obtained for 1007 phenotypes using TSM,
RVIS [6] and the probability of being tolerant of loss-of-function variants [7]
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2.3 TSM and germline-based indicators are indepen-
dent disease gene predictors

The fact that both TSM and germline-based indicators are useful disease
gene predictors suggest that their integration could attain even higher pre-
dictive power, as long as the information they provide is at least partially
independent. To verify this we fitted bivariate logistic models using TSM
and each germline indicator as regressors. The bivariate models achieved,
as expected, higher AUC values than the univariate ones. For example the
bivariate model using TSM and pNull as regressors was a significant disease
gene predictor for 724 HPO phenotypes. More importantly, for 675 of these
phenotypes the coefficient of at least one of the regressors was significantly
different from zero (P < 0.05), implying that the two regressor provide inde-
pendent information about the involvement in disease. These results imply
that somatic mutation frequency profiles may be usefully integrated with
germline-based indicators in predicting disease genes.

2.4 The predictive power of TSM in specific cancer
types

Having concluded that TSM is a useful predictor of disease genes, we specif-
ically asked which cancer types were more predicitve of involvment in which
specific diseases. To this aim we fitted univariate logistic models as above,
but using as regressors the TSM for each cancer type separately. The results
are shown in Fig. 2, which represents the AUCs achieved by each cancer-
type-specific TSM for the top-level disease classes, i.e. the terms that are
direct descendants of “Phenotypic abnormality” in the HPO tree.
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Figure 2: Heatmap representing the AUC achieved by TSM models based
on individual tumor types as predictor of genes involved in the most general
HPO phenotypes

We note a cluster of 7 cancer types with strong predictive power across
most disease classes. At the opposite spectrum, a cluster of 11 cancer types
show almost no predictive power on any disease class. Finally a cluster of 11
cancer types shows predictive power only for a subset of disease classes.

Somehow surprisingly, the high-predictive cancer types include stomach,
lung and colon adenocarcinoma, that according to [8] are among the cancer
types where the spectrum of variant frequency best agrees with a model
of neutral evolution, thus casting doubt on the functional significance of
mutations found in these tumors. Symmetrically, the least predictive cancer
types include glioblastoma and thyroid carcinoma, among the ones in which
the evolution is farthest from neutral according to [8]. It must be noted
however that the TSM we use was derived by the TCGA consortium using
filters on frequency such that most of the mutations we consider are clonal
or in any case above the frequency range for which the 1/f distribution
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characteristic of neutral evolution is observed in [8]. In addition, the number
of somatic mutations is higher for cancer types showing neutral evolution (see
Supplementary Figure 2); in this sense, cancer under neutral evolution model
may explore the space of possible mutations in a broader way, compared to
other tumor types and hence be better predictors.

Table 1 shows top 20 abnormal phenotypes in term of AUC, together
with the tumor type that provides the best predictor. The same data for all
abnormal phenotypes are provided in Supplementary Table 1.

phenotype tumor type AUC
Round face STAD 0.760
Cafe-au-lait spot BRCA 0.746
Dental malocclusion STAD 0.742
Thick eyebrow UCEC 0.737
Abnormality of the hairline BLCA 0.735
Short attention span STAD 0.735
Attention deficit hyperactivity disorder STAD 0.734
Abnormality of the metatarsal bones STAD 0.733
Congenital abnormal hair pattern BLCA 0.732
Abnormality of the maxilla STAD 0.732
Hypermetropia STAD 0.731
Misalignment of teeth STAD 0.729
Hyperactivity UCEC 0.729
Small face UCEC 0.729
Abnormal size of the palpebral fissures STAD 0.728
Joint hypermobility UCEC 0.727
Hypoplasia of the maxilla STAD 0.726
Aplasia/Hypoplasia involving the metacarpal bones STAD 0.726
Low posterior hairline BRCA 0.725
Abnormality of the posterior hairline BRCA 0.725

Table 1: The top 20 abnormal phenotypes in term of AUC, together with
the tumor type that provides the best predictor

2.5 Validation on new phenotype-gene associations

To validate the usefulness of the TSM-based model in predicting new gene-
phenotypes associations we took advantage of a major update of the HPO
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annotations that took place between October 2015 (annotations that were
used in training the models) and the build downloaded in July 2016. A total
of 28765 annotations were added to the database, 25120 of which associating
a gene and a phenotype included in our models.

We thus selected, for each phenotype with new gene associations, the
model based on the TSM in the cancer type that gave the best prediction
in the training data, and recorded the rank of the newly associated genes in
the prediction. As a comparison we repeated the procedure after randomly
relabeling 100 times the genes. These results show that TSM-based models
are useful in predicting gene-phenotype associations that were not included in
the training set. Fig. 3 shows the rank distribution of true new associations
(green bars) and the same after random relabeling (black dots).
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Figure 3: Rank of gene-disease associations not used in training the model.
The dots represent the distribution of the same ranks after 100 random re-
labeling of the gene names

2.6 Enrichment analysis of top-ranking genes

We used Gene Set Enrichment Analysis (GSEA) [9] to determine the func-
tional enrichment of the genes predicted by TSM to be involved in abnormal
phenotypes, limiting the analysis to Gene Ontology gene sets. When con-
sidering the rank of the genes in the TSM predictions, each of the 1007
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HPO abnormal phenotypes we study corrsponds to one of 22 non-redundant
rankings of the genes (the ranking for each phenotype depending on the
best-performing tumor type for that phenotype and the sign of the predic-
tion, namely whether greater or lower TSM corrlates with involvment in the
phenotype).

Many gene sets are enriched in more than one ranking: Table 2.6 shows
the gene sets falling into the top 20 most enriched in 10 or more rankings
(after removing a few redundant gene sets: the complete list of recurrent
gene sets is in Supplementary Tables 2 and 3).

MEMBRANE DEPOLARIZATION DURING
ACTION POTENTIAL

19/22

HOMOPHILIC CELL ADHESION VIA PLASMA
MEMBRANE ADHESION MOLECULES

19/22

GLUTAMATE RECEPTOR SIGNALING PATHWAY 18/22
LIPID TRANSLOCATION 16/22
NEURON RECOGNITION 11/22

Table 2: Gene Ontology gene sets showing significant enrichment in several
TSM predictors

These results suggest that the same mutations disrupting intracellular
signaling can allow proliferation and invasion by cancer cells on one hand and
jeopardize the delicate cell-cell communication needed during development.
Specifically, intracellular signaling in the central nervous sytem appears to
be most often involved in such disruption.

2.7 From phenotypes to diseases

We asked how the cancer TSM would perform in predicting genes associated
to genetic diseases, rather than individual phenotypes. The HPO site pro-
vides a table associating a list of phenotypes to each ORPHANET disease.
A disease gene predictor can thus be obtained by suitably combining the pre-
dictions for its associated phenotypes. We chose to aggregate the phenotype
predictors by rank products: the score of a gene as a candidate for a disease
is the geometric mean of the ranks of the gene as a predictor of the pheno-
types associated to the disease. The performance of such predictor on true
associations is shown in Fig. 4, where the dots represent the performance
after gene randomization as described above.
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Figure 4: Rank product of true disease genes associated to Orphanet terms

The result is robust when applied only to disease-gene associations estab-
lished after 2015, and thus not used in training the phenotype models (Fig.
5)
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Figure 5: Rank product of true disease genes associated to Orphanet terms,
limited to associations established after 2015

3 An example: prioritizing de novo variants

To show that the TSM-based predictors are useful in practice when prioritiz-
ing variants, we considered a recent analysis of de novo variatnts in Autism
Spectrum Disorder (ASD) [10]. The authors divided such variants in two
classes according to whether they are found in the ExAC database of non-

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120121doi: bioRxiv preprint 

https://doi.org/10.1101/120121
http://creativecommons.org/licenses/by-nc-nd/4.0/


diseased exomes (class 2 variants) or not (class 1 variants). Class 1 variants
are more likely to be causally involved in the disease.

We classified the genes in which de novo variants were found in children
affected by ASD into two classes: those with at least one class 1 variant
(“class 1 genes”) and those without (“class 2 genes”), and compared their
ranks in the best predictor for phenotype “Autistic behavior”. The results
are shown in Fig. 6, and show that the TSM-based predictor significantly
prioritize Class 1 over Class 2 genes:

Figure 6: Rank of genes for which de novo mutations were found in autistic
children. Class 1 genes are those for which not all variants found in affected
individuals are found in ExAC, and thus more likely to be causally involved
in the disease. The P -value is obtained with a Mann-Whitney U test

The same analysis can be done on other diseases for which the same data
are available in the Supplementary material of the same paper. For intellec-
tual disability and schizophrenia we find the same significant prioritization
of class 1 genes, while for congenital heart disease we find the same trend
but without statistical significance (Suppl. Fig. 1)
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4 Discussion and conclusions

We have shown that the large-scale assessment of somatic mutations in tu-
mors is not only useful in understanding the genetics of cancer, but also in an
unexpected context, namely in predicting the germline mutations responsible
for phenotypes and diseases. Genes that are recurrently mutated in tumors
are more likely to be involved in abnormal phenotypes when mutated in the
germline. This connection had been suggested based on specific cases, but
here we have shown that it is generally true in a statistically controlled way.

These results have practical implications and raise conceptual issues.
From the practical point of view, they suggest that TSM profiles could be
profitably integrated with other sources of information (germline variation
patterns, functional annotation, biomolecular networks, etc.) in developing
tools for the prioritization of disease genes.

Conceptually, we should ask what is the origin of this correlation between
the frequency of somatic mutations and the phenotypic effects of mutations
in the germline. We propose two possible mechanisms, not mutually exclu-
sive. First, both somatic mutations in cancer and germline mutations leading
to abnormal phenotypes must be compatible with viablility at the cell level.
Therefore cancer genomics provides us with a catalog of mutations that are
compatible with cell-level viability and thus potentially involved in abnormal
phenotypes compatible with life. Indeed, as expected, TSM negatively cor-
relates with essentiality at the cell level as determined in two studies [11, 12]
(resp. P = 8.5 · 10−13, 8.0 · 10−10, logistic regression).

However this cannot be the whole story since, as shown in the case of
de novo mutations involved in autistic behavior, intellectual disability and
schizophrenia, TSM is able to predict the most likely causative mutations
even among a set of mutations that were actually found in individuals, and
hence compatible with cell-level viability. Since TSM represents the recur-
rence of mutations in cancer we can assume that it measures the growth
advantage conferred to the cells carrying them. These could be the same
mutations that, in the germline, significantly alter the balance between cell
types during development, leading to abnormal phenotypes.

Such relationship with development is confirmed by looking at the pre-
dictive power of TSM-based predictors as a function of the age of onset of
diseases. In Fig. 7 we show the rank of true disease genes as predicted by
rank products for diseases of varying age of onset. We can notice that the
performance of the TSM-based prioritizer is indeed maximal for diseases for
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which the onset is antenatal while the performance decreases for diseases
manifesting themselves in childhood and adolescence. Surprisingly, the pre-
dictive power becomes higher for adult-onset diseases. Such connection with
development is also suggested by a functional enrichment analysis of the
genes that are top-ranked in the prediction for phenotypes, where intracellu-
lar signaling, in particular in the central nervous system, appears to be often
disrupted in both cancer and genetic diseases.

Figure 7: Rank product of disease genes associated to ORPHANET diseases
as a function of the age of onset

5 Methods

5.1 Somatic mutations profiles

Somatic mutation profiles for primary tumor samples of 29 cancer types, sum-
marized at the gene level, were obtained from the UCSC Cancer Browser on
November 23, 2015. When several gene-level mutation datasets were avail-
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able (corresponding e.g. to different analysis pipelines), we based our analysis
on the dataset including the largest number of samples, to which we added
the samples present only in smaller datasets, considered in decreasing order
of sample number. Only protein-coding genes were considered (i.e. those
associated with one or more Uniprot ids in the org.Hs.eg.db package of Bio-
conductor, version 3.4.0). In this way we obtained mutation profiles for 18499
genes in 29 cancer types. Only non-silent mutations were considered in our
analysis, according to mutation impact reported by TCGA

5.2 Gene-phenotype associations

Gene-phenotype associations were obtained from the Human Phenotype On-
tology web site on October 9 2015. We only considered the phenotypes that
are direct descendat of the term “abnormal phenotype” (HP:0000118) and
excluded the “neoplasm” term (HP:0002664) and all its descendants. Genes
associated to a phenotype were associated also to all its ancestors in the
HPO graph. Finally we limited the analysis to 1007 phenotypes associated
to more than 50 genes.

5.3 Logistic regression

We fitted a univariate logistic model for each HP phenotype, where the re-
gressed variable is the association between a gene and the phenotype, and the
regressor for gene g is one of the following (n(g, t) is the number of samples
of cancer type t where g is mutated)

• the number of samples in which g is mutated, summed over all cancer
types (which we refer to as TSM, Total Somatic Mutations)

∑
t

n(g, t)

• the log-transformed number of samples in which g is mutated, summed
over all cancer types

∑
t

log2(n(g, t) + 1))
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• the mutation frequency of g summed over all cancer types

∑
t

n(g, t)∑
g′ n(g′, t)

• the log-transformed mutation frequency of g summed over all cancer
types

∑
t

log2

(
n(g, t)∑
g′ n(g′, t)

+ p

)

where p is pseudo-frequency equal to 10−6. Since all these predictor
showed very similar performance on HPO phenotypes we discuss only
the first one, which achieves a sligthly higher median AUC.

We also fitted univariate logistic models in which the regressor is the
number of mutated samples for a specific cancer type n(g, t).

For comparison we fitted models using predictors based on germline vari-
ation frequencies:

• the Residual Variation Intolerance Score (RVIS) determined in [6]

• the probabilities determined in [7] of being loss-of-function intolerant
(pLI), intolerant of homozygous LOF (pRec) and tolerant of both ho-
mozygous and heterozygous LOF (pNull). We chose pNull for our
comparisons since it is by far the best predictor of HPO associations.

Bivariate logistic models were generated to determine if TSM provides
independent information on disease genes than what provided by methods
based on germline variation frequencies.

5.4 AUCs and P -values

The performance of logistic models was evaluated using AUCs, and its statis-
tical significance by Mann-Whitney U test, in which we compare the values
of the model prediction on positive genes (associated to the phenotype) vs
negative ones. It is worth noting that the for univariate models the AUCs
of the logistic model are the same as the AUCs that we would obtain using
directly the regressor as predictor, possibly after changing its sign: the only
job performed by logistic regression is to determine whether the regressor is
positively or negatively correlated with the response.
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5.5 Predicting disease genes

We obtained the associations between Orphanet diseases and HPO pheno-
types from the phenotype annotation.tab file downloaded from the HPO web
site on February 5, 2015. We then built a predictor for each disease by associ-
ating to each gene the geometric mean of the ranks of the gene as a predictor
of each of the phenotypes associated to the disease (phenotypes with up to
50 genes associated, for which we do not have a prediction, were mapped to
their closest ancestor in the HPO graph with more than 50 genes).

Disease gene predictors were evaluated by determining the score distribu-
tion of true associations (obtained from the Orphanet web site). As a control
we generated randomized predictions through 100 random permutations of
the genes for which we have a TSM-based predictions.

5.6 Gene Set Enrichment Analysis

GSEA analysis was performed using the Pre-Ranked Analysis module built
in the desktop application (v. 2.2.3). Gene lists for each non-redundant
prediction were preranked using the prediction rank as natural ordering. En-
richment was evaluated on c5.bp.v5.2 gene list.
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6 Supplementary Material

Supplementary Table 1: Tumor type with the best predictive power and
AUC values for 1007 HPO abnormal phenotypes.

Supplementary Table 2: Gene sets showing recurrent positive enrichment.
For each gene set we report the number of non-redundant predictive models
in which it is found among the top 20 positively enriched.

Supplementary Table 3: Gene sets showing recurrent negative enrich-
ment. For each gene set we report the number of non-redundant predictive
models in which it is found among the top 20 negatively enriched.
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Supplementary Figure 1: Rank of genes for which de novo mutations were
found in Intellectual Disability, Schizophrenia and Congenital Heart Disease.
Data and classification into classes are from [10]. The following HPO terms
were used for the prediction: ”Intellectual disability”, ”Behavioral abnormal-
ity” (the closest ancestor of ”Schizophrenia” in the HPO tree for which we
have a predictor, since it has more than 50 associated genes) and ”Abnor-
mality of cardiovascular system morphology”.
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Supplementary Figure 2: Correlation between model fit to neutral evolution
and the fraction of genes having a mutation frequency higher than 1e-3.
Values on the x-axis are average values displayed in figure 3 from [8].
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