
	 1	

 1 

 2 

Distinguishing signal from autofluorescence in cryogenic correlated 3 

light and electron microscopy of mammalian cells 4 

 5 

 6 

Stephen D. Carter1✝, Shrawan K. Mageswaran1✝, Zachary J. Farino2, João I. Mamede3, Catherine 7 

M. Oikonomou1, Thomas J. Hope3, Zachary Freyberg2,4*, Grant J. Jensen1,5* 8 

 9 

✝ These authors contributed equally to the work. 10 

* Correspondence Jensen@caltech.edu, freyberg@pitt.edu 11 

 12 

 13 

 14 

1
Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; 

2
Department 15 

of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA;
 3

Department of Cell and 16 

Molecular Biology, Northwestern University, Chicago, IL 60611, USA; 
4
Department of Cell Biology, 17 

University of Pittsburgh, PA 15213, USA;
 5

Howard Hughes Medical Institute (HHMI), California 18 

Institute of Technology, Pasadena, CA 91125, USA. 19 

 20 

  21 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2017. ; https://doi.org/10.1101/120642doi: bioRxiv preprint 

https://doi.org/10.1101/120642
http://creativecommons.org/licenses/by/4.0/


	 2	

Abstract 22 

Cryogenic correlated light and electron microscopy (cryo-CLEM) is a valuable tool for studying 23 

biological processes in situ. In cryo-CLEM, a target protein of interest is tagged with a fluorophore 24 

and the location of the corresponding fluorescent signal is used to identify the structure in low-25 

contrast but feature-rich cryo-EM images. To date, cryo-CLEM studies of mammalian cells have 26 

relied on very bright organic dyes or fluorescent protein tags concentrated in virus particles. Here 27 

we describe a method to expand the application of cryo-CLEM to cells harboring genetically-28 

encoded fluorescent proteins. We discovered that a variety of mammalian cells exhibit strong 29 

punctate autofluorescence when imaged under cryogenic conditions (80K). Compared to 30 

fluorescent protein tags, these sources of autofluorescence exhibit a broader spectrum of 31 

fluorescence, which we exploited to develop a simple, robust approach to discriminate between 32 

the two. We validate this method in INS-1E cells using a mitochondrial marker, and apply it to study 33 

the ultrastructural variability of secretory granules in a near-native state within intact INS-1E 34 

pancreatic cells by high-resolution 3D electron cryotomography.  35 

 36 

 37 
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Introduction 39 

Electron microscopy (EM) is an essential tool in the study of cell ultrastructure, with resolving power 40 

several orders of magnitude greater than that of light microscopy (LM). Frequently, however, it is 41 

difficult to identify objects of interest in EM images when their ultrastructure is unknown. In 42 

conventional “thin-section” transmission electron microscopy (TEM), this challenge was addressed 43 

by the development of immuno-gold labeling (Faulk and Taylor 1971). Although this method allows 44 

direct labeling and visualization of specific targets within the cell, the fixation, dehydration and/or 45 

resin embedding steps can result in poor cell and antigen preservation and accompanying loss of 46 

information.  47 

 48 

Alternatively, in correlated light and electron microscopy (CLEM), each target can be specifically 49 

labelled with a genetically-encoded fluorescent protein (Briegel, Chen et al. 2010), located first by 50 

fluorescence light microscopy, and then imaged at higher magnification by electron microscopy. 51 

CLEM can be done either at room- or cryogenic-temperatures (“cryo-CLEM”). Like immunoEM, 52 

room-temperature CLEM also requires chemically fixed and dehydrated cells, which can distort or 53 

obscure important structural features (Afzelius and Maunsbach 2004, Lucic, Rigort et al. 2013), but 54 

it has nevertheless allowed the visualization of numerous bacterial and mammalian cellular events 55 

that would otherwise have been challenging or impossible to capture (Voloshin Ia, Suslov Ie et al. 56 

2000, Grabenbauer, Geerts et al. 2005, Darcy, Staras et al. 2006, Kapoor, Lampson et al. 2006, 57 

Muller-Reichert, Srayko et al. 2007, Kukulski, Schorb et al. 2011, Kukulski, Schorb et al. 2012, 58 

Redemann and Muller-Reichert 2013, Avinoam, Schorb et al. 2015, Bertipaglia, Schneider et al. 59 

2016, Schorb, Gaechter et al. 2016).   60 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2017. ; https://doi.org/10.1101/120642doi: bioRxiv preprint 

https://doi.org/10.1101/120642
http://creativecommons.org/licenses/by/4.0/


	 4	

In cryo-CLEM samples are preserved in a near-native, “frozen-hydrated” state. To visualize 61 

fluorescence inside frozen-hydrated cells, cryogenic LM (cryo-LM) stages are used (Briegel, 62 

Chen et al. 2010, Schlimpert, Klein et al. 2012, Schellenberger, Kaufmann et al. 2014, Schorb 63 

and Briggs 2014, Bertipaglia, Schneider et al. 2016, Schorb, Gaechter et al. 2016). Unfortunately, 64 

because the sample has to be kept frozen, long-working-distance air objective lenses with low 65 

numerical apertures are used instead of oil-immersion lenses. To increase the resolution of the 66 

light microscopy, several “super-resolution” cryo-CLEM studies have also now been performed 67 

(Chang, Chen et al. 2014, Liu, Xue et al. 2015).  68 

 69 

To date, cryo-CLEM studies of mammalian cells have used either very bright organic fluorescent 70 

dyes or fluorescent proteins concentrated in viruses (Jun, Ke et al. 2011, Schellenberger, 71 

Kaufmann et al. 2014, Bykov, Cortese et al. 2016). Organic dyes are very bright, but it can be 72 

challenging to attach them to specific proteins inside cells. Genetically-encoded fluorescent 73 

proteins, on the other hand, can be easily fused with most proteins and offer a richer repertoire of 74 

colors, but they are much less bright, so their signals can be more difficult to distinguish from 75 

cellular autofluorescence. Here we describe a method to distinguish signal arising from 76 

genetically-encoded fluorescent proteins from endogenous autofluorescence in mammalian cells 77 

under cryogenic conditions. We validate the approach with mitochondria and then demonstrate 78 

how the method allows secretory granules to be identified and structurally characterized within 79 

intact pancreatic cells with unprecedented resolution. 80 

 81 

 82 

 83 
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 84 

Results 85 

INS-1E cells exhibit bright, punctate autofluorescence at ~80K  86 

Initially, we set out to image the secretory pathway of the pancreatic beta cell-derived INS-1E line, 87 

which has long been used as a model system (Merglen, Theander et al. 2004, Farino, Morgenstern 88 

et al. 2016). The secretory machinery of these cells has been well studied by both LM and 89 

conventional EM (Rubi, Ljubicic et al. 2005, Giordano, Brigatti et al. 2008), but we wanted to 90 

advance that by imaging cells in a near-native, frozen-hydrated state in 3-D by using electron 91 

cryotomography (ECT) (Oikonomou and Jensen 2016). We were particularly interested in dense 92 

core secretory granules (DCSGs), which are central to the efficient secretion of hormones including 93 

insulin (Kim, Tao-Cheng et al. 2001). To identify DCSGs in cryotomograms, we tagged 94 

chromogranin A (CgA), a granin protein widely used as a marker for DCSGs given its almost 95 

exclusive localization to this intracellular compartment (Huh, Bahk et al. 2005).  96 

 97 

We transfected INS-1E cells with CgA C-terminally tagged with GFP and grew cells to around 30-98 

40% confluency on EM finder grids. To facilitate image correlation we added 500 nm blue 99 

fluorospheres visible in both cryo-LM and cryo-EM modalities to the samples before plunge-100 

freezing [as in (Chang, Chen et al. 2014, Schellenberger, Kaufmann et al. 2014, Schorb and Briggs 101 

2014, Liu, Xue et al. 2015, Bykov, Cortese et al. 2016)]. We first performed cryo-LM to identify 102 

targets of interest in thin ice at the periphery of cells. To accommodate the relatively dim signal of 103 

CgA-GFP (due either to the low temperature or the low NA of our long working-distance air 104 

objective (NA 0.7), or both), we used exposure times of up to 2 seconds and applied a 2D real-105 
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time deconvolution algorithm. We observed a punctate cytosolic distribution (Figure 1A) consistent 106 

with CgA’s expected intracellular localization to secretory granules (Huh, Bahk et al. 2005).  107 

 108 

As a negative control, we also imaged untransfected INS-1E cells by cryo-LM (Figure 1b). Unlike 109 

room-temperature images of untransfected cells, which display little autofluorescence (Figure 1c-110 

d), to our surprise unlabelled INS-1E cells exhibited clear puncta at ~80K (cooled by liquid 111 

nitrogen). To determine whether the autofluorescence observed at 80K was broad-spectrum, as is 112 

typical at room-temperature (Billinton and Knight 2001), we also imaged untransfected and 113 

transfected cells using an mCherry filter. In transfected cells there were two populations of puncta: 114 

one emitting both green and red fluorescence, and one emitting primarily green fluorescence 115 

(Figure 1a). In untransfected cells, all the puncta emitted both green and red fluorescence (Figure 116 

1b), indicating that the autofluorescence in the sample was broad spectrum.  117 

 118 

Other mammalian cells also exhibit bright autofluorescence at ~80K 119 

Next we checked if bright autofluorescence at 80K was unique to INS-1E cells. We applied the 120 

same imaging technique to three other untransfected cell lines: rhesus macaque fibroblasts, HeLa 121 

cells and human primary adipocytes. All three cell lines exhibited numerous puncta distributed 122 

throughout the cell volume with broad fluorescence spectra ranging from green (FITC) to red 123 

(mCherry) (Figure 2). To identify the source of the observed autofluorescence, we imaged several 124 

puncta at high-resolution by ECT.  All of the autofluorescent puncta in rhesus macaque fibroblasts 125 

(Figure 3a) and HeLa cells (data not shown) correlated to multimembranous structures, some 126 

resembling multilamellar bodies (MLBs) (Hariri, Millane et al. 2000, Lajoie, Guay et al. 2005). 127 

Similarly, many autofluorescent puncta in untransfected INS-1E cells also correlated to 128 
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multimembranous structures in cryotomograms (Figure 3b, panel 1-3). Other autofluorescent 129 

puncta in INS-1E cells correlated to membrane-enclosed crystals (Figure 3b, panel 4). 130 

 131 

Distinguishing fluorescent protein tags from autofluorescence 132 

At room temperature, the confounding effect of cellular autofluorescence can sometimes be 133 

mitigated by photobleaching; background fluorescence sources tend to bleach faster than 134 

fluorescent proteins (Billinton and Knight 2001). Unfortunately, the autofluorescence we observed 135 

at 80K did not bleach away quickly (data not shown), as observed previously for exogenous 136 

fluorophores (Schwartz, Sarbash et al. 2007). Instead, we tried to identify autofluorescence by its 137 

broader emission spectrum, as has been done previously at room temperature (Szollosi, Lockett 138 

et al. 1995, Mansfield, Gossage et al. 2005). 139 

 140 

To test the method, we chose a “positive control” that could be unambiguously identified in 141 

cryotomograms with or without a fluorescent tag. Mitochondria proved to be a good choice due to 142 

their well-defined ultrastructure including easily-recognizable cristae (Rabl, Soubannier et al. 2009, 143 

Zick, Rabl et al. 2009, Davies, Daum et al. 2014). We transfected INS-1E cells with the 144 

mitochondrial marker Mito-DsRed2, which is targeted to the space between the inner and outer 145 

mitochondrial membrane by the signal sequence of cytochrome C oxidase. We again imaged both 146 

untransfected and transfected cells by cryo-CLEM, and measured the fluorescence of a large 147 

number of puncta in both the green (FITC) and red (mCherry) channels. While both samples 148 

exhibited puncta emitting in both the mCherry and FITC channels, there was a population only in 149 

the transfected cells that exhibited high intensity in the mCherry channel and low intensity in the 150 

FITC channel (Figure 4a, top left corner), indicative of specific Mito-DsRed2 fluorescence. 151 
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To identify structures associated with fluorescence in these cells, we imaged 32 randomly chosen 152 

puncta in transfected cells by ECT. Many of the puncta correlated to mitochondria, and the centroid 153 

of fluorescence fell within the boundaries of the organelle, validating the accuracy of our correlation 154 

procedure (Figure 4b, targets 1-7). Others correlated to multimembranous structures (Figure 4b, 155 

targets 8-11). As expected, puncta correlating to mitochondria exhibited a greater ratio of red 156 

fluorescence to green fluorescence, and were therefore positioned near the upper left corner of the 157 

fluorescence plot (Figure 4a). The multimembranous structures corresponded to puncta near the 158 

opposite (lower right) corner. Thus, to distinguish fluorescent protein tags from autofluorescence, 159 

one can record fluorescence images of both tagged and untagged frozen cells and plot the 160 

fluorescence in two channels. Puncta in the overlap region near the middle of the plot may be from 161 

either fluorescent protein tags or autofluorescence, and cannot be distinguished with great 162 

confidence. Puncta in the extreme corner towards the pure color of the fluorescent protein tag 163 

where autofluorescent puncta are not seen (triangle in the upper left corner of Figure 4a), however, 164 

are very likely to contain the tag. 165 

 166 

Cryo-CLEM of INS-1E cells transfected with chromogranin A-GFP  167 

Having established a technique to distinguish signal from autofluorescence, we returned to INS-168 

1E cells expressing CgA-GFP. Once again, we imaged both untransfected and transfected cells 169 

by cryo-LM, recorded their intensity values in the green (FITC) and red (mCherry) channels, and 170 

plotted these values in two dimensions (Figure 5a). As expected, we observed a broad overlap 171 

region in the center of the plot with puncta from both the transfected (tagged) and untransfected 172 

(untagged) cells. We also observed a region in the upper left corner of the plot devoid of puncta 173 

from untransfected cells which very likely contained CgA-GFP-specific signal.  174 
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 175 

Twenty-seven puncta were then imaged by ECT, including 15 in the upper left corner of the plot 176 

and 12 in the ambiguous overlap region. Cryotomographic slices through ten examples are shown 177 

in Figure 5b (see also Supplementary Movie 1). Among the puncta from the upper left corner of 178 

the plot (very likely to contain CgA-GFP), we observed vesicles with a dense aggregate core (#’s 179 

4 and 6 for example), vesicles with a dense granular core (#5 for example), vesicles with a dense 180 

aggregate or granular core and internal smaller vesicles (#’s 1 and 3 for example), and clusters of 181 

dense aggregated material partially surrounded by membrane fragments (#’s 2 and 7). Among the 182 

puncta in the ambiguous overlap region we saw two vesicles with crystalline cores (#’s 8 and 10) 183 

and a cluster of very dense aggregated material (# 9). 184 

 185 

Discussion 186 

Here we report the discovery that many mammalian cell lines exhibit strong punctate 187 

autofluorescence at ~80K and an approach to distinguish fluorescent protein tags from this 188 

autofluorescence.  189 

 190 

Cellular autofluorescence at room temperature is known to arise from multiple sources including 191 

(1) biomolecules such as amino acids containing aromatic rings, (2) the three-ring system of flavins 192 

(producing green spectra) (Benson, Meyer et al. 1979, Jackson, Snyder et al. 2004), (3) the 193 

reduced form of pyridine nucleotides (NAD(P)H, producing blue/green spectra) (Chance and 194 

Thorell 1959, Galeotti, Van Rossum et al. 1970), (4) lipid pigments (orange/yellow spectra) (Dayan 195 

and Wolman 1993, Billinton and Knight 2001), (5) porphyrins (red spectra), and (6) chlorophyll 196 

(Sheen, Hwang et al. 1995). Various strategies have been developed to overcome 197 
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autofluorescence at room temperature including bleaching it away (Viegas, Martins et al. 2007, 198 

Kumar, Sandhyamani et al. 2015), quenching it with additives (Cowen, Haven et al. 1985, Schnell, 199 

Staines et al. 1999, Billinton and Knight 2001, Kumar, Sandhyamani et al. 2015), or detecting its 200 

spectral signature (Steinkamp and Stewart 1986, Van de Lest, Versteeg et al. 1995, Neumann and 201 

Gabel 2002, Dickinson, Simbuerger et al. 2003, Gareau, Bargo et al. 2004, Mansfield, Gossage et 202 

al. 2005). 203 

 204 

Here we found that at ~80K, autofluorescence is produced by multimembranous structures and 205 

what in cell line INS-1E were most likely insulin crystals. The multimembranous structures, which 206 

in some cases exhibited up to 14 tightly nested concentric spherical vesicles, resembled MLBs 207 

(Hariri, Millane et al. 2000, Lajoie, Guay et al. 2005). Others, bounded by a single outer membrane 208 

and containing what looked like partially degraded membranes and other materials are most likely 209 

autolysosomes (Klionsky, Eskelinen et al. 2014, Klumperman and Raposo 2014). Earlier work by 210 

König et al. also provided evidence that intracellular autofluorescence was more pronounced at 211 

80K than at room temperature, and attributed this to the increase in quantum yield of the 212 

fluorophores due to the reduction in thermal relaxation processes at lower temperatures (Konig, 213 

Uchugonova et al. 2014).  214 

 215 

Since the excitation and emission peaks of autofluorescence overlap with those of commonly used 216 

fluorophores such as GFP, YFP and mCherry, filter cubes will not adequately discriminate 217 

autofluorescence from signal at 80K. Instead, we recommend first characterizing the 218 

autofluorescence by recording images of wild-type (untransfected/unlabelled) cells in two 219 

channels, one corresponding to the color of a fluorescent protein tag of interest and the other 220 
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broadly separated, and then plotting the fluorescence intensities in the two channels in a two-221 

dimensional plot. Next, we recommend imaging a random subset of these puncta by ECT to 222 

determine the structures of the sources of autofluorescence in the cell type being studied. Cells 223 

labelled with the fluorescent protein tag should then be imaged by cryo-LM in both channels and 224 

their fluorescence intensities plotted as before. Puncta exhibiting strong fluorescence in the 225 

channel of interest and lying outside the scatter plot region containing puncta from unlabelled cells 226 

are very likely to contain the fluorescent protein tag, and not be due simply to autofluorescence. 227 

This method requires no specialized equipment and is compatible with a standard cryo-CLEM 228 

workflow. 229 

 230 

Cryo-CLEM/ECT of the secretory pathway of INS-1E cells 231 

To demonstrate the utility of the method, we used cryo-CLEM to identify objects containing CgA 232 

inside pancreatic cells. These secretory cells are characterized by the ability to rapidly release 233 

large amounts of proteins through specialized trans-Golgi network (TGN)-derived vesicles which 234 

by traditional EM of stained, plastic-embedded sections display dense granular cores (Kelly 1985, 235 

Burgess and Kelly 1987). The dense nature of these cores is known to derive from chromogranins 236 

and secretogranins which aggregate in the TGN as their environment acidifies and becomes 237 

calcium-rich prior to vesicle formation, and is also related to increased zinc concentrations which 238 

are thought to induce insulin crystallization (Gerdes, Rosa et al. 1989, Gorr, Shioi et al. 1989, 239 

Chanat and Huttner 1991, Yoo and Albanesi 1991, Videen, Mezger et al. 1992, Taupenot, Harper 240 

et al. 2005, Lemaire, Ravier et al. 2009). Aggregation of granin proteins is thought to facilitate cargo 241 

sorting (Burgess and Kelly 1987, Carnell and Moore 1994, Taupenot, Harper et al. 2003).  242 

 243 
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Using our method to identify structures that contained CgA-GFP, we observed not just one class 244 

of DCSGs, but a diversity of objects including vesicles with a dense aggregate core, vesicles with 245 

a granular core, vesicles with a dense aggregate or granular core and internal smaller vesicles, 246 

clusters of dense aggregated material partially surrounded by membrane fragments, and a cluster 247 

of very dense aggregated material in the cytoplasm with no membrane fragments in the vicinity. 248 

We speculate that the first two classes represent different steps in the secretory pathway, and that 249 

the last two classes are the result of vesicle lysis. The vesicles with smaller vesicles inside may be 250 

autophagasomes, which are known to degrade insulin as a mechanism to regulate secretory 251 

function, though they were not clearly surrounded by two membranes as expected for 252 

autophagosomes (Marsh, Soden et al. 2007, Goginashvili, Zhang et al. 2015, Liu, Xue et al. 2015). 253 

Compared to the conclusions one might have made based on fluorescence microscopy alone (that 254 

all puncta represented DCSGs), cryo-CLEM revealed that some of the puncta were lysed vesicles 255 

and probable autophagasomes, which may have formed here simply because of the unnatural 256 

levels of CgA expression. Moreover, we also observed vesicles by ECT with dense aggregated 257 

cores that were not fluorescent (example denoted by α in Figure 5b; see also Supplementary Movie 258 

1). One possible explanation for this is that the variable pH within DCSGs effects the fluorescence 259 

of GFP. Indeed in insulin containing beta cells, granule acidification is a critical step for proper 260 

maturation of pro-insulin to the mature form, ultimately leading to crystallization and exocytosis 261 

(Orci, Ravazzola et al. 1986, Paroutis, Touret et al. 2004). Again this highlights a caveat to 262 

interpreting fluorescence images: some cellular objects of a given type may not fluoresce or even 263 

incorporate tagged protein if it is expressed unnaturally. Finally, our images reveal that some 264 

vesicles are largely filled by crystals. Because their lattice spacings matched those of insulin 265 

crystals, this suggests that insulin can occupy a remarkably large proportion of the vesicle. In any 266 
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case our cryo-CLEM/ECT data make it clear that the structures of DCSGs are not uniform, but 267 

remarkably diverse, and that further characterization is in order.   268 

 269 

Online Methods 270 

Cell growth and transfection 271 

Rat insulinoma INS-1E (gift of P. Maechler, Université de Genève) and human neuroblastoma 272 

BE(2)-M17 cells (CRL-2267; American Type Culture Collection, Manassas, VA) were maintained 273 

in a humidified 37°C incubator with 5% CO2. INS-1E cells were cultured in RPMI 1640 media with 274 

L-glutamine (Life Technologies, Grand Island, NY), supplemented with 5% fetal bovine serum (heat 275 

inactivated), 10 mM HEPES, 100 units/mL penicillin, 100 μg/mL streptomycin, 1 mM sodium 276 

pyruvate, and 50 μM 2-Mercapto-ethanol. HeLa cells, rhesus macaque fibroblast and primary 277 

adipocyte cells were cultured under similar conditions. For cryo-EM and cryo-ET, cells were plated 278 

onto fibronectin-coated 200 mesh gold R2/2 London finder Quantifoil grids (Quantifoil Micro Tools 279 

GmbH, Jena, Germany) at a density of 2x105 cells/mL. After 48 h incubation, cultures were pre-280 

treated (30 min, 37°C, 5% CO2) in Krebs Ringers Bicarbonate HEPES buffer (KRBH: 132.2 mM 281 

NaCl, 3.6 mM KCl, 5 mM NaHCO3, 0.5 mM NaH2PO4, 0.5 mM MgCl2, 1.5 mM CaCl2, and 10 mM 282 

HEPES, and 0.1% bovine serum albumin, pH 7.4) supplemented with 2.8 mM glucose before being 283 

plunge frozen in liquid ethane/propane mixture using a Vitrobot Mark IV (FEI, Hillsboro, OR) (Iancu, 284 

Tivol et al. 2006).. For cell transfections, as above INS-1E cells were plated onto fibronectin-coated 285 

200 mesh gold R2/2 Quantifoil grids at a 2x105 cells/mL density and cultured for 24-48 h (37°C, 286 

5% CO2). The cells were then transfected with 2 μg DNA constructs in serum-free RPMI media (5 287 

h, 37°C, 5% CO2) using Lipofectamine 2000 (Life Technologies, Carlsbad, CA). Following 16 h 288 

incubation in serum-containing RPMI media, cells were washed in KRBH and plunge-frozen for 289 
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subsequent imaging. Immediately prior to plunge-freezing, 3 µl of a suspension of beads was 290 

applied to grids. The bead suspension was made by diluting 500 nm blue (345/435 nm) polystyrene 291 

fluorospheres (Phosphorex) with a colloidal solution of 20 nm gold fiducials (Sigma Aldrich) 292 

pretreated with bovine serum albumin. The gold served as fiducial markers for tomogram 293 

reconstruction while the blue fluorospheres served as landmarks for registering fluorescence light 294 

microscopy (FLM) images from different channels as well as EM images. In addition, the blue 295 

fluorospheres helped locate target areas in phase contrast light microscopy and low-magnification 296 

EM images containing thin ice suitable for high-resolution ECT. Plunge-frozen grids were 297 

subsequently loaded into Polara EM cartridges (FEI). EM cartridges containing frozen grids were 298 

stored in liquid nitrogen and maintained at ≤ -150˚C throughout the experiment including cryo-FLM 299 

imaging, cryo-EM imaging, storage and transfer.  300 

 301 

Fluorescence imaging and Image processing 302 

The EM cartridges were transferred into a cryo-FLM stage (FEI Cryostage) modified to hold Polara 303 

EM cartridges (Nickell, Kofler et al. 2006, Briegel, Chen et al. 2010) and mounted on a Nikon Ti 304 

inverted microscope. The grids were imaged using a 60 X extra-long working distance air objective 305 

(Nikon CFI S Plan Fluor ELWD 60x NA 0.7 WD 2.62-1.8 mm). Images were recorded using a Neo 306 

5.5 sCMOS camera (Andor Technology, South Windsor, CT) using a real-time deconvolution 307 

module in the NIS Elements software (Nikon Instruments Inc., Melville, NY). The pixel size 308 

corresponding to the objective lens was ~108 nm (at the sample level). All fluorescence images 309 

(individual channels) were saved in 16-bit grayscale format. CgA-GFP was visualized with a FITC 310 

filter. Mito-dsRed2 was visualized with an mCherry filter. Blue fluorospheres were visualized with 311 

a DAPI filter.  Following FLM imaging, images from different channels were aligned (as described 312 
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above) using either a module in the NIS Elements software or a Python alignment script written in-313 

house. The 500 nm blue fluorospheres were used to align the DAPI, FITC and YFP channels while 314 

autofluorescent puncta were used to align the mCherry channel with the others. The fluorescence 315 

channels were aligned to subpixel accuracy. Before the FLM images were further analyzed, 316 

background fluorescence in each channel was subtracted from the respective images. This 317 

background fluorescence was uniform throughout each image (even outside cellular areas) and 318 

likely originates from the grid/ice. Fluorescent puncta were identified in the channel of interest using 319 

an in-house python script and their peak fluorescence intensities measured. In addition, intensities 320 

of the same pixels in other channels were also recorded. For example, in the case of CgA-GFP 321 

dataset, peak intensities of puncta in the FITC channel and their corresponding pixel intensities in 322 

the mCherry channel were recorded. Peak intensity values in both channels of both untransfected 323 

and transfected cells were plotted on scatter plots. 324 

 325 

Cryo-CLEM and ECT 326 

Grids previously imaged by FLM were subsequently imaged by ECT using an FEI G2 Polara 300kV 327 

FEG TEM equipped with an energy filter (slit width 20 eV for higher magnifications; Gatan, Inc.). 328 

Images were recorded using a 4k x 4k K2 Summit direct detector (Gatan, Inc.) operating in the 329 

electron counting mode. First, areas containing the fluorescent puncta of interest were located in 330 

the TEM. Tilt series were then recorded of these areas using UCSF Tomography (Zheng, 331 

Keszthelyi et al. 2007) or SerialEM (Mastronarde 2005) software at a magnification of 18,000X. 332 

This corresponds to a pixel size of 6 Å (at the specimen level) and was found to be sufficient for 333 

this study. Each tilt series was collected from -60° to +60° with an increment of 1° in an automated 334 
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fashion at 8-10 µm underfocus. The cumulative dose of one tilt-series was between 80 and 200 e-335 

/Å2.  336 

 337 

Areas of interest were located by TEM in a stepwise manner. First, the grid square/cell of interest 338 

on the finder grid was located by using large location markers or other features visible at a low 339 

magnification (100 X). Second, a smaller area containing the fluorescent punctum of interest was 340 

located by mapping FLM images to intermediate-magnification EM images (typically 3,000X or 341 

1,200X) by eye using various local features within the identified grid square. These features 342 

included (1) clusters of 500 nm microspheres that were arranged in a uniquely identifiable pattern, 343 

(2) cracks and regularly spaced 2 μm holes in the carbon film and (3) ice contamination. This was 344 

done with either UCSF Tomography (Zheng, Keszthelyi et al. 2007) or SerialEM (Mastronarde 345 

2005) . With UCSF Tomography, the area of interest first had to be mentally mapped on the 346 

low/intermediate magnification EM image using the local features described above before being 347 

identified again at 18,000 X magnification by the same features (if available within the field of view). 348 

Correlation with SerialEM was more streamlined. FLM images were registered with EM images of 349 

the grid square of interest using local features (described above) as control points. These EM 350 

images could be either single projection images at a low enough magnification (360X or 1,200X) 351 

to contain the area of interest and enough control points to enable tilt-series collection or a montage 352 

assembled from higher-magnification (3,000X) EM images. Once the FLM images were registered, 353 

areas of interest were marked using the “anchor maps” feature. Using this feature, marked areas 354 

could be revisited and tilt-series collected in an automated fashion. Once acquired, tilt-series were 355 

aligned and binned four-fold into 1k x 1k arrays before reconstruction into 3D tomograms with the 356 

IMOD software package (Kremer, Mastronarde et al. 1996). In addition to the tilt-series, projection 357 
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images of the location at various magnifications (360X, 1,200X, 3,000X, 9,300X and 18,000X) were 358 

saved and used for high-precision post-data collection correlation. 359 

 360 

High-precision post-data collection correlation of FLM images and tomographic slices 361 

RGM fluorescence images were correlated to EM projection images using an in-house image 362 

registration script written in Python. This entailed stepwise registration of images recorded at 363 

various magnifications, starting with the FLM image, recorded at the lowest magnification (60X), 364 

all the way up to the 18,000X EM image. First, the FLM image was registered with a 365 

low/intermediate-magnification EM image. The centroid positions of 500 nm blue microspheres 366 

were estimated to sub-pixel accuracy and used as control points for this registration. The 367 

magnification of the EM image used for this registration was chosen such that there were at least 368 

4 control points available in the field of view. The microspheres were clearly visible at 369 

magnifications above 1,200X and less reliably visible at magnifications as low as 360X. Therefore 370 

the registration process was more accurate when using >1,200X EM images. The registration 371 

parameters (affine transformation) were saved. Successive steps involved similar calculation of 372 

affine transformation parameters between EM projection images of various magnifications up to 373 

18,000X. Gold fiducials, surface ice contaminations, and cellular features visible at these 374 

magnifications were used as control points for these registration steps. In general, we found that 375 

high defocus values at lower magnifications (~50 μm at 3,000X and ~1 mm at 1,200X) enhanced 376 

the visibility of control points and thus resulted in better registration. Also, having more control 377 

points (at least 5) resulted in better registration. Precise registration at lower magnifications is 378 

particularly important because of the relatively larger pixel sizes involved. To produce the final 379 

registration of the FLM images with the 18,000X projection EM images, the transformations 380 
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calculated in each of the previous steps were successively applied to the FLM images. The 381 

resulting FLM images were overlaid on the 18,000X EM projection images using Adobe Photoshop 382 

CC (San Jose, CA), setting the visibility of the upper FLM image layer to linear dodge.  383 
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Figure Legends 404 

Figure 1. INS-1E cells exhibit strong autofluorescence at 80K. (a,b) Cryo-LM images 405 

(composite of bright field and epifluorescence in FITC, mCherry and DAPI channels) of INS-1E 406 

cells transfected with CgA-GFP (A) or untransfected (B). (c,d) Room-temperature light microscopy 407 

images of epifluorescence in FITC channel of INS-1E cells transfected with CgA-GFP (C) or 408 

untransfected (D).  409 

 410 

Figure 2. Autofluorescence at 80K is a general feature of mammalian cells. Cryo-LM images 411 

(bright field and epifluorescence in FITC, mCherry and DAPI channels) of (a) rhesus macaque 412 

fibroblasts, (b) HeLa cells and (c) primary adipocytes.   413 

 414 

Figure 3. Cryo-CLEM reveals sources of autofluorescence in untransfected rhesus macaque 415 

fibroblasts (a) and INS-1E cells (b). Left panels show epifluorescence images overlaid on high-416 

magnification cryo-EM projection images.  Middle panel in (b) shows the corresponding 417 

tomographic slice. Right panels show zoomed-in views of the boxed areas in corresponding panels 418 

at left. Numbers indicate corresponding locations. Scale bars = 200 nm. 419 

 420 

Figure 4. Relative fluorescence intensity can distinguish target fluorescent signal from 421 

autofluorescence at 80K. (a) Scatter plot of mCherry and FITC channel intensity values of 422 

fluorescent puncta in INS-1E cells untransfected (magenta) or transfected with Mito-DsRed2 423 

(blue). [n > X00 for transfected, X00 untransfected.] The black line indicates the area of the scatter 424 

plot with no puncta in untransfected INS-1E cells and is described in the text. Larger symbols 425 

denote structures observed by cryo-CLEM of selected puncta in transfected cells, corresponding 426 
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to mitochondria (triangles) or multi-membraned structures, dense vesicles, crystalline structures or 427 

structures with a combination of these features (circles). (b) Examples of structures correlated to 428 

fluorescent puncta. Left panels show epi-fluorescence images overlaid on high-magnification cryo-429 

EM projection images. Middle panels show tomographic slices of the same areas. Right panels 430 

show zoomed-in views of the boxed areas in the middle panels. Numbers indicate corresponding 431 

locations. Scale bars = 200 nm.  432 

 433 

Figure 5. Application of method enables cryo-CLEM of CgA-GFP in INS-1E cells. (a) Scatter 434 

plot of FITC and mCherry channel intensity values of fluorescent puncta in INS-1E cells 435 

untransfected (magenta) or transfected with CgA-GFP (blue). [n > X00 for transfected, X00 436 

untransfected.] The black line indicates the area of the scatter plot with no puncta in untransfected 437 

INS-1E cells and is described in the text. Larger symbols denote structures observed by cryo-438 

CLEM of selected puncta in transfected cells (circles). (b) Examples of structures correlated to 439 

fluorescent puncta. Left panels show epi-fluorescence images overlaid on high-magnification cryo-440 

EM projection images. Middle panels show tomographic slices of the same areas. Right panels 441 

show zoomed-in views of the boxed areas in the middle panels. Numbers indicate corresponding 442 

locations. Scale bars = 200 nm.  443 

 444 

 445 

 446 

 447 

 448 

 449 
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