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Abstract14

We present a phylogenetic approach rooted in the field of population genetics that more15

realistically models the evolution of protein-coding DNA under the assumption of16

stabilizing selection for a gene specific, optimal amino acid sequence. In addition to being17

consistent with the fundamental principles of population genetics, our new set of models,18

which we collectively call SelAC, fit phylogenetic data astronomically better than popular19

models, suggesting strong potential for more accurate inference of phylogenetic trees and20

branch lengths. SelAC also demonstrates that a large amount of biologically meaningful21

information is accessible when using a nested set of mechanistic models. For example, for22

each position SelAC provides a probabilistic estimate of any given amino acid being23

optimal. Because SelAC assumes the strength of selection is proportional to the expression24

level of a gene, SelAC provides gene specific estimates of protein synthesis rates. Finally,25

because SelAC’s is a nested approach based on clearly stated biological assumptions, it can26

be expanded or simplified as needed.27
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Phylogenetic analysis now plays a critical role in most aspects of biology,28

particularly in the fields of ecology, evolution, paleontology, medicine, and conservation.29

While the scale and impact of phylogenetic studies has increased substantially over the30

past two decades, by comparison the realism of the mathematical models on which these31

analyses are based has changed relatively little. For example, the simplest but most32

popular models are agnostic with regards to the different amino acid substitutions and33

their impact on gene function (e.g. F81, F84, HYK85, TN93, and GTR, see Yang (2014)34

for an overview).35

Another set of models attempt to include a ’selection’ term ω, but the link between36

ω and the key parameters found in standard population genetics models such as Ne, the37

distribution of fitness across genotype space, and mutation bias are far from clear. For38

instance, ω is generally interpreted as indicating whether a sequence is under ‘purifying’39

(ω < 1) or ‘diversifying’ (ω > 1) selection. However, the actual behavior of the model as is40

quite different. When ω < 1 the model behaves as if the resident amino acid i at a given41

site is favored by selection since synonymous substitutions have a higher substitution rate42

than any possible non-synonymous substitutions. Paradoxically, this selection regime for43

the resident amino acid i persists until a substitution for another amino acid, j, occurs. As44

soon as amino acid j fixes, but not before, selection now favors amino acid j over all other45

amino acids, including i. This is now the opposite scenario to when i was the resident.46

Similarly, when ω > 1, synonymous substitutions have a lower substitution rate than any47

possible non-synonymous substitutions the resident amino acid. In a parallel manner, this48

selection against the resident amino acid i persists until a substitution occurs at which49

point selection now favors the former resident amino acid i as well as the 18 others. Thus,50

the simplest and most consistent interpretation of ω is that it describes the rate at which51

the selection regime itself changes, and this change in selection perfectly coincides with the52

fixation of a new amino acid. As a result, ω based approaches only reasonably describe a53
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subset of scenarios such as over/underdominance or frequency dependent selection (Hughes54

and Nei 1988; Nowak 2006). Because, as we show here, ω is well correlated with gene55

expression, its value is really an indicator of the strength of stabilizing selection on a56

coding sequence, rather than the ’nature’ of that selection.57

Fortunately, given the continual growth in computational power available to58

researchers, it is now possible to utilize a more general set of population genetics based59

models for the purpose of phylogenetic analysis (e.g. Halpern and Bruno 1998; Robinson60

et al. 2003; Lartillot and Philippe 2004; Rodrigue and Lartillot 2014). One lesson from the61

field of population genetics is even when there are only a few fundamental evolutionary62

forces at play (mutation, drift, selection, and linkage effects), describing the evolutionary63

behavior of a system in which there are non-linear interactions between sites, such as64

epistasis, quickly becomes extremely challenging. Fortunately, under the simplifying65

assumptions of additivity between sites and alleles, calculating stationary and substitution66

probabilities are relatively straightforward, making fitting additive models of the67

evolutionary process to sequence data computationally feasible.68

Materials & Methods69

Overview70

We model the substitution process as a classic Wright-Fisher process which includes71

the forces of mutation, selection, and drift (Fisher 1930; Kimura 1962; Wright 1969; Iwasa72

1988; Berg and Lässig 2003; Sella and Hirsh 2005; McCandlish and Stoltzfus 2014). For73

simplicity, we ignore linkage effects and, as a result of this and other assumptions, our74

method behaves in a site independent manner. Our approach, which we call SelAC75

(Selection on Amino acids and Codons), is developed in the same vein as previous76
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phylogenetic applications of the Wright-Fisher process (e.g. Muse and Gaut 1994; Halpern77

and Bruno 1998; Yang and Nielsen 2008; Rodrigue et al. 2005; Koshi and Goldstein 1997;78

Koshi et al. 1999; Dimmic et al. 2000; Thorne et al. 2012; Lartillot and Philippe 2004;79

Rodrigue and Lartillot 2014). Similar to Lartillot’s work (Lartillot and Philippe 2004;80

Rodrigue and Lartillot 2014), we assume there is a finite set of rate matrices describing the81

substitution process and that each position within a protein is assigned to a particular rate82

matrix category. Unlike this previous work, we assume a priori there are 20 different83

families of rate matrices, one family for when a given amino acid is favored at a site. As a84

result, SelAC allows us to quantitatively evaluate the support for a particular amino acid85

being favored at a particular position within the protein encoded by a particular gene.86

Because SelAC requires twenty families of 61× 61 matrices, the number of87

parameters needed to implement SelAC would, without further assumptions, be extremely88

large. To reduce the number of parameters needed while still maintaining a high degree of89

biological realism, we construct our gene and amino acid specific substitution matrices90

using a submodel nested within our substitution model, similar to approaches in Gilchrist91

(2007); Shah and Gilchrist (2011); Gilchrist et al. (2015).92

One advantage of a nested modeling framework is that it requires only a handful of93

genome wide parameters such as nucleotide specific mutation rates (scaled by effective94

population size Ne), side chain physicochemical weighting parameters, and a shape95

parameter describing the distribution of site sensitivities. In addition to these genome wide96

parameters, SelAC requires a gene g specific expression parameter ψg which describes the97

average rate at which the protein’s functionality is produced by the organism. Currently, ψ98

is fixed across the phylogeny, though relaxing this assumption is a goal of future work. The99

gene specific parameter ψg is multiplied by additional model terms to make a composite100

term ψ′g which scales the strength and efficacy of selection for the optimal amino acid101

sequence relative to drift. In terms of the functionality of the protein encoded, we assume102
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that for any given gene there exists an optimal amino acid sequence ~a∗ and that, by103

definition, a complete, error free peptide consisting of a∗ provides one unit of the gene’s104

functionality. We also assume that natural selection favors genotypes that are able to105

synthesize their proteome efficiently than their competitors and that each savings of an106

high energy phosphate bond per unit time leads to a constant proportional gain in fitness107

q. SelAC also requires the specification (as part of parameter optimization) of an optimal108

amino acid at each position or site within a coding sequence which, in turn, makes it the109

largest category of parameters we estimate. Because we use a submodel to derive our110

substitution matrices, SelAC requires the estimation of a fraction of the parameters111

required when compared to approaches where the substitution rates are allowed to vary112

independently (Halpern and Bruno 1998; Lartillot and Philippe 2004; Rodrigue and113

Lartillot 2014).114

As with other phylogenetic methods, we generate estimates of branch lengths and115

nucleotide specific mutation rates. In addition, because the math behind our model is116

mechanistically derived, our method can also be used to make quantitative inferences on117

the optimal amino acid sequence of a given protein as well as the average synthesis rate of118

each protein used in the analysis. The mechanistic basis of SelAC also means it can be119

easily extended to include more biological realism and test more explicit hypotheses about120

sequence evolution.121

Mutation Rate Matrix µ122

We begin with a 4x4 nucleotide mutation matrix that defines a model for mutation rates123

between individual bases. For our purposes, we rely on the general unrestricted124

model(Yang 1994, UNREST) because it makes no constraint on the instantaneous rate of125

change between any pair of nucleotides. We note, however, that more constrained models,126

such as the Jukes-Cantor (JC), Hasegawa-Kishino-Yano (HKY), or the general time127
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reversible model (GTR), can also be used. The 12 parameter UNREST model defines the128

relative rates of change between a pair of nucleotides. Thus, we arbitrarily set the G→T129

mutation rate to 1, resulting in 11 free mutation rate parameters in the 4x4 mutation130

nucleotide mutation matrix. The nucleotide mutation matrix is also scaled by a diagonal131

matrix π whose entries correspond to the equilibrium frequencies of each base. These132

equilibrium nucleotide frequencies are determined by analytically solving π ×Q = 0. We133

use this Q to populate a 61× 61 codon mutation matrix µ, whose entries µi,j describe the134

mutation rate from codon i to j under a ”weak mutation” assumption. That is, the rate of135

allele fixation is much greater than Neµ and Neµ� 1, such that evolution is mutation136

limited, codon substitutions only occur one nucleotide at a time and, as a result, the rate137

of change between any pair of codons that differ by more than one nucleotide is zero.138

While the overall model does not assume equilibrium, we still need to scale our139

mutation matrices µ. Traditionally, it is rescaled such that at equilibrium, one unit of140

branch length represents one expected substitution per site. Here, a scaling factor is141

calculated as the average rate −
∑

i µiπi = 1, where i indexes a particular codon in a given142

gene. The final mutation rate matrix is the original mutation rate matrix multiplied by143

1/scaling factor.144

Protein Synthesis Cost-Benefit Function η145

SelAC links fitness to the product of the cost-benefit function of a gene g, ηg, and the146

organism’s average target synthesis rate of the functionality provided by gene g, ψg. This is147

because the average flux energy an organism spends to meet its target functionality148

provided by gene g is ηg × ψg. In order to link genotype to our cost-benefit function149

η = B/C, we begin by defining our benefit function B.150

Benefit:.— Our benefit function B measures the functionality of the amino acid sequence151

~ai encoded by a set of codons ~ci, i.e. a(~ci) = ~ai relative to that of an optimal sequence ~a∗.152
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By definition, B(~a∗) = 1 and B(~ai|~a∗) < 1 for all other sequences. We assume all amino153

acids within the sequence contribute to protein function and that this contribution declines154

as an inverse function of physicochemical distance between each amino acid and the155

optimal. Formally, we assume that156

B(~ai|~a∗) =

(
1

ng

ng∑
p=1

(1 +Gpd(ai,p, a∗,p)

)−1
(1)

where ng is the length of the protein, d(ai,p, a∗,p) is a weighted physicochemical distance157

between the amino acid encoded in gene i for position p and a∗,p is the optimal amino acid158

for that position of the protein. For simplicity, we define the distance between a stop codon159

and a sense codon as effectively infinite and, as a result, nonsense mutations are effectively160

lethal. The term Gp describes the sensitivity of the protein’s function to deviation in161

physicochemical space. There are many possible measures for physiochemical distance; we162

use (Grantham 1974) distances by default, though others may be chosen. We assume that163

Gp ∼ Gamma (α = αG, β = αG) in order to ensure E(Gp) = 1.164

At the limit of αG →∞, the model collapses to a model with uniform sensitivity of165

Gp = 1 for all positions p. B(~ai|~a∗) is inversely proportional to the average physicochemical166

deviation of an amino acid sequence ~ai from the optimal sequence ~a∗ weighted by each sites167

senstivity to this deviation. B(~ai|~a∗) can be generalized to include second and higher order168

terms of the distance measure d.169

Cost:.— Protein synthesis involves both direct and indirect assembly costs. Direct costs

consist of the high energy phosphate bonds ∼ P of ATP or GTP’s used to assemble the

ribosome on the mRNA, charge tRNA’s for elongation, move the ribosome forward along

the transcript, and terminate protein synthesis. As a result, direct protein assembly costs

are the same for all proteins of the same length. Indirect costs of protein assembly are
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potentially numerous and could include the cost of amino acid synthesis as well the cost

and efficiency with which the protein assembly infrastructure such as ribosomes,

aminoacyl-tRNA synthetases, tRNAs, and mRNAs are used. When these indirect costs are

combined with sequence specific benefits, the probability of a mutant allele fixing is no

longer independent of the rest of the sequence (Gilchrist et al. 2015) and, as a result, model

fitting becomes substantially more complex. Thus for simplicity, in this study we ignore

any indirect costs of protein assembly that vary between genotypes and define,

C(~ci) = Energetic cost of protein synthesis. (2)

= A1 + A2n (3)

where, A1 and A2 represent the direct cost, in high energy phosphate bonds, of ribosome170

initiation and peptide elongation, respectively, where A1 = A2 = 4 ∼ P .171

Defining Physicochemical Distances172

Assuming that functionality declines with an amino acid ai’s physicochemical distance from

the optimum amino acid a∗ at each site provides a biologically defensible way of mapping

genotype to protein function that requires relatively few free parameters. In addition,

SelAC naturally lends itself to model selection since we can compare the quality of SelAC

fits using different mixtures of physicochemical properties. Following Grantham (1974), we

focus on using composition c, polarity p, and molecular volume v of each amino acid’s side

chain residue to define our distance function, but the model and its implementation can

flexibly handle a variety of properties. We use the Euclidian distance between residue

properties where each property c, p, and v has its own weighting term, αc, αp, αv,

respectively, which we refer to as ‘Grantham weights’. Because physicochemical distance is

ultimately weighted by a gene’s specific average protein synthesis rate ψ, another
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parameter we estimate, there is a problem with parameter identifiablity. Ultimately, the

scale of gene expression is affected by how we measure physicochemical distances which, in

turn, is determined by our choice of Grantham weights. As a result, by default we set

αv = 3.990× 10−4, the value originally estimated by Grantham, and recognize that our our

estimates of αc and αp and ψ are scaled relative to this choice for αv. More specifically,

d(ai, a∗) =
(
αc (c (ai)− c (a∗))

2 + αp (p (ai)− p (a∗))
2 +

αv (v (ai)− v (a∗))
2)1/2 .

Linking Protein Synthesis to Allele Substitution173

Next we link the protein synthesis cost-benefit function η of an allele with its fixation174

probability. First, we assume that each protein encoded within a genome provides some175

beneficial function and that the organism needs that functionality to be produced at a176

target average rate ψ. By definition, the optimal amino acid sequence for a given gene, ~a∗,177

produces one unit of functionality. Second, we assume that protein expression is regulated178

by the organism to ensure that functionality is produced at rate ψ. As a result, the realized179

average protein synthesis rate of a gene, φ, is equal to ψ/B(~a) and the total energy flux180

allocated towards meeting the target functionality of a particular gene is η(~c)ψ. The fitness181

cost for a genotype encoding a suboptimal protein sequence stems from the need to182

produce 1/B(~a) proteins in order to produce the equivalent functionality of one protein183

consisting of the optimal amino acid sequence a∗. For example, a protein encoding allele184

which has a 10% reduction in functionality relative to the optimal sequence,185

i.e. B(~a) = 0.9, will have the same energetic burden and selective cost relative to its186

optimal sequence as a protein encoding allele of similar length which has a 20% reduction187

in functionality but whose target synthesis rate is 1/2 of the first protein.188
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Third, we assume that every additional high energy phosphate bond ∼ P spent per

unit time to meet the organism’s target function synthesis rate ψ leads to a slight and

proportional decrease in fitness W . This assumption, in turn, implies

Wi (~c) ∝ exp [−A0 η(~ci)ψ] . (4)

where A0 describes the decline in fitness with every ∼ P wasted per unit time. Because A0189

shares the same time units as ψ and φ and only occurs in SelAC in conjunction with ψ, we190

do not need to explicilty identify our time units.191

Correspondingly, the ratio of fitness between two genotypes is,

Wi/Wj = exp [−A0 η(~ci)ψ] / exp [−A0 η(~cj)ψ]

= exp [−A0 (η(~ci)− η(~cj))ψ]

Given our formulations of C and B, the fitness effects between sites are multiplicative and,

therefore, the substitution of an amino acid at one site can be modeled independently of

the amino acids at the other sites within the coding sequence. As a result, the fitness ratio

for two genotypes differing at a single site p simplifies to

Wi

Wj

= exp

[
−A0 (A1 + A2n)

n
(5)

×
∑
p∈P

[d (ai,p, a∗,p)− d (aj,p, a∗,p)]ψ

]
(6)

where P represents the codon positions in which ~ci and ~cj differ. Fourth, we make a weak

mutation assumption, such that alleles can differ at only one position at any given time,

i.e. |P| = 1, and that the population is evolving according to a Fisher-Wright process. As a

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/120238doi: bioRxiv preprint 

https://doi.org/10.1101/120238


result, the probability a new mutant j introduced via mutation into a resident population i

with effective size Ne will go to fixation is,

ui,j =
1− (Wi/Wj)

b

1− (Wi/Wj)
2Ne

=
1− exp

{
−A0

n
(A1 + A2n) [d (ai, a∗)− d (aj, a∗)]ψ b

}
1− exp

{
−A0

n
(A1 + A2n) [d (ai, a∗)− d (aj, a∗)]ψ 2Ne

}
where b = 1 for a diploid population and 2 for a haploid population (Kimura 1962; Wright

1969; Iwasa 1988; Berg and Lässig 2003; Sella and Hirsh 2005). Finally, assuming a

constant mutation rate between alleles i and j, µi,j, the substitution rate from allele i to j

can be modeled as,

qi,j =
2

b
µi,jNeui,j.

where, given our weak mutation assumption, µi,j = 0 when two codons differ by more than192

one nucleotide. In the end, each optimal amino acid has a separate 64 x 64 substitution193

rate matrix Qa, which incorporates selection for the amino acid (and the fixation rate194

matrix this creates) as well as the common mutation parameters across optimal amino195

acids. This results in the creation of 20 Qa matrices, one for each amino acid, with up to196

26,880 unique rates, based on few parameters (one to 11 mutation rates, two free197

Grantham weights, the cost of protein assembly, A1 and A2, the gene specific target198

functionality synthesis rate ψ, and optimal amino acid at each position p, a∗,p), which can199

either be specified a priori or estimated from the data. SelAC can be generalized to allow200

transitions between optimal amino acids as well as between codons, which would result in a201

(20× 64)× (20× 64) = 1344× 1344 matrix.202

Finally, given our assumption of independent evolution among sites, the probability203

of the whole data set is the product of the probabilities of observing the data at each204
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individual site. Thus, the log likelihood L of amino acid a being optimal at a given site205

position p is calculated as206

L (Qa|Dp,T) ∝ P (Dp|Qa,T) (7)

In this case, the data, Dp, are the observed codon states at position p for the tips of the207

phylogenetic tree with topology T. For our purposes we take T as given but it could be208

estimated as well. The pruning algorithm of Felsenstein (1981) is used to calculate L(Qa).209

The log likelihood is maximized by estimating the genome scale parameters which consist210

of 11 mutation parameters which are implicitly scaled by 2Ne/b, and two Grantham211

distance parameters, αc and αp, and the sensitivity distribution parameter αG. Because A0212

and ψg always co-occur and are scaled by Ne, for each gene g we estimate a composite term213

ψ′g = ψgA0bNe and the optimal amino acid for each position a∗,p of protein. When214

estimating αG, the likelihood then becomes the average likelihood which we calculate using215

the generalized Laguerre quadrature with k = 4 points (Felsenstein 2001).216

Implementation217

All methods described above are implemented in the new R package, selac available218

through GitHub (https://github.com/bomeara/selac) [it will be uploaded to CRAN219

once peer review has completed]. Our package requires as input a set of fasta files that220

contain each coding sequence for a set of taxa, and the phylogeny depicting the221

hypothesized relationships among them. In addition to the SelAC models, we implemented222

the GY94 codon model of Goldman and Yang (1994), the FMutSel0 mutation-selection223

model of Yang and Nielsen (2008), and the standard general-time reversible nucleotide224

model that allows for Γ distributed rates across sites. These likelihood-based models225

represent a sample of the types of popular models often fit to codon data.226

For the SelAC models, the starting guess for the optimal amino acid at a site comes227

from ‘majority’ rule, where the initial optimum is the most frequently observed amino acid228
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at a given site (ties resolved randomly). Our optimization routine then proceeds by cycling229

though multiple phases. The first phase optimizes the branch lengths while holding the230

model parameters constant. The second phase optimizes the gene specific composite231

parameter ψ′ = A0ψNe across genes, while holding constant both the branch lengths and232

the model parameters shared across the genome (i.e., αc and αp, and the sensitivity233

distribution parameter αG). This is followed by a third phase that optimizes the234

parameters across the genome, while keeping the branch lengths and the composite235

parameters constant. Finally, the fourth phase estimates the optimal amino acid at each236

site while keeping the branch lengths and all model parameters at their current values.237

This entire procedure is repeated six times. For optimization of a given set of parameters,238

we rely on a bounded subplex routine (Rowan 1990) in the package NLopt (Johnson 2012)239

to maximize the log-likelihood function. To help the optimization navigate through local240

peaks, we perform a set of independent analyses with different sets of naive starting points241

with respect to the gene specific composite ψ′ parameters, αc, and αp. Confidence in the242

parameter estimates can be generated by an ’adaptive search’ procedure that we243

implemented to provide an estimate of the parameter space that is some pre-defined244

likelihood distance (e.g., 2 lnL units) from the maximum likelihood estimate (MLE), which245

follows Beaulieu and OMeara (2016); Edwards (1984).246

We note that our current implementation is painfully slow, and is particularly247

suited for smaller data sets in terms of numbers of taxa. This is largely due to the size and248

quantity of matrices we create and manipulate just to calculate the log-likelihood of an249

individual given site. We have parallelized operations wherever possible, but the fact250

remains that, long term, this model may not be well-suited for R. Ongoing work will251

address the need for speed, with the eventual goal of implementing the model in popular252

phylogenetic inference toolkits, such as RevBayes (Hhna et al. 2016), PAML (Yang 2007)253

and RAxML (Stamatakis 2006).254
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Simulations255

We evaluated the performance of our codon model by simulating datasets and estimating256

the bias of the inferred model parameters from these data. Our ’known’ parameters under257

a given generating model were based on fitting SelAC to the 106 gene data set and258

phylogeny of Rokas et al. (2003). The tree used in these analyses is outdated with respect259

to the current hypothesis of relationships within Saccharomyces, but we rely on it simply as260

a training set that is separate from our empirical analyses (see section on Analyzing Yeast261

Genome). Bias in the model parameters were assessed under two generating models: one262

where we assumed a model of SelAC assuming αG =∞, and one where we estimated αG263

from the data. Under each of these two scenarios, we used parameter estimates from the264

corresponding empirical analysis and simulated 50 five-gene data sets. For the gene specific265

composite parameter ψ′g the ’known’ values used for the simulation were five evenly spaced266

points along the rank order of the estimates across the 106 genes. The MLE estimate for a267

given replicate were taken as the fit with the highest log-likelihood after running five268

independent analyses with different sets of naive starting points with respect to the269

composite ψ′g parameter, αc, and αp. All analyses were carried out in our selac R package.270

Analysis of yeast genome and tests of model adequacy271

We focus our empirical analyses on the large yeast data set and phylogeny of Salichos and272

Rokas (2013). The yeast genome is an ideal system to examine our phylogenetic estimates273

of gene expression and its connection to real world measurements of these data within274

individual taxa. The complete data set of Salichos and Rokas (2013) contain 1070275

orthologs, where we selected 100 at random for our analyses. We also focus our analyses276

only on Saccharomyces sensu stricto, including their sister taxon Candida glabrata, and we277

rely on the phylogeny depicted in Fig. 1 of Salichos and Rokas (2013) for our fixed tree.278
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We fit both the new models described in this paper, as well as two codon models, GY94279

and FMutSel0, and a standard GTR + Γ nucleotide model. The FMutSel0 model, which280

assumes that the amino acid frequencies are determined by functional requirements of the281

protein, is the most similar to our model. In all cases, we assumed that the model was282

partitioned by gene, but with branch lengths linked across genes.283

For SelAC, we compared our estimates of φ′ = ψ′/B, which represents the average284

protein synthesis rate of a gene, to estimates of gene expression from empirical data.285

Specifically, we obtained expression data for five of the six species used - four species were286

measured during log-growth phase, whereas the other was measured at the beginning of the287

stationary phase (S. kudriavzevii) from the Gene Expression Omnibus (GEO). Gene288

expression was measured using either Microarray chips (C. glabrata, S. castellii, and S.289

kudriavzevii) or RNA-Seq (S. paradoxus, S. mikatae, and S. cerevisiae). For further290

comparison, we also predicted protein synthesis rate (φ) by analyzing gene and291

genome-wide patterns of synonymous codon usage using ROC-SEMPPR (Gilchrist et al.292

2015) for each individual genome. While, like SelAC, ROC-SEMPPR uses codon level293

information, it does not rely on any inter-specific comparisons and, unlike selac, assumes294

selection on synonymous codon usage is contributing to these patterns. Nevertheless,295

ROC-SEMPPR predictions of gene expression φ correlates strongly (r = 0.53− 0.74) with296

a wide range of laboratory measurements of gene expression (Gilchrist et al. 2015).297

While one of our main objectives was to determine the improvement of fit that298

SelAC has with respect to other standard phylogenetic models, we also evaluated the299

adequacy of SelAC. Model fit, measured with assessments such as the Akaike Information300

Criterion (AIC), can tell which model is least bad as an approximation for the data, but it301

does not reveal whether a model is actually doing a good job of representing the biological302

processes. An adequate model does the latter, one measure of which is that data generated303

under the model resemble real data (Goldman 1993). For example, Beaulieu et al. (2013)304
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assessed whether parsimony scores and the size of monomorphic clades of empirical data305

were within the distributions of simulated under a new model and the best standard306

model; if the empirical summaries were outside the range for each, it would have suggested307

that neither model was adequately modeling this part of the biology. For a given gene we308

first remove a particular taxon from the data set and the phylogeny. A marginal309

reconstruction of the likeliest sequence across all remaining nodes is conducted under the310

model, including where the attachment point of pruned taxon to the tree. The marginal311

probabilities of each site are used to sample and assemble the starting coding sequence.312

This sequence is then evolved along the branch, periodically being sampled and its current313

functionality assessed. We repeat this process 100 times and compare the distribution of314

trajectories against the observed functionality calculated for the gene. For comparison, we315

also conducted the same test, by simulating the sequence under the standard GTR + Γ316

nucleotide model, which is often used on these data but does not account for the fact that317

the sequence codes for a specific protein, and under FMutSel0, which includes selection on318

codons but in a fundamentally different way as our model.319

Results320

By linking transition rates qi,j to gene expression ψ, our approach allows use of the same321

model for genes under varying degrees of stabilizing selection. Specifically, we assume the322

strength of stabilizing selection for the optimal sequence, ~a∗, is proportional to the average323

protein synthesis rate φ, which we can estimate for each gene. In regards to model fit, our324

results clearly indicated that linking the strength of stabilizing selection for the optimal325

sequence to gene expression substantially improves our model fit. Further, including the326

single random effects term G ∼ Gamma(αG, βg) to allow for heterogeneity in this selection327

between sites within a gene, improves the ∆AIC of SelAC+Γ score over the simpler SelAC328
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model by over 23,000 AIC units. Using either ∆AIC or AICw as our measure of model329

support, the SelAC models fit extraordinarily better than GTR + Γ, GY94, or FMutSel0330

(Table 1). This is in spite of the need for estimating the optimal amino acid at each331

position in each protein, which accounts for more than 47,000 additional model parameters.332

Even when compared to the next most parameter rich codon model in our model set,333

FMutSel0, SelAC+Γ model shows nearly 400,000 AIC unit improvement over FMutSel0.334

With respect to estimates of φ within SelAC, they were strongly correlated with two335

separate measures of gene expression, one empirical (See Figure S1), and one model-based336

prediction that does not account for shared ancestry (Figure S1-S2). In other words, using337

only codon sequences our model can predict which genes have high or low expression levels.338

The estimate of the αG parameter, which describes the site-specific variation in sensitivity339

of the protein’s functionality, indicated a moderate level of variation in gene expression340

among sites. Our estimate of αG = 1.40, produced a distribution of sensitivity terms G341

ranged from 0.344-7.16, but with nearly 90% of the weight for a given site-likelihood being342

contributed by the 0.344 and 1.48 rate categories. In simulation, however, of all the343

parameters in the model, only αG showed a consistent bias, in that the estimates were344

generally underestimated (see Supporting Materials). Other parameters in the model, such345

as the Grantham weights, provide an indication as to the physicochemical distance between346

amino acids. Our estimates of these weights only strongly deviate from Grantham’s 1974347

original estimates in regards to composition weight, αc, which is the ratio of noncarbon348

elements in the end groups to the number of side chains. Our estimate of the composition349

weighting factor of αc=0.484 is 1/4th the value estimate by Grantham which suggests that350

the substitution process is less sensitive to this physicochemical property when shared351

ancestry and varation in stabilizing selection are taken into account.352

It is important to note that the nonsynonymous/synonymous mutation ratio, or ω,353

which we estimated for each gene under the FMutSel0 model strongly correlated with our354
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estimates of φ′ = ψ′/B where B depends on the sequence of each taxa. In fact, ω showed355

similar, though slightly reduced correlations, with the same empirical estimates of gene356

expression described above (See Figure 2). This would give the impression that the same357

conclusions could have been gleaned using a much simpler model, both in terms of the358

number of parameters and the assumptions made. However, as we discussed earlier, not359

only is this model greatly restricted in terms of its biological feasibility, SelAC clearly360

performs better in terms of its fit to the data and biological realism. For example, when we361

simulated the sequence for S. cervisieae, starting from the ancestral sequence under both362

GTR + Γ and FMutSel0, the functionality of the simulated sequence moves away from the363

observed sequence, whereas SelAC remains near the functionality of the observed sequence364

(Figure 3b). In a way, this is somewhat unsurprising, given that both GTR + Γ and365

FMutSel0 are agnostic to the functionality of the gene, but it does highlight the366

improvement in biological realism in amino acid sequence evolution that SelAC provides.367

We do note that the adequacy of the SelAC model does vary among individual taxa, and368

does not always perfectly match the observed functionality. For instance, S. castellii is369

simulated with consistently higher functionality than observed (Figure 3c). We suspect this370

is an indication that assuming a single set of optimal amino acid across all taxa may be too371

simplistic, but we cannot also rule out other potential simplifying assumptions in our372

model, such as a single set of Grantham weights and αG values or the simple, inverse373

relationship between physicochemical distance d and benefit B.374

Discussion375

The work presented here contributes to the field of phylogenetics and molecular376

evolution in a number of ways. First, SelAC provides an complementary example to377

Thorne et al. (2012) studies of how models of molecular and evolutionary scales can be378
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combined together in a nested manner. While the mapping between genotype and379

phenotype is more abstract than Thorne et al. (2012), SelAC has the advantage of not380

requiring knowledge of a protein’s native folding. Second, our use of model nesting also381

allows us to formulate and test specific biological hypotheses. For example, we are able to382

compare a model formulation which assumes that physiochemical deviations from the383

optimal sequence are equally disruptive at all sites within a protein to one which assumes384

the effect of deviation from the optimal amino acid’s physicochemical properties on protein385

function varies between sites. By linking the strength of stabilizing selection for an optimal386

amino acid sequence to gene expression, we can weight the historical information encoded387

in genes evolving at vastly different rates in a biologically plausible manner while388

simultaneously estimating their expression levels. Finally, because our fitness functions are389

well defined, we can provide estimates of key evolutionary statistics such as the distribution390

of effects on fitness and genetic load.391

As phylogenetic methods become ever more ubiquitous in biology, and data set size392

and complexity increase, there is a need and an opportunity for more complex and realistic393

models (Goldman et al. 1996; Thorne et al. 1996; Goldman et al. 1998; Halpern and Bruno394

1998; Lartillot and Philippe 2004). Despite their widespread use, phylogenetic models395

based on purifying and diversifying selection, i.e. Goldman and Yang (1994) and396

extensions, are very narrow categories of selection that mostly apply to cases of positive397

and negative frequency dependent selection at the level of a particular amino acid, not for398

tree inference itself.399

Instead of heuristically extending population genetic models of neutral evolution for400

use in phylogenetics, it makes sense to derive these extensions from population genetic401

models that explicitly include the fundamental forces of mutation, drift, and natural402

selection. Starting with Halpern and Bruno (1998), a number of researchers have developed403

methods for linking site-specific selection on protein sequence and phylogenetics(e.g. Koshi404
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et al. 1999; Dimmic et al. 2000; Koshi and Goldstein 2000; Robinson et al. 2003; Lartillot405

and Philippe 2004; Thorne et al. 2012; Rodrigue and Lartillot 2014). Our work follows this406

tradition, but includes some key advances. For instance, even though SelAC requires a407

large number of matrices, because of our assumption about protein functionality and408

physicochemical distance from the optimum, we are able to parameterize our substitution409

matrices using a relatively small number of genome-wide parameters and one gene specific410

parameter. We show that all of these parameters can be estimated simultaneously with411

branch lengths from the data at the tips of the tree.412

By assuming fitness declines with extraneous energy flux, SelAC explicitly links the413

variation in the strength of stabilizing selection for the optimal protein sequence among414

genes, to the variation among genes in their target expression levels ψ. Furthermore, by415

linking expression and selection, SelAC provides a natural framework for combining416

information from protein coding genes with very different rates of evolution with the low417

expression genes providing information on shallow branches and the high expression genes418

providing information on deep branches. This is in contrast to more traditional approach419

of concatenating gene sequences together, which is equivalent to assuming the same420

average protein synthesis rate ψ for all of the genes, or more recent approaches where421

different models are fitted to different genes. Our results indicate that including a gene422

specific ψ value vastly improves SelAC fits (Table 1). Perhaps more convincingly, we find423

that the target expression level ψ and realized protein synthesis rate φ are reasonably well424

correlated with laboratory measurements of gene expression (r = 0.34− 0.65; Figures 1, S1,425

and S2). The idea that quantiative information on gene expression is embedded within426

intra-genomic patterns of synonymous codon usage is well accepted; our work shows that427

this information can also be extracted from comparative data at the amino acid level.428

Of course, given the general nature of SelAC and the complexity of biological429

systems, other biological forces besides selection for reducing energy flux likely contribute430
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intergenic variation in the magnitude of stabilizing selection. Similarly, other431

physicochemical properties besides composition, volume, and charge likely contribute to432

site specific patterns of amino acid substitution. Thus, a larger and more informative set of433

Grantham weights might improve our model fit and reduce the noise in our estimates of φ .434

Even if other physicochemical properties are considered, the idea of a consistent, genome435

wide Grantham weighting of these terms seems highly unlikely. Since the importance of an436

amino acid’s physicochemical properties likely changes with where it lies in a folded437

protein, one way to incorporate such effects is to test whether the data supports multiple438

sets of Grantham weights for either subsets of genes or regions within genes, rather than a439

single set.440

Both of these points highlight the advantage of the detailed, mechanistic modeling441

approach underlying SelAC. Because there is a clear link between protein expression,442

synthesis cost, and functionality, SelAC can be extended by increasing the realism of the443

mapping between these terms and the coding sequences being analyzed. For example,444

SelAC currently assumes the optimal amino acid for any site is fixed along all branches.445

This assumption can be relaxed by allowing the optimal amino acid to change during the446

course of evolution along a branch.447

From a computational standpoint, the additive nature of selection between sites is448

desirable because it allows us to analyze sites within a gene largely independently of each449

other. From a biological standpoint, this additivity between site ignores any non-linear450

interactions between sites, such as epistasis, or between alleles, such as domiance. Thus,451

our work can be considered a first step to modeling to these more complex scenarios. For452

example, our current implementation ignores any selection on synonymous codon usage bias453

(CUB). Including such selection is tricky because introducing the site specific cost effects of454

CUB leads to non-additive (i.e. epistatic) interactions between sites. Relative to stabilizing455

selection on amino acid sequence, selection on CUB is thought to be substantially weaker.456
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As a result, epistatic effects due to synonymous codon specific differences in assembly costs457

can likely ignored and selection on CUB incorporated into our current framework.458

There are still significant deficiencies in the approach outlined here. Most worrisome459

are biological flaws in the model. For example, at its heart, the model assumes that460

suboptimal proteins can be compensated for, at a cost, simply by producing more of them.461

However, this is likely only true for proteins reasonably close to the optimal sequence.462

Different enough proteins will fail to function entirely: the active site will not sufficiently463

match its substrates, a protein will not properly pass through a membrane, and so forth.464

Yet, in our model, even random sequences still permit survival, just requiring more protein465

production.466

There are also deficiencies in our implementation. Though reasonable to use for a467

given topology with a modest number of species, it is too slow for practical use for tree468

search. It thus serves as a proof of concept, or of utility for targeted questions where a469

more realistic model may be of use (placement of particular taxa, for example). Future470

work will encode SelAC models into a variety of mature, popular tree-search programs.471

SelAC also represents a hard optimization problem: the nested models reduce parameter472

complexity vastly, but there are still numerous parameters to optimize, including the473

discrete parameter of optimal amino acid at each site. A different implementation, more474

parameter-rich, would optimize values of three (or more) physiochemical properties per475

site. This would have the practical advantage of continuous parameter optimization rather476

than discrete, and biologically would be more realistic (as it is the properties that selection477

”sees,” not the identity of the amino acid itself).478

Overall, SelAC represents an important step in uniting phylogenetic and population479

genetic models. It allows biologically relevant population genetic parameters to be480

estimated from phylogenetic information, while also dramatically improving fit and481

accuracy of phylogenetic models. Moreover, it demonstrates that there remains482
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substantially more information in the coding sequences used for phylogenetic analysis than483

other methods acknowledge.484
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Table603

Parameters Model
Model logLik Estimated AIC ∆AIC Weight
GTR+Γ -655166.4 610 1,311,553 504,151 <0.001
GY94 -612121.5 210 1,224,663 417,261 <0.001
FMutSel0 -598848.2 2810 1,203,316 395,914 <0.001
SelAC -465616.7 50,004 831,226 23,824 <0.001
SelAC+Γ -453706.0 50,005 807,402 0 0.999

Table 1: Comparison of model fits using ∆AIC.
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Figure 1: Comparisons between estimates of φ obtained from SelAC+Γ and direct measure-
ments of expression for individual yeast taxa across the 100 selected genes from Salichos
and Rokas (2013). Estimates of φ were obtained by solving for ψ based on estimates of ψ′,
and then dividing by B(~ai|~a∗). Gene expression was measured using either RNA-Seq (a-c) or
Microarray chips (d), and the equations in the upper left hand corner of each panel represent
the regression fit and correlation coefficient r.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/120238doi: bioRxiv preprint 

https://doi.org/10.1101/120238


●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

log ω̂FMutSel0

lo
g 

ψ̂
S

el
A

C

−0.437x + −1.91
r = −0.97

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

lo
g 

φ R
O

C

log ω̂FMutSel0

−0.749x + −2.44
r = −0.56

(c)

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

−2.4

−1.8

−1.2

−0.6

0.0

0.6

1.2

1.8

lo
g 

φ R
N

A
−s

eq

log ω̂FMutSel0

−0.669x + −1.96
r = −0.45

(b)

Figure 2: Comparisons between ω, which is the nonsynonymous/synonymous mutation ratio
in FMutSel0, ψ obtained from SelAC+Γ (a), a direct measurement of expression (b), and
a model-based prediction of gene expression that does not account for ancestry (c), for S.
cerevisiae across the 100 selected genes from Salichos and Rokas (2013). As in Figure 1,
the equations in the upper left hand corner of each panel provide the regression fit and
correlation coefficient. Estimates of ψ were solved from estimates of ψ′.
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Figure 3: (a) Maximum likelihood estimates of branch lengths under SelAC+Γ for 100
selected genes from Salichos and Rokas (2013). Tests of model adequacy for S. cerevisiae
(b) and S. castellii (c) indicated that, when these taxa are removed from the tree, and
their sequences are simulated, the parameters of SelAC+Γ exhibit functionality that is far
closer to the observed (dashed black line) than data sets produced from parameters of either
FMutSel0 or GTR + Γ.
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Part I605

Supporting Materials606

Supporting Materials607

Comparisons of SelAC gene expression estimates with empirical608

measurements609

In our model, the parameter φ measures the realized average protein synthesis rate610

of a gene. We compared our estimates of φ to two separate measures of gene expression,611

one empirical (See Figure S1), and one model-based prediction that does not account for612

shared ancestry, for individual yeast taxa across the same set of genes. Our estimates of φ613

are positively correlated both measures, which are also strongly correlated with each other614

(Figure 1 - S2) On the whole, these comparisons indicate not only a high degree of615

consistency among all three measures, but also, importantly, that estimates of φ obtained616

from SelAC provide real biological insight into the expression level of a gene.617
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Figure S1: Comparisons between estimates of φ obtained from SelAC+Γ and the predicted
gene expression from the ROC SEMPER model (Gilchrist et al. (2015)) for individual yeast
taxa across the 100 selected genes from Salichos and Rokas (2013). As with figures in the
main text, estimates of φ were obtained by solving for ψ based on estimates of ψ′, and then
dividing by B(~ai|~a∗). The equations in the upper left hand corner of each panel represent
the regression fit and correlation coefficient.
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Figure S2: Comparisons of predicted gene expression from the ROC SEMPER model
(Gilchrist et al. (2015)) and direct measurements of expression from RNA-Seq or Microarray
data for individual yeast taxa across the 100 selected genes from Salichos and Rokas (2013).
The equations in the upper left hand corner of each panel represent the regression fit and
correlation coefficient.

Simulations618

Overall, the simulation results indicate that SelAC model can reasonably recover619

the known values of the generating model (Figure S3 - S6). This includes not only the620
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parameters in the model, but also the optimal amino acids for a given sequence as well as621

the estimates of the branch lengths. There are a few observations to note. First, the ability622

to accurately recover the true optimal amino acid sequence will largely depend on the623

magnitude of φ. This is, of course, intuitive, given that φ sets the strength of stabilizing624

selection towards an optimal amino acid at a site. However, the inclusion of αG into the625

model, appears to generally increase values of φ and generally improves the ability to626

recover the optimal amino acids even for the gene with the lowest baseline φ. Second, we627

found a strong downward bias in estimates of αG, which actually translates to greater628

variation among the rate categories. The choice of a gamma distribution to represent629

site-specific variation in sensitivity was based on mathematical convenience and630

convention, rather than on biological reality. Nevertheless, we suspect that this bias is in631

large part due to the difficulty in determining the baseline ψ for a given gene and the value632

of αG that globally satisfies the site-specific variation in sensitivity across all genes, as633

indicated by the slight upward bias in estimates of ψ. It has been suggested, in studies of634

the behavior of the the gamma distribution in applications of nucleotide substitution635

model, that increasing the number of rate categories can often improve accuracy of the636

shape parameter (Mayrose et al. (2005)). Future work will address this issue.637
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Figure S3: Summary a 5-gene simulation for a SelAC model where we assume αG =∞, and
thus, no site-specific sensitivity in the generating model. The ’known’ parameters were based
on fitting the same SelAC to the 106 gene data set and phylogeny of Rokas et al. (2003),
with gene choice being based on five evenly spaced points along the rank order of the gene
specific composite parameter ψ′g. The points and associated uncertainty in the estimates
of the gene-specific average protein synthesis rate, or ψ (calculated from ψ′)(a), nucleotide
mutation rates under the UNREST model (b), proportion of correct optimal amino acids for
a given gene (c), and estimates of the individual edge lengths are based the mean and 2.5%
and 97.5% quantiles across on 50 simulated datasets.
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Figure S4: The distribution of estimates of the Grantham weights, αc and αp, in a SelAC
model, where we assume αG = ∞, and thus no site-specific sensitivity in the generating
model. The dashed line represents the value used in the generating model.
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Figure S5: Same figure as in Figure S3, except the generating model includes site-specific
sensitivity in the generating model (i.e., αG).
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Figure S6: Same figure as in Figure S4, except the generating model includes site-specific
sensitivity in the generating model (i.e., αG). Unlike, Grantham weights, which showed no
systematic bias, there is a downward bias in estimates of αG.
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