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Abstract

Background: Metagenomic shotgun sequencing is becoming increasingly popular to study microbes
associated with the human body and in environmental samples. A key goal of shotgun metagenomic
sequencing is to identify gene functions and metabolic pathways that differ between samples or
conditions. However, current methods to identify function in the large number of reads in a high-
throughput sequence data file rely on the computationally intensive and low stringency approach of
mapping each read to a generic database of proteins or reference microbial genomes.

Results: We have developed an alternative analysis approach for shotgun metagenomic sequence data
utilizing Bowtie2 DNA-DNA alignment of the reads to a database of well annotated genes compiled from
human microbiome data. This method is rapid, and provides high stringency matches (>90% DNA
sequence identity) of shotgun metagenomics reads to genes with annotated functions. We demonstrate
the use of this method with synthetic data, Human Microbiome Project shotgun metagenomic data sets,
and data from a study of liver disease. Differentially abundant KEGG gene functions can be detected in
these experiments.
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Conclusions: Functional annotation of metagenomic shotgun sequence reads can be accomplished by
rapid DNA-DNA matching to a custom database of microbial sequences using the Bowtie2 sequence
alignment tool. This method can be used for a variety of microbiome studies and allows functional
analysis which is otherwise computationally demanding. This rapid annotation method is freely available
as a Galaxy workflow within a Docker image.
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Background
The collection of large scale metagenomic shotgun DNA sequence (MGS) data sets from microbial

communities associated with the environment, the human body (microbiome), or from other animals
has become common. The initial focus of metagenomics studies, such as the Human Microbiome Project
[1] was to survey the microbial species present in various sites on and in the human body, but the focus
of research has now shifted to understanding the functional role these microbes play in metabolic and
disease processes. Measurement of the taxonomic composition of metagenome samples by PCR and
amplicon sequencing of the 16S rDNA marker gene is inexpensive, but it is subject to bias and lacks
sensitivity below the species level. Individual bacterial isolates with identical 16S genes may differ by as
much as 15-30% in their genomes [2, 3], which may include toxin production, antimicrobial, or metabolic
genes. Shotgun sequencing of all DNA present in a biological sample can be used for computational
prediction of gene functions of sequenced DNA fragments to infer differences in the metabolic capacity
of microbial communities [4].

Existing bioinformatics tools to characterize MGS data are problematic due to the large computational
task of comparing millions of short reads (50 to 200 nucleotides in length) to various databases of
known proteins, conserved protein motifs, or annotated complete genomes. These databases typically
lack many of the gene/protein sequences from the actual microbial species present in microbiome
samples, which contain organisms that cannot be cultured. BLAST [5], is the most commonly used (and
the most sensitive) method to compare DNA sequences to a database but it requires hundreds of CPU
hours to analyze a typical MGS sample FASTQ data file containing hundreds of millions of reads.
Approaches to overcome this computational bottleneck have attempted to reduce the query data in
each data file by de-duplication, or by de novo assembly. However, these data reduction methods
themselves require substantial computational effort and can introduce bias. Other methods use faster,
but less sensitive sequence matching algorithms such as BLAT [6] or RAPSearch [7] and reduced
databases for functional protein identification, providing a less precise assay for microbial protein
function. The popular MG-RAST webserver implements a MGS pipeline that combines aspects from all of
these approaches [8], but it suffers from its own bottlenecks, since raw data must be uploaded over the
internet for processing, and it has a queue which can take several weeks.

Methods

We have created a computationally efficient pipeline for MGS analysis (MGS-Fast), which combines data
cleaning, removal of human sequences, profiling of taxonomic composition, and functional profiling of
microbial sequence fragments. The pipeline utilizes existing tools for quality control, sequence
trimming, taxonomy, and DNA sequence alignment; but applies them in a novel manner, using rapid
stringent DNA-DNA matching to previously annotated microbiome sequences to assign functions to MGS
reads. We have evaluated this annotation method on existing public metagenomic data sets, simulated
data from microbial and human genomes, and shotgun metagenomic data from the human liver disease
study of Qin et al [8].
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Datasets: Metagenomics datasets tested on the MGS-Fast pipeline were downloaded as lllumina FASTQ
files from the NCBI SRA for human skin (SRR1646957), oral (SRR769511), gut (SRR2822459), and two
synthetic bacterial communities (SRR3732372 and SRR172902). Human esophagus and oral samples
(dbGaP Study Accession: phs000260.v3.p2). Liver cirrhosis and healthy controls were obtained from
European Nucleotide Archive Study PRJIEB6337.

Additional data sets were downloaded from MG-RAST [9] for mouse gut (MG-RAST 4535626.3) and for
copper mine waste (MG-RAST 4664533.3). Simulated FASTQ data files were created from the human
GRCh38 reference genome and the E. coli K12 reference genome (GenBank: accession U00096.3) by
MetaSim [10] and a random DNA sequence was created in FASTQ format by XS simulator [11].

Data Analysis Pipeline: The MGS-Fast annotation method relies on a large database of metagenomic

DNA sequences built from the Integrated Gene Catalog (IGC) of the human gut microbiome [12] and the
Human Oral Microbiome Database (HOMD) [13]. This database contains de novo assemblies and
annotations of almost 10 million "genes" collected from 1267 public human gut microbiome samples
plus an additional 922 complete annotated prokaryotic genomes isolated and sequenced from human
samples. About half of the genes contain KEGG function IDs in their annotation [14].

Bowtie2 [15] was used for alignment of MGS reads to a database of sequences from IGC, producing
sequence matches at >90% identity at the default stringency (--end-to-end --sensitive). DNA-DNA
matches at this level of identity represent exact matches (DNA fragments from the same species) and
orthologs between closely related species [16], so functional annotations can be confidently transferred
from IGC/HOMD genes to a sequence reads in the MGS dataset.

The pipeline begins with a quality control check using FastQC [17], trimming of sequencing primers and
low quality sequence with Trimmomatic [18], and removal of human sequences by Bowtie2 alignment to
the human GRCh38 reference genome. All human genome sequence data filtered from the data files
was discarded from this study. The trimmed non-human reads are then processed both by MetaPhlAn
[19] to estimate the abundance of microbial taxa and by Bowtie2 alignment to the IGC/HOMD database
to assign KEGG protein function IDs to each read (Figure 1). The MGS-Fast pipeline can process a typical

MGS sample in about 4 hours on an 8 CPU Linux computer.

Figure 1. Flowchart representation of the MGS-Fast pipeline.
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The MGS-Fast metagenomics data analysis pipeline has been implemented within a Docker virtual
machine (VM) container [20], which has been made publicly available for installation on a variety of
computing environments. With this approach we provide easy access to a pre-configured version of the
data analysis pipeline (Suppl. 1), that does not required any installation other than downloading the
container (and reference data sets). The Docker VM can be run on a local computer, shared compute
cluster, or on-demand cloud computing platforms to scale data analysis. Our VM also provides a built-in
Galaxy server as a graphical web-based user interface to run the pipeline and managing the data inputs
and outputs. By starting the container and accessing the Galaxy interface (Figure 2 and Suppl. 1), users
can access individual bioinformatic tools or the complete MGS-Fast data pipeline, as well as simple tools
to import data and visualize analysis results.

Figure 2. The MGS-FAST pipeline implemented as a Galaxy workflow.
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Results

We evaluated Bowtie2 alignment of various metagenomics data sets and controls to the IGC/HOMD
database by the percentage of reads aligned (Table 1). A high percentage of aligned reads results in
annotation of many reads. Low alignment percentage leaves many reads unannotated, but is also
evidence of low false positives for a dataset that does not contain sequences from human microbiome
organisms. The MGS-Fast pipeline was developed for the analysis of human upper Gl tract samples,
where an average of 49% (SD 5.7) of FASTQ reads map to the IGC database. Human gut (fecal) samples
map to IGC at 95%, but human oral microbiome samples map at 38% and human skin at 35%.
Interestingly, mouse fecal samples map at 60%, so the difference in local environment has more effect
on the microbial community composition than host species. False positive matches were evaluated by
aligning a set of randomly generated DNA sequences as a FASTQ file generated by the XS simulator,
which had only 0.5% alignment. As a positive control, we mapped simulated reads from the E. coli K12
reference genome (GenBank: accession U00096.3) which aligned at 98.5%. Simulated FASTQ reads from
the human reference genome GRCh38 aligned at 7.3%, which was somewhat surprising, since the
construction of the IGC/HOMD database included a step to filter out human sequences. A metagenomic
sample from copper mine waste (MG-RAST accession 4664533.3) aligned at only 8.69%, and a synthetic
metagenome (SRR3732372) made from a mixture of DNA from lab strains of bacteria aligned at 9.75%.
The HMP mock community (SRR172902) mapped at 28.8%.
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Table 1. Alignment of FASTQ reads to the IGC catalog with Bowtie2.

Source of Sample Sample ID Percent Alignment to IGC with
Bowtie2
Human gut metagenome SRR2822459 95.62
Mouse gut metagenome MG-RAST 4535626.3 89.71
Human oral metagenome SRR769511 37.97
Human esophagus metagenome (dbGaP phs000260.v3.p2) 49.36% (SD 5.7)
Human skin metagenome SRR1646957 35.81
Human genome GRCh38 FASTQ simulated by 7.35
MetaSim (an estimate of false positives)
E coli K12 genome FASTQ simulated by 98.5
MetaSim
Synthetic microbial community SRR3732372 9.75
HMP Mock Community SRR172902 28.82
Copper Mine waste MG-RAST 4664533.3 8.69
Random simulated genomic generated by XS simulator 0.53
sequence

The MGS-Fast pipeline was applied to 10 liver cirrhosis and 10 control samples from the study by Qin et
al [8] (Figure 3). MGS reads were aligned to IGC/HOMD genes and assigned the corresponding KEGG IDs,
producing gene function abundance counts for each sample. Following the recommendations of
McMurdie and Holmes [21], this data was analyzed as a mixture model with a Negative Binomial
distribution, so the between group differences of KEGG ID abundances can be calculated with edgeR
software [22]. A total of 502 KEGG IDs are significantly different (FDR corrected p-values > 0.05)
between 10 liver cirrhosis and 10 control samples, (KEGG abundance scores, fold change and FDR
corrected p-values are shown in Suppl. Table 2).
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Figure 3. Diseased vs. Healthy Liver KEGG Abundance Plot
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Discussion

Our goal for this method is to process MGS samples with a light computational load, and produce
reliable functional mappings for metagenomic DNA sequence reads. Carr and Borenstein [23] compared
MGS annotation using BLAST vs. BWA (a DNA sequence similarity tool very similar to Bowtie) and they
conclude that at short evolutionary distances, BWA has a higher precision and recall than BLAST for
identifying KEGG orthologs, but recall and precision for BWA drops dramatically at greater evolutionary
distances. Bowtie2 is stringent in finding matches between reads and a target DNA database, requiring
about 90% DNA sequence identity, but it is less sensitive than translated BLAST, which can utilize
information from conservative amino acid substitutions. It is possible to increase the sensitivity of our
method by changing the Bowtie2 parameters, such as "--very-sensitive-local” or increasing the number
of allowed mismatches. However, less stringent DNA-DNA alignments will create more false positives,
and will make the assignment of metabolic function to MGS reads less reliable.

With our Docker virtual machine, we provide a pre-configured and ready-to-execute sequencing
informatics solution that can be installable, replicated, and reused across computing platforms of all
scales from institution-wide compute clusters and clouds to small data centers, or even laboratories that
have only personal desktop computers.

Annotation of MGS reads with Bowtie2 requires a comprehensive database of annotated bacterial DNA
sequences that are closely related to the species present in the sample. We provide a FTP/http server
with a copy of the IGC database for human gut microbes in both FASTA and Bowtie2 index format
(http://www.hpc.med.nyu.edu/~browns02/meta/). We have available a complete package that includes
the hg38 in FASTA and Bowtie2 index format, IGC in FASTA and Bowtie2 format and sample datasets
(http://bioitcore.hunter.cuny.edu:9988/metagenomics_package.tar.gz). Investigators that are working

with samples very different from human gut can create their own custom database of genes by de novo
assembly of multiple individual shotgun data sets and annotation of the genes found in these
assemblies. Then a custom database of microbial genes can serve as a bridge between the FASTQ reads
from each sample and the gene functions, increasing accuracy and reducing compute time for functional
assignment of reads in new samples. A public reference collection of microbiome gene catalogs for
many human body sites could be used to greatly accelerate microbial functional analysis by
metagenomic shotgun sequencing.
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Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; MGS, Metagenomics Shotgun
sequencing, HMP, Human Microbiome Project; IGC, Integrated Gene Catalog of the human gut
microbiome

Figure Legends

Figure 1. Flowchart representation of the MGS-Fast pipeline. Raw data as shotgun sequence FASTQ files
is QC checked by FASTQC, then adapters and low quality sequences are removed by Trimmomatic.
Human sequences are removed by Bowtie2 alignment to the human reference genome. The non-human
reads are then processed by MetaPhaAn to estimate the abundance of microbial taxa and also by
Bowtie2 alighment to the IGC/HOMD database to assign KEGG protein function IDs.

Figure 2. The MGS-FAST pipeline implemented as a Galaxy workflow.
Table 1. Alignment of FASTQ reads to the IGC catalog with Bowtie2.
Figure 3. Diseased vs. Healthy Liver KEGG Abundance Plot
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samples.
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