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Abstract 

Identifying genes underlying complex diseases remains a major challenge. Biomarkers are 

typically identified by comparing average levels of gene expression in populations of healthy and 

diseased individuals. However, genetic diversities may undermine the effort to uncover genes 

with significant but individual contribution to the spectrum of disease phenotypes within a 

population. Here we leverage the Hybrid Mouse Diversity Panel (HMDP), a model system of 

100+ genetically diverse strains of mice exhibiting different complex disease traits, to develop a 

personalized differential gene expression analysis that is able to identify disease-associated genes 

missed by traditional population-wide methods. The population-level and personalized 

approaches are compared for isoproterenol(ISO)-induced cardiac hypertrophy and heart failure 

using pre- and post-ISO gene expression and phenotypic data. The personalized approach 

identifies 36 Fold-Change (FC) genes predictive of the severity of cardiac hypertrophy, and 

enriched in genes previously associated with cardiac diseases in human. Strikingly, these genes 

are either up- or down-regulated at the individual strain level, and are therefore missed when 

averaging at the population level. Using insights from the gene regulatory network and protein-

protein interactome, we identify Hes1 as a strong candidate FC gene. We validate its role by 

showing that even a mild knockdown of 20-40% of Hes1 can induce a dramatic reduction of 

hypertrophy by 80-90% in rat neonatal cardiac cells. These findings emphasize the importance of 

a personalized approach to identify causal genes underlying complex diseases as well as to 

develop personalized therapies.       
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Significance 

A traditional approach to investigate the genetic basis of complex diseases is to look for genes 

with a global change in expression between diseased and healthy individuals. Here, we 

investigate individual changes of gene expression by inducing heart failure in 100 strains of 

genetically distinct mice. We find that genes associated to the severity of the disease are either 

up- or down-regulated across individuals and are therefore missed by a traditional population 

level approach. However, they are enriched in human cardiac disease genes and form a co-

regulated module strongly interacting with a cardiac hypertrophic signaling network in the 

human interactome. Our analysis demonstrates that individualized approaches are crucial to 

reveal all genes involved in the development of complex diseases. 
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Introduction 

Contrary to “Mendelian” diseases where causality can be traced back to strong effects of a single 

gene, common diseases result from modest effects of many interacting genes (1). Understanding 

which genes are involved and how they affect diseases is a major challenge for designing 

appropriate therapies.  

Heart failure (HF) is a well-studied example of a genetically complex disease involving multiple 

processes that eventually lead to a common phenotype of abnormal ventricular function and 

cardiac hypertrophy (2). Numerous studies have attempted to pinpoint differentially expressed 

genes (DEGs) to find biomarkers for the prognosis of the disease and the design of appropriate 

drugs (3), as well as explore underlying affected signaling pathways (4). Such studies typically 

compare gene expression between samples in healthy and diseased states, such as non-failing vs 

failing hearts in murine (5), canine (6), or human samples (see (7) for a broad review). However, 

because of the different genetic backgrounds of the surveyed individuals, as well as different 

severities of HF, those studies show very limited overlap of DEGs. While separate studies 

typically identify tens to hundreds of DEGs, not a single DEG is common to all studies (7). 

Moreover, it is unclear whether the healthy state is itself a well-defined unique state. In 

particular, several studies have shown that, due to compensatory mechanisms involved in 

homeostasis, different combinations of ion channel conductances in neurons and cardiac cells 

can lead to a normal electrophysiological phenotype, e.g. a similar bursting pattern of motor 

neurons or a similar cardiac action potential and calcium transient (8, 9). This has led to the 

concept that genetically distinct individuals represent different “Good Enough Solutions” 

corresponding to distinct gene expression patterns underlying a healthy phenotype. Different 

combinations of gene expression in a healthy state resulting from genetic variations would be 
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expected to yield different DEGs in a diseased state. Thus, small numbers of DEGs that are only 

shared by a subset of individuals, and would be missed by a standard population-wide DEG 

analysis, could in principle have a causal role.  Identifying these genes remains a central 

challenge in personalized medicine (10, 11).  

In order to explore the variability of individual trajectories leading to hypertrophy and HF, we 

leverage the Hybrid Mouse Diversity Panel (HMDP), a model system consisting of  >100  

genetically diverse strains of mice that we described previously (12, 13). This model system 

provides an unprecedented opportunity to investigate the role of strain-to-strain genetic 

differences on phenotypic outcome by allowing us to measure strain-specific changes of gene 

expression in response to a disease-inducing stressor in a large number of strains under well-

controlled environmental conditions.  Moreover, those strain-specific findings can be replicated 

by studying the phenotype of several genetically identical mice from the same strain, thereby 

disentangling intra-strain and inter-strain variations. In the specific case of HF onto which we 

focus here, such data could not be obtained in human studies where heart tissue biopsies have 

been extracted from either donor hearts or explanted hearts of late stage HF patients in a 

genetically diverse population (14). Indeed, gene expression data obtained from those biopsies 

can only be used to perform a population-level differential gene expression analysis. In contrast, 

here we identify relevant genes by correlating strain-specific temporal changes of gene 

expression, i.e. gene expression measured genome-wide before and after a stressor, with the 

corresponding strain-specific changes of phenotype. The ability to study a large number of 

strains using the HMDP is essential to have enough statistical power to establish such a 

correlation, a power that has been lacking from previous studies limited to small numbers of 

strains (15-18). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120329doi: bioRxiv preprint 

https://doi.org/10.1101/120329


We use both gene expression and phenotypic data acquired in HMDP strains before and three 

weeks after implantation of a pump delivering isoproterenol (ISO), a stressor inducing HF (12). 

In the HMDP, the pathological stressor induces a global response characterized mainly by 

cardiac hypertrophy along with more marginal changes in chamber dilation and contractile 

function at the population level. As a result, we primarily focus on the identification of genes 

relevant for cardiac hypertrophy. Expression data is collected at the whole heart level and the 

Total Heart Weight is used to quantify the degree of cardiac hypertrophy. Importantly, the 

severity of the hypertrophic response is highly variable among strains, ranging from almost no 

hypertrophy to up to an 80% increase of heart mass. Our study is directed at understanding why 

certain individuals are more susceptible to or protected against cardiac hypertrophy due to their 

genetic backgrounds. 

In the following, we develop a personalized strategy to find genes for which the individual, 

strain-specific fold-change (FC) of expression is associated with the degree of hypertrophy. We 

find a small set of 36 genes that we refer to as FC genes. We then compare them to genes 

identified using Significance Analysis of Microarrays (SAM), a standard tool to evaluate 

population-wide DEGs (19). Interestingly, the FC genes are not identified as significantly 

changed at the population level. They indeed typically have opposite fold changes in low and 

high hypertrophy strains that cancel each other when averaged over all strains. We show that the 

FC genes are strongly enriched in cardiac disease genes from previous Genome-Wide 

Association Studies (GWAS), while SAM genes are in contrary enriched in fibrosis genes. We 

then show that those two sets form two distinct communities in the co-expression network 

among healthy as well as ISO-injected strains and we identify potential Transcription Factors 

(TFs) to explain the observed co-regulation of FC genes. Moreover, we find that the proteins 
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encoded by the FC genes, but not the SAM genes, interact predominantly with proteins 

belonging to a cardiac hypertrophic signaling network (CHSN) that has been shown to provide a 

predictive model of hypertrophy in relation to multiple stressors including ISO (20). 

Interestingly, we find that one of the FC genes, namely Hes1, is also a predicted TF and an 

important interactor with the CHSN. Using a knockdown approach, we find that it plays a major 

role in cardiac hypertrophy, allowing us to validate our personalized, multi-omics approach.     

 

Results 

1. Two types of responses to stressor-induced cardiac hypertrophy and heart failure 

We begin with an example showing two distinct ways to describe the response to ISO in the 

HMDP (Figure 1). First, one can note that ISO induces a global response across all strains, 

resulting in cardiac hypertrophy. This is seen in Figure 1a, where the distribution of heart mass 

among the post-ISO strains can clearly be distinguished from the pre-ISO distribution (p < 2.2e-

16 under Student t-test). At the gene level, such a response is typically analyzed by looking for 

DEGs at the population level, i.e. genes for which the change in average expression with the 

stressor is significantly greater than the variability with and without the stressor (Figure 1b). 

Typical tools include t-test (21), SAM (19), or LIMMA (22). Genes found with these methods 

have a differential expression profile at the population level and are therefore potential 

biomarkers of the trait of interest (see microarray data for Serpina3n in Figure 1c). However, 

despite the global response in the level of gene expression to ISO, the degree of hypertrophy 

among individual strains is highly variable, from almost none to an 80% increase of heart weight 

(Figure 1d). This calls for an evaluation of the strength of differential gene expression at the 

individual level. In particular, a whole new class of genes becomes available for analysis. Indeed, 
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even if a gene does not show population-wide average differential expression, it can show 

extensive variation at the individual, strain-specific level (Figure 1e). This is the case for the 

gene Kcnip2 encoding the protein KChIP2, which interacts with pore forming subunits (Kv4.2 

and Kv4.3) of the transient outward current Ito expressed in heart, and which has been implicated 

in cardiac hypertrophy (23-25). Though not showing population-wide differential expression 

(Figure 1f), its individual fold-change of expression can vary drastically from 2-fold decrease to 

a 2-fold increase depending on the considered strain (Figure 1g). Interestingly, when comparing 

the individual variations of those two types of genes with the degree of hypertrophy (Figure 

1h,i,k), one can see that global DEGs are not necessarily good descriptors of the individual 

changes of phenotype (Figure 1j), unlike the second type of genes missed by a traditional 

population-wide method (Figure 1l). In particular, in the case of Kcnip2, we observe a significant 

positive correlation with the severity of hypertrophy (r=0.4, p=1.5e-4). This is particularly 

interesting since Kcnip2 has previously been shown to be down-regulated during cardiac 

hypertrophy (24, 26) in the strain 129X1/SvJ. While we confirm this finding, we also observe 

that it is unusual in a broader context, and that Kcnip2 is most of the time up-regulated in strains 

with marked hypertrophy.  

In the following, we generalize these observations to identify a larger set of genes that, like 

Kcnip2, have an individual FC correlated to the severity of hypertrophy, and we compare this set 

to the complete set of DEGs identified by the population-level SAM method.   

 

2. Identification of genes associated to the severity of hypertrophy 

Here we develop a method to determine which genes show individual, strain-specific 

expression FCs significantly correlated to the individual hypertrophic response measured by the 
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individual fold-change of heart mass. We use microarray and phenotype expression data 

described in (13). Since our methodology is based on correlations, we choose to select those 

genes that belong to the giant component of the gene co-expression network above a certain 

correlation cutoff (see Methods and Figures S1,2). The advantages of such a filter compared to 

one based on absolute expression levels is that it yields a clear, well-defined cutoff (Figure S1b) 

while also rejecting genes having high expression but artefactual correlations (e.g. hitting the 

microarray saturation level in Figure S1c). We obtain a filtered set of 11,279 high-confidence 

genes. We then compute for all genes the absolute Pearson correlation between the gene 

expression fold-change and the individual hypertrophic response (Figure 2a, blue histogram). To 

control for False Positives, we compute the expected correlations when randomizing the 

phenotype by shuffling strain labels (see Methods and Figure 2a, red histogram). One can see 

significant enrichment in genes with high correlation to the trait. To quantify this enrichment, we 

compute the proportion of observed (‘blue’) correlations divided by the proportion of 

correlations in the randomized cases (‘red’) above various correlation cutoffs. Figure 2b shows 

this enrichment as a function of the gene rank, ordered by decreasing absolute value of the 

correlation with hypertrophy. The enrichment shows a peak at 36 genes, followed by a plateau 

until ~500 genes, and a subsequent decrease. We define these 36 genes as our candidates to 

describe the hypertrophic spectrum. These genes are listed in Table 1, along with references 

supporting the involvement of several of them in cardiac hypertrophy and HF. In the following, 

we refer to this set of genes as the “FC” set. The full list of genes with their correlation with 

hypertrophy is provided in Supplementary Table S1. 

As a comparison, we compute the population-wide DEGs using Significance Analysis of 

Microarray or SAM (19). This exhibits 2,538 DEGs at a False Discovery Rate of 1e-3 (see 
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Methods). Interestingly, we find no significant overlap (p=0.68, hypergeometric test) between 

these SAM genes and the FC set, with 6 genes common to both sets (Tspan17, Ppp1r9a, Bclaf1, 

AW549877, Gss, 2310022B05Rik and 9430041O17Rikm). In general, correlations between the 

individual fold-changes of the SAM genes and the degree of hypertrophy are found to be quite 

low (Figure 2c).  

The 36 FC genes are shown in Figure 2d. As expected from the absence of overlap with SAM 

genes, the FC genes have both negative (blue) and positive (red) fold-change across the different 

strains, meaning that they have negligible average fold-change at the population level. A 

question that arises is whether the variability observed in the individual fold-changes of gene 

expression across strains is a consequence of genetic variability, or merely reflects 

environmental or experimental spurious effects. To investigate this question, we take advantage 

of the fact that expression data has been replicated in 8 strains, either in pre-ISO, post-ISO or 

both. Since mice from the same strain have a similar genetic background, they should therefore 

show very comparable individual fold-changes. Expression fold-change is shown for the 36 FC 

genes for the replicated strains in Figure S3a. We assess the replicability by computing the 

Spearman rank correlation of the 36 FC genes fold-change profiles between mice from replicated 

strains. We find a mean correlation of 0.76, compared to 0.14 for pairs of strains taken at random 

among the non-replicated pool (p = 1.6e-7, Wilcoxon test, see Figure S3b). This result shows 

that individual fold-changes are tightly controlled at the genetic level. 

In the following, we wish to evaluate further the biological signal carried by these FC genes 

missed by population-wide methods. 

 

3. Biological relevance of the identified FC genes 
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Given the importance of the genetic control of those genes, they must be more susceptible to 

genetic variations. To explore that idea, we look at the enrichment in disease genes coming from 

previous GWAS. We use HuGE database of human genes associated to 2,711 different diseases 

(see Methods). First, we convert the mouse gene names to human as described in the Methods. 

Then, we rank the diseases according to their enrichment in 36 FC (resp. 36 best SAM) genes 

using a hypergeometric test assuming as null hypothesis a uniform repartition of the genes across 

diseases. Results are shown in Figure2e,f for the 15 most enriched diseases in each case. We 

observe that FC genes are strongly enriched in heart diseases (11 in the 15 most enriched 

diseases) while SAM genes are only enriched in two cardiac diseases and in fibrosis, a feature 

characteristic of the structural remodeling taking place during HF (27). Those findings exhibit  

two distinct roles of FC and SAM genes in the progression of cardiac hypertrophy. While the 

cross-talk between cardiac fibroblasts and myocytes during cardiac hypertrophy has been studied 

previously (28), here we disentangle their relative contributions into a shared, population-wide 

fibroblastic component, and a fine-tuned, individualized component capable of explaining the 

severity of cardiac hypertrophy. Moreover, the enrichment of FC genes in human GWAS genes 

also highlights the relevance of the present HMDP data analysis to human cardiac hypertrophy 

and HF.   

4. Co-expression and co-regulation 

The identified sets of population-level and individual FC genes have until now been considered 

as collections of independent genes. However, in the cell, genes function together to achieve 

higher-order physiological functions. Such a collective behavior can be assessed in the 

framework of co-expression networks, where genes are related by the similarity of their profile 

of expression across different conditions. In the context of the HMDP, we investigate whether 
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the predicted sets of genes show evidence of co-regulation in healthy and post-ISO hypertrophic 

strains. To that extent, we compute the squared Pearson correlations (r2) between the 36 best 

genes of both the FC and SAM sets. Correlation matrices are then cut off at r2>0.1 to keep 

significant interactions. We show in Figure 3a and b the resulting co-expression networks in pre 

and post-ISO conditions. We clearly see that the two sets of genes form dense modules, and are 

disconnected from each other, with only few links between the two sets. Interestingly, we see 

that the biomarker and modulator of hypertrophy Nppb (29) acts as a bridge between the two 

modules in pre-ISO condition (Figure 3a, top), and is even found strongly co-expressed with the 

SAM genes in post-ISO mice (Figure 3b). This suggests a role for Nppb in driving a cross-talk 

between FC genes and SAM genes. Finally, to quantify the relative density of the modules, we 

compared them to 1,000 sets of a similar number of randomly selected genes. We show the 

resulting Z scores in Figure 3c. Both SAM and FC sets show much stronger co-expression than 

randomly expected, with the SAM module being even denser under ISO condition. On the 

contrary, the density of links between the two modules is significantly smaller than expected by 

chance, indicating that the two sets of genes are disjoint sets in the co-expression network. 

Overall, these results show that the FC and SAM genes form two tight, disjoint communities in 

the co-expression network, both in pre-ISO and post-ISO mice.  

The finding that the FC genes are strongly co-expressed suggests that they are co-regulated. To 

explore this possibility, we look for enrichment in common TF binding sites in the vicinity of the 

36 FC genes. To compute the enrichment, we use iRegulon, a recent algorithm integrating 

different TF motifs databases and using phylogenic conservation to identify overrepresented 

binding sites in the -20/+20kb regions around the Transcription Start Sites of genes of interest 

(see Methods) (30). The identified motifs are then ranked by target enrichment among selected 
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genes, and are associated to a list of putative TFs that can bind them (Figure 3c). The full list of 

predictions is given as Supplementary Table S2. We find that the best-ranked motif is associated 

with repressor TFs Scrt1 and Scrt2, known to modulate the action of basic helix-loop-helix 

(bHLH) TFs (31). Interestingly, the corresponding PWM motif is also matched to Snai3 TF, a 

gene ranked 3rd among SAM genes. The 2nd motif, VDR, is known to be involved in heart failure 

and cardiac hypertrophy (32). Finally, the sixth predicted TF is associated to Hes1, which ranks 

10th among the FC genes.  This indicates that there is a cross-talk between the two modules at the 

gene regulatory level, with both FC and SAM genes being involved in the regulation of the 

expression of the FC genes.  

 

5. Exploration of the neighborhood in the interactome 

While useful to detect gene regulatory changes involved in the disease process, gene expression 

does not capture post-translational changes and interactions that occur at the protein level. To 

explore the potential involvement of the predicted sets of genes at the protein level, we use a 

previously published human interactome combining high-throughput and literature curated 

protein-protein, metabolic, kinase-substrate, signaling and to a lesser extent regulatory 

interactions (33). After converting to human gene symbols (see Methods), the proteins encoded 

by the 36 best FC and SAM genes have respectively 364 and 346 interacting partners. We then 

compute pathway enrichment for these neighbors (see Methods). The other most highly enriched 

pathway is linked to NFAT signaling, known to be important in HF (34). Interestingly, we find 

that the second most enriched pathway for FC neighbors is a previously published Cardiac 

Hypertrophy Signaling Network (CHSN) containing 106 nodes (corresponding to 218 genes) 

giving a predictive model of hypertrophy in response to multiple stressors including ISO (20) 
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(Figure S4). Indeed, about 14% of FC neighbors are components of this network, compared to a 

predicted random association of 4% (Z=4, Figure 3d). The CHSN is shown in Figure 3e and in 

more details in Figure S5, along with FC nodes directly interacting with CHSN nodes. In 

particular, we find that Hes1 is interacting with several nodes of the CHSN at different levels of 

the hierarchy, namely FAK, JAK, STAT, CamK, PKC and HDAC.  

 

6. Experimental validation of Hes1  

The previous results point toward a role for Hes1 in cardiac hypertrophy and heart failure. 

Indeed, Hes1 was found to be a FC gene, an upstream regulator of FC genes, and an interactor 

with several components of the CHSN. To determine the function of Hes1 in the context of 

cardiac hypertrophy and heart failure, we performed siRNA knockdown in neonatal rat 

ventricular myocytes (NRVMs) followed by treatment with beta-adrenergic agonist isoproterenol 

(ISO) or alpha-adrenergic agonist phenylephrine (PE) containing media. Both agents induce 

hypertrophy through different molecular pathways, as can be seen in the CHSN (see Figure 3e).  

Using siRNA to silence Hes1 expression, we achieved a 20% to 40% decrease in Hes1 

expression when compared to transfection control (Figure 4a).  At the molecular level, treatment 

with either ISO or PE containing media drastically increases the expression of the HF markers 

Nppa and Nppb, which rose 3.5- and 7.9-fold, respectively under ISO treatment and 11-fold and 

13-fold, under PE treatment in cells transfected with the control siRNA.  Strikingly, knockdown 

of Hes1 expression strongly impaired the induction of these two markers under both treatment 

conditions.  Nppa induction was reduced up to 110% and 88% under ISO and PE treatment while 

Nppb induction was reduced up to 66% and 91% under ISO and PE treatment, respectively.  In 

addition to these molecular changes, we investigated the role of Hes1 in modulating the increase 
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in cardiomyocyte cell size upon treatment with ISO and/or PE. As expected, following ISO/PE 

treatment, cells transfected with the control siRNA doubled in cellular cross-sectional area 

(Figure 4c and Figure S6). In comparison, cells transfected with the Hes1 siRNA showed up to 

87% and 79% reduction in cell size increase following treatment with ISO and PE, respectively. 

This effect is consistent with the fact that HMDP strains showing no or mild hypertrophy exhibit 

strong negative fold-change of Hes1 (Figure S7). Taken together, these findings strongly suggest 

a role for Hes1 as a novel regulator of cardiac hypertrophy in vitro.  

 

7. Discussion 

In the present study, we investigated the spectrum of cardiac hypertrophy and HF development 

in 100+ genetically diverse mice from the HMDP when subjected to chronic ISO infusion. We 

have analyzed two types of responses. First, the global response at the population level with a 

large number (1,000+) of genes involved, as detected by the SAM algorithm. Their global fold-

change is representative of the global hypertrophy observed across all strains. However, the 

magnitude of their fold-change at the individual level does not predict the degree of individual 

hypertrophy. Using a correlation-based method, we found another group of ~40 genes that 

predicts the degree of hypertrophy. We named these the “FC” genes in reference of the fact that 

we found them using their individual, strain-specific fold-change. Surprisingly, these genes have 

a near zero fold-change at the population level due to the cancelling contributions of up- and 

down-regulation in different strains, so that they are not detected using classical differential 

expression tools. While several FC genes have previously been implicated in cardiac 

hypertrophy and HF (see Table 1), their high variability in such a controlled setup has not been 

explored previously. We showed that these genes are enriched for heart failure gene candidates 
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previously described in the literature, as well as for human cardiac disease genes. On the other 

hand, the best SAM genes are enriched in fibrosis disease genes. ISO has been shown to induce 

first myocardial fibrosis concomitantly with myocyte necrosis, followed by myocyte hypertrophy 

on a longer time scale (35), and fibrosis is also known to be an early manifestation of 

hypertrophic cardiomyopathy (36).  Our results suggest that population-level SAM genes are 

predominantly associated with the early fibroblast response. On the other hand, since the change 

of heart mass is primarily determined by myocyte growth, our results suggest that FC genes are 

associated with the strain-specific degree of myocyte growth induced by beta-adrenergic 

stimulation. 

We further investigated the roles of these genes in different biological networks. We found that 

both FC and SAM genes form distinct co-expressed modules. Interestingly, Nppb (encoding the 

BNP protein), a widely used biomarker and modulator (29) of HF, belongs to the FC set but is 

co-expressed with SAM genes in healthy mice, providing a unique bridge between the two sets. 

We note that this result is consistent with the previous finding that Nppb is an antifibrotic 

hormone produced by myocytes with an important role as a local regulator of ventricular 

remodeling in mice (37). Indeed, Nppb is correlated to the fibrotic SAM genes in healthy mice, 

consistent with a regulatory homeostatic behavior, but is found among FC genes after beta-

adrenergic stimulation, consistent with a response proportionate to myocytes hypertrophy. It is 

also interesting to note that the SAM module overlaps significantly (p=3.4e-6, hypergeometric 

test) with a co-expression module previously found in post-ISO mice and shown to be involved 

in cardiac hypertrophy (38). Indeed, it shares the genes Timp1, Tnc, Mfap5, Col14a1 and 

Adamts2, the latter of which was validated experimentally as a regulator of cardiac hypertrophy.  
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We then predicted several TFs to study this co-regulation. Interestingly, among the top TFs 

predicted as regulators of the FC genes, one of them, Hes1, belongs to the FC genes, and another 

one, Snai3, belongs to the SAM genes. We note that both inhibitory (Snai3, Hes1) and activatory 

(Vdr, Srebf1) TFs were found to have enriched binding sites around FC genes TSSs. This 

suggests a potential regulatory balance that could explain the up- and down-regulation observed 

for these genes across strains. We then looked at potential post-translational effects at the protein 

level by using an integrated interactome.  We found that FC genes were strongly interacting with 

a cardiac hypertrophy signaling network (CHSN) previously shown to be predictive of cardiac 

hypertrophy in response to ISO and other stressors (20). This may indicate that several of those 

genes are upstream of a causal chain of events at the post-translational level that control myocyte 

growth. We note that the FC gene Nppb is present both as an input and an output of the CHSN. 

This exemplifies an interesting feedback architecture where downstream effects can causally 

affect upstream regulation. Overall, the FC genes constitute a HF “disease module” formed of 

co-regulated genes connected to the CHSN at the protein level. 

A key finding of our study is that there is strong strain-to-strain variation in response to a stressor 

under similar well-controlled environmental conditions. This variation is largely explained by the 

different genetic backgrounds, as shown by the consistent responses in mice from same strains 

(Figure S3) and the strong enrichment in heart diseases GWAS (Figure 2e). For example, Kcnip2 

is known to be downregulated concomitantly with a reduction of Ito magnitude in cardiac 

hypertrophy (24, 26). Our results are consistent with this finding for the previously studied 

129X1/SvJ strain (24), but show that Kcnip2 is upregulated in many strains with pronounced 

hypertrophy leading to an overall positive correlation between Kcnip2 expression and heart mass 

FC. This indicates that there are multiple possible compensatory mechanisms underlying a 
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similar patho-phenotype. Similarly, we observed strong variation in the fold-change of Nppb. It 

was previously shown to be over-expressed during cardiac hypertrophy as an anti-fibrotic factor 

(29). Using our multiple strains setup, we observed a positive correlation between Nppb change 

of expression and the degree of hypertrophy. However, we also observed some cases were 

hypertrophic strains exhibit down-regulation of Nppb, including the widely used C57BL/6J and 

129X1/SvJ strains (see Figures 2d and S3).  

Finally, our approach was validated by testing Hes1’s role in cardiac hypertrophy. Hes1 was 

chosen because of its involvement at different levels: found as a FC gene, Hes1 is also a 

predicted TF regulating the FC genes and a key interactor of the CHSN. Hes1 is part of the 

Notch signaling pathway which is highly conserved and involved in cell-cell communication 

between adjacent cells (39). This pathway is well known to play a crucial role in cardiac 

development and disease. Notch activity is required in complex organs like the heart that 

necessitate the coordinated development of multiple parts (40). Specifically, functional studies 

have shown that Notch activity is required for cardiovascular development and that Notch 

signaling causes downstream effects such as cell fate specification, cell proliferation, progenitor 

cell maintenance, apoptosis, and boundary formation (39).  In previous studies, Hes1 expression 

was observed to increase following myocardial infarction and other ischemic cardiomyopathies. 

Increased expression of Hes1 was also shown to inhibit apoptosis of cardiomyocytes and 

promote instead their viability. However, whether Hes1 acts as a regulator of novel heart failure 

markers has remained unclear (41). Here, we show that even a mild knockdown of 20-40% of 

Hes1 can induce a dramatic reduction of hypertrophy by 80-90% (Figure 4c), identifying for the 

first time Hes1 as a key regulator of cardiac hypertrophy. Importantly, this result is consistent 
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with the HMDP data, where strains with no or mild hypertrophy have 20-50% decrease in Hes1 

after ISO injection (Figure S7b). 

 

Overall, we have explored the individual, strain-specific responses to stressor-induced HF and 

identify 36 FC genes that are missed by traditional population-wide method of DEG analysis. 

We have shown that these FC genes provide a completely distinct, albeit complementary, picture 

of HF than population-wide DEGs. In particular, FC genes are enriched in human cardiac disease 

genes and hypertrophic pathways. This is important since previous studies that use population-

level methods to identify DEGs have concluded that murine models are of limited relevance to 

human HF (42, 43).  In contrast, our findings show that FC genes, identified by a personalized 

differential expression analysis in a genetically diverse population of mice, are relevant to human 

HF. By linking those genes both to upstream regulators and to a signaling network predictive of 

cardiac hypertrophy, we provide new insights into the regulation of the severity of and resistance 

to cardiac hypertrophy at the individual level, and validate Hes1 as a novel regulator of cardiac 

hypertrophy in vitro. We believe this approach to be critically important for the appropriate 

design of upcoming experiments directed at unraveling causal genes in complex diseases.   

 

Methods 

Obtention of the data 

Microarray data may be accessed at the Gene Expression Omnibus using accession ID: 

GSE48760. All phenotypic and expression data may also be accessed at 

https://systems.genetics.ucla.edu/data/hmdp_  

hypertrophy_heart_failure.  
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Pre-filtering of the data 

In order to reduce false positive predictions and computational time, we first filtered the 25,697 

genes expression data. Instead of setting an arbitrary cutoff based on the level of expression as is 

commonly done, we decided to use a network approach that is consistent with the correlation-

based methods used in this study. The idea is that the different genotypic backgrounds across 

strains lead to global gene expression modulation, thus creating correlation between expressed 

genes. Genes not associated to the core of varying genes should be the ones that carry too much 

experimental noise due to low expression or systematic biases. 

We first computed the absolute Pearson correlation of gene expression fold-change between all 

pairs of genes. This creates a complete weighted network containing all genes. We then reasoned 

that genes for which expression is noisy because of low expression or experimental artifacts 

should have a low association to the other genes. We therefore looked at the size of the Largest 

Connected Component (LCC) of the network when hard-thresholding with several correlation 

cutoffs (figure S1a). We observed a fast decrease of the LCC size at low thresholds of 0.35-0.45, 

followed by milder steady decrease. The derivative of this curve is presented in figure S1b, 

showing a strong initial trough corresponding to noisy “satellite” nodes being cut from the LCC, 

followed by stabilization. We chose a cutoff of 0.5 corresponding to that stabilization plateau and 

kept the 11,279 genes in the LCC. The effect of this filter is made clear by looking at a selection 

of functional genes linked to the electromechanical coupling in heart cells (figure S1c). The 

rejected genes (gray bars) have either low expression (eg Calm4, Kcnd3) or display systematic 

saturation effects inherent to the microarray assay, which results in noisy correlations (eg Tnnc1, 

Atp2a2). More generally, we show in Fig S2 that filtered out genes show a correlation profile 
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with hypertrophy similar to the one expected at random. In this paper, we use these 11,279 genes 

as input to the different methods. 

 

Computation of randomized correlations 

To compute the expected correlations of Figure 2a, we first shuffle the heart mass fold-changes 

among strains. We then compute the correlations between all genes FCs and this randomized 

phenotype. We repeat that step 1,000 times. The final histogram is the average over the 1,000 

randomizations. 

 

Computation of population-wide DEGs 

The population-wide DEGs are computed by using Significance Analysis of Microarray or SAM 

(19) between the post-ISO and the pre-ISO expression data. Using a False Discovery Rate of 1e-

3, we find 2,538 significant DEGs.  

 

Conversion from mouse symbols to human entrez IDs 

In order to compute pathway and disease genes enrichment, we first needed to compute a table 

converting mouse gene symbols to human entrez IDs. We used UCSC genome browser 

mm9.kgXref, mm9.hgBlastTab and hg19.kgXref conversion tables available on the mySQL host 

genome-mysql.cse.ucsc.edu. The kgXref tables were used for conversion between symbols and 

entrez IDs while the Blast table was used to get the human orthologs of mouse genes. 

 

HuGE database  
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Disease genes were taken from the HuGE database of published GWAS genes (44), with a total 

of  2,711 diseases. HF related diseases were filtered out using keywords ‘heart’, ‘cardi’, ‘hypert’, 

‘aort’, ‘fibro’. 

 

Pathways 

Pathways were taken from MSigDB v3.1 (45) and Wikipathways (46), with a total of 8,690 sets 

of genes. A group of 106 genes corresponding to a previously published Cardiac Hypertrophic 

Signaling Network (CHSN) (20) was added under the name 

“SAUCERMAN_cardiac_hypertrophy_pathway”.  

 

TF enrichment 

The cytoscape plugin iRegulon (30) was used to predict putative upstream TF regulating the 

studied sets of genes. Default parameters were used: 9,713 PWMs scanning 20kb centered 

around TSS.  

 

Computation of statistics 

All statistics (correlations, t-test, Wilcoxon test, hypergeometric test) were computed using R. 

Hierarchical clustering was performed using default parameters of the R hclust function. Z scores 

correspond to the number of standard deviations a given observation is away from the mean of 

the null (random) distribution and are computed as follow: 

𝑍 =
𝑥−< 𝑋 >

< (𝑋−< 𝑋 >)2 >  

where x is the observed value, X is a set of random predictions, and <.> denotes the average.   
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Cell Culture and Treatments  

Right ventricular myocytes were isolated and cultured, as reported (47) using 2-4 day old rats. 

Myocytes and fibroblasts were separated with Percoll density gradient. For knockdown 

experiments cells were transfected with Hes1 siRNA using lipofectamine RNAimax (life 

technologies). 

 

RNA Isolation and qPCR 

RNA isolation from cells was performed using Qiazol lysis reagent. cDNA synthesis was 

performed using the High Capacity Reverse Transcription cDNA Kit (Life Technologies). qPCR 

was performed using the LightCycler 480 (Roche). The number of replicates per condition is 

shown in Supplementary table S3, with values ranging from  6 to 9. 

 

 

Quantification of cardiomyocyte cell size 

Quantification of cardiomyocyte cell size was done following transfection with either control or 

Hes1 siRNA and a 48 hour treatment with control or isoproterenol or phenylepherine containing 

media. Images were taken on a Nikon Eclipse TE2000-U microscope. Images were analyzed 

using the Nikon Imagine System (NIS). 150 cells were used to compute the SEM. 
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Figures  

Figure 1. Two types of responses to stressor-induced heart failure 

a. Histograms of the pre-ISO (blue) and post-ISO (red) heart masses of the HMDP strains.  

b. Typical Differentially Expressed Genes (DEGs) show clear population-average fold-

change allowing distinguishing the two populations of strains. 

c. An example of such strong DEG, namely Serpina3n. 

d. Histogram of the heart mass fold-change (FC) computed for each strain from the HMDP. 

e. Expression FC at the individual level can lead to cases were the population-average FC is 

null while the individual FCs are not. 

f. Kcnip2 is a good example of a gene with no population-wide average FC. 

g. However, at the individual level, Kcnip2 shows strong variations, as seen in the 

histogram of individual FCs at the strain level (log2 of post over pre-ISO expression 

ratio). In particular, some strains have a 4 fold decrease of expression (-2 in log2), while 

others have a 4 fold increase (+2).  

h. For better visualization, the strain-specific heart mass FC is shown by decreasing 

strength. Red bars indicate increase and blue bars decrease in value. 

i. Serpina3n log FC is shown with the same strain ordering than in h. Its population-wide 

FC is high (3.9), with most strains showing a strong positive FC (red bars). 

j. However, the correlation of Serpina3n FC with the heart mass FC is not significant (r=-

0.09, p=0.43). 

k. On the other hand, Kcnip2 shows a weak population-wide FC (FC=0.85). In particular, 

some strains show an increased expression (red bars) while others show a decreased 
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expression (blue bars). The red arrow indicates the 129X1/SvJ strain in which Kcnip2 has 

previously been shown to be down-regulated during cardiac hypertrophy (24).  

l. Contrary to Serpina3n, Kcnip2 FC is significantly correlated to heart mass FC (r=0.4, 

p=1.5e-4), with increased expression corresponding to high hypertrophy and decreased 

expression corresponding to low hypertrophy.  

Figure 2. Identification of genes associated to the severity of cardiac hypertrophy 

a. Histogram of the absolute values of the correlations between the FCs of genes expression 

and hypertrophy for all genes (blue, observed, red, randomized phenotype). Genes 

individual FCs are more correlated to hypertrophy than expected. Inset plot corresponds 

to the best observed correlation. 

b. The previous enrichment is assessed by computing the ratio of the area under the 

observed and randomized curve as a function of correlation cutoffs. Cutoffs are matched 

to the genes correlations ranked in decreasing order. The enrichment peaks at N=36 

genes, which defines the set of “FC” genes. 

c. Boxplot comparing the values of the absolute correlation with hypertrophy for the 2,538 

SAM genes resulting from a population-wide DEG study (see main text) and for the 36 

identified individual FC genes. FC genes have significantly higher correlation. 

d. Heatmap showing the 36 genes (columns) log fold-changes across strains (rows). The left 

column shows the degree of hypertrophy (yellow=low, dark blue=high). Hierarchical 

clustering shows a natural grouping of the strains by the severity of hypertrophy. 

e. Enrichment of 36 best FC genes in human disease genes from GWAS studies. The 15 

most enriched sets are shown. Red arrows indicate cardiac diseases (11/15). The 
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enrichment of the 36 best SAM genes is shown for comparison, with low enrichment in 

the found sets. 

f. Similar than g, for 36 SAM genes. These genes show enrichment in “Fibrosis”, a feature  

of structural remodeling during cardiac hypertrophy. 

Figure 3. FC genes are co-regulated and significantly connected to the cardiac hypertrophy 

signaling network (CHSN) 

a. Co-expression networks of the 36 best FC and SAM genes in healthy and post-ISO 

hypertrophic strains. Edges are drawn between two genes if the square Pearson 

correlation is greater than 0.1 (r2>0.1). The two modules segregate naturally using a force 

layout algorithm, showing that the modules have high clustering but only few links 

between themselves. Interestingly, Nppb (purple arrow) segregates with SAM genes, 

especially in ISO condition.   

b. The edge density of the FC module, the SAM module, and the FC to SAM edges is 

computed and compared to the density expected for random sets of nodes of the same 

size (see Methods). The corresponding Z scores are significantly high (Z > 2) for both 

modules, indicating high co-expression. However, there are significantly fewer links than 

expected between the two modules (Z < -2), indicating that they are disjoint in the co-

expression network, 

c. List of the 6 most enriched TF motifs in the -/+20kb regions around the 36 FC genes 

TSSs predicted using iRegulon (30). Interestingly, Snai3 (blue arrow) is a SAM gene and 

Hes1 (red arrow) a FC gene, suggesting a crosstalk between the two modules at the gene 

regulatory level.  
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d. Proportion of neighbors in the interactome that belong to the Cardiac Hypertrophy 

Signaling Network or CHSN (20) for different gene sets: the FC set (red arrow), the 36 

best SAM genes (blue arrow) and 1,000 realizations of random nodes in the interactome 

with the same size as the FC set (gray histogram). Z scores are computed relative to the 

gray distribution. The FC set is significantly connected to the CHSN, while the SAM 

genes are not significantly different than a random set. 

e. Network visualization of the CHSN (48), along with neighbors from the 36 best FC genes 

(red nodes). A more detailed interaction network is shown in Figure S5. 

 

Figure 4. Validation of Hes1 as a new cardiac hypertrophy regulator 

a. Hes1 mRNA expression following 48h after siRNA transfection in a control, 

isoproterenol or phenylephrine medium. Three siRNAs were used, a scrambled, control 

one and two Hes1 specific siRNAs. Both Hes1 siRNAs show systematic downregulation 

of Hes1 mRNA in all conditions. 

b. Effect of Hes1 knockdown on the known hypertrophic makers Nppa and Nppb. In both 

case, Hes1 knockdown leads to a significant change in biomarkers activation in 

isoproterenol and phenylephrine conditions (* p<0.05, *** p<1e-3, Student t-test).   

c.  Effect of Hes1 knockdown on cardiac cell size relative to control medium cell size. Both 

siRNAs lead to a drastic 80-90% decrease in hypertrophy in both isoproterenol and 

phenylephrine media.   

Figure S1. A network approach to expression filtering 

a. A Pearson correlation co-expression network of the genes FCs is constructed. Links with 

absolute value smaller than a given cutoff are eliminated, and the Largest Connected 
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Component (LCC) size is computed. A strong LCC size decrease is observed around a 

cutoff of 0.4.  

b. The derivative of the previous plot is shown. The cutoff of 0.5 corresponding to the end 

of the drop-off is selected to define 11,279 genes in the LCC. 

c. Examples of cardiac functionally relevant genes in and out of the LCC. Genes left out 

have either low expression (Calm4) or saturation issues (Tnnc1) which introduce noise in 

the correlation process.   

Figure S2. Effect of the pre-filtering on FC genes 

Same plots than Figure 2a, using the filtered set of genes (a), or the genes filtered out by the 

method from Figure S1 (b). This shows that the genes highly correlated to hypertrophy are 

extracted during the filtering process, while genes with low correlations are filtered out.  

 

Figure S3 Replicability of individual fold-changes 

a. Heatmap showing the fold-changes of the 36 hypertrophic genes for pairs of mice from 9 

replicated strains. 

b. The quality of replication is assessed by computing the Spearman correlation between the 

fold-changes of the 36 genes between replicated strains (red) and for random pairs of 

non-replicated strains (gray). The average correlation is 0.76, which is significantly 

higher than between two distinct strains where it is 0.14 (p=1.6e-7, Wilcoxon test). 

Figure S4 Pathway enrichment of neighbor genes in the interactome 

a,b. Pathway enrichment was assessed on first neighbor genes of the FC (a) and SAM (b) 

genes in the human Protein-Protein Interactome (33). The 10 most enriched pathways are 
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shown. FC neighbors are seen to be highly enriched in a previously published Cardiac 

Hypertrophy Signaling Network or CHSN (20).  

 

Figure S5. FC genes interaction with the CHSN 

Network visualization of the CHSN (gray nodes) and their first neighbors in the FC set (red) in 

the interactome (33).  Darker nodes from CHSN indicate interaction with a FC protein.  

 

Figure S6. Microscopic images of Hes1 siRNA assays in neonatal cardiac cell size 

Microscopic images of neonatal rat cardiomyocytes following transfection with either control or 

Hes1 siRNAs and a 48 hour treatment with control or isoproterenol or phenylepherine containing 

media. Scale bars show 100 μm. 

 

Figure S7. Hes1 in the HMDP 

Barplots comparing Heart mass (a) and Hes1 (b) fold-changes across HMDP strains as in Figure 

1h,k. Strains with no or mild hypertrophy show a negative fold-change of Hes1, an effect 

consistent with the Hes1 siRNA assay in neonatal rat cells of Figure 4c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120329doi: bioRxiv preprint 

https://doi.org/10.1101/120329


Tables 
Table 1 List of genes predicted with the individual Fold-Change analysis 

Rank Gene Correlati
on Known role from the literature 

1 Rffl -0.446656 Hypertension (49) 
2 Wdr1 0.415692 Cardiac Hypertrophy (50) 
3 Nppb 0.408886 Heart failure marker (51) 
4 Atp6v0a1 0.407205 Hypertension (52) 
5 Ankrd1 0.406246 Dilated cardiomyopathy (53) 
6 Eif4a1 0.404824  
7 Dtr (HB-EGF) 0.403043 Heart failure (54) 
8 Kcnip2 0.402246 Downregulated in hypertrophy  (23, 24, 26) 
9 Pcdhgc4 -0.402053  
10 Hes1 0.400076 Heart outflow tract development (55). 

Validation in the present study.  
11 4930504E06Rik 0.396189  
12 Akap9 -0.389713 LQT syndrome (56) 
13 2310022B05Rik 0.3897  
14 Bclaf1 -0.388563  
15 Ttc13 -0.387981  
16 Nipsnap3b 0.387325  
17 Gss 0.386407 Glutathione Synthetase, linked to cardiac 

abnormalities (57-59)  
18 Klhl23 -0.385625  
19 Tspan17 0.384865  
20 Tnni2 -0.383516  
21 Cab39l -0.381902  
22 Ptrf (Cavin-1) 0.381134 Dilated cardiomyopathy  (60)  
23 Dedd 0.378059  
24 9430041O17Rik 0.375683  
25 Fgf16 0.373829 Heart disease (61) 

26 Ehd2 0.372787 

Regulate cardiac membrane protein 
targeting (62). Interact with ankyrin-B 
(ANK2 gene whose mutation is associated 
with hypertrophic cardiomyopathy (63)) 

27 Ppp1r9a -0.372641 
Subunit of the same complex than 
PPP1R3A, involved in HF in human 
patients (64) 

28 Kremen 0.372366 
Interacts with Wnt signaling (65)  
Wnt signaling also plays a role in cardiac 
hypertrophy  (66) 
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29 Scara5 -0.372294  
30 Zfp523 -0.372223  
31 Nfatc1 0.371409 Cardiac hypertrophy (34) 

32 Corin -0.369546 
Cardiac protease that regulates blood 
pressure by activating natriuretic peptides, 
involved in cardiac hypertrophy(67) 

33 Prnpip1 0.369466  
34 Lrrc1 0.369161  
35 AW549877 -0.368865  
36 Mkrn3 -0.368269  
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Figure 3
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Figure 4

a

VALIDATION OF HES1 AS A NEW CARDIAC HYPERTROPHY REGULATOR

b Effect on known hypertrophic markersHes1 expression 48h after 
siRNA transfection

c Effect on cardiac 
cell size
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Figure S3

REPLICABILITY OF INDIVIDUAL FOLD-CHANGES
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Figure S4 Pathway enrichment of PPI neighbors
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Figure S5 FC genes interaction with the CHSN 
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Figure S6
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