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Abstract	

How	do	large-scale	brain	networks	reorganize	during	the	waxing	and	waning	of	anxious	anticipation?	
Here,	threat	was	dynamically	modulated	during	functional	MRI	as	two	circles	slowly	meandered	on	the	
screen;	if	they	touched,	an	unpleasant	shock	was	delivered.	We	employed	intersubject	network	analysis,	
which	allows	the	investigation	of	network-level	properties	“across	brains,”	and	sought	to	determine	how	
network	properties	changed	during	periods	of	approach	(circles	moving	closer)	and	periods	of	retreat	
(circles	moving	apart).	Dynamic	threat	altered	network	cohesion	across	the	salience,	executive,	and	task-
negative	networks,	as	well	as	subcortical	regions.	Functional	connections	between	subcortical	regions	
and	the	salience	network	also	increased	during	approach	vs.	retreat,	including	the	putative	
periaqueductal	gray,	habenula,	and	amygdala,	showing	that	the	latter	is	involved	under	conditions	of	
relatively	prolonged	and	uncertain	threat	(the	bed	nucleus	of	the	stria	terminalis	was	observed	during	
both	approach	and	retreat).	Together,	our	findings	unraveled	dynamic	properties	of	large-scale	networks	
across	participants	while	threat	levels	varied	continuously,	and	demonstrate	the	potential	of	
characterizing	emotional	processing	at	the	level	of	distributed	networks.	
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Introduction	

Imagine	yourself	reclining	on	a	dentist’s	chair.	Most	of	us	experience	an	aversive	reaction	to	the	onset	of	

the	drill,	and	wait	anxiously	for	the	moment	the	dentist	will	finish	checking	it	and	move	it	toward	our	

mouth.	Understanding	the	brain	basis	of	anxious	anticipation	is	important	not	only	from	a	basic	research	

perspective,	but	because	aberrant	responding	to	uncertain	future	negative	events	is	believed	to	be	

central	to	anxiety	disorders	(Grupe	and	Nitschke,	2013,	Fox	and	Kalin,	2014).	A	growing	literature	of	both	

non-human	and	human	research	indicates	that	anticipatory	processing	of	negative	events	engages	

multiple	brain	regions	(Davis	et	al.,	2010a,	Grupe	and	Nitschke,	2013,	Tovote	et	al.,	2015),	including	

medial	prefrontal	cortex,	insula,	and	orbitofrontal	cortex,	cortically.	Subcortically,	implicated	regions	

include	the	amygdala,	periaqueductal	gray	(PAG),	and	the	bed	nucleus	of	the	stria	terminalis	(BNST);	the	

latter	has	received	considerable	attention	in	the	past	decade	(see	Davis	et	al.,	2010b,	Fox	et	al.,2015).	

Despite	recent	progress,	important	questions	remain	largely	unanswered.	First,	how	does	anxious	

anticipation	engage	and	reorganize	large-scale	brain	networks?	We	propose	that	emotional	processing	

needs	to	be	characterized	at	the	level	of	distributed	networks	(Pessoa,	in	press),	and	not	just	at	the	level	

of	evoked	responses	in	specific	brain	regions	(such	as	the	amygdala	or	BNST).	Along	these	lines,	Hermans	

and	colleagues	(Hermans	et	al.,	2011)	described	greater	salience-network	connectivity	during	periods	of	

anxiety	associated	with	watching	an	aversive	movie.	In	a	previous	study,	we	investigated	network	

interactions	when	participants	were	in	either	threat	(unpredictable	mild	shocks	could	be	administered)	or	

safe	(no	shocks	possible)	blocks	(McMenamin	et	al.,	2014).	We	found	that	the	salience	network	exhibited	

a	transient	increase	(following	block	onset)	in	network	cohesion	(that	is,	within-network	functional	

connections	increased)	followed	by	decreased	cohesion	during	a	subsequent	sustained	period.	Our	study	

thus	revealed	changes	to	network	organization	during	transient	and	sustained	periods	of	threat.	

Second,	anxious	anticipation	is	inherently	temporal.	Although	previous	studies	have	investigated	

how	brain	responses	are	sensitive	to	threat	proximity	(Mobbs	et	al.,	2010,	Somerville	et	al.,	2010,	Grupe	

et	al.,	2013),	almost	nothing	is	known	about	how	patterns	of	brain	co-activation	(thus	networks)	change	

during	dynamic	manipulations	of	threat.	For	instance,	although	in	our	previous	study	(McMenamin	et	al.,	

2014)	we	characterized	temporal	aspects	of	network	organization,	threat	itself	was	essentially	constant	

(blocked).	

To	address	these	important	gaps	in	the	literature,	we	modulated	threat	dynamically	during	

functional	MRI	scanning.	Two	circles	moved	on	the	screen	for	periods	of	60	seconds,	sometimes	moving	

closer	and	sometimes	moving	apart	(Fig.	1).	If	they	touched,	an	unpleasant	shock	was	delivered	to	the	

participant.	We	sought	to	determine	how	network	properties	changed	during	periods	of	approach	(circles	
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moving	closer)	and	periods	of	retreat	(circles	moving	apart).	As	in	our	previous	study	(McMenamin	et	al.,	

2014),	we	studied	a	set	of	regions	spanning	the	salience,	executive,	and	task-negative	networks,	given	

their	involvement	in	cognitive	and	emotional	processing	(Yeo	et	al.,	2011).	In	addition,	we	investigated	a	

number	of	subcortical	regions,	many	of	which	feature	prominently	in	studies	of	the	emotional	brain	

(Pessoa,	in	press).	

We	investigated	the	questions	of	interest	within	the	framework	of	intersubject	correlation	

analysis	(Hasson	et	al.,	2004).	In	this	framework,	time	series	data	from	voxels	or	regions	of	interest	(ROI)	

are	correlated	across	participants	to	determine	“interpersonal	synchronization”	(Fig.	2A).	Intersubject	

correlation	is	believed	to	reflect	synchronization	of	mental	states	that	are	not	simply	explained	by	

common	evoked	responses	to	perceptual	features	or	cognitive	demands15,1617,18.			

Overall,	our	approach	allowed	us	to	test	several	questions	about	the	brain	basis	of	anxious	

anticipation.	1)	How	does	dynamic	threat	reorganize	the	functional	organization	of	large-scale	brain	

networks?	2)	How	do	network	properties	evolve	during	periods	of	threat	approach	and	retreat?	In	

particular,	we	sought	to	test	the	hypothesis	that	network	organization	evolves	temporally	during	threat	

processing	and	that,	for	instance,	salience-network	cohesion	increases/decreases	with	threat	

approach/retreat	(Pessoa	and	McMenamin,	2016).	3)	What	is	the	relationship	between	cortical	and	

subcortical	regions	important	for	threat	processing	during	dynamic	threat?	4)	How	are	the	amygdala	and	

BNST	involved	in	anxious	anticipation?	This	question	is	important	because,	in	particular,	it	is	unclear	

if/how	the	amygdala	is	involved	in	conditions	involving	relatively	prolonged	and	uncertain	threat	periods.	

The	role	of	the	BNST	also	remains	unclear,	as	some	have	advocated	that	threat	unpredictability	is	a	

critical	determinant	of	its	involvement	(Alvarez	et	al.,	2011).	
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Materials	and	Methods	

Participants	

Eighty-five	participants	(41	females,	ages	18-40	years;	average:	22.62,	STD:	4.85)	with	normal	or	

corrected-to-normal	vision	and	no	reported	neurological	or	psychiatric	disease	were	recruited	from	the	

University	of	Maryland	community	(of	the	original	sample	of	93,	data	from	7	subjects	were	discarded	due	

to	technical	issues	during	data	transfer	[specifically,	field	maps	were	lost]	and	1	other	subject	was	

removed	because	of	poor	structural-functional	alignment).	The	project	was	approved	by	the	University	of	

Maryland	College	Park	Institutional	Review	Board	and	all	participants	provided	written	informed	consent	

before	participation.	

	

Procedure	and	Stimuli	

To	create	anxious	states,	two	circles	with	different	colors	moved	around	on	the	screen	randomly.	When	

they	collided	with	each	other,	an	unpleasant	mild	electric	shock	was	delivered.	Overall,	the	proximity	and	

relative	velocity	of	the	circles	were	used	to	influence	the	threat	state.	The	position	of	each	circle	(on	the	

plane),	𝒙",	was	defined	based	on	its	previous	position,	𝒙"#$,	plus	a	random	displacement,	∆𝒙":	

	

𝒙"	=	𝒙"#$	+	∆𝒙"	

The	magnitude	and	direction	of	the	displacement	was	calculated	by	combining	a	normal	random	

distribution	with	a	momentum	term	to	ensure	motion	smoothness,	while	at	the	same	time	remaining	

(relatively)	unpredictable	to	the	participants.	Specifically,	the	displacement	was	updated	every	50	ms	as	

follows:		

	

𝚫𝒙" = (1 − 𝑐)𝚫𝒙"#$ + 	𝑐N(0, σ)	

where	𝑐 = 0.2	and	N(0, σ)	indicates	the	normal	distribution	with	0	mean	and	standard	deviation	1.	The	

position	and	amount	of	displacement	of	each	circle	was	updated	independently.	

Visual	stimuli	were	presented	using	PsychoPy	(http://www.psychopy.org/)	and	viewed	on	a	

projection	screen	via	a	mirror	mounted	to	the	scanner’s	head	coil.	The	total	experiment	included	6	runs,	

each	of	which	had	6	blocks	(3/85	participants	had	only	5	runs).	In	each	block,	the	circles	appeared	on	the	

screen	and	moved	around	for	60	seconds;	blocks	were	preceded	by	a	15-second	blank	screen.	Each	run	

ended	with	7	seconds	of	a	blank	screen.	

To	ensure	that	the	effects	of	threat	proximity	and	approach	were	uncorrelated,	half	of	the	blocks	

in	each	run	were	the	temporally	reversed	versions	of	the	other	blocks	in	that	run.	Temporally	reversing	
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the	stimulus	trajectories	guarantees	that	that	proximity	and	approach	are	uncorrelated	because	reversing	

time	changes	the	sign	of	the	approach	effect	(that	is,	approach	becomes	retreat).	

In	each	of	the	6	runs	the	circles	collided	a	total	of	8	times	in	4	out	of	the	6	blocks	(3	shocks	

maximum	per	block);	each	collision	resulted	in	the	delivery	of	an	electric	shock.	The	500-ms	electric	shock	

was	delivered	by	an	electric	stimulator	(Coulbourn	Instruments,	PA,	USA)	to	the	fourth	and	fifth	fingers	of	

the	non-dominant	left	hand	via	MRI-compatible	electrodes.	To	calibrate	the	intensity	of	the	shock,	each	

participant	was	asked	to	choose	his/her	own	stimulation	level	immediately	prior	to	functional	imaging,	

such	that	the	stimulus	would	be	“highly	unpleasant	but	not	painful.”	After	each	run,	participants	were	

asked	about	the	unpleasantness	of	the	stimulus	in	order	to	re-calibrate	shock	strength,	if	needed.		

To	optimize	the	experimental	design,	10,000	candidate	stimuli	trajectories	and	block	orders	were	

generated.	We	then	selected	6	runs	which	minimized	collinearity	between	all	predictors	of	interest	(see	

below),	measured	as	the	sum	of	respective	variance	inflation	factors	(Neter	et	al.,	1996).	

	

Stimulus	Conditions		

We	defined	two	conditions,	“approach”	and	“retreat,”	based	on	whether	the	circles	were	moving	toward	

or	away	from	each	other.	Time	points	were	only	considered	for	analysis	if	the	Euclidian	distance	between	

the	circles	was	at	least	75%	of	the	maximum	distance	that	the	circles	would	exhibit	during	the	whole	

experiment;	otherwise,	the	data	were	not	employed	in	the	analysis.	The	rationale	behind	this	was	that,	

when	the	circles	were	far	from	each	other,	participants	reported	that	they	did	not	really	pay	as	much	

attention	to	them.	Therefore,	we	reasoned	that	the	analysis	should	focus	on	the	time	points	during	which	

the	circles	were	in	(relative)	closer	proximity	to	each	other.	Investigation	of	the	exploratory	set	revealed	

that	the	particular	cutoff	was	not	critical	for	the	effects	investigated	(in	the	exploratory	set	only)	and	that	

values	at	least	between	65%	and	85%	were	adequate;	based	on	the	exploratory	set	results	we	chose	a	

cutoff	value	of	75%.	

	

MRI	data	acquisition	

Functional	and	structural	MRI	data	were	acquired	using	a	3T	Siemens	TRIO	scanner	with	a	32-channel	

head	coil.	First,	a	high-resolution	T2-weighted	anatomical	scan	using	Siemens’s	SPACE	sequence	(0.8	mm	

isotropic)	was	collected.	Subsequently,	we	collected	457	functional	EPI	volumes	using	a	multiband	

scanning	sequence	(Feinberg	et	al.,	2010)	with	TR	=	1.0	sec,	TE	=	39	ms,	FOV	=	210	mm,	and	multiband	

factor	=	6.	Each	volume	contained	66	non-overlapping	oblique	slices	oriented	30°	clockwise	relative	to	the	

AC-PC	axis	(2.2	mm	isotropic).	In	addition,	a	high-resolution	T1-weighted	MPRAGE	anatomical	scan	(0.8	
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mm	isotropic)	was	collected.	Finally,	double-echo	field	maps	(TE1	=	4.92	ms,	TE2	=	7.38	ms)	were	

acquired	with	acquisition	parameters	matched	to	the	functional	data.	

	

Functional	MRI	preprocessing	

To	preprocess	the	functional	and	anatomical	MRI	data,	a	combination	of	packages	and	in-house	scripts	

were	used.	The	first	three	volumes	of	each	functional	run	were	discarded	to	account	for	equilibration	

effects.	Slice-timing	correction	(with	AFNI’s	3dTshift)	used	Fourier	interpolation	to	align	the	onset	times	

of	every	slice	in	a	volume	to	the	first	acquisition	slice,	and	then	a	six-parameter	rigid	body	transformation	

(with	AFNI’s	3dvolreg)	corrected	head	motion	within	and	between	runs	by	spatially	registering	each	

volume	to	the	first	volume.		

Skull	stripping	determines	which	voxels	are	to	be	considered	part	of	the	brain	and,	although	

conceptually	simple,	plays	a	very	important	role	in	successful	subsequent	co-registration	and	

normalization	steps.	Currently,	available	packages	perform	sub-optimally	in	specific	cases,	and	mistakes	in	

the	brain-to-skull	segmentation	can	be	easily	identified.	Accordingly,	to	skull	strip	the	T1	high-resolution	

anatomical	image	(which	was	rotated	to	match	the	oblique	plane	of	the	functional	data	with	AFNI’s	

3dWarp),	we	employed	six	different	packages	(ANTs	(Avants	et	al.,	2011),	AFNI	(Cox,	1996;	

http://afni.nimh.nih.gov/):	http://afni.nimh.nih.gov/,	ROBEX	(Iglesias	et	al.,	2011):	

https://www.nitrc.org/projects/robex),	FSL:	http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/,	SPM:	

http://www.fil.ion.ucl.ac.uk/spm/,	and	Brainsuite	(Shattuck	and	Leahy,	2002)	and	employed	a	“voting	

scheme”	as	follows:	based	on	T1	data,	a	voxel	was	considered	to	be	part	of	the	brain	if	4/6	packages	

estimated	it	to	be	a	brain	voxel;	otherwise	the	voxel	was	not	considered	to	be	brain	tissue	(for	6	subjects	

whose	T1	data	were	lost	due	to	issues	during	data	transfer,	the	T2	image	was	used	instead	and	only	the	

ANTs	package	was	used	for	skull-stripping).		

Subsequently,	FSL	was	used	to	process	field	map	images	and	create	a	phase-distortion	map	for	

each	participant	(bet	and	fsl_prepare_fieldmap).	FSL’s	epi_reg	was	then	used	to	apply	boundary-based	

co-registration	to	align	the	unwarped	mean	volume	registered	EPI	images	with	the	skull-stripped	

anatomical	image	(T1	or	T2)	along	with	simultaneous	EPI	distortion-correction	(Greve	and	Fischl,	2009).		

Next,	ANTS	was	used	to	determine	a	nonlinear	transformation	that	mapped	the	skull-stripped	

anatomical	image	(T1	or	T2)	to	the	MNI152	template	(interpolated	to	1-mm	isotropic	voxels).	Finally,	

ANTS	combined	the	nonlinear	transformations	from	co-registration/unwarping	(from	mapping	mean	

functional	EPI	images	to	the	anatomical	T1	or	T2)	and	normalization	(from	mapping	T1	or	T2	to	the	MNI	

template)	into	a	single	transformation	that	was	applied	to	map	registered	functional	volumes	of	
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functional	data	to	standard	space	(interpolated	to	2-mm	isotropic	voxels).	In	this	process,	ANTS	also	

utilized	the	field	maps	to	simultaneously	minimize	EPI	distortion.		

		

Time	series	data	

As	we	sought	to	characterize	patterns	of	co-activation,	time	series	data	were	initially	processed	so	as	to	

remove	the	estimated	contributions	of	the	paradigm.	To	do	so,	we	ran	multiple	linear	regression	(with	

AFNI’s	3dDeconvolve)	on	the	preprocessed	functional	data	with	the	goal	of	estimating	the	residual	time	

series	after	the	inclusion	of	the	following	regressors:	proximity,	velocity,	velocity	x	proximity,	and	visual	

motion.	The	regressors	were	determined	based	on	the	circle	positions	on	the	screen.	Proximity	was	

defined	as	the	Euclidean	distance	between	the	two	circles.	Velocity	was	the	discrete	temporal	difference	

of	proximity.	The	visual	motion	regressor	was	defined	as	the	velocity	tangential	to	the	difference	vector	

of	the	combined	circle-to-circle	stimulus,	and	was	calculated	by	multiplying	the	angular	velocity	of	the	

difference	vector	by	the	proximity	(and	accounted	for	motion	energy	orthogonal	to	the	relative	motion	

between	the	circles).		

For	each	run,	the	regressors	were	obtained	by	first	decimating	the	20	Hz	sample	rate	of	stimuli	

information	(used	to	compute	circle	paths)	to	the	TR	sample	rate	(1	Hz).	Within	each	run,	the	regressors	

were	mean-centered	to	reduce	collinearity	between	simple	effects	(proximity,	velocity)	and	the	velocity	x	

proximity	interaction	term,	and	convolved	with	a	standard	hemodynamic	response	based	on	the	gamma-

variate	model	(Cohen,	1997).	In	addition,	we	regressed	out	any	potential	block-sustained	activation	by	

including	a	regressor	representing	the	blocks	(60-second	duration),	which	was	convolved	with	the	

standard	hemodynamic	response.	Other	regressors	included	in	the	model	comprised	6	motion	

parameters	(3	linear	displacements	and	3	angular	rotations),	and	their	discrete	temporal	derivatives.	

Additionally,	to	model	baseline	and	drifts	of	the	MR	signal,	regressors	corresponding	to	polynomial	terms	

up	to	4th	order	were	included	(for	each	run	separately).	To	minimize	the	shock	effect,	data	points	in	a	15-

sec	window	after	shock	delivery	were	discarded	from	all	analyses.	Finally,	the	residual	time	series	for	each	

run	were	z-scored	separately.	

The	residual	time	series	as	defined	above	was	used	for	the	intersubject	network	analysis,	whose	

main	goal	was	to	characterize	networks	during	approach	and	retreat	conditions,	and	contrast	them.	As	

specified	above,	approach	and	retreat	varied	dynamically	throughout	the	blocks.	Therefore,	we	employed	

a	windowing	procedure	to	extract	data	segments	corresponding	to	the	conditions	of	interest.	Intuitively,	

the	windowing	allowed	us	to	select	segments	of	the	time	series	associated	with	each	condition	and	

concatenate	them	across	all	runs,	generating	a	final	concatenated	times	series	for	each	condition.	First,	
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for	each	block,	the	first	15	time	points	(15	seconds)	were	discarded,	to	minimize	contributions	from	block	

onset.	Segment	type	was	determined	by	considering	the	velocity	regressors	(which	determined	approach	

vs.	retreat).	Specifically,	transitions	in	the	sign	of	the	velocity	regressor	indicated	the	start	of	a	segment	

type	(approach	or	retreat),	to	which	a	5-second	lag	was	added	to	account	for	hemodynamics.	

Furthermore,	based	on	the	75%	cutoff	described	earlier,	data	were	discarded	based	on	proximity	data;	in	

other	words,	we	only	considered	data	in	the	“75%	near	space.”	Finally,	all	the	time	points	across	all	blocks	

and	runs	assigned	to	each	condition	were	concatenated	for	that	condition,	and	constituted	the	time	

series	data	for	the	condition.	

	

Exploratory	and	test	sets		

The	total	dataset	was	subdivided	into	“exploratory”	and	“test”	sets.	The	idea	was	to	use	the	exploratory	

set	to	fix	specific	processing	choices;	with	the	entire	processing	pipeline	fixed,	statistical	testing	was	then	

applied	to	separate	data	in	the	test	set.	The	size	of	the	exploratory	set	(N=37)	was	determined	arbitrarily	

and	based	on	splitting	the	data	available	at	a	certain	date	during	the	data	acquisition	process;	as	scanning	

continued	for	a	bit	longer,	the	test	set	contained	a	larger	number	of	participants	(N=48;	the	original	goal	

being	to	have	approximately	50	participants).	To	reiterate,	the	results	reported	here	are	based	on	the	test	

set	alone;	thus,	processing	choices	were	not	optimized	or	tuned	to	the	test	sample,	by	design.	

	

Regions	of	interest	(ROIs)	

We	investigated	three	networks	widely	studied	in	the	literature:	salience,	executive,	and	task	negative.	

From	these	networks,	we	employed	cortical	ROIs	(defined	as	5-mm	radius	spheres)	based	on	the	center	

coordinates	provided	by	previous	studies:	salience	network	(Hermans	et	al.,	2011)	(13	regions),	executive	

network	(Seeley	et	al.,	2007)	(12	regions),	and	task-negative	network	(Fox	et	al.,	2005)	(12	regions).		

Based	on	our	goal	of	investigating	threat/anxiety,	we	included	additional	subcortical	ROIs:	

amygdala,	hippocampus,	cerebellum,	PAG,	habenula,	and	BNST.	For	the	amygdala,	we	considered	the	

subregions	defined	by	the	Nacewicz	et	al.	(Nacewicz	B.M.,	2014)	parcellation,	specifically:	lateral	

amygdala;	basolateral/medial	amygdala;	cortical	nucleus	plus	amygdalo-hippocampal	area;	central	plus	

medial	nuclei.	For	the	hippocampus,	we	focused	on	its	anterior	portion	because	the	rodent	literature	has	

implicated	the	ventral	hippocampus	(believed	to	correspond	to	the	anterior	part	in	humans)	in	anxiety-

related	processing	(Bannerman	et	al.,	2004).	The	hippocampus	ROI	was	defined	by	usinsg	the	

hippocampus	mask	from	FreeSurfer	and	cutting	it	at	the	y	=	+21	plane	(MNI	coordinates).	For	the	

cerebellum,	a	meta-analysis	indicated	that	Lobules	I-IV	and	Crus	II	were	involved	in	emotion-related	
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processing	(Riedel	et	al.,	2015).	Masks	for	these	regions	were	obtained	from	the	cerebellum	parcellation	

available	in	FSL	(Diedrichsen	et	al.,	2009)	(called	VIIa	Crus	II	region	in	the	FSL	atlas).	For	the	PAG,	we	

modified	the	mask	by	(Roy	et	al.,	2014),	which	was	dilated	by	1	voxel;	in	addition,	we	manually	removed	

the	voxels	that	extended	above/below	the	superior/inferior	limits	of	the	original	ROI,	and	those	

overlapping	cerebrospinal	fluid.	The	habenula	has	been	implicated	in	emotional/motivational	processing	

(Hikosaka,	2010),	and	here	we	employed	a	mask	defined	according	to	the	Morel	atlas,	as	defined	in	

(Krauth	et	al.,	2010).	For	the	BNST,	we	employed	a	recently	developed	mask	based	on	7	Tesla	data	but	

defined	having	in	mind	3	Tesla	data	(Theiss	et	al.,	2017).		

If	two	cortical	or	subcortical	ROIs	abutted	each	other,	each	mask	was	eroded	by	1	voxel	from	the	

touching	boundary	to	minimize	any	potential	data	“spill	over.”	The	exceptions	to	this	rule	were	the	

amygdala	subregions,	BNST,	and	habenula,	because	of	their	very	small	volume.		

Based	on	exploratory	set	results,	for	test	set	inferences,	we	focused	on	the	following	subcortical	

ROIs:	right	lateral	amygdala;	right	PAG,	right	habenula,	left	cerebellum	crus	and	right	BNST.	For	

completeness,	and	to	foster	cross-study	continuity,	we	include	in	Supplementary	Figs.	1-3	results	from	all	

regions	investigated	in	the	exploratory	set.	

	

Intersubject	functional	network	

In	previous	intersubject	studies,	two	approaches	have	been	used.	First,	the	time	series	of	an	ROI	(or	

voxel)	in	one	subject	is	correlated	with	time	series	data	of	the	same	ROI	(or	voxel)	in	the	remaining	

subjects	(for	example,	it	can	be	correlated	with	the	average	ROI	time	series	data	across	the	“remaining”	

subjects),	yielding	a	resulting	intersubject	correlation	map	(Hasson	et	al.,	2004).	Second,	intersubject	

seed-based	analysis	can	be	performed,	in	which	the	time	series	of	an	ROI	in	one	subject	is	correlated	with	

time	series	data	of	a	group	of	ROIs	(or	voxels)	of	other	subjects	(Simony	et	al.,	2016).	

A	simple,	yet	powerful	extension	is	to	consider	intersubject	correlations	across	all	pairs	of	ROIs,	

which	allows	the	application	of	the	technique	to	networks.	The	procedure	to	generate	an	intersubject	

network	is	specified	in	Fig.	7.	For	a	given	ROI,	first	a	subject’s	s	data	is	held	out	(𝒚6),	and	the	rest	of	the	

subjects’	time	series	is	averaged	(𝒚#6).	Then,	the	Pearson	correlation	between	the	left-out	data	and	the	

corresponding	data	in	the	remaining	subjects	is	computed:	corr(𝒚6, 𝒚#6).	This	basic	operation	is	repeated	

for	all	pairs	of	ROIs	to	compute	an	intersubject	network	for	the	held-out	subject	(ISNS).	(For	compactness,	

all	of	the	ROI	time	series	are	stacked	into	a	matrix	Y	in	the	algorithm	of	Fig.	7.)	Thus,	the	ISNS	is	an	𝑁x𝑁	

matrix,	where	N	is	the	number	of	ROIs,	and	the	ij-th	matrix	element	contains	the	correlation	coefficient	
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between	the	i-th	ROI	time	series	of	the	held-out	subject	and	the	average	of	time	series	of	the	j-th	ROI	of	

the	remaining	subjects.		

This	procedure	is	then	repeated	for	all	subjects.	A	group	matrix	(ISNG)	is	then	obtained	by	

averaging	across	all	subjects.	Note	that	the	resulting	intersubject	network	is	not	necessarily	symmetric,	

because,	for	each	ROI,	the	time	series	in	the	held-out	subject	(𝒚6)	is	not	necessarily	equal	to	average	of	all	

other	subjects’	time	series	(𝒚#6).	While	the	ISNG	matrix	in	practice	will	be	near	symmetric,	a	simple	and	

intuitive	way	to	mathematically	accomplish	symmetry	is	to	average	the	group-level	intersubject	network	

with	its	transpose	(where	row	and	column	indexes	are	flipped),	leading	to	a	final	symmetric	group	matrix.	

Finally,	the	procedures	above	were	performed,	separately,	for	the	approach	and	retreat	conditions	

generating	the	matrices	ISNG,APPROACH	and	ISNG,RETREAT.	Finally,	note	that	in	our	method	the	diagonal	is	also	

computed	because	data	at	a	given	diagonal	entry	{i,i}	is	computed	across	different	brains.	

	

Dynamic	intersubject	networks	

Considering	all	data	points	simultaneously,	as	done	thus	far,	gives	us	a	static	understanding	of	

intersubject	networks.	Here,	we	sought	to	investigate	dynamic	aspects	of	network	organization.	To	do	so,	

we	computed	intersubject	networks	at	each	time	t	and	investigated	how	network	properties	changed	

across	segments	of	approach	and	retreat.	Thus,	for	each	segment	type	(approach	and	retreat,	

separately),	we	considered	all	of	the	𝑡 = 0	time	points,	then	𝑡 = 1	time	points,	and	so	on,	separately.	The	

goal	was	to	generate	a	time	series	of	data	at	𝑡 = 0	by	concatenating	all	of	the	𝑡 = 0	data	across	

segments.	To	do	so,	we	concatenated	the	𝑡 = 𝑘	points	(for	a	fixed	k)	across	segments	(Fig.	8).	To	account	

for	the	hemodynamic	delay,	we	discarded	the	first	5	seconds	of	each	segment.	In	this	manner,	we	

determined	ISNt=0,	ISNt=1,	and	so	on.	We	considered	intersubject	networks	for	at	𝑡 = 0, … ,6	for	the	

approach	condition	(circles	moving	closer	to	each	other)	and	𝑡 = 0, … ,5	for	the	retreat	condition	(circles	

are	moving	away	from	each	other).	This	was	done	such	that	at	least	20	data	points	were	available	per	

condition	and	time	“slices”	(note	that	less	data	was	available	for	the	retreat	condition,	as	some	points	

were	discarded	following	shock	events).	

	

Within-	and	between-network	cohesion	

To	measure	the	strength/cohesion	of	connections	within	and	between	networks,	we	utilized	within-	and	

between-network	degree,	respectively.	The	cohesion	between	network	𝑁$	and	network	𝑁=,	𝐶?@,?A ,		was	

defined	as	follows:	
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𝐶?@,?A =
1

𝑁?@𝑁?A
𝐴CD

C∈?@,D∈?A

	

where	𝑁?@ is	the	number	of	ROIs	in	network	𝑁$,	and	𝑁?A 	is	the	number	of	ROIs	in	network	𝑁=.	𝐴CD 	is	the	

ISNG	value	between	i-th	ROI	and	j-th	ROI	when	i-th	ROI	belongs	to	network	𝑁$	and	j-th	ROI	belongs	to	

network	𝑁=.	If	the	above	formula,	𝑁$	and	𝑁=	are	the	same	network,	then	above	formula	calculates	

within-network	cohesion.	In	this	case	both	i-th	and	j-th	ROIs	belong	to	the	same	network.	

Defining	network	cohesion	in	terms	of	degree	had	two	advantages.	First,	we	considered	both	

positive	and	negative	weights,	unlike	most	approaches	that	discard	negative	weights	because	many	

network	measures	(such	as	efficiency)	do	not	easily	handle	negative	values	(Newman,	2010b).	Most	

network	measures	also	do	not	handle	self-connections	(Newman,	2010a),	which	in	standard	analysis	are	

not	informative	anyway	(𝐴CC = 1).	Here,	we	considered	functional	connections	between	the	same	region	

(across	brains),	which	could	be	incorporated	in	within-network	cohesion	by	considering	the	terms	𝐴CC 	in	

the	computation	of	cohesion,	C.	

To	evaluate	functional	connections	between	subcortical	regions	and	the	salience	network	(Fig.	4),	

we	computed	a	cohesion	index	that	summed	all	functional	connections	between	a	specific	subcortical	

region	and	all	nodes	of	the	salience	network.	This	was	performed	for	the	approach	and	retreat	

conditions,	separately.	To	test	for	cohesion,	a	one-sample	t-test	(against	zero)	was	employed.	A	paired	t-

test	was	employed	to	compare	cohesion	between	approach	to	retreat	conditions.	

To	study	dynamic	changes	to	network	cohesion,	ISNG	was	computed	as	outlined	above	at	each	

time	t	(Fig.	5).	To	test	for	time	effects,	linear	regression	was	employed,	and	applied	separately	to	the	

approach	and	retreat	conditions.	
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Results	

Intersubject	network	analysis	and	statistical	approach.	Standard	network	analysis	of	functional	MRI	data	

is	based	on	a	adjacency	matrix	in	which	each	entry	is	the	correlation	between	time	series	data	for	two	

ROIs	within	the	same	participant	(Bullmore	and	Sporns,	2009).	Here,	we	employ	a	method	to	extend	

intersubject	correlation	analysis	to	networks.	Although	we	developed	this	method	independently	(Najafi	

and	Pessoa,	2016),Simony	and	colleagues	developed	essentially	the	same	method	and	applied	it	to	the	

study	of	understanding	the	task-negative	network	during	narrative	comprehension	(Simony	et	al.,	2016).	

We	call	our	version	of	the	method	intersubject	network	analysis.	Specifically,	the	correlations	across	all	

pairs	of	regions	is	computed	(Fig.	2B),	generating	a	correlation	matrix	that	can	be	investigated	via	graph	

theory	techniques	(Newman,	2010a).	

By	correlating	time	series	data	across	participants,	intersubject	network	analysis	captures	

temporal	signal	properties	that	are	shared	by	them,	deemphasizing	fluctuations	that	are	incidental	and	

observed	in	individual	participants	(Simony	et	al.,	2016).	Another	important	property	of	intersubject	

network	analysis	is	that	it	can	consider	the	correlation	of	a	region	with	itself.	Whereas	in	standard	analysis	

this	is	uninformative	(a	region’s	correlation	with	itself	is	by	definition	1),	in	intersubject	network	analysis	

the	correlation	is	meaningful	(and	informative)	because	the	time	series	data	come	from	different	brains.		

	To	develop	the	method	and	its	application	to	the	dynamic	threat	paradigm	without	“peeking”	

into	data,	we	applied	it	first	to	a	subset	of	our	entire	dataset,	which	we	call	the	“exploratory	set”	(N=37),	

and	was	used	to	fix	particular	processing	choices.	The	results	described	here	were	obtained	in	a	separate	

“test	set”	(N=48)	independent	from	the	exploratory	set.	Our	goal	was	to	enhance	reproducibility	in	a	

research	area	plagued	by	the	“curse	of	flexibility.”	For	example,	Poldrack	and	colleagues	(Poldrack	et	al.,	

2017)		recently	enumerated	69,120	different	workflows	for	basic	functional	MRI	analysis	alone.	We	

advocate	the	present	approach	with	exploratory	and	test	sets	to	imaging	studies	that	do	not	target	very	

specific	questions	(which	we	believe	are	rarer	than	typically	acknowledged),	and/or	that	include	novel	

methodology	(as	in	the	present	case).	Note	that,	although	we	refer	to	our	sets	as	“exploratory”	and	

“test,”	our	goal	was	not	to	attempt	discovery	and	replication	in	a	single	study,	as	in	genomics,	for	

example.	Specifically,	the	objective	of	using	an	exploratory	set	was	to	develop	the	method	and	to	narrow	

down	the	brain	regions	being	investigated.	

The	total	experiment	included	6	runs,	each	of	which	included	6	blocks.	In	each	block,	the	circles	

moved	on	the	screen	for	60	seconds;	blocks	were	separated	by	a	15-second	blank	screen.	We	

investigated	functional	connectivity	of	several	regions	that	are	challenging	to	image	with	functional	MRI,	

including	amygdala	subnuclei,	the	BNST,	and	the	habenula.	Although	great	care	was	taken	at	co-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 2, 2017. ; https://doi.org/10.1101/120451doi: bioRxiv preprint 

https://doi.org/10.1101/120451
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
14	

registration	and	functional	data	were	not	smoothed,	we	suggest	that	region	labels	be	considered	

“putative”	insofar	as	higher	functional	resolution	would	be	required	for	clearer	anatomical	attribution.	

See	Methods	for	further	information.	

	

Network	cohesion.	We	determined	intersubject	correlation	matrices	for	the	approach	and	retreat	

conditions	(see	Methods),	which	allowed	us	to	determine	within-	and	between	network	cohesion	(based	

on	node	degree)	for	the	two	conditions,	and	to	compare	cohesion	values	during	approach	vs.	retreat.	

Positive	cohesion	values	indicate	that	correlations	between	regions	within	a	network	or	between	

networks	were	on	average	positive;	negative	cohesion	values	indicate	that	they	were	on	average	

negative.	Note	that	although	our	measure	of	cohesion	was	based	on	degree,	it	is	not	subject	to	the	recent	

criticism	of	using	degree	when	estimating	node	importance	(Power	et	al.,	2013),	because	that	was	not	

our	goal	here.	Importantly,	by	utilizing	node	degree,	we	could	parsimoniously	employ	both	positive	and	

negative	weights,	thus	providing	a	better	characterization	of	network	“strength.”	

During	approach	(Fig.	3A),	positive	network	cohesion	was	detected	within	the	salience	network	

(one-sample	t	test;	t(47)=	8.91;	p=9.45e-12),	and	between	the	salience	and	executive	networks	(one-

sample	t	test;	t(47)=2.8;	p=5.92e-3);	negative	cohesion	was	detected	between	the	salience	and	task-

negative	networks	(one-sample	t	test;	t(47)=-5.61;	p=9.68e-7)	(nodes	tended	to	be	negatively	correlated).	

Furthermore,	within-network	cohesion	was	positive	in	the	task-negative	network	(one-sample	t	test;	

t(47)=3.42;	p=1.26e-3)	(Fig.	3B-D	plots	the	results	as	summary	“block	matrices”	for	convenience).	

Interestingly,	a	similar	pattern	of	results	was	observed	during	retreat	(in	all	cases	one-sample	t	tests;	

within	salience:	t(47)=6.63;	p=2.74e-8;	between	salience	and	executive:	t(47)=3.14;	p=2.89e-3;	between	

salience	and	task-negative:	t(47)=-3.61;	p=7.17e-4).	Finally,	the	direct	comparison	between	approach	vs.	

retreat	revealed	increased	cohesion	in	the	salience	network	during	approach	vs.	retreat	(two-sample	

paired	t	test;	t(47)=2.67;	p=1.01e-2).		

In	brief,	during	threat	processing	(including	both	approach	and	retreat	periods)	both	the	salience	

network	and	its	interactions	with	other	networks	exhibited	the	most	conspicuous	patterns	of	correlation.	

In	addition,	the	task-negative	network	also	exhibited	positive	cohesion	during	approach.	

	

Subcortical	regions.	Several	subcortical	regions	are	involved	in	threat	processing.	Furthermore,	it	has	

been	suggested	that	some	subcortical	regions	are	functionally	linked	with	the	salience	network	under	

threat	conditions	(Hermans	et	al.,	2011).	Based	on	existing	literature,	we	considered	the	amygdala	

(subdivided	into	subregions),	anterior	hippocampus,	periaqueductal	gray	(PAG),	and	BNST.	Based	on	
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analysis	using	the	exploratory	set,	we	also	report	test-set	results	on	the	habenula	and	the	cerebellum	

crus.	

Fig.	4	displays	intersubject	functional	correlations	between	the	salience	network	and	subcortical	

regions.	To	evaluate	functional	connections	between	subcortical	regions	and	the	salience	network,	we	

computed	a	cohesion	index	that	treated	the	subcortical	region	as	a	unit	(thus	summing	degree	across	all	

nodes	of	the	salience	network).	For	each	of	reference,	statistical	values	are	provided	for	each	subcortical	

region	and	condition	in	Fig.	4	(see	Methods).	During	approach,	several	subcortical	regions	were	positively	

correlated	with	the	salience	network,	including	the	right	lateral	amygdala,	right/left	PAG,	right/left	

habenula,	left	Cerebellum	crus,	and	right	BNST.	As	the	pattern	was	somewhat	similar	during	retreat,	only	

the	following	regions	exhibited	robust	difference	for	approach	relative	to	retreat:	right	basolateral/medial	

amygdala,	right	lateral	amygdala,	left	PAG,	and	right	habenula.	

	

Dynamics.	As	threat	level	was	varied	dynamically,	we	investigated	how	the	intersubject	correlation	matrix	

evolved	temporally.	Fig.	5	shows	the	temporal	evolution	of	within-	and	between-network	cohesion	during	

approach	and	retreat	for	the	salience,	executive,	and	task-negative	networks.	For	the	salience	network,	

within-network	cohesion	increased	during	approach	periods	and	decreased	during	retreat	periods	(for	

ease	of	reference,	statistical	values	are	provided	in	the	figure).	Notice	that	the	reverse	was	observed	for	

cohesion	between	the	salience	and	task-negative	networks.	Overall,	all	networks	exhibited	dynamic	

changes	during	approach	and/or	retreat	periods	(that	is,	at	least	one	of	the	slopes	was	statistically	

significant).	

We	also	investigated	the	evolution	of	the	interactions	between	subcortical	regions	and	the	

salience	network.	Although	cohesion	did	not	increase	robustly	during	approach	periods,	decreased	

cohesion	was	detected	during	retreat	periods	for	the	left	BNST,	right	habenula,	and	right	PAG	(Fig.	6),	

revealing	that	their	functional	association	with	the	salience	network	is	dynamic.	

	

Discussion	

In	the	present	study,	we	employed	intersubject	network	analysis	to	investigate	the	properties	of	large-

scale	networks	during	threat	approach	and	retreat.	A	central	aim	was	to	investigate	the	evolution	of	

network	properties	as	threat	level	varied	dynamically.	Threat	altered	network	cohesion	across	the	

salience,	executive,	and	task-negative	networks,	as	well	as	subcortical	regions.	Importantly,	cohesion	

within	and	between	networks	changed	dynamically	as	threat	imminence	increased	and	decreased	(as	

circles	moved	closer	and	farther	to	each	other).	Next,	we	discuss	the	implications	of	our	main	findings.	
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Standard	intersubject	correlation	analysis	has	been	used	to	investigate	“synchrony”	across	brains	

when	participants	watch	the	same	movie	or	during	other	naturalistic	conditions,	such	as	hearing	

extended	narratives	(Hasson	et	al.,	2004,	Stephens	et	al.,	2010,	Nummenmaa	et	al.,	2012,	Nummenmaa	

et	al.,	2014).	The	original	formulation	was	inherently	bivariate	and	considered	the	same	voxel	(or	region)	

across	participants.	The	method	was	recently	extended	so	that	a	specific	voxel/region	in	one	person	could	

be	correlated	with	multiple	voxels/regions	in	other	participants	(Simony	et	al.,	2016).	Independently,	we	

formulated	essentially	the	same	method	(Najafi	and	Pessoa,	2016)	to	perform	intersubject	network	

analysis	with	the	aim	of	understanding	network	organization	during	dynamic	threat.	Although	we	had	a	

specific	analysis	goal	in	mind	(evaluating	network	cohesion),	more	generally,	the	full	range	of	techniques	

developed	for	network	analysis	can	be	applied	to	intersubject	data.	

Intersubject	analyses	in	general	have	the	advantage	that	they	increase	the	signal-to-noise	ratio	by	

filtering	out	unwanted	contributions	to	the	measured	BOLD	signal	(Simony	et	al.,	2016).	This	is	

particularly	important	for	head	motion,	which	can	induce	significant	within-participant	correlations	(Van	

Dijk	et	al.,	2012).	By	computing	correlations	across	participants,	the	approach	essentially	eliminates	this	

issue	(on	the	test	dataset,	head	motion	parameters	exhibited	a	correlation	across	subjects	of	.02).	

A	central	finding	of	our	study	was	that	cohesion	within	and	between	networks	changed	

dynamically	during	periods	of	approach	and	retreat.	This	adds	to	findings	from	recent	studies	that	

showed	how	large-scale	networks	are	reorganized	during	periods	of	threat	(Hermans	et	al.,	2011,	

McMenamin	et	al.,	2014).	Consistent	with	previous	studies,	the	salience	network	cohesion	increased	for	

approach	relative	to	retreat.	Critically,	cohesion	was	not	static	during	approach/retreat	segments,	but	

dynamically	increased	during	approach	and	decreased	during	retreat.	The	cohesion	between	the	salience	

and	executive	networks	followed	the	same	pattern.	Notably,	the	reverse	was	observed	between	the	

salience	and	task-negative	networks.	Thus,	the	salience	and	task-negative	networks	cohered	more	

strongly	as	the	circles	moved	away	from	each	other;	movement	toward	each	other	made	the	networks	

less	cohesive.	Overall,	our	findings	demonstrate	that	network	cohesion	is	a	dynamic	property	that	

depends	on	threat	proximity.	

The	salience	network	comprises	multiple	regions	in	parietal,	frontal,	and	insular	cortices	(Seeley	

et	al.,	2007,	Menon	and	Uddin,	2010).	Sometimes	subcortical	regions	are	listed	as	part	of	the	network,	

most	notably	the	amygdala	and	PAG	(Seeley	et	al.,	2007).	In	the	present	study,	we	hypothesized	that	an	

extended	set	of	subcortical	regions	would	be	closely	associated	functionally	to	the	salience	network.	

Indeed,	this	was	observed	in	our	data,	including,	during	threat	approach,	the	right	lateral	amygdala,	

right/left	periaqueductal	gray,	right/left	habenula,	cerebellum	crus,	cerebellum	lobes,	and	right	BNST.	The	
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present	study	shows	that,	in	the	context	of	threat	processing,	these	regions	are	functionally	linked	to	

salience	processing	in	paradigms	involving	threat,	and	not	only	during	the	resting	state	(see	also	Hermans	

et	al.,	2011).	Importantly,	it	also	shows	that	this	property	changes	during	periods	of	threat	approach	

relative	to	retreat,	such	as	in	the	right	lateral	amygdala	(Fig.	4).	

The	findings	about	the	amygdala	are	particularly	noteworthy.	Whereas	the	amygdala	is	engaged	

by	emotion-laden	stimuli	and	conditions	involving	acute	threat	(as	in	aversive	conditioning	paradigms),	its	

involvement	in	potential	threat	(where	threat	is	not	proximal	and	is	relatively	uncertain)	is	less	clear	

(Davis	et	al.,	2010b).	Some	human	neuroimaging	studies	even	observed	deactivations	of	the	amygdala	

during	conditions	of	potential	threat	(Pruessner	et	al.,	2008,	Wager	et	al.,	2009,	Choi	et	al.,	2012).	Here,	

we	saw	that	multiple	amygdala	subregions	exhibited	increased	differential	functional	correlation	

(approach	greater	than	retreat)	with	the	salience	network.	These	findings	are	important,	because	they	

show	that	the	amygdala	is	involved	during	some	forms	of	potential	threat	(such	as	the	one	studied	here),	

as	revealed	by	changes	in	co-activation	patterns	(see	also	Hermans	et	al.,	2011,	McMenamin	et	al.,	2014).	

It	also	highlights	the	need	to	study	functional	connectivity	and	network	properties,	in	addition	to	evoked	

responses.	

The	involvement	of	the	BNST	in	potential	threat	was	suggested	in	early	work	by	Davis	and	

colleagues	(Davis	and	Shi,	1999)	and	has	been	investigated	recently	in	rodent	studies	with	new	

neurotechnologies	(see	(Tovote	et	al.,	2015).	Work	in	humans	has	revealed	the	involvement	of	the	BNST	

in	potential	threat,	too	(for	reviews,	see	(Fox	et	al.,	2015,	Shackman	and	Fox,	2016).	The	BNST	is	rather	

small	and	thus	challenging	to	investigate	in	humans	with	functional	MRI.	Nevertheless,	recent	work	at	

higher	resolution	and	magnetic	field	strengths	(such	as	7	Tesla)	has	been	used	to	generate	anatomical	

masks	(Avery	et	al.,	2014,	Torrisi	et	al.,	2015),	and	these	appear	to	be	reasonable	approximations	even	at	

the	standard	field	strength	of	3	Tesla	(Theiss	et	al.,	2017).	An	open	question	concerns	the	conditions	

leading	to	BNST	engagement.	While	some	studies	suggest	that	uncertainty	may	be	a	major	determinant	

of	BNST	responses	(Alvarez	et	al.,	2011),	this	is	not	entirely	clear.	For	example,	in	a	previous	study,	Mobbs	

and	colleagues	(Mobbs	et	al.,	2010)	found	greater	BNST	responses	for	threat	approach	vs.	retreat	

(although	the	authors	only	employed	a	single	level	of	approach	vs.	retreat	“level,”	and	the	activation	

pattern	was	very	diffuse,	thus	hard	to	attribute	to	the	BNST	with	more	confidence).	In	the	present	study,	

the	right	BNST	was	more	strongly	coupled	with	the	salience	network	during	approach	(but	no	differential	

functional	connectivity	was	detected	when	comparing	approach	vs.	retreat).	Finally,	the	PAG	is	another	

important	brain	region	involved	in	threat	processing	(Bandler	and	Shipley,	1994).	Here,	we	detected	

increased	functional	correlations	between	the	right/left	PAG	with	the	salience	network	during	approach;	
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we	only	detected	the	left	PAG	as	more	strongly	connected	during	approach	vs.	retreat.	Note	also	that	the	

interactions	between	several	subcortical	structures	(left	BNST,	right	PAG,	and	right	habenula),	and	the	

salience	network	exhibited	temporal	properties	and	decreasing	cohesion	was	observed	as	the	circles	

moved	away	from	each	other	during	retreat.	

In	conclusion,	in	the	present	paper,	we	employed	intersubject	network	analysis,	which	allows	the	

investigation	of	network-level	properties	“across	brains.”	We	found	that	threat	altered	network	cohesion	

across	the	salience,	executive,	and	task-negative	networks,	as	well	as	subcortical	regions.	For	example,	

cohesion	increased	within	the	salience	network	during	approach	relative	to	retreat.	Functional	

connections	between	several	subcortical	regions	and	the	salience	network	also	increased	during	

approach	vs.	retreat.	The	regions	included	the	PAG,	habenula,	and	amygdala,	showing	that	the	latter	

region	is	involved	under	conditions	of	relatively	prolonged	and	uncertain	threat,	and	not	only	linked	to	

phasic	stimuli.	The	BNST	was	functionally	linked	to	regions	of	the	salience	network	during	approach,	but	

we	did	not	detect	differential	engagement	when	compared	to	retreat.	Furthermore,	cohesion	within	and	

between	networks	changed	dynamically	as	threat	imminence	increased	or	decreased.	In	particular,	

salience-network	cohesion	increased	during	approach	and	decreased	during	retreat.	Taken	together,	our	

findings	unraveled	dynamic	properties	of	large-scale	networks	while	threat	levels	varied	continuously.	

The	results	demonstrate	the	potential	of	characterizing	emotional	processing	at	the	level	of	distributed	

networks,	and	not	simply	at	the	level	of	evoked	responses	in	specific	brain	regions.	In	particular,	periods	

during	which	anxious	anticipation	waxes	and	wanes	are	paralleled	by	changes	to	brain	network	

organization.	
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Figures	and	Tables	

	

 

	

	 	

	
Figure	1.	Stimuli	paradigm.	To	create	anxious	states,	over	a	period	
of	60	seconds,	two	circles	with	different	colors	moved	around	on	
the	screen	with	some	degree	of	randomness.	When	they	collided	
with	each	other,	an	unpleasant	mild	electric	shock	was	delivered.	
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Figure	2.	Intersubject	correlation	(ISC)	and	network	analysis	(ISN).	A1)	In	ISC	the	correlation	
between	the	same	region	across	different	participants’	brains	is	calculated.	A2)	To	calculate	
ISC,	for	each	voxel	or	region	of	interest	(ROI),	the	time	series	“left	out”	subject	(S1)	extracted,	
and	correlated	with	the	average	time	series	of	all	other	subjects	(S2,…SN),	for	the	same	
voxel/ROI.	A3)	To	calculate	the	group	level	ISC,	the	results	from	A2	across	all	subjects	are	
averaged.	This	creates	a	vector	that	contains	the	correlation	of	every	voxel	with	itself	(across	
participants).	B1)	In	ISN	the	correlation	between	all	pairs	of	ROIs	across	different	brains	is	
calculated.	B2)	To	calculate	ISN,	for	each	voxel	or	ROI,	the	time	series	of	a	“left	out”	
subjected	(S1)	is	extracted	and	its	correlation	with	the	average	time	series	across	other	
subjects	(S2,…,SN)	is	calculated.	B3)	The	group	level	ISN	is	a	#ROIs	x	#ROIs	matrix,	which	
shows	the	average	of	ISN	from	all	subjects.	Note	that	the	vector	in	A3	corresponds	to	the	
diagonal	of	the	matrix	in	B3,	illustrating	that	intersubject	networks	provide	a	richer	
characterization	of	time	series	relationships.	
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Figure	3.	Intersubject	group	networks.	A)	Intersubject	network	(ISN)	during	threat	
approach	periods.	ROI	order	corresponds	that	that	of	Table	1.	B-D)	Average	ISN	values	
for	each	network	at	approach	(B),	retreat	(C),	and	approach	minus	retreat	(D).	The	dark	
rectangles	surround	all	of	the	blocks	with	significant	values	(p	<	0.01);	note	that	each	of	
the	9	blocks	was	treated	as	a	unity	(the	outline	extended	over	multiple	of	them	for	
diagramming	convenience).	The	color	bars	indicate	differences	in	intersubject	
correlation.	
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Figure	4.	Intersubject	functional	connections	between	the	salience	network	and	subcortical	
regions.	A)	Amygdala	La	R;	B)	PAG	R;	C)	Habenula	R;	D)	Cerebellum	Crus	L.	E)	BNST	R.	L/R:	left,	
right;	Amygdala	La:	lateral	amygdala,	PAG:	periaqueductal	gray,	BNST:	Bed	nucleus	of	the	stria	
terminalis.	For	statistical	tests,	the	entire	subcortical	region	was	treated	as	a	unit	and	cohesion	
between	the	region	and	the	salience	network	was	tested.	Regions	shown	with	green	bar	plots	
were	significant	(p<0.05).	
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Figure	5.	Temporal	evolution	of	cohesion	during	approach	and	retreat	
segments.	Within-	and	between-network	cohesion	during	approach	and	
retreat	for	the	salience,	executive,	and	task-negative	networks.	For	
example,	as	the	circles	approach	each	other,	the	cohesion	within	the	
salience	network	increased;	when	the	circles	retreated,	the	cohesion	
within	the	salience	network	gradually	decreased.	The	orange	line	shows	
cohesion	values	for	approach	at	different	times	(with	a	90%	confidence	
band);	the	cyan	line	shows	cohesion	values	for	retreat	at	different	times	
(90%	confidence	band).	The	red/blue	line	shows	the	least-squares	linear	
fit	to	cohesion	values	during	approach/retreat;	solid	lines	indicate	fits	
that	were	statistically	significant	(p	<	0.05).	Time	is	in	seconds	(TR	=	1	
sec);	the	y-axis	shows	cohesion	(summed	degree).	The	red	star	indicates	
that	the	slope	difference	was	statistically	significant	(statistical	values	
provided	at	the	bottom	left).	
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Figure	6.	Temporal	evolution	of	cohesion	between	subcortical	regions	and	the	
salience	network.	Although	cohesion	did	not	increase	robustly	during	approach	
periods,	cohesion	decreased	as	a	function	of	time	during	retreat	for	the	left	
BNST,	right	habenula,	and	right	PAG.	Conventions	as	in	Fig.	5.	
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Figure	7.	Computation	of	group	intersubject	network.	The	operator	corr	corresponds	to	Pearson	
correlation.	
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Figure	8.	Procedure	for	data	concatenation	used	in	
evaluating	intersubject	network	dynamics.	Procedure	
for	data	concatenation	used	in	evaluating	intersubject	
network	dynamics.	Data	point	y	for	each	time	point	t	
was	used	to	compute	intersubject	networks	for	
approach	and	retreat,	separately.	Data	point	indexes:	
ROI#,	approach/retreat	segment#	(two	approach	data	
segments	are	illustrated),	and	time	within	segment.	
Briefly,	time	was	used	to	“slice”	and	“concatenate”	
through	the	ROI	time	series.	Thus,	we	generated	a	data	
time	series	at	t=0	by	concatenating	all	of	the	t=0	sample	
(across	same-condition	segments	across	blocks	and	
runs),	did	the	same	for	t=1,	and	so	on.	To	account	for	the	
hemodynamic	delay,	we	discarded	the	first	5	seconds	of	
each	segment	(gray	part).	The	resulting	data	per	ROI,	
time	point,	and	condition,	was	then	investigated	in	
terms	of	dynamic	properties.	Time	series	data	were	
simulated	for	illustration.	
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Table	1:	List	of	Cortical	and	Subcortical	Regions	of	Interest	(ROIs).	Cortical	ROIs	were	defined	via	5-mm	radius	spheres	
centered	on	MNI	coordinates	provided	below.	Subcortical	ROIs	were	defined	anatomically	(see	text	for	details).	

ROI names  Coordinates (MNI) 
x            y          z  

Salience	
1) frontoinsular	cortex	L	
2) frontoinsular	cortex	R	
3) Dorsal	anterior	cingulate	cortex	
4) Temporo-parietal	junction	L	
5) Temporo-parietal	junction	R	
6) Inferotemporal	cortex	L	
7) Inferotemporal	cortex	R	
8) Precentral	L	
9) Precentral	R	
10) Dorsolateral	prefrontal	cortex	L	
11) Dorsolateral	prefrontal	cortex	R	
12) Inferior	frontal	gyrus	L	
13) Inferior	frontal	gyrus	R		

Executive	
14) Orbital	frontoinsula	L	
15) 	Dorsolateral	prefrontal	cortex		R	
16) 	Dorsolateral	prefrontal	cortex		L	
17) 	Ventrolateral	prefrontal	cortex	R	
18) 	Ventrolateral	prefrontal	cortex		L	
19) 	Frontal	operculum	R	
20) 	dorsolateral	prefrontal	cortex	/	frontal	eye	field	R	
21) 	dorsolateral	prefrontal	cortex	/	frontal	eye	field	L	
22) 	dorsomedial	prefrontal	cortex	
23) 	Lateral	parietal	R	
24) 	Lateral	parietal	L	
25) Inferior	temporal	R	

Task	negative	
26) posterior	cingulateprecuneus	(PCC)	
27) Retro-splenial	
28) lateral	parietal	cortex	(LP)	L	
29) lateral	parietal	cortex	(LP)	R	
30) medial	prefrontal	cortex	(MPF)	L	
31) medial	prefrontal	cortex	(MPF)	R	
32) Superior	frontal	L	
33) Superior	frontal	R	
34) Inferior	temporal	L	
35) Inferior	temporal	R	
36) Parahippocampal	gyrus	L	
37) Parahippocampal	gyrus	R	

Subcortical	Regions		
38) Amygdala	basolateral/medial	R	
39) Amygdala	basolateral/medial	L	
40) Amygdala	central/medial	R	
41) Amygdala	central/medial	L	
42) Amygdala	Cortical/hippocampal	amygdaloid	R	
43) Amygdala	Cortical/hippocampal	amygdaloid		L	
44) Amygdala	Lateral	R	
45) Amygdala	Lateral	L	
46) Hippocampus	L	
47) Hippocampus	R	

	
-34	 	18	 	4		
34	 	22	 	4		
2		 10	 	40		
-62		 -26	 	36		
62		 -26	 	36		
-54		 -62	 	-4		
54		 -54	 	-8		
-26		 -6	 	64		
26	 	-2	 	64		
-38		 42	 	24		
34		 46	 	28		
-54		 6	 	20		
54	 	10	 	12		
	
-36		 24	 	-10		
46		 46	 	14		
-34		 46	 	6		
34		 56	 	-6		
-32		 54		 -4		
56		 14	 	14		
30		 12	 	60		
-32	 	18	 	50		
0		 36	 	46		
38		 -56		 44		
-48		 -48		 48		
58		 -54		 -16		
	
-3	 -38	 38	 	
2	 -52	 9	 	
-50	 -64	 38	 	
50	 -64	 38	 	
-4	 42	 -9	 	
0	 59	 16	 	
-16	 44	 51	 	
17	 43	 51	 	
-62	 -33	 -20	 	
66	 -18	 -20	 	
-22	 -26	 -20	 	
25	 -26	 -18	 	
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48) Periaqueductal	gray	L	
49) Periaqueductal	gray	R	
50) Habenula	L	
51) Habenula	R	
52) Cerebellum	Crus	R		
53) Cerebellum	Crus	L		
54) Bed	nucleus	of	the	stria	terminalis	L	
55) Bed	nucleus	of	the	stria	terminalis	R	
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