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Abstract13

We present a new phylogenetic approach SelAC (Selection on Amino acids and Codons), whose14

substitution rates are based on a nested model linking protein expression to population genetics. Unlike15

simpler codon models which assume a single substitution matrix for all sites, our model more realistically16

represents the evolution of protein coding DNA under the assumption of consistent, stabilizing selection17

using cost-benefit approach. This cost-benefit approach allows us generate a set of 20 optimal amino acid18

specific matrix families using just a handful of parameters and naturally links the strength of stabilizing19

selection to protein synthesis levels, which we can estimate. Using a yeast dataset of 100 orthologs for 620

taxa, we find SelAC fits the data much better than popular models by 104−105 AICc units. Our results21

indicate there is great potential for more accurate inference of phylogenetic trees and branch lengths from22

already existing data through the use of nested, mechanistic models. Additional parameters estimated23

by SelAC indicate that a large amount of non-phylogenetic, but biologically meaningful, information can24

be inferred from exisiting data. For example, SelAC prediction of gene specific protein synthesis rates25

correlates well with both empirical (r=0.33−0.48) and other theoretical predictions (r=0.45−0.64) for26

multiple yeast species. SelAC also provides estimates of the optimal amino acid at each site. Finally,27

because SelAC is a nested approach based on clearly stated biological assumptions, future modifications,28

such as including shifts in the optimal amino acid sequence within or across lineages, are possible.29

Key words: Wright-Fisher, stabilizing selection, allele substitution, protein function, gene expression30

Introduction31

Phylogenetic analyses plays a critical role in most aspects of biology, particularly in the fields of ecology,32

evolution, paleontology, medicine, and conservation. While the scale and impact of phylogenetic studies33
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have increased substantially over the past two decades, the realism of the mathematical models on which34

these analyses are based has changed relatively little by comparison. The most popular models of DNA35

substitution used in molecular phylogenetics are simple nucleotide models that date back the early 1980’s36

and 90’s, e.g. F81, F84, HYK85, TN93, and GTR (see Yang (2014) for an overview), and are indifferent37

to the type of sequences they are fitted to. For example, when evaluating protein-coding sequences these38

models are inherently agnostic with regards to the different amino acid substitutions and their impact39

on gene function and, as a result, cannot describe the behavior of natural selection at the amino acid or40

protein level.41

Two important and independent attempts to address this critical shortcoming were introduced by42

Goldman and Yang (1994, commonly abbreviated as GY94) and Muse and Gaut (1994). These models43

were explicitly built for protein coding data, assuming that differences in the physicochemical properties44

between amino acids, or physicochemical distances for short, could affect substitution rates. These45

physicochemical based codon models as originally introduced have rarely been used for empirical data.46

Instead, these often cited models have served as the basis for an array of simpler and, in turn, more popular47

ω models that, starting with Nielsen and Yang (1998); Yang and Nielsen (1998), typically assume an48

equal fixation probability for all non-synonymous mutations. Although often attributed to GY94, these49

later and simpler models were the first to employ the single term ω to model the differences in fixation50

probability between nonsynonomous and synonomyous changes at all sites. Since their introduction,51

more complex models have been developed that allow ω to vary between sites or branches (as cited in52

Anisimova, 2012) and include selection on different synonyms for the same amino acid (e.g. Yang and53

Nielsen, 2008)54

In Goldman and Yang (1994); Nielsen and Yang (1998); Yang and Nielsen (1998) and later studies55

based on their work, ω is suggested to indicate whether a given site within a protein sequence is under56

consistent ‘stabilizing (ω<1) or ‘diversifying’ (ω>1) selection. Contrary to popular belief, ω does not57

describe whether a site is evolving under a constant regime of stabilizing or diversifying selection, but58

instead how a very particular selective environment changes over time. Below we explain how the actual59

behavior of these models is inconsistent with how ‘stabilizing’ and ‘diversifying’ selection are otherwise60

defined and understood (e.g. see Pellmyr, 2002).61

For example, when ω<1, synonymous substitutions have a higher substitution rate than any possible62

non-synonymous substitutions. As a result, the model behaves as if the resident amino acid i at a given63

site is favored by natural selection. Even when ω is allowed to vary between sites, symmetrical aspects64

of the model means that for any given site the strength of selection for the resident amino acid i over65
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its 19 alternatives is equally strong regardless of their physicochemical properties. Paradoxically, natural66

selection for amino acid i persists until a substitution for another amino acid, j, occurs. As soon as amino67

acid j fixes, but not before, selection now favors amino acid j equally over all other amino acids, including68

amino acid i. This is now the opposite scenario from when i was the resident. Thus, the simplest and69

most consistent interpretation of ω is that it represents the rate at which the selective environment itself70

changes, and this change in selection perfectly coincides with the fixation of a new amino acid.71

Similarly, when ω>1, synonymous substitutions have a lower substitution rate than any possible non-72

synonymous substitutions from the resident amino acid. Again due to the model’s symmetrical nature,73

the selection against the resident amino acid i is equally strong relative to alternative amino acids. The74

selection against the resident amino acid i persists until a substitution occurs at which point selection now75

favors amino acid i, as well as the 19 other amino acids, to the same degree i was previously disfavored.76

Given this behavior, ω based models are likely to only reasonably approximate a subset of scenarios77

such as perfectly symmetrical over-/under-dominance or positive/negative frequency dependent selection78

(Hughes and Nei, 1988; Nowak, 2006). Further, ω based models implicitly assumes the substitution is on79

the same timescale as the shifts in the optimal (or pessimal) amino acid.80

New Approaches81

To address these fundamental shortcomings in ω based phylogenetic approaches, we present an82

approach where selection explicitly favors minimizing the cost-benefit function η of a protein whose83

relative performance is determined by the order and physicochemical properties of its amino acids. Our84

approach, which we call Selection on Amino acids and Codons or SelAC, is developed in the same vein85

as previous phylogenetic applications of the Wright-Fisher process (e.g. Dimmic et al., 2000; Halpern86

and Bruno, 1998; Koshi and Goldstein, 1997; Koshi et al., 1999; Lartillot and Philippe, 2004; Muse and87

Gaut, 1994; Rodrigue and Lartillot, 2014; Rodrigue et al., 2005; Thorne et al., 2012; Yang and Nielsen,88

2008). Similar to Lartillot and Philippe (2004) and Rodrigue and Lartillot (2014), we assume there is a89

finite set of rate matrices describing the substitution process and that each position within a protein is90

assigned to a particular rate matrix category. Unlike that work, we assume a priori there are 20 different91

families of rate matrices, one family for when a given amino acid is favored at a site. The key parameters92

underlying these matrices are shared across genes except for gene expression. As a result, SelAC identifies93

the amino acid at a particular position within a protein that is favored by natural selection using a simple94

cost-benefit approach.95
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While natural selection on protein coding regions can take many forms, one general approach to96

describing its effects is by relating a codon sequence to the cost of producing the encoded protein and97

the functional benefit (or potential harm) from translating its sequence. The gene specific cost of protein98

synthesis can be affected by the amino acids used, the direct and indirect costs of peptide assembly by99

the ribosome, and the use of chaperones to aid in folding. Importantly, these costs can be computed to100

varying degrees of realism (e.g. Lynch and Marinov, 2015; Wagner, 2005). We have previously presented101

models of protein synthesis costs that, alternatively, take into account the cost of ribosome pausing (Shah102

and Gilchrist, 2011) or premature termination errors (Gilchrist et al., 2009; Gilchrist, 2007; Gilchrist and103

Wagner, 2006).104

Protein function or ‘benefit’ can be affected by the amino acids at each site and their interactions.105

Linking amino acid sequence to protein function is a daunting task; thus for simplicity, we assume that106

for any given desired biological function to be carried out by a protein, that (a) the biological importance107

of this protein function is invariant across the tree, (b) single optimal amino acid sequence that carries108

out this function best, and (c) the functionality of alternative amino acid sequences declines with their109

physicochemical distance from the optimum on a site by site basis.110

Beyond fitting the phylogenetic data better according to model adequacy and AICc, SelAC also makes111

inferences about other important biological processes. By comparing these inferences to other empirical112

data, such as we do with protein synthesis data, we can evaluate SelAC’s performance independent of113

the data it is fitted to. Indeed, SelAC’s assumptions lead to mechanistic and, thus, testable hypothesis114

about the nature of and relationships between mutation, protein function, gene expression, and rates115

of evolution. More importantly, alternative hypotheses could be used in place of ours and, in turn,116

phylogenetic and other types of data could be used to evaluate the support of these alternative models.117

Our hope is that by moving away from the more phenomenological models we can better connect118

population genetics, molecular biology, and phylogenetics allowing each area inform the others more119

effectively.120

Results121

By linking transition rates qi,j to gene expression in the form of protein synthesis rate φ, our approach122

allows use of the same model for genes under varying degrees of stabilizing selection. Specifically, we123

assume the strength of stabilizing selection for the optimal sequence, ~a∗, is proportional to the average124

protein synthesis rate φ, which we can estimate for each gene. In regards to model fit, our results clearly125

indicated that linking the strength of stabilizing selection for the optimal sequence to gene expression126
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substantially improves our model fit. Further, including the shape parameter αG for the random effects127

term G∼Gamma(shape=αG,rate=αG) to allow for heterogeneity in this selection between sites within128

a gene improves the ∆AICc of SelAC+Γ over the simpler SelAC models by over 22,000 AIC units. Using129

either ∆AICc or AICw as our measure of model support, the SelAC models fit extraordinarily better than130

GTR + Γ, GY94, or FMutSel (Table 1). This is in spite of the need for estimating the optimal amino131

acid at each position in each protein, which accounts for 49,881 additional model parameters. Even when132

compared to the next most parameter rich codon model in our model set, FMutSel, SelAC+Γ model133

shows over 160,000 AIC unit improvement over FMutSel.134

The analysis building upon Jhwueng et al. (2014) suggests that using the number of taxa times the135

number of sites as the sample size performs best as a small sample size correction for estimating Kullback-136

Liebler distance in phylogenetic models (Appendix 1). This also has an intuitive appeal. In models that137

have at least some parameters shared across sites and some parameters shared across taxa, increasing138

the number of sites and/or taxa should be adding more samples for the parameters to estimate. This139

is consistent considering how likelihood is calculated for phylogenetic models: the likelihood for a given140

site is the sum of the probabilities of each observed state at each tip, which is then multiplied across141

sites. It is arguable that the conventional approach in comparative methods is calculating AICc in the142

same way. That is, if only one column of data (or “site”) is examined, as remains remarkably common143

in comparative methods, when we refer to sample size, it is technically the number of taxa multiplied by144

number of sites, even though it is referred to simply as the number of taxa.145

With respect to estimates of φ within SelAC, they were strongly correlated with both empirical146

measurements (Pearson r=0.33−0.48) and theoretical predictions (Pearson r=0.45−0.64) of gene147

expression (Figure 1 and Figures S1-S2, respectively). In other words, using only codon sequences, our148

model can predict which genes have high or low expression levels. The estimate of the αG parameter,149

which describes the site-specific variation in sensitivity of the protein’s functionality, indicated a moderate150

level of variation in gene expression among sites. Our estimate of αG = 1.36, produced a distribution151

of sensitivity terms G ranged from 0.342-7.32, but with more than 90% of the weight for a given site-152

likelihood being contributed by the 0.342 and 1.50 rate categories. In simulation, however, of all the153

parameters in the model, only αG showed a consistent bias, in that the MLE were generally lower than154

their actual values (see Supporting Materials). Other parameters in the model, such as the Grantham155

weights, provide an indication as to the physicochemical distance between amino acids. Our estimates of156

these weights only strongly deviate from Grantham’s 1974 original estimates in regards to composition157

weight, αc, which is the ratio of non-carbon atoms in the end groups or rings to the number of158
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carbon atoms in side chains. Our estimate of the composition weighting factor of αc=0.459 is 1/4th159

the value estimate by Grantham which suggests that the substitution process is less sensitive to this160

physicochemical property when shared ancestry and variation in stabilizing selection are taken into161

account.162

It is important to note that the nonsynonymous/synonymous mutation ratio, or ω, which we estimated163

for each gene under the FMutSel model strongly correlated with our estimates of φ′=ψ′/B where B164

depends on the sequence of each taxa. In fact, ω showed similar, though slightly reduced correlations,165

with the same empirical estimates of gene expression described above (Figure 2) This would give the166

impression that the same conclusions could have been gleaned using a much simpler model, both in terms167

of the number of parameters and the assumptions made. However, as we discussed earlier, not only is168

this model greatly restricted in terms of its biological feasibility, SelAC clearly performs better in terms169

of its fit to the data and biological realism.170

For example, when we simulated the sequence for S. cervisieae, starting from the ancestral sequence171

under both GTR + Γ and FMutSel, the functionality of the simulated sequence moves away from the172

observed sequence, whereas SelAC remains near the functionality of the observed sequence (Figure 3b).173

This is somewhat unsurprising, given that both GTR + Γ and FMutSel are agnostic to the functionality174

of the gene, but it does highlight the improvement in biological realism in amino acid sequence evolution175

that SelAC provides. We do note that the adequacy of the SelAC model does vary among individual176

taxa, and does not always match the observed functionality. For instance, our simulations of S. castellii177

gene function is consistently higher than estimated from the data (Figure 3c). We suspect this is an178

indication that assuming a single set of optimal amino acid across all taxa is too simplistic. However, we179

cannot rule out violations of SelAC’s other model assumptions such as: a single set of Grantham weights,180

a single αG, or reductions in protein functionality B being solely a function of physicochemical distances181

d between sites.182

Discussion183

A central goal in evolutionary biology is to quantify the nature, strength, and, ultimately, shifts in the184

forces of natural selection relative to genetic drift and mutation. As data set size and complexity increase,185

so does the amount of potential information on these forces and their dynamics. As a result, there is a186

need for more complex and realistic models to accomplish this goal (Goldman et al., 1996, 1998; Halpern187

and Bruno, 1998; Lartillot and Philippe, 2004; Thorne et al., 1996). Although extremely popular due to188

their elegance and computational efficiency, the utility of ω based models in helping us reach this goal is189
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substantially more limited than commonly recognized. Because these ω models use a single substitution190

matrix, they are only applicable for situations in which the substitution process and shifts in the selective191

environment are intrinsic to the sequence, such as with positive or negative frequency dependent selection;192

these models do not describe stabilizing or diversifying selection as commonly envisioned (Endler, 1986;193

Pelmyr, 2002).194

Starting with Halpern and Bruno (1998), a number of researchers have developed methods for linking195

site-specific selection on protein sequence and phylogenetics (e.g. Dimmic et al., 2000; Koshi and196

Goldstein, 2000; Koshi et al., 1999; Lartillot and Philippe, 2004; Robinson et al., 2003; Rodrigue and197

Lartillot, 2014; Thorne et al., 2012). Halpern and Bruno (1998) calculated a vector of 20 expected amino198

acid frequencies for each amino acid site, making it the most general and most parameter rich of these199

methods. This generality, however, comes at the cost of being purely descriptive; there is no explicit200

biological mechanism proposed to explain the site specific amino acid frequencies estimated. By grouping201

together amino sites with similar evolutionary behaviors, Lartillot and Philippe (2004) and Rodrigue and202

Lartillot (2014) retained the descriptive nature of Halpern and Bruno (1998) work while greatly reduced203

the number of model parameters needed.204

SelAC follows in this tradition of using multiple substitution matrices, but includes some key advances.205

First, by nesting a model of a sequence’s cost-benefit function C/B within a broader model, SelAC allows206

us to formulate and test a hierarchical, mechanistic models of stabilizing selection. More precisely, our207

nested approach allows us to relax the assumption that physicochemical deviations from the optimal208

sequence ~a∗ are equally disruptive at all sites within a protein. Indeed, SelAC strongly supports the209

hypothesis that the strength of stabilizing selection against physicochemical deviations from ~a∗ varies210

between sites (∆AICc = 20,983; Table1). Second, because our substitution matrices are built on a211

formal description of a sequence’s cost-benefit function C/B, we are able to efficiently parameterize 20212

different matrices using a relatively small number of genome-wide parameters – e.g. our physicochemical213

weightings, αc, αp, and αv, and the shape parameter αG for the distribution of selective strength G and214

one gene specific expression parameter ψ. While the C/B function on which SelAC currently rests is215

very simple, nevertheless, it leads to a dramatic increase in our ability to explain the sequence data216

we analyzed. Importantly, because SelAC uses a formal description of a sequence’s C/B, replacing our217

assumptions with more sophisticated ones in the future is relatively straightforward. Third, our use of218

nested models also allows us to make biologically meaningful and testable predictions. By linking a219

gene’s expression level to the strength of purifying selection it experiences, we are able to provide coarse220
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estimates of gene expression. This also suggests that ω is best explained as a proxy for gene expression,221

rather than the nature of selection on a sequence.222

Thus, we believe our cost-benefit approach to be a substantial advance of the more simplistic ω models,223

is complementary to the work of others in the field (e.g. Rodrigue and Lartillot, 2014; Thorne et al., 2012),224

and, in turn, lays the foundation for more realistic work in the future. For instance, by assuming there225

is an optimal amino acid for each site, SelAC naturally leads to a non-symmetrical and, thus, more226

cogent model of protein sequence evolution. Because the strength of selection depends on an additive227

function of amino acid physicochemical properties, an amino acid more similar to the optimum has a228

higher probability of replacing a more dissimilar amino acid than the converse situation. Further, SelAC229

does not assume the system is always at the optimum or pessimum point of the fitness landscape, as230

occurs when ω<1 or >1, respectively.231

Importantly, the cost-benefit approach underlying SelAC allows us to link the strength of selection on a232

protein sequence to its gene’s expression level. Despite its well recognized importance in determining the233

rate of protein evolution (e.g. Drummond et al., 2005, 2006), phylogenetic models have ignored the fact234

that expression levels vary between genes. In order to link gene expression and the strength of stabilizing235

selection on protein sequences, we simply assume that the strength of selection on a gene is proportional236

to the average protein synthesis rate of the gene.237

One possible mechanism with some theoretical and empirical support which generates a linear238

relationship between the strength of selection and gene expression is the assumption of compensatory239

gene expression (Allison, 2012; Allison and Goulden, 2017; Brown and Elliot, 1997; King et al., 2015;240

Lerman et al., 2012; Thiele et al., 2012; Zanger and Schwab, 2013). That is, the assumption that any241

reduction in protein function is compensated for by an increase in the protein’s production rate and, in242

turn, abundance. For example, a mutation which reduces the functionality of the protein to 90% of the243

optimal protein, would require 1/0.9=1.11 of these suboptimal proteins to be produced relative to the244

optimal protein in order to maintain the same amount of that protein’s functionality in the cell. Because245

the energetic cost of an 11% increase in a protein’s synthesis rate is proportional to its target synthesis246

rate, our assumptions naturally link changes in protein functionality and changes in gene expression247

and its associated costs. Under what circumstances cells actually respond in this manner, remains to be248

determined. The fact that our method allows us to explain 13-23% of the variation in gene expression249

measured using RNA-Seq, suggests that this assumption is a reasonable starting point.250

Furthermore, by linking expression and selection, SelAC provides a natural framework for combining251

information from protein coding genes with very different rates of evolution; from low expression genes252

8

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted October 9, 2018. ; https://doi.org/10.1101/120238doi: bioRxiv preprint 

https://doi.org/10.1101/120238


providing information on shallow branches to high expression genes providing information on deep253

branches. This is in contrast to a more traditional approach of concatenating gene sequences together,254

which is equivalent to assuming the same average functionality production rate ψ for all of the genes,255

or more recent approaches where different models are fitted to different genes. Our results indicate that256

including a gene specific ψ value vastly improves SelAC fits (Table 1). Perhaps more convincingly, we find257

that the target functionaly production rate ψ and the realized average protein synthesis rate φ=ψ/B are258

reasonably well correlated with laboratory measurements and theoretical predictions of gene expression259

(Pearson r=0.34−0.64; Figures 1, 1, and 2). The idea that quantitative information on gene expression260

is embedded within intra-genomic patterns of synonymous codon usage is well accepted; our work shows261

that this information can also be extracted from comparative data at the amino acid level.262

Of course, given the general nature of SelAC and the complexity of biological systems, other biological263

forces besides selection for reducing energy flux likely contribute to intergenic variation in the magnitude264

of stabilizing selection. Similarly, other physicochemical properties besides composition, volume, and265

charge likely contribute to site specific patterns of amino acid substitution. Thus, a larger and more266

informative set of physicochemical weights might improve our model fit and reduce the noise in our267

estimates of realized protein synthesis rates φ. Even if other physicochemical properties are considered,268

the idea of a consistent, genome wide physicochemical weighting of these terms seems highly unlikely.269

Since the importance of an amino acid’s physicochemical properties likely changes with its position in a270

folded protein, one way to incorporate such effects is to test whether the data supports multiple sets of271

physicochemical weights for either subsets of genes or regions within genes, rather than a single set.272

Both of these points highlight the advantage of the detailed, mechanistic modeling approach underlying273

SelAC. Because there is a clear link between protein expression, synthesis cost, and functionality, SelAC274

can be extended by increasing the realism of the mapping between these terms and the coding sequences275

being analyzed. For example, SelAC currently assumes the optimal amino acid for any site is fixed along276

all branches. This assumption can be relaxed by allowing the optimal amino acid to change during the277

course of evolution along a branch. From a computational standpoint, the additive nature of selection278

between sites is desirable because it allows us to analyze sites within a gene largely independently of279

each other. From a biological standpoint, this additivity between sites ignores any non-linear interactions280

between sites, such as epistasis, or between alleles, such as dominance. Thus, our work can be considered281

a first step to modeling these more complex scenarios.282

For example, our current implementation ignores any selection on synonymous codon usage bias (CUB)283

(c.f. Pouyet et al., 2016; Yang and Nielsen, 2008). Including such selection is tricky because introducing284
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the site-specific cost effects of CUB, which is consistent with the hypothesis that codon usage affects285

the efficiency of protein assembly or C, into a model where amino acids affect protein function or B,286

results in a cost-benefit ratio C/B with epistatic interactions between all sites. These epistatic effects287

can likely be ignored under certain conditions or reasonably approximated based on an expectation of288

codon specific costs (e.g. Kubatko et al., 2016). Nevertheless, it is difficult to see how one could identify289

such conditions without modeling the way in which codon and amino acid usage affects C/B.290

This work also points out the potential importance of further investigation into model choice in291

phylogenetics. For likelihood models, use of AICc has become standard. However, how one determines the292

appropriate number of data points in a model is more complicated than generally recognized. Common293

sense suggests that dataset size is increased by adding taxa and/or sites. In other words, a dataset of 1000294

taxa and 100 sites must have more information on substitution models than a dataset of 4 taxa and 100295

sites. Our simple analyses agree that the number of observations in a dataset (number of sites × number296

of taxa) should be taken as the sample size for AICc, but this conclusion likely only applies when there297

is sufficient independence between taxa. For instance, one could imagine a phylogeny where one taxon is298

sister to a polytomy of 99 taxa that have zero length terminal branches. Absent measurement error or299

other intraspecific variation, one would have 100 species but only two unique trait values, and the only300

information about the process of evolution comes from what happens on the path connecting the lone301

taxon to the polytomy. Although this is a rather extreme example, it seems prudent for researchers to302

use a simulation based approach similar to the one we take here to determine the appropriate means for303

calculating the effective number of data points in their data.304

There are still significant shortcomings in the approach outlined here. Most worrisome are biological305

oversimplifications in SelAC. For example, at its heart, SelAC assumes that suboptimal proteins can306

be compensated for, at a cost, simply by producing more of them. However, this is likely only true307

for proteins reasonably close to the optimal sequence. Different enough proteins will fail to function308

entirely: the active site will not sufficiently match its substrates, a protein will not properly pass through309

a membrane, and so forth. Yet, in our model, even random sequences still permit survival, just requiring310

more protein production. Like the other oversimplificats previously discussed, these assumptions can be311

relaxed through further extension of our model.312

There are also deficiencies in our implementation. Though reasonable to use for a given topology with313

a modest number of species, it is currently too slow for practical use for tree search. Our work serves314

as a proof of concept, or of utility for targeted questions where a more realistic model may be of use315

(placement of particular taxa, for example). Future work will encode SelAC models into a variety of316
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mature, popular tree-search programs. SelAC also represents a challenging optimization problem: the317

nested models reduce parameter complexity vastly, but there are still numerous parameters to optimize,318

including the discrete parameter of the optimal amino acid at each site. One way to avoid the use of319

discrete parameters at the expense of more of them would be to have SelAC estimate the optimum320

physicochemical values on a per site basis rather than a specific amino acid. While this would increase321

the number of parameters estimated, it would have the practical advantage of continuous parameter322

optimization rather than discrete, and biologically would be more realistic (as it is the properties that323

selection “sees”, not the identity of the amino acid itself).324

In spite of these difficulties, SelAC represents an important step in uniting phylogenetic and population325

genetic models. For example, while Dimmic et al. (2000); Koshi and Goldstein (2000); Koshi et al. (1999);326

Lartillot and Philippe (2004); Robinson et al. (2003); Rodrigue and Lartillot (2014); Thorne et al. (2012)327

are all models of constant, stabilizing selection, SelAC can be generalized further to include diversifying328

selection. Specifically, by letting SelAC’s sensitivity term G, which we now assume is ≥0, to take on329

negative values, SelAC will behave as if there is a pessimal, rather than optimal, amino acid for the given330

site. In this diversifying selection scenario, amino acids with physicochemical qualities more dissimilar to331

the pessimal amino acid are increasingly favored, potentially resulting in multiple fitness peaks.332

Because SelAC infers the optimal amino acid for each site, it is substantially more parameter rich than333

more commonly used models such as GTR+Γ, GY94, and FMutSel. Despite this increase in number of334

model parameters, SelAC drastically outperforms these models with AICc values on the order of 10,000s335

to 100,000s. We predict that SelAC’s performance could be improved even further if we use a hierarchical336

approach where the optimal amino acid is not estimated on a per site basis, but rather as a vector of337

probability an amino acid is optimal at the gene level.338

This ability to extend our model and, in turn, sharpen our thinking about the nature of natural339

selection on amino acid sequences illustrates the value of moving from descriptive to more mechanistic340

models in general and phylogenetics in particular. How frequently diversifying selection of this nature341

occurs is an open, but addressable, question. Regardless of the frequency at which diversifying selection342

occurs, another question of interest to evolutionary biologists is, “How often does the optimal/pessimal343

amino sequence change along any given branch?” Due to its mechanistic nature, SelAC can also be344

extended to include changes in the optimal/pessimal sequence over a phylogeny using a hidden markov345

modelling approach. Extending SelAC in these ways, will allow researchers to explicitly model shifts in346

selection on protein sequences and, in turn, quantify their frequency and magnitude thus deepening our347

understanding of biological evolution.348
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In summary, SelAC allows biologically relevant population genetic parameters to be estimated from349

phylogenetic information, while also dramatically improving fit and accuracy of phylogenetic models. By350

explicitly modeling the optimal/pessimal sequence of a gene, SelAC can be extended to include shifts351

in the optimal/pessimal sequence over evolutionary time. Moreover, it demonstrates that there remains352

substantially more information in the coding sequences used for phylogenetic analysis than other methods353

can access. Given the enormous amount of efforts expended to generate sequence datasets, it makes sense354

for researchers to continue developing more realistic models of sequence evolution in order to extract the355

biological information embedded in these datasets. The cost-benefit model we develop here is just one of356

many possible paths of mechanistic model development.357

Materials & Methods358

Overview359

We model the substitution process as a classic Wright-Fisher process which includes the forces360

of mutation, selection, and drift (Berg and Lässig, 2003; Fisher, 1930; Iwasa, 1988; Kimura, 1962;361

McCandlish and Stoltzfus, 2014; Sella and Hirsh, 2005; Wright, 1969). For simplicity, we ignore linkage362

effects and, as a result of this and other assumptions, sequences evolve in a site independent manner.363

Because SelAC requires twenty families of 61×61 matrices, the number of parameters needed to364

implement SelAC would, without further assumptions, be extremely large (i.e. on the order of 74,420365

parameters). To reduce the number of parameters needed, while still maintaining a high degree of366

biological realism, we construct our gene and amino acid specific substitution matrices using a submodel367

nested within our substitution model, similar to approaches in Gilchrist (2007); Gilchrist et al. (2015);368

Shah and Gilchrist (2011).369

One advantage of a nested modeling framework is that it requires only a handful of genome-370

wide parameters such as nucleotide specific mutation rates (scaled by effective population size Ne),371

amino acid side chain physicochemical weighting parameters, and a shape parameter describing the372

distribution of site sensitivities. In addition to these genome-wide parameters, SelAC requires a gene g373

specific functionality expression parameter ψg which describes the average rate at which the protein’s374

functionality is produced by the organism or a gene’s ‘average functionality production rate’ for short (for375

notational simplicity, we will ignore the gene specific indicator g, unless explicitly needed). Currently, ψ376

is fixed across the phylogeny, though relaxing this assumption is a goal of future work. The gene specific377

parameter ψ is multiplied by additional model terms to make a composite term ψ′ which scales the378

strength and efficacy of selection for the optimal amino acid sequence relative to drift (see Implementation379

below). In terms of the functionality of the protein encoded, we assume that for any given gene there380
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exists an optimal amino acid sequence ~a∗ and that, by definition, a complete, error free peptide consisting381

of ~a∗ provides one unit of the gene’s functionality. We also assume that natural selection favors genotypes382

that are able to synthesize their proteome more efficiently than their competitors and that each savings383

of an high energy phosphate bond per unit time leads to a constant proportional gain in fitness A0. SelAC384

also requires the specification (as part of parameter optimization) of an optimal amino acid a∗ at each385

position within a coding sequence. This requirement of one a∗ per site makes our ~a∗ the largest category386

of parameters SelAC estimates. Despite the need to specify a∗ for each site, because we use a submodel387

to derive our substitution matrices, SelAC estimates a relatively small number of the parameters when388

compared to more general approaches where the fitness of each amino acid is allowed to vary freely of389

any physicochemical properties (Halpern and Bruno, 1998; Lartillot and Philippe, 2004; Rodrigue and390

Lartillot, 2014).391

As with other phylogenetic methods, SelAC generates estimates of branch lengths and nucleotide392

specific mutation rates. In addition, the method can also be used to make quantitative inferences on the393

optimal amino acid sequence of a given protein as well as the realized average synthesis rate of each394

protein used in the analysis. The mechanistic basis of SelAC also means it can be easily extended to395

include more biological realism and test more explicit hypotheses about sequence evolution.396

Mutation Rate Matrix µ397

We begin with a 4x4 nucleotide mutation matrix µ that describes mutation rates between different bases398

and, in turn, different codons. For our purposes, we rely on the general unrestricted model (UNREST399

from Yang, 1994) because it imposes no constraints on the instantaneous rate of change between any400

pair of nucleotides. More constrained models, such as the Jukes-Cantor (JC), Hasegawa-Kishino-Yano401

(HKY), or the general time-reversible model (GTR), could also be used.402

The 12 parameter UNREST model defines the relative rates of change between a pair of nucleotides.403

Thus, we arbitrarily set the G→T mutation rate to 1, resulting in 11 free mutation rate parameters in the404

4x4 mutation nucleotide mutation matrix. The nucleotide mutation matrix is also scaled by a diagonal405

matrix π whose entries, πi,i, correspond to the equilibrium frequencies of each base. These equilibrium406

nucleotide frequencies are determined by analytically solving π×Q=0. We use this Q to populate a407

61×61 codon mutation matrix µ, whose entries µi,j i 6=j describes the mutation rate from codon i to j408

and µi,i =−
∑

jµi,j. We generate this matrix using a “weak mutation” assumption, such that evolution is409

mutation limited, codon substitutions only occur one nucleotide at a time. As a result, the rate of change410

between any pair of codons that differ by more than one nucleotide is zero.411
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While the overall model does not assume equilibrium, we still need to scale our mutation matrices µ412

by a scaling factor S. As traditionally done, we rescale our time units such that at equilibrium, one unit413

of branch length represents one expected mutation per site (which equals the substitution rate under414

neutrality). More explicitly, S=−
(∑

i∈codonsµi,iπi,i

)
where the final mutation rate matrix is the original415

mutation rate matrix multiplied by 1/S.416

Protein Synthesis Cost-Benefit Function η417

SelAC links fitness to the product of the cost-benefit function of a gene η and the organism’s average418

target synthesis rate of the functionality provided by gene ψ. As a result, the average flux energy an419

organism spends to meet its target functionality provided by the gene is η×ψ. Compensatory changes420

that allow an organism to maintain functionality even with loss of one or both copies of a gene are421

widespread. There is evidence of compensation for protein function. Metabolism with gene expression422

models (ME-models) link those factors to successfully make predictions about response to perturbations423

in a cell (King et al., 2015; Lerman et al., 2012). For example, an ME-model for E. coli successfully424

predicted gene expression levels in vivo (Thiele et al., 2012). Here we assume that for finer scale problems425

than entire loss (for example, a 10% loss of functionality) the compensation is more production of the426

protein. The particular type of dosage compansation assumed by SelAC in respondse to stress (e.g.427

reduced functionality) is commonly assumed in microbial ecology (Allison, 2012; Allison and Goulden,428

2017). Our assumption is also consistent with the Michaelis-Menten enzyme kinetics. Moreover, there is429

evidence that mutations can influence expression level, though this does not always match our expression430

compensation assumption (Brown and Elliot, 1997; Zanger and Schwab, 2013). In order to link genotype431

to our cost-benefit function η=C/B, we begin by defining our benefit function B.432

Benefit: Our benefit function B measures the functionality of the amino acid sequence ~ai encoded by a433

set of codons ~ci, i.e. a(~ci)=~ai relative to that of an optimal sequence ~a∗. By definition, B(~a∗|~a∗)=1 and434

B(~ai|~a∗)<1 for all other sequences. We assume all amino acids within the sequence contribute to protein435

function and that this contribution declines as an inverse function of physicochemical distance from each436

amino acid to the optimal one. Formally, we assume that437

B(~a|~a∗)=

(
1

n

n∑
p=1

(
1+Gpd(ap,a

∗
p

))−1
(1)

where n is the length of the protein, d(ap,a
∗
p) is a weighted physicochemical distance between the amino438

acid encoded at a given position p and a∗p is the optimal amino acid for that position. There are many439

possible measures for physiochemical distance; we use Grantham (1974) distances by default, though440
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others may be chosen. For simplicity, we assume all nonsense mutations are lethal by defining the the441

physicochemical distance between a stop codon and a sense codon as ∞. The term Gp describes the442

sensitivity of the protein’s function to physicochemical deviation from the optimimum at site position p.443

We assume that Gp∼Gamma(shape=αG,rate=αG) in order to ensure E(Gp)=1. Given the definition of444

the Gamma distribution, the variance in Gp is equal to shape/rate2 =1/αG. We note that at the limit of445

αG→∞, the model becomes equivalent to assuming uniform site sensitivity where Gp =1 for all positions446

p. Further, B(~ai|~a∗) is inversely proportional to the average physicochemical deviation of an amino acid447

sequence ~ai from the optimal sequence ~a∗ weighted by each site’s sensitivity to this deviation. B(~ai|~a∗)448

can be generalized to include second and higher order terms of the distance measure d.449

Cost: Protein synthesis involves both direct and indirect assembly costs. Direct costs consist of the high450

energy phosphate bonds ∼P of ATPs or GTPs used to assemble the ribosome on the mRNA, charge451

tRNA’s for elongation, move the ribosome forward along the transcript, and terminate protein synthesis.452

As a result, direct protein assembly costs are the same for all proteins of the same length. Indirect costs of453

protein assembly are potentially numerous and could include the cost of amino acid synthesis as well the454

cost and efficiency with which the protein assembly infrastructure such as ribosomes, aminoacyl-tRNA455

synthetases, tRNAs, and mRNAs are used. When these indirect costs are combined with sequence specific456

benefits, the probability of a mutant allele fixing is no longer independent of the rest of the sequence457

(Gilchrist et al., 2015) and, as a result, model fitting becomes substantially more complex. Thus for458

simplicity, in this study we ignore indirect costs of protein assembly that vary between genotypes and459

define,460

C(~ci)=Direct energetic cost of protein synthesis.

=A1+A2n

where, A1 and A2 represent the direct cost, in high energy phosphate bonds, of ribosome initiation and461

peptide elongation, respectively, where A1 =A2 =4∼P .462

Defining Physicochemical Distances463

Assuming that functionality declines with an amino acid ai’s physicochemical distance from the464

optimum amino acid a∗ at each site provides a biologically defensible way of mapping genotype to protein465

function that requires relatively few free parameters. In addition, SelAC naturally lends itself to model466

selection since one could compare the quality of SelAC fits using different mixtures of physicochemical467

properties. Following (Grantham, 1974), we focus on using composition c, polarity p, and molecular468

volume v of each amino acid’s side chain residue to define our distance function, but the model and469
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its implementation can flexibly handle a variety of properties. We use the Euclidian distance between470

residue properties where each property c, p, and v has its own weighting term, αc, αp, αv, respectively,471

which we refer to as ‘Grantham weights’. Because physicochemical distance is ultimately weighted by a472

gene’s specific average protein synthesis rate ψ, another parameter we estimate, there is a problem with473

parameter identifiablity. The scale of gene expression is affected by how we measure physicochemical474

distances which, in turn, is determined by our choice of Grantham weights. As a result, by default we475

set αv =3.990×10−4, the value originally estimated by Grantham, and recognize that our estimates of476

αc and αp and ψ are scaled relative to this choice for αv. More specifically,477

d(ai,a
∗)=

(
αc [c(ai)−c(a∗)]2+αp [p(ai)−p(a∗)]

2
+

αv [v(ai)−v(a∗)]
2
)1/2

.

Linking Protein Synthesis to Allele Substitution478

Next we link the protein synthesis cost-benefit function η of an allele with its fixation probability.479

First, we assume that each protein encoded within a genome provides some beneficial function and that480

the organism needs that functionality to be produced at a target average rate ψ. Again, by definition,481

the optimal amino acid sequence for a given gene, ~a∗, produces one unit of functionality, i.e. B(~a∗)=1.482

Second, we assume that the actual average rate a protein is synthesized φ is regulated by the organism483

to ensure that functionality is produced at rate ψ. As a result, it follows that φ=ψ/B(~a|~a∗) and the484

energetic burden of a suboptimal amino acid increases the more it decreases the protein’s functionality,485

B. In other words, the average production rate of a protein ~a with relative functionality B(~a)<1 must486

be 1/B(~a|~a∗) times higher than the production rate needed if the optimal amino acid sequence ~a∗ was487

encoded since B(~a∗|~a∗)=1. For example, a cell with an allele ~a where B(~a|~a∗)=9/10 would have to488

produce the protein at rate φ=10/9×ψ=1.11ψ. Similarly, a cell with an allele ~a where B(~a|~a∗)=1/2489

will have to produce the protein at φ=2ψ. In contrast, a cell with the optimal allele ~a∗ would have to490

produce the protein at rate φ=ψ.491

Third, we assume that every additional high energy phosphate bond, ∼P , spent per unit time to meet492

the organism’s target function synthesis rate ψ leads to a slight and proportional decrease in fitness W .493

This assumption, in turn, implies494

Wi(~c)∝exp[−A0η(~ci)ψ].

where A0, again, describes the proportional decline in fitness with every ∼P wasted per unit time.495

Because A0 shares the same time units as ψ and φ and only occurs in SelAC in conjunction with ψ, we496
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do not need to explicitly identify our time units. Instead, we recognize that our estimates of ψ share an497

unknown scaling term.498

Correspondingly, the ratio of fitness between two genotypes is,499

Wi/Wj =exp[−A0η(~ci)ψ]/exp[−A0η(~cj)ψ]

=exp[−A0(η(~ci)−η(~cj))ψ]

Given our formulations of C and B, the fitness effects between sites are multiplicative and, therefore, the500

substitution of an amino acid at one site can be modeled independently of the amino acids at the other501

sites within the coding sequence. As a result, the fitness ratio for two genotypes differing at multiple sites502

simplifies to503

Wi/Wj =exp

−(A0(A1+A2ng)

ng

)∑
p∈P

[
d
(
ai,p,a

∗
p

)
−d
(
aj,p,a

∗
p

)]
Gpψ


where P represents the codon positions in which ~ci and ~cj differ. Fourth, we make a weak mutation504

assumption, such that alleles can differ at only one position at any given time, i.e. |P|=1, and that the505

population is evolving according to a Wright-Fisher process. As a result, the probability a new mutant,506

j, introduced via mutation into a resident population i with effective size Ne will go to fixation is,507

ui,j =
1−(Wi/Wj)

b

1−(Wi/Wj)
2Ne

=
1−exp

{
−A0

ng
(A1+A2ng)[d(ai,a

∗)−d(aj,a
∗)]Gpψb

}
1−exp

{
−A0

ng
(A1+A2ng)[d(ai,a∗)−d(aj,a∗)]Gpψ2Ne

}
where b=1 for a diploid population and 2 for a haploid population (Berg and Lässig, 2003; Iwasa, 1988;508

Kimura, 1962; Sella and Hirsh, 2005; Wright, 1969). Finally, assuming a constant mutation rate between509

alleles i and j, µi,j, the substitution rate from allele i to j can be modeled as,510

qi,j =
2

b
µi,jNeui,j.

where, given the substitution model’s weak mutation assumption, Neµ�1. In the end, each optimal511

amino acid has a separate 61×61 substitution rate matrix Qa, which incorporates selection for the512

amino acid (and the fixation rate matrix this creates) as well as the common mutation parameters across513

optimal amino acids. This results in the creation of 20 Q matrices, one for each amino acid and each with514

3,721 entries which are based on a relatively small number of model parameters (one to 11 mutation rates,515

two free Grantham weights, the cost of protein assembly, A1 and A2, the gene specific target functionality516

synthesis rate ψ, and optimal amino acid at each position p, a∗p). These model parameters can either be517

specified a priori and/or estimated from the data.518
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Given our assumption of independent evolution among sites, it follows that the probability of the519

whole data set is the product of the probabilities of observing the data at each individual site. Thus, the520

likelihood L of amino acid a being optimal at a given site position p is calculated as521

L(Qa|Dp,T)∝P(Dp|Qa,T) (2)

In this case, the data, Dp, are the observed codon states at position p for the tips of the phylogenetic522

tree with topology T. For our purposes we take T as given, but it could be estimated as well. The523

pruning algorithm of Felsenstein (1981) is used to calculate L(Qa|Dp,T). The log of the likelihood is524

maximized by estimating the genome scale parameters which consist of 11 mutation parameters, which525

are implicitly scaled by 2Ne/b, and two Grantham distance parameters, αc and αp, and the sensitivity526

distribution parameter αG. Because A0 and ψg always co-occur and are scaled by Ne, for each gene g we527

estimate a composite term ψ′g =ψgA0bNe and the optimal amino acid for each position a∗p of the protein.528

When estimating αG, the likelihood then becomes the average likelihood which we calculate using the529

generalized Laguerre quadrature with k=4 points (Felsenstein, 2001).530

Finally, we note that because we infer the ancestral state of the system, our approach does not rely531

on any assumptions of model stationarity. Nevertheless, as our branch lengths grow the probability532

of observing a particular amino acid a at a given site approaches a stationary value proportional to533

W (a)2Ne−b and any effects of mutation bias (Sella and Hirsh, 2005).534

Implementation535

All methods described above are implemented in the new R package, selac available through536

GitHub (https://github.com/bomeara/selac) which will be uploaded to CRAN once peer review has537

completed. Our package requires as input a set of fasta files that each contain an alignment of coding538

sequence for a set of taxa, and the phylogeny depicting the hypothesized relationships among them. In539

addition to the SelAC models, we implemented the GY94 codon model of Goldman and Yang (1994), the540

FMutSel mutation-selection model of Yang and Nielsen (2008), and the standard general time-reversible541

nucleotide model that allows for Γ distributed rates across sites. These likelihood-based models represent542

a sample of the types of popular models often fit to codon data.543

For the SelAC models, the starting guess for the optimal amino acid at a site comes from ‘majority’544

rule, where the initial optimum is the most frequently observed amino acid at a given site (ties resolved545

randomly). Our optimization routine utilizes a four stage hill climbing approach. More specifically, within546

each stage a block of parameters are optimized while the remaining parameters are held constant. The547

first stage optimizes the block of branch length parameters. The second stage optimizes the block of548
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gene specific composite parameters ψ′g =A0ψgNeb. The third stage optimizes SelAC’s parameters shared549

across the genome αc and αp, and the sensitivity distribution parameter αG. The fourth stage estimates550

the optimal amino acid at each site a∗. This entire four stage cycle is repeated six more times, using the551

estimates from the previous cycle as the initial conditions for the new one. The search is terminated when552

the improvement in the log-likelihood between cycles is less than 10−8 at which point we consider the553

ML solution found and the search is terminated. For optimization of a given set of parameters, we rely554

on a bounded subplex routine (Rowan, 1990) in the package NLoptR (Johnson, 2012) to maximize the555

log-likelihood function. To ensure the robustness of our results, we perform a set of independent analyses556

with different sets of naive starting points with respect to the gene specific composite ψ′ parameters, αc,557

and αp and were able to repeatedly reach the same log-likelihood (lnL) peak in our parameter space.558

Confidence in the parameter estimates can be generated by an ‘adaptive search’ procedure that we559

implemented to provide an estimate of the parameter space that is some pre-defined likelihood distance560

(e.g., 2 lnL units) from the maximum likelihood estimate (MLE), which follows Beaulieu and O’Meara561

(2016) and Edwards (1984).562

We note that our current implementation of SelAC is painfully slow, and is best suited for data sets563

with relatively few number of taxa (i.e. <10). This limitation is largely due to the size and quantity of564

matrices we create and manipulate to calculate the log-likelihood of an individual site. Ongoing work565

will address the need for speed, with the eventual goal of implementing SelAC in popular phylogenetic566

inference toolkits, such as RevBayes (Hhna et al., 2016), PAML (Yang, 2007) and RAxML (Stamatakis,567

2006).568

Simulations569

We evaluated the performance of our codon model by simulating datasets and estimating the bias of the570

inferred model parameters from these data. Our ‘known’ parameters under a given generating model were571

based on fitting SelAC to the 106 gene data set and phylogeny of Rokas et al. (2003). The tree used in572

these analyses is outdated with respect to the current hypothesis of relationships within Saccharomyces,573

but we rely on it simply as a training set that is separate from our empirical analyses (see section below).574

Bias in the model parameters were assessed under two generating models: one where we assumed a model575

of SelAC assuming uniform sensitivity across sites (i.e. Gp =1 for all sites, i.e. αG =∞), and one where576

we used the Gamma distribution joint shape and rate parameter αG estimated from the empirical data.577

Under each of these two scenarios, we used parameter estimates from the corresponding empirical analysis578

and simulated 50 five-gene data sets. For the gene specific composite parameter ψ′g the ‘known’ values579

used for the simulation were five evenly spaced points along the rank order of the estimates across the580
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106 genes. The MLE estimate for a given replicate were taken as the fit with the highest log-likelihood581

after running five independent analyses with different sets of naive starting points with respect to the582

composite ψ′g parameter, αc, and αp. All analyses were carried out in our selac R package.583

Analysis of yeast genomes & tests of model adequacy584

We focus our empirical analyses on the large yeast data set and phylogeny of Salichos and Rokas585

(2013). As a model system, the yeast genome is an ideal system to examine our phylogenetic estimates586

of gene expression and its connection to real world measurements of these data within individual taxa.587

The complete data set of Salichos and Rokas (2013) contain 1070 orthologs, where we selected 100 at588

random for our analyses. We also focus our analyses on Saccharomyces sensu stricto and their sister589

taxon Candida glabrata, and we used the phylogeny depicted in Fig. 1 of Salichos and Rokas (2013) for590

our fixed tree. We fit the two SelAC models described above (i.e., SelAC and SelAC+Γ), as well as two591

codon models, GY94 and FMutSel, and a standard GTR + Γ nucleotide model. The FMutSel model592

assumes that the amino acid frequencies are determined by functional requirements of the protein while593

the other models make no assumptions about amino acid frequencies. In all cases, we assumed that the594

model was partitioned by gene, but with branch lengths linked across genes.595

For SelAC, we compared our estimates of φ′=ψ′/B, which represents the average protein synthesis596

rate of a gene, to estimates of gene expression from empirical data. Specifically, we examined gene597

expression data for five of the six species measured during log-growth phase. Gene expression in this598

context corresponds to mRNA abundances, which were measured using either microarrays (C. glabrata599

and S. castellii, or RNA-Seq (S. paradoxus, S. mikatae, and S. cerevisiae). We obtained expression data600

for the remaining species, S. kudriavzevii, which was measured at the beginning of the stationary phase601

from the Gene Expression Omnibus (GEO). Saccharomyces, however, only enter the stationary growth602

phase in response to severe stress, such as starvation. In addition, only 56 % of the genes examined with603

SelAC had expression measurements available. For these reasons, we excluded S. kudriavzevii from our604

comparisons of empirical gene expression.605

For further comparison, we also predicted the average protein synthesis rate for each gene φ by analyzing606

gene and genome-wide patterns of synonymous codon usage using ROC-SEMPPR (Gilchrist et al., 2015)607

for each individual genome. While, like SelAC, ROC-SEMPPR uses codon level information, it does not608

rely on any interspecific comparisons and, unlike SelAC, uses only the intra- and inter-genic frequencies609

of synonymous codon usage as its data. Nevertheless, ROC-SEMPPR predictions of gene expression610

φ correlates strongly (Pearson r=0.53−0.74) with a wide range of laboratory measurements of gene611

expression (Gilchrist et al., 2015).612
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While one of our main objectives was to determine the improvement of fit that SelAC has with respect613

to other standard phylogenetic models, we also evaluated the adequacy of SelAC. Model fit, measured614

with assessments such as the Akaike Information Criterion (AIC), can tell which model is least bad615

as an approximation for the data, but it does not reveal whether a model is actually doing a good616

job of representing the data. An adequate model does the latter, one measure of which is that data617

generated under the model resemble real data (Goldman, 1993). For example, Beaulieu et al. (2013)618

assessed whether parsimony scores and the size of monomorphic clades of empirical data were within619

the distributions of simulated data under a new model and the best standard model; if the empirical620

summaries were outside the range for each, it would have suggested that neither model was adequately621

modeling this part of the biology.622

In order to test adequacy for a given gene we first remove a particular taxon from the data set623

and the phylogeny. A marginal reconstruction of the likeliest sequence across all remaining nodes is624

conducted under the model, including the node where the pruned taxon attached to the tree. The625

marginal probabilities of each site are used to sample and assemble the starting coding sequence. This626

sequence is then evolved along the branch, periodically being sampled and its current functionality627

assessed. We repeat this process 100 times and compare the distribution of trajectories against the628

observed functionality calculated for the gene. For comparison, we also conducted the same test, by629

simulating the sequence under the standard GTR + Γ nucleotide model, which is often used on these630

data but does not account for the fact that the sequences are protein coding, and under FMutSel, which631

includes selection on codons but in a fundamentally different way as our model.632

The appropriate estimator of bias for AIC633

As part of the model set described above, we also included a reduced form of each of the two SelAC634

models, SelAC and SelAC+Γ. Specifically, rather than optimizing the amino acid at any given site, we635

assume the the most frequently observed amino acid at each site is the optimal amino acid a∗. We refer to636

these ‘majority rule’ models as SelACM and SelACM +Γ and note that these majority rule formulations637

greatly accelerate model fitting.638

Since these majority rule models assume that the optimal amino acids are known prior to fitting of639

our model, it is tempting to reduce the count of estimated parameters in the model by the number of640

parameters estimated using majority rule. While using majority rule does not necessarily provide the641

most likely parameter estimate, it nevertheless uses the data to generate the estimate and, , represents642

a parameter estimated from the data. Thus, despite having become standard behavior in the field643

of phylogenetics, this reduction is statistically inappropriate. Because the difference in the number of644
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parameters K when counting or not counting the number of nucleotide sites drops out when comparing645

nucleotide models with AIC, this statistical issue does not apply to nucleotide models. It does, however,646

matter for AICc, where K and the sample size n combine in the penalty term. This also matters in our647

case, where the number of estimated parameters for the majority rule estimation differs based on whether648

one is looking at codons or single nucleotides.649

In phylogenetics two variants of AICc are used. In comparative methods (e.g. Beaulieu et al., 2013;650

Butler and King, 2004; O’Meara et al., 2006) the number of data points, n, is taken as the number of651

taxa. More taxa allow the fitting of more complex models, given more data. However, in DNA evolution,652

which is effectively the same as a discrete character model used in comparative methods, the n is taken653

as the number of sites. Obviously, both cannot be correct. This uncertainty was highlighted by Posada654

and Buckley (2004): they chose to use number of sites, but mentioned in their discussion that sample size655

also depends on the number of taxa. Sullivan and Joyce (2005) also mention that while the number of656

sites is often taken as sample size, whether that is appropriate in phylogenetics is not entirely clear. One657

approach incorporating both number of taxa and sites in calculating AICc is the program SURFACE658

implemented by Ingram and Mahler (2013), which uses multiple characters and taxa. While its default659

is to use AIC to compare models, if one chooses to use AICc, the number of samples is taken as the660

product of number of sites and number of taxa.661

Recently, Jhwueng et al. (2014) performed an analysis that investigated what variant of AIC and AICc662

worked best as an estimator, but the results were inconclusive. Here, we have adopted and extended the663

simulation approach of Jhwueng et al. (2014) in order to examine a large set of different penalty functions664

and how well they approximate the remaining portion of the Kullback-Liebler (KL) divergence between665

two models after accounting for the deviance (i.e., −2L) (see Appendix 1 for more details).666
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Table812

Parameters Model

Model logLik Estimated AIC AICc ∆AICc Weight

SelAC+Γ -453,620.8 50,005 1,007,252 1,027,314 0 >0.999

SelAC -464,114.8 50,004 1,028,238 1,048,299 20,985 <0.001

SelACM +Γ -465,106.9 50,005 1,030,224 1,050,286 22,972 <0.001

SelACM -478,302.4 50,004 1,056,613 1,076,674 49,360 <0.001

FMutSel -597,140.7 178 1,194,637 1,194,638 167,324 <0.001

GY94 -612,670.4 111 1,225,563 1,225,563 198,249 <0.001

GTR+Γ -655,166.4 610 1,311,553 1,311,554 284,240 <0.001

Table 1. Comparison of model fits using AIC, AICc, and AICw. Note the subscripts M indicate model fits where the most
common or ‘majority rule’ amino acid was fixed as the optimal amino acid a∗ for each site. As discussed in text, despite the
fact that a∗ for each site was not fitted by our algorithm, its value was determined by examining the data and, as a result,
represent an additional parameter estimated from the data and are accounted for in our table. Also, the sample size used
in the calculation of AICc is assumed to be equal to the size of the matrix (number of taxa x number of sites).
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FIG. 1. Comparisons between estimates of average protein translation rate φ̂SelAC obtained from SelAC+Γ and direct

measurements of expression for individual yeast taxa across the 100 selected genes from Salichos and Rokas (2013) measured

during log-growth phase. Estimates of φ̂SelAC were generated by dividing the composite term ψ′ by B(~ai|~a∗). Gene expression

was measured using either RNA-Seq (a)-(c) or microarray (d)-(e). The equations in the upper left hand corner of each panel
represent the regression fit and the Pearson correlation coefficient r.
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FIG. 2. Comparisons between ωFMutSel, which is the nonsynonymous/synonymous mutation ratio in FMutSel, SelAC+Γ

estimates of protein functionality production rates ψ̂SelAC (a), RNA-Seq based measurements of mRNA abundance

φRNA-seq (b), and ROC-SEMPPER’s estimates of protein translation rates φROC, which are based solely on S. cerevisiae’s

patterns of codon usage bias (c), for S. cerevisiae across the 100 selected genes from Salichos and Rokas (2013). As in Figure
1, the equations in the upper right hand corner of each panel provide the regression fit and correlation coefficient.
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FIG. 3. (a) Maximum likelihood estimates of branch lengths under SelAC+Γ for 100 selected genes from Salichos and Rokas
(2013). Tests of model adequacy for S. cerevisiae (b) and S. castellii (c) indicated that, when these taxa are removed from

the tree, and their sequences are simulated, the parameters of SelAC+Γ exhibit functionality B(~aobs|~a
∗) that is far closer

to the observed (dashed black line) than data sets produced from parameters of either FMutSel or GTR + Γ.
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