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ABSTRACT Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic
plasticity and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty is problematic for
estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic
evolution. Here we report a recombinant inbred line (RIL) quantitative trait locus (QTL) mapping panel for the hermaphroditic
nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel,
comprising 507 RILs, was created by hybridization of 16 wild isolates, experimental evolution at moderate population sizes and
predominant outcrossing for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of
single nucleotide polymorphisms known to segregate in natural populations, and complements existing mapping resources
for C. elegans by providing high nucleotide diversity across >95% of the genome. We apply it to study the genetic basis of
two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad sense heritability in
the CeMEE. While simulations show we should detect common alleles with additive effects as small as 5%, at gene-level
resolution, the genetic architectures of these traits does not feature such alleles. We instead find that a significant fraction of
trait variance, particularly for fertility, can be explained by sign epistasis with weak main effects. In congruence, phenotype
prediction, while generally poor (r2 < 10%), requires modeling epistasis for optimal accuracy, with most variance attributed to
the highly recombinant, rapidly evolving chromosome arms.
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Introduction18

Most measurable features of organisms vary among individuals.19

Outlining the genetic dimension of this variation, and how this20

varies across populations and traits, has important implications21

for the application of genomic data to predict disease risk and22

agricultural production, for estimation of heritability, and for23

understanding evolution (Lynch and Walsh 1998; Barton and24

Keightley 2002). Complex traits are defined by being multifacto-25

rial. They tend to be influenced by many genes and to be plastic26

in the presence of environmental variation, and the manner in27

which phenotypic variation emerges from the combined effects28

of causal alleles is rarely clear. Although phenotype prediction29

and some aspects of evolution can often be well approximated30

by considering additive effects alone, non-additive interactions31

between alleles at different loci (with marginal additive effects)32

may explain a large fraction of trait variation yet remain un-33

detected due to low statistical power (Phillips 2008). Adding34

further complication, one cannot usually assume that genetic35

and environmental effects are homogeneous or independent of36

one another (Barton and Turelli 1991; Félix and Barkoulas 2015),37

nor that the genetic markers used for mapping quantitative trait38

loci (QTL) are faithfully and uniformly associated with causal39

alleles (Yang et al. 2010; Speed et al. 2012).40
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INTRODUCTION

Human height, for example, is the canonical quantitative41

trait, an easily measured, stable attribute with high heritability42

(around 80%) when measured in families Fisher (1930); Galton43

(1886); Visscher et al. (2010). Hundreds of common QTL (minor44

allele frequency, MAF>5%) of small effect have been detected45

by genome-wide association studies (GWAS) over the last two46

decades, explaining in sum only a small fraction (around 20%)47

of heritability (Wood et al. 2014). A recent study with more48

than 7× 105 people showed that close to one hundred uncom-49

mon QTLs (0.1%<MAF<5%) of more moderate effects explain a50

mere extra 5% of heritability (Marouli et al. 2017). It has taken51

methods of genomic selection in animal breeding, and dense52

genetic marker information (Meuwissen et al. 2001; Meuwissen53

and Goddard 2010), to show that common QTL of very small54

effect can potentially explain a large fraction of the variability in55

human height and common diseases (Yang et al. 2010; Speed et al.56

2016). Thus, in perhaps many cases, the so-called problem of57

the “missing heritability” may be synonymous with high poly-58

genicity (Hill et al. 2008; Manolio et al. 2009). The contribution of59

statistical epistasis to variation in human height is likely to be60

modest (Visscher et al. 2010), although the generality of this for61

size-related traits in other organisms is not known. Molecular62

genetics and biochemistry suggest functional non-additivity is63

ubiquitous within individuals, and significant effects on trait64

variation have been shown in many cases (e.g., MUKAI (1967);65

Whitlock and Bourguet (2000); Bonhoeffer et al. (2004); Carlborg66

et al. (2006); de Visser et al. (2009); Zwarts et al. (2011); Shao et al.67

(2008); Gaertner et al. (2012); Barkoulas et al. (2013); Weinreich68

et al. (2013); Huang et al. (2014); Vanhaeren et al. (2014); Bloom69

et al. (2015); Monnahan and Kelly (2015b,a); Paaby et al. (2015);70

Tyler et al. (2016); Schoustra et al. (2016); Forsberg et al. (2017);71

Chirgwin et al. (2016), but the importance of epistasis in shap-72

ing fitness landscapes and in generating the additive genetic73

variance on which selection can act is still debated (Cheverud74

and Routman 1995; Wolf et al. 2000; Phillips 2008; Hansen 2013;75

Mackay et al. 2014)).76

Alongside GWAS, inbred line crosses in model systems con-77

tinue to be instrumental for our understanding of the genetics of78

complex traits, given the opportunity for control of confounding79

environmental covariates and accurate measurement of breeding80

values. Crosses among multiple parental strains in particular81

– such as those now available for mice (Churchill et al. 2004),82

Drosophila (Macdonald and Long 2007), maize (McMullen et al.83

2009; Buckler et al. 2009), wheat (Huang et al. 2012; Mackay et al.84

2014; Thepot et al. 2015), rice (Bandillo et al. 2013), tomato (Pas-85

cual et al. 2015) and Arabidopsis (Kover et al. 2009), among others86

– have been developed to better sample natural genetic variation.87

Greater variation also allows the effects of multiallelic loci to88

be studied and, subject to effective recombination, improved89

QTL resolution. If large populations and random mating are90

imposed for long periods, gains in resolution can be dramatic91

(Valdar et al. 2006; Rockman and Kruglyak 2008), although this92

comes at the expense of increased opportunity for selection to93

purge diversity (e.g., Baldwin-Brown et al. (2014); Rockman and94

Kruglyak (2009)).95

Better known as a model for functional biology (Corsi et al.96

2015), the nematode Caenorhabditis elegans has also contributed97

to our understanding of complex traits and their evolution. C.98

elegans shows extensive variation in complex traits (Gems and99

Riddle 2000; Knight et al. 2001; Barrière and Félix 2005; Gutteling100

et al. 2007; Gray and Cutter 2014; Diaz and Viney 2014; Teotónio101

et al. 2017) and sex-determination and breeding mode (selfing102

and outcrossing) can be genetically manipulated at will. QTL for103

traits such as embryonic lethality (Rockman and Kruglyak 2009),104

pesticide resistance (Ghosh et al. 2012) and telomere length (Cook105

et al. 2016) have been found by association studies in an ever106

expanding panel of inbred wild isolates, the C. elegans natural di-107

versity resource (CeNDR; https://elegansvariation.org/, Cook108

et al. (2017)). QTL for a range of complex traits have also been109

found using collections of recombinant inbred lines (RILs) (Rock-110

man and Kruglyak 2009) and introgression lines (ILs) (Doroszuk111

et al. 2009) derived from crossing the laboratory domesticated N2112

strain (Sterken et al. 2015) and the divergent Hawaiian wild iso-113

late CB4856 (e.g., Andersen et al. (2014, 2015)), or by two-parent114

crossing of non-domesticated strains (e.g., Duveau and Félix115

(2012); Noble et al. (2015)). GWAS and two-parent crosses have116

given insights into how natural selection has shaped phenotypic117

variation in C. elegans and related nematodes. For example, an118

N2/CB4856 RIL panel has been used to argue that selection on119

linked sites largely explains the distribution of QTL effects for120

mRNA abundance (Rockman et al. 2010). Lastly, C. elegans is121

also one of the main models for experimental evolution (Gray122

and Cutter 2014; Teotónio et al. 2017). Mutation accumulation123

line panels in particular have long been used to estimate muta-124

tional heritability (Estes and Lynch 2003; Estes 2005; Baer et al.125

2005; Baer 2008; Phillips et al. 2009; Halligan and Keightley 2009)126

and to argue that standing levels of genetic variation in natural127

populations for complex traits can be explained by a mutation-128

selection balance (Etienne et al. 2015; Farhadifar et al. 2016). As129

yet, the QTL mapping resolution of existing C. elegans RIL panels130

has been coarse, and there is no panel derived from crosses of131

multiple wild parental strains.132

A prominent characteristic of C. elegans is its mixed androdi-133

oecious reproductive system, with hermaphrodites capable of134

either selfing, from a cache of sperm produced late in larval de-135

velopment (Hirsh et al. 1976), or outcrossing with males (Maupas136

1900). Sex determination is chromosomal, with hermaphrodites137

XX, and XO males maintained through crosses and rare X-138

chromosome non-disjunction during hermaphrodite gameto-139

genesis (Nigon 1949). Because males are typically absent from140

selfed broods but are half the progeny of a cross, twice the male141

frequency in a population is the expected outcrossing rate (Stew-142

art and Phillips 2002; Cutter 2004). Natural populations have143

low genetic diversity and very high linkage disequilibrium (LD),144

with generally weak global population structure and high local145

diversity among typically homozygous individuals at the patch146

scale (Barrière and Félix 2005, 2007; Cutter et al. 2009). Aver-147

age single nucleotide polymorphism (SNP) diversity is on the148

order of 0.3% (Cutter 2006) though highly variable across the149

genome, reaching 16% or more in some hypervariable regions150

(Thompson et al. 2015). Low diversity and high LD is due to151

the predominance of inbreeding by selfing, which reduces the152

effective recombination rate and elevates susceptibility to linked153

selection (Rockman et al. 2010; Andersen et al. 2012). Crosses154

between wild isolates have revealed outbreeding depression155

(Dolgin et al. 2007; Chelo et al. 2014), which may be in part due to156

the disruption of epistatic allelic interactions. Evidence support-157

ing this prediction in C. elegans is, to date, scarce: one study has158

shown that recombination between several QTL "complexes"159

leads to dysregulation of thermal preferences (Gaertner et al.160

2012).161

Although selfing is the most common reproductive mode in162

natural C. elegans populations, males, though rare, are variably163

proficient in mating with hermaphrodites (Teotónio et al. 2006;164
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MATERIALS AND METHODS Sequencing and genotyping

Murray et al. 2011). Perhaps as a consequence of low but sig-165

nificant outcrossing (and also a metapopulation demographic166

structure) several loci have been found to be under some form of167

balancing selection (e.g., Ghosh et al. (2012); Greene et al. (2016)).168

Moreover, evolution experiments involving crosses among mul-169

tiple strains have shown that high outcrossing rates can persist170

as long as there is heritable variation for male traits (Anderson171

et al. 2010; Teotónio et al. 2012; Masri et al. 2013). In our evolu-172

tion experiments in particular (Teotónio et al. 2012), moderate173

population sizes and high outcrossing rates facilitated the loss of174

genetic diversity by (partial) selective sweeps, with excess het-175

erozygosity maintained by epistatic selection on overdominant176

loci (e.g., Chelo and Teotónio (2013); Chelo et al. (2014)).177

This foundation suggests study of C. elegans may be fruit-178

ful for our understanding of the contribution of within- and179

between-locus interactions to complex traits and their evolu-180

tion. Here we present a panel of 507 genome sequenced RILs181

obtained by intercrossing 16 wild isolates, culturing at high out-182

crossing rates in populations of ≈ 104 for 140-190 generations of183

experimental evolution, followed by inbreeding by selfing for184

13-16 generations. The C. elegans Multiparental Experimental185

Evolution (CeMEE) RIL panel complements existing C. elegans186

mapping resources by providing fine mapping resolution and187

high nucleotide diversity. Using simulations, we show that the188

CeMEE panel can give gene-level resolution for common QTL189

with effects as low as 5%. In subsets of the CeMEE, we inves-190

tigate the genetic basis of two fitness components, fertility and191

hermaphrodite body size at the time of reproduction, by vari-192

ance decomposition under additive and additive-by-additive193

epistatic models, and by genome-wide 1- and 2-dimensional194

association testing. We find that the genetic basis of both traits,195

particularly fertility, is highly polygenic, with a significant role196

for epistasis.197

Materials and Methods198

CeMEE derivation199

The panel was derived in 3 stages (Figure 1). First, 16 wild200

isolates (AB1, CB4507, CB4858, CB4855, CB4852, CB4586, MY1,201

MY16, JU319, JU345, JU400, N2 (ancestral), PB306, PX174, PX179,202

RC301; obtained from the Caenorhaditis Genetics Center) were203

inbred by selfing for 10 generations to ensure homozygosity,204

then intercrossed to funnel variation into a single multiparental205

hybrid population, as described in Teotónio et al. (2012). Each of206

the four funnel phases comprised multiple pairwise, reciprocal207

crosses at moderate population sizes (see Figure S1 of Teotónio208

et al. (2012) for full details of replication and population sizes).209

Second, the multiparental hybrid population was evolved210

for 140 discrete generations at population sizes of N ≈ 104 (out-211

crossing rate ≈ 0.5, Ne ≈ 103), to obtain the A140 population, as212

reported in (Teotónio et al. 2012; Chelo and Teotónio 2013; Chelo213

et al. 2013). Sex-determination mutations were then mass intro-214

gressed into the A140, while maintaining genetic diversity, to215

generate monoecious (obligately selfing hermaphrodites) and tri-216

oecious (partial selfing with males, females and hermaphrodites)217

populations, as detailed in Theologidis et al. (2014). Further218

replicated experimental evolution was carried out for 50 gener-219

ations under two environmental regimes: (1) a Control regime220

(conditions as before), with the wild-type Androdioecious re-221

productive system (CA50 collectively, full designations can be222

found in Table S1); and (2) a Gradual exposure to an increasing223

gradient of NaCl, from 25mM (standard NGM-lite medium, US224

Biological) to 305mM until generation 35 and thereafter, vary-225

ing reproductive system (GX50, where X is Androdioecious,226

Monoecious or Trioecious). Although trioecious populations227

started evolution with only 0.1% of hermaphrodites, by genera-228

tion 50 they were abundant (50%; see Figure S7 in Theologidis229

et al. (2014)). Androdioecious populations maintained outcross-230

ing rates of >0.4 until generation 35, soon after losing males to231

finish with an outcrossing rate of about 0.2 by generation 50 (Fig-232

ure S5 in Theologidis et al. (2014)). The effects of reproductive233

system on the genetics and evolution of complex traits will be234

the subject of future work.235

Finally, hermaphrodites were inbred by selfing to obtain re-236

combinant inbred lines (RILs). Population samples (> 103 indi-237

viduals) were thawed from -80C and maintained under standard238

laboratory conditions for two generations. At the third genera-239

tion, single hermaphrodites were picked at the late third to early240

fourth (L3/L4) larval stage and placed in wells of 12-well culture241

plates, containing M9 medium (25mM NaCl) seeded with E. coli.242

Lines were propagated at 20C and 80% RH by transferring a sin-243

gle L3/L4 individual for 16 (A140 population) or 13 generations244

(4-7 days between transfers). At each passage, parental plates245

were kept at 4C to prevent growth until offspring production246

was verified, and in the case of failure a second transfer was247

attempted before declaring line extinction. Inbreeding was done248

in several blocks from 2012 to 2016, in two different labs. A total249

of 709 RILs were obtained and archived at -80C (File S2).250

Sequencing and genotyping251

DNA of the 16 founders, 666 RILs and the A140 population was252

prepared using the Qiagen Blood and Tissue kit soon after deriva-253

tion or after thawing from frozen stocks and expansion to at least254

104 L1 individuals. Founders were sequenced to >=30X depth255

with 50 or 100bp paired-end reads (Illumina HiSeq 2000, New256

York University Center for Genomics and Systems Biology Gen-257

Core facility). Reads were mapped (BWA 0.7.8; Li and Durbin258

(2010)) to the WS220 C. elegans N2 reference genome and variants259

(SNPs and small indels) were called jointly (GATK 3.3-0 Haplo-260

typeCaller; McKenna et al. (2010)), followed by base quality score261

recalibration (BQSR) using a subset of high scoring sites (29% of262

initial variants passing strict variant filtration: “MQ < 58.0 ||263

DP < 20 || FS > 40.0 || SOR > 3.0 || ReadPosRankSum < -5.0264

|| QD < 20.0 || DP > mean×2”). Diallellic single nucleotide265

variants on the six nuclear chromosomes were intersected with266

calls from a joint three-sample call (GATK UnifiedGenotyper)267

on pooled founders, a subset of pooled RILs (SUP TABLE XX,268

SAME AS CEMEE LIST ANOTHER COLUMN), and 72X se-269

quencing of the A140 population (approximately 1400x total),270

then filtered based on variant call metrics (MQ < 50.0 || DP <271

10 || FS > 50.0 || SOR > 5.0 || ReadPosRankSum < -5.0 ||272

QD < 6.0 || DP > mean×3) and on the number of heterozygous273

or missing founder calls (3,014 sites > 8 removed; these calls274

likely represent copy number differences between founders and275

the N2 reference), and requiring > 1 homozygote (28,872 sites276

removed), giving an initial set of 404,536 SNP markers.277

RILs were sequenced with 100bp paired-end reads (Nextera278

libraries, HiSeq 2000, NYU) or 150bp paired-end reads (Hiseq279

X Ten, BGI Tech Solutions Company, Hong Kong), to mean280

depth 7.2X (minimum 0.2X). Genotypes were imputed by Hid-281

den Markov Model (HMM) considering the 16 founder states282

and mean base qualities of reads. Downsampled predictions for283

a subset of RILs sequenced to high (20-30X) depth gave imputa-284

tion accuracy of approximately 99% at 0.2X and 99.9% at 0.5X285

(93% of lines).286
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Sequencing and genotyping MATERIALS AND METHODS

Figure 1 CeMEE derivation. The multiparental intercross funnel phase comprised four stages of pairwise crosses and progeny
mixing, carried out in parallel at controlled population sizes. One hybridization cycle for a single founder cross is inset at left: in
each cycle, multiple reciprocal crosses were initiated, increasing in replicate number and census size each filial generation. F1 and
F2 progeny were first sib-mated, then reciprocal lines were merged by intercrossing the F3 and expanding the pooled G4 (for three
to four generations) before commencing the next reduction cycle. The resulting multiparental hybrid population was archived by
freezing, and samples were thawed and then maintained for 140 non-overlapping generations of mixed selfing and outcrossing
under standard laboratory conditions to generate the A140 population. Hermaphrodites were then sampled from the A140 and
selfed to generated the A140 RILs. Additionally, the outbred A140 population was evolved for a further 50 generations under the
same conditions (control adapted lines; CA) or under adaptation to a salt gradient with varying sex ratios (GT, GM and GA lines;
Theologidis et al. (2014)). See Materials and Methods for description of sub-panels, and Teotónio et al. (2012) for details of replicate
numbers and population sizes for each funnel generation.
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MATERIALS AND METHODS CeMEE genetic structure

We assessed accuracy and appropriate variant filtering thresh-287

olds by genotyping a set of 784 markers, uniformly distributed288

across the six chromosomes according to the genetic distances289

of Rockman and Kruglyak (2009), in 182 RILs with the iPlex290

Sequenom MALDI-TOF platform (Bradić et al. 2011). Sequenom291

data can be found in Table S2. We fitted a linear model with292

counts of Illumina/Sequenom concordant cases as the response293

variable, and all founder variant quality metrics together with294

the number of missing or heterozygous calls in the founders,295

the number of zero-coverage or potentially heterozygous sites296

(with at least a single Illumina read for each genotype), variant297

nucleotide identity, and reference nucleotide and dinucleotide298

identity as explanatory variables. Concordance across sequenc-299

ing platforms was 96.9% after (93.7% before) final filtering, and300

we retained 388,201 diallelic SNPs as founder markers. We es-301

timated residual heterozygosity for 25 A140 lines sequenced302

to >20X coverage (single sample calls using GATK 3.3-0 Hap-303

lotypeCaller, variant filtration settings MQ < 50.0 || DP < 5304

|| MQRankSum < -12.5 || SOR > 6 || FS > 60.0 || Read-305

PosRankSum < -8.0 || QD < 10.0 || DP > mean×3). Mean306

heterozygosity at founder sites is 0.095% (standard deviation307

0.042%, range 0.033-0.18%).308

After removal of RILs sharing greater than the mean pairwise309

identity + 5 standard deviations (84.8%, excluding monoecious310

lines), we retained 178 A140 RILs, 118 CA50 RILs (from three311

replicate populations), 127 GA50 RILs (three replicates), and312

79 GT50 RILs (two replicates). The 98 GM50 RILs (two repli-313

cates) are highly related on average and group together into a314

small number of "isotypes". To prevent introduction of strong315

structure, we discard all but five below the above panel-wide316

pairwise identity threshold for the purposes of trait mapping. In317

total, the CeMEE comprises 507 RILs from five sub-panels, with318

352,583 of the founder markers segregating within it (File S3).319

CeMEE genetic structure320

Differentiation from natural isolates and founders We com-321

pared similarity within and between the CeMEE RILs and 152 se-322

quenced wild-isolates from the CeNDR panel (release 20160408).323

The distributions for all pairwise genotype and haplotype (%324

identity at 0.33cM scale in F2 map distance) distances are plotted325

in Figure 2, for 256,535 shared diallelic sites with no missing or326

heterozygous calls.327

Linkage disequilibrium (r2) was computed for founders and328

CeMEE RILs at the same set of sites (MAF >1/16, <5% ambigu-329

ous imputed RIL genotypes and ≤ 1 heterozygous/missing330

founder genotypes, then downsampled by 10 for computational331

tractability), and plotted against genetic distances (obtained by332

linear interpolation from the N2/CB4856 map, scaled to F2 dis-333

tances (Rockman and Kruglyak 2009). To assess the extent of334

subtle, long-range linkage disequilibrium in the form of inter-335

chromosomal structure, we compared r2 among chromosomes336

to a null distribution generated by permutation (n=5000). In337

each permutation, filtered RIL genotypes (pruned of strong local338

linkage r2 < 0.98, no ambiguous calls) were randomly down-339

sampled to equal size across chromosomes, split by chromosome,340

then shuffled within each sub-panel before taking the mean cor-341

relation across chromosomes (or omitting all single and pairwise342

chromosome combinations) as test statistic. The effect of local343

LD pruning is to reduce the weighting of large regions in strong344

linkage in order to better assay weak interactions across the345

remainder of the genome.346

Reconstruction of ancestral haplotypes and genetic map ex-347

pansion For each RIL, founder haplotypes were inferred with348

the RABBIT HMM framework implemented in Mathematica349

(Zheng et al. 2015), conditioning on the recombination frequen-350

cies observed for the N2 x CB4856 RILs (scaled to F2 map length)351

(Rockman and Kruglyak 2009). Realized map expansion was352

estimated by maximum likelihood for each chromosome, be-353

fore full marginal reconstruction of each chromosome (explicitly354

modeling recombination on the X and autosomes) using poste-355

rior decoding under the fully dependent homolog model (dep-356

Model). Under this model, appropriate for fully inbred diploids,357

chromosome homologs are assumed to have identical ancestral358

origins (prior identity by descent probability f = 1), and the359

recombination junction density (transition probability) is given360

by the estimated map expansion (Ra) and genotyping error rates361

(set to 5× 10−5 for founders and 5× 10−3 for RILs based on like-362

lihood from a parameter sweep). Sites called as heterozygous363

or missing in the founders, or unresolved to [0, 1] by the geno-364

type imputation HMM were set to NA before reconstruction.365

For reconstruction summaries, haplotype posterior probabilities366

were filtered to >0.2, and haplotype lengths and breakpoints367

were estimated from run lengths of marker assignments, taking368

the single best haplotype (if present), maintaining haplotype369

identity (if multiple assignments of equal probability), or the370

first among equals otherwise.371

To test reconstruction accuracy as a function of haplotype372

length, we performed simulations of a pedigree varying only the373

number of generations of random mating. Starting from a single374

population representing all founders (N=1000, corresponding375

to the expected Ne during experimental evolution), mating oc-376

curred at random with equal contribution to the next generation.377

Recombination between homologous chromosomes occurred at378

a rate of 50cM, with full crossover interference, and the proba-379

bility of meiotic crossover based on distances between marker380

pairs obtained by linear interpolation of genetic positions (Rock-381

man and Kruglyak 2009). For each chromosome, 10 simulations382

were run sampling at 10, 25, 50, 100 and 150 generations, and383

haplotype reconstruction was carried out as above. Maximum384

likelihood estimates of realized map expansion for simulations385

were used to calibrate a model for prediction of realized number386

of generations in the RILs by chromosome. A 2nd degree polyno-387

mial regression of Ra on the known number of generations was388

significantly preferred over a linear fit by likelihood ratio test,389

given significant underestimation as pedigree length increased390

(approaching 10% at G150).391

Population stratification Population stratification was assessed392

using (1) principal component decomposition, giving a uni- or393

bivariate view of the importance of genetic structure associated394

with CeMEE sub-panels, and (2) by supervised and unsuper-395

vised discriminant analysis of principal components (DAPC;396

Jombart et al. (2010)), giving an estimate of the fraction of princi-397

pal component variance that best predicts sub-panel structure,398

and an inference of population structure without regard to sub-399

panel identities. In all cases decomposition was of scaled and400

centered genotypes pruned of strong local LD (r2 < 0.98), giving401

all markers equal weight (and therefore more weight to low402

frequency alleles).403

Of the first 50 principal components, 10 are significantly as-404

sociated with sub-panel identity (i.e., evolutionary history) by405

ANOVA (p < 0.05 after Bonferroni correction), accounting for406

just 3.9% of the variance in sum. Seven of the top 10 PCs are sig-407

nificant, though others up to PC 38 are also associated, showing408
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Heritability and phenotype prediction MATERIALS AND METHODS

that multiple sources of structure contribute to the major axes of409

variation. Fitting all pairs among the the top 50, two pairs (7 and410

19, 13 and 14) are significant (again at a conservative Bonferroni411

adjusted threshold), resolving the GT50 RILs as most distinct.412

For DAPC (R package adegenet, Jombart (2008)), we used413

100 rounds of cross-validation to determine the number of prin-414

cipal components required to achieve optimal group assignment415

accuracy (the mean of per-group correct assignments). This416

value (40 PCs) was then used to infer groups by unsupervised417

k-means clustering (default settings of 10 starts, 105 iterations),418

with k selected on the Bayesian Information Criterion (BIC). Cor-419

respondence of inferred groups with known groups was tested420

by permutation. Given the contingency table C, where Ci,j repre-421

sents the number of lines known to be in sub-panel i and inferred422

to be in cluster j, the inferred values for each cluster (js) were423

shuffled among known groups (is) 10,000 times, with the sum of424

the variance among known groups taken as a summary statistic425

(high values reflecting significant overlap between inferred and426

known groups).427

Phenotyping428

Fertility In the experimental evolution scheme under which the429

CeMEE RILs were generated, a hermaphrodite’s contribution430

to the next generation is the number of viable embryos that431

survive bleaching (laid, but unhatched, or held in utero) that432

subsequently hatch to L1 larvae 24h later. We treat this pheno-433

type as fertility, and measured it for individual worms of 230434

RILs. Each line was thawed and maintained for two generations435

under standard conditions (Stiernagle 2006; Teotónio et al. 2012;436

Theologidis et al. 2014), bleached to kill adults, then embryos437

were allowed to hatch and synchronize as L1 larvae. L1s were438

then moved to fresh plates seeded with E. coli and allowed to439

develop for 48 hours. Single L3-L4 staged hermaphrodite lar-440

vae were then placed into each well of 96-well plates using a441

micropipette and stereomicroscope. Plate wells contained NGM-442

lite + 100µg/ml ampicillin, previously inoculated with 1µl of443

an overnight culture of E. coli (HT115) and stored until usage at444

4C (maximum 2 weeks before use). After transfer, plates were445

covered with Parafilm to prevent cross-contamination and incu-446

bated at 20C and 80% relative humidity (RH) until the following447

day. Embryos were extracted by adding bleach solution to wells448

(1M KOH, 5% NaClO 1:1 v/v in M9 buffer) for 5 minutes, then449

200µl of the extract was removed and rinsed 3 times in M9 buffer450

by centrifugation. The M9 suspension (200µl) was then trans-451

ferred to another 96-well plate containing 120µl of M9 per well.452

Plates were incubated overnight (as above), then centrifuged453

for 1 min at 1800rpm to sediment any swimming larvae before454

imaging at 4 pixel/µm2 with a Nikon Eclipse TE2000-S inverted455

microscope. ImageJ was then used to manually count the num-456

ber of live (moving) L1s in each well. During assay setup and457

image analysis wells were censored where: bacteria were absent;458

hermaphrodites were absent or dead at the time of bleach; males459

had been inadvertently picked; more than 1 adult was present;460

or hermaphrodites had not been killed upon bleaching. Except461

for density between the L4 stage until reproduction, all assay462

conditions were the same as those used during experimental463

evolution. Fertility measurements do not include potential sur-464

vival differences between the L1 stage until reproduction, but we465

nonetheless take it as a surrogate for fitness (Chelo et al. 2013).466

Two independent plates within a single thaw were set-up467

for most RILs (1 plate for six lines, maximum=4, mean=2.0),468

which we consider as replicates for estimation of repeatability469

(see below). In total the median number of measurements per470

line was 43 (range 4-84). Highly replicated data for the refer-471

ence strain N2 were also included for modeling purposes (404472

observations across 17 plates, spanning 9 of 47 independent473

thaws). Wells with no offspring were observed for 4% of N2474

data (and 2.9% of all RIL data). These are likely to be due to475

technical artifact, such as injury or incorrect staging, and were476

excluded before modeling. Mapping values were the Box-Cox477

transformed line coefficients from a Poisson generalized linear478

model with fixed effects of plate row, column and edge (exte-479

rior rows and columns), and the count of offspring per worm480

as response variable. Three outliers with coefficients >3 stan-481

dard deviations below the mean were excluded, leaving data482

for 227 RILs (File S4). Data come from RILs of three sub-panels483

(170 A6140, 45 GA50, 12 GT50), which explains 4% of trait vari-484

ation (GA50 RILs have higher mean fertility than the A6140,485

regression coefficient = 0.43, p = 0.01; see Figure S1).486

Adult hermaphrodite body size 412 RILs were thawed and main-487

tained for two generations under standard conditions. On the488

third generation, 1000 synchronized L1 larvae were moved to489

NGM-lite plates (25mM NaCl) where they developed and ma-490

tured for 3 days. Image data was acquired at the usual time of491

reproduction (as during experimental evolution) and analysed492

with the Multi-Worm Tracker (Swierczek et al. 2011), using a493

Dalsa Falcon 4M30 CCD camera and Schott backlight A08926.494

Tracking was performed for 25 minutes with default parame-495

ters, and particle (worm) contours extracted (on average, 300496

particles obtained every 0.5s). Raw values from each plate were497

calculated from track segments of length 40-41s taken at 80s498

intervals, ultimately estimating the area of an individual as the499

grand mean of the per-segment estimates (accounting for tem-500

poral autocorrelation within a time-series, analysis not shown).501

Assays were carried out in two lab locations over several502

years, while recording the relative humidity and temperature at503

the time of assay. Mapping values are the Box-Cox transformed504

line coefficients from a linear model incorporating fixed effects505

of year, nested within location, and humidity and temperature,506

nested within location. Data come from a mean of 2.1 (maximum507

4) independent thaw blocks for each RIL, for 410 RILs after508

excluding 2 outliers >3 standard deviations below the mean,509

with a median of 447 measurements per RIL and block (range510

109-1013; File S5). Data for the reference strain N2 were also511

included in the model (1664 observations from two plates). Data512

come from RILs of three sub-panels (165 A6140, 118 CA50, 127513

GA50), which explains 17% of trait variation (GA50 RILs are514

much larger than the A6140, regression coefficient = 0.94, p <515

10−16; see Figure S1). This difference is not obviously associated516

with technical covariates, since data acquisition for A140 RILs517

and GA50 RILs was distributed similarly with respect to location518

and time.519

Fertility and body size are moderately correlated (Figure S1;520

see also Poullet et al. (2016)), justifying the latter being con-521

sidered a fitness-proximal trait (Spearman’s ρ = 0.354, p =522

2.336× 10−7 for mapping coefficients, for 202 lines with data for523

both traits).524

Heritability and phenotype prediction525

Repeatability Repeatability was estimated from ANOVA of the526

line replicate means for each trait as R = σ2
a / (σ2

a + σ2
e ), where527

σ2
a = (mean square among lines - mean square error)/n0, and528

n0 is a coefficient correcting for varying number of observations529

(1-4 plate means) per line (Lessells and Boag 1987; Sokal and530
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MATERIALS AND METHODS Heritability and phenotype prediction

Rohlf 1995). Assuming equal variance and equal proportions531

of environmental and genetic variance among replicates, R rep-532

resents on upper bound on broad-sense heritability (Falconer533

1981; Hayes and Jenkins 1997). Fertility data were square root534

transformed to decouple the mean and variance.535

Assumptions In inbred, isogenic, lines, broad-sense heritability536

can also be estimated by linear mixed effect model from the537

covariance between genetic and phenotypic variances. The mea-538

surement of genetic similarity is, however, subject to a number539

of assumptions and is (almost) always, at best, an approximation540

(Speed and Balding 2015).541

A first assumption is that all markers are the causal alleles542

of phenotypic variation. It is unavoidable, however, that mark-543

ers tag the (unknown) causal alleles to different degrees due to544

variable linkage disequilibrium. A second, usually implicit, as-545

sumption in calculating genetic similarity is the weight given to546

markers as a function of allele frequency. Equal marker weights547

have commonly been used in animal breeding research, while548

greater weight has typically been given to rare alleles in hu-549

man research, which has some support under scenarios of both550

selection and neutrality (Pritchard 2002). A third assumption,551

related to the first two, is the relationship between LD and causal552

variation. If the relationship is positive - causal variants being553

enriched in regions of high LD - then heritability estimated from554

all markers will be upwardly biased, since the signal from causal555

variation contributes disproportionately to genetic similarity556

(Speed et al. 2012).557

The use of whole genome sequencing largely addresses the558

first assumption, given (as here) very high marker density and559

an accurate reference genome, although in the absence of full560

de novo genomes from long-read data for each individual, the561

contribution of large scale copy-number and structural variation,562

and new mutation, will remain obscure. To account for the sec-563

ond and third assumptions, we used LDAK (v5.0) to explicitly564

account for LD in the CeMEE (decay half-life = 200Kb, min-cor =565

0.005, min-obs = 0.95) (Speed et al. 2012). Heritability estimates566

were not sensitive to variation in the decay parameter over a567

10-fold range or to the measurement unit (physical or genetic),568

although model likelihoods were non-significantly better for569

physical distance. Across the set of 507 RILs, 88,508 segregat-570

ing markers were used after local LD-based pruning (r2<0.98)571

and, of these, 22,984 markers received non-zero weights. LD-572

weighting can magnify the effects of genotyping errors. We573

excluded 17,740 markers with particularly low local LD (mean574

r2 over a 20 marker window < 0.3, or the ratio of mean r2 to that575

of the window mean < 0.3). Heritability estimates were largely576

unchanged (within the reported intervals), as were our general577

conclusions on variance components and model performance.578

Modeling Model fit was assessed by phenotype predictions from579

leave-one-out cross validation, calculating the genomic best lin-580

ear unbiased prediction (GBLUP; Meuwissen et al. (2001); Van-581

Raden (2008); Yang et al. (2010)) for each RIL and returning582

the squared correlation coefficient (r2) between observed and583

predicted trait values. To avoid bias associated with sample584

size all models were unconstrained (non-error variance com-585

ponents were allowed to vary outside 0-1 during convergence)586

unless otherwise noted, which generally gave better fit for multi-587

component models.588

Given m SNPs, genetic similarity is calculated by first scaling
S, the n× m matrix of mean centered genotypes, where Si,j is
the number of minor alleles carried by line i at marker j and

frequency f , to give X:

Xi,j = (Si,j − 2 f j)× (2 f j(1− f j))
α
2 ; (1)

The additive genomic similarity matrix (GSM) A is then XXT/m.
Here α scales the relationship between allele frequency and effect
size (Speed et al. 2012). α = −1 corresponds to the assumption of
equal variance explained per marker (an inverse relationship of
effect size and allele frequency), while common alleles are given
greater weight at α>0. We tested α ∈ [−1.5,−1,−0.5, 0, 0.5, 1]
and report results that maximized prediction accuracy. With
Y the scaled and centered vector of n phenotype values, the
additive model fit for estimating genomic heritability h2 is then:

Y =
m

∑ βA + e,

with β ∼ N (0, σ2
g), e ∼ N (0, σ2

e )

where β represents random SNP effects capturing genetic vari-589

ance σ2
g , e is the residual error capturing environmental vari-590

ance σ2
e . Given Y and A, heritability can be estimated from591

restricted/residual maximum likelihood (REML) estimates of592

genetic and residual variance as h2 = σ2
g /(σ2

g + σ2
e ). Note that593

we use the terms h2 and genomic heritability interchangeably594

here for convenience, although in some cases the former includes595

non-additive covariances. We assume RILs are fully inbred, and596

so dominance variance does not contribute to heritability.597

The existence of near-discrete recombination rate domains
across chromosomes has lead to characteristic biases in nu-
cleotide variation, correlated with gene density and function
(Cutter et al. 2009). Similarly, recent selective sweeps, coupled
with the low effective outcrossing rate in C. elegans, have lead to a
markedly unequal distribution of variation across chromosomes
(Andersen et al. 2012; Rockman et al. 2010). This variability in
mutational effect, along with variable LD in the RILs, is not cap-
tured by aggregate genome-wide similarity with equal marker
weighting (Speed et al. 2012; Goddard et al. 2016). We therefore
first tested genetic similarity by explicitly modeling observed LD
(Speed et al. 2012), with markers weighted by the amount of ge-
netic variation they tag along chromosomes, and by their allele
frequency (see above). Given m weights reflecting the amount
of linked genetic variation tagged by each marker, wi, . . . , wm,
the variance covariances for the basic model become:

β ∼ N (0, wσ2
g /W)

where W is a normalizing constant. Second, we jointly measured
the variance explained by individual chromosomes (and by re-
combination rate domains within each chromosome), which can
further improve the precision of heritability estimation if causal
variants are not uniformly distributed by allowing variance to
vary among partitions. Third, we tested epistatic as well as addi-
tive genetic similarity with (1) the entrywise (Hadamard) prod-
uct of additive GSMs, giving the probability of allele pair sharing
(Henderson 1985; Jiang and Reif 2015), (2) higher exponents up
to fourth order interactions and (3) haplotype-based similarity
at multi-gene scale. Additional similarity components (additive
or otherwise) are added as random effects to the above model to
obtain independent estimation of variance components:

Y =
m

∑ βA1 + . . . + βn An + e,

β1 ∼ N (wσ2
g1 A1/W),

βn ∼ N (wσ2
gn An/W),

e ∼ N (0, σ2
e )
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Haplotype similarity was calculated as the proportion of identi-598

cal sites among lines at 0.033 and 0.067cM scales (corresponding599

to means of approximately 5 and 10Kb non-overlapping block600

sizes, or one and two genes), using either the diallelic markers601

only, or all called SNPs and indels. In the latter case, variants602

were imputed from reconstructed haplotypes if the most likely603

haplotypes of flanking markers were in agreement.604

GWAS605

1-dimensional tests For single trait, single marker association,
we fitted linear mixed models using the Python package LIMIX
(https://github.com/PMBio/limix):

Y = βX + g + e, with g ∼ N (0, σ2
g A), e ∼ N (0, σ2

e ) (2)

where X is the matrix of fixed effects (the SNP genotype of606

interest) and β is the effect on phenotypic variation that is esti-607

mated. g are the random effects describing genetic covariances608

(as above) accounting for non-independence among tests due609

to an assumed polygenic contribution to phenotype, with A the610

n× n genetic similarity matrix from the most predictive additive611

fit found for each trait above, and e is the error term.612

To test the mapping resolution and power of the CeMEE613

panel, we carried out GWAS according to the model above for614

simulated phenotypes. We modeled a single focal additive locus615

(with h2 from 1 to 30%) and a background polygenic component616

of equal variance (with scenarios of 10, 100 or 1000 loci), selected617

at random from SNPs with MAF > 0.05, and with genetic and618

environmental effect sizes drawn independently from the stan-619

dard normal distribution. GWAS was carried out 1000 times620

for each scenario, controlling for relatedness with LD-weighted621

additive genetic similarity (α = −0.5). Power was estimated622

from a binomial generalized linear model considering all three623

polygenic scenarios together. Recall, the proportion of true pos-624

itives passing significance, was assessed after masking a 1cM625

window around the focal SNP. 2-LOD drop intervals around626

the focal locus were calculated from similarly powered mark-627

ers with > MAF, with p-values converted to LOD scores as628

χ2/2× log(2)/log10(2)).629

For simulated traits all 507 lines and 262,218 markers (MAF >630

0.05) were used for GWAS. For body size GWAS 410 lines and631

254,174 markers were used, and 227 lines and 254,240 markers632

were used for fertility. Significance thresholds were established633

by permutation, with phenotypes generated by permuting phe-634

notype residuals, given the estimated relatedness among lines635

(A), using the R package mvnpermute (Abney 2015). Signifi-636

cance level α is the corresponding percentile of the minimum637

p-values from 1000 permutations.638

Given the correlation between traits (see above), we also639

tested a model for each trait on phenotype residuals after linear640

regression on the other, and a multi-trait model fitting effects641

common or specific to a trait. No markers passed significance in642

any case (analysis not shown).643

2-dimensional tests We tested for additive-by-additive epistasis644

on the assumption of complete homozygosity. We first reduced645

the search space by local LD pruning (r2 < 0.5), requiring MAF646

> 0.05, the presence of all four two-locus homozygote classes at647

a frequency of > 3, with 6 5 missing or ambiguous imputed648

genotypes (which were excluded from analysis). This gave a649

total of 19,913,422 tests for fertility (both inter- and intrachromo-650

somal) and 28,138,090 for size, across 9,628 and 10,329 markers651

respectively. We tested for main and interaction additive effects652

for all marker pairs by ANOVA, taking as summary statistics the653

F-statistic for genotype interaction (2D tests), and also the sum654

of interaction scores for each marker (2D sum tests) above each655

of three thresholds (F>0,8,16, the latter corresponding roughly656

to the most significant single marker associations seen for both657

traits). All statistics were calculated separately for inter- and658

intrachromosomal tests. 2D sum tests are testing for excess weak659

to moderate interactions due to polygenic epistasis.660

For computational tractability, tests were run in parallel on661

two chromosomes at a time. Null permutation thresholds were662

generated by shuffling phenotypes (using mvnpermute as above663

to ensure exchangeability in the presence of polygenicity or struc-664

ture). 2D test thresholds were calculated for each chromosome665

separately from at least 2000 permutations each and differed lit-666

tle across chromosomes (α = 10%, 2.86− 1.16× 10−7 for fertility,667

1.86× 10−7 - 7.2× 10−8 for size). Inter- and intrachromosomal668

thresholds were calculated separately, but the reported interac-669

tions do not change if we pool both classes (or all chromosomes).670

2D sum test thresholds were calculated separately for each chro-671

mosome pair and class (inter- and intrachromosomal).672

We initially ignored relatedness for 2D testing, then fit lin-673

ear mixed effect models as above with genetic covariance A674

for candidate interactions (R package hglm; Shen et al. (2014)).675

For size, the two candidate interactions all decreased slightly in676

significance (to a maximum p-value of 7.8× 10−7), while signif-677

icance increased for all four fertility interactions. The amount678

of phenotypic variance explained by candidates for each trait679

was estimated by ANOVA, jointly fitting all main and two-locus680

interactions.681

Data Availability682

Sequence data are available from NCBI SRA under accession683

XXXXX. All data and methods scripts are archived in Dryad.org684

doi: XXX. RILs are available from the authors.685

Results and Discussion686

CeMEE differentiation from natural populations687

The CeMEE panel of recombinant inbred lines draws variation688

from sixteen founders, and shuffles the diversity they contain689

through more than 150 generations at moderate population sizes690

and predominant outcrossing. The wild founders used to create691

the panel together carry approximately 25% of single nucleotide692

variants known to segregate in the global C. elegans population693

(CeNDR; Caenorhabditis elegans Natural Diversity Resource; Cook694

et al. (2017)). They vary, however, in distance to the N2 reference695

strain, with the Hawaiian CB4856 and German MY16 isolates696

together contributing over half of all markers, while the Califor-697

nian CB4507 is closely related to N2 (Figure S3). Comparison698

of pairwise genetic distances in the CeMEE and 152 sequenced699

wild isolates (including a small number of more recently iso-700

lated, highly divergent lines) illustrates the extent of novelty701

generated by the multiparental cross (Figure 2). The CeMEE702

RILs occupy a substantial sub-space of the CeNDR genotypic703

diversity (Figure 2A), without the extensive haplotype sharing704

among wild-isolates and with the creation of many new multi-705

genic haplotypes (Figure 2B).706

CeMEE differentiation from parental founders707

Since C. elegans natural isolates suffer from outbreeding de-708

pression (?Gimond et al. 2013), the mixing phase is expected709

to generate high variance in fitness which, channeled through710
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Figure 2 Similarity among CeMEE RILs and 152 sequenced
wild-isolates (Caenorhabditis elegans Natural Diversity Re-
source) at 256,535 shared diallelic sites. The distribution of
pairwise genotype (A) and haplotype (B) distances, within
and between CeMEE RILs and CeNDR wild-isolates, by chro-
mosome. Haplotype distances are 1-% identity at 0.1cM scale.
Note that chromosomes 2-4 all show a marked excess in hap-
lotype dissimilarity between CeMEE RILs and CeNDR wild-
isolates, and the density is truncated by a factor of four for
visibility.

bottlenecks during serial intercrossing and population expan-711

sion, gives ample opportunity for loss of diversity through drift712

and selection. Fixation of N2 alleles at one X chromosome locus,713

spanning the known major effect behavioral locus npr-1 (de Bono714

and Bargmann 1998; Gloria-Soria and Azevedo 2008; McGrath715

et al. 2009; Reddy et al. 2009; Andersen et al. 2014; Bendesky et al.716

2011), during establishment of the A140 population has been717

documented with a coarse marker set (Teotónio et al. 2012). More718

broadly, the outbred A140 population showed non-negligible719

departure from the founders, with 32,244 alleles lost (unseen in720

both the A140 and RILs, 26,593 of these being founder single-721

tons; Figure 3). Subsequent change during the inbreeding (and722

further adaptation) stages to generate RILs was more restricted,723

with an additional 3,171 alleles lost (2,542 of these at <10% fre-724

quency in both founders and the A140). Importantly, however,725

the physical distribution of allelic loss is relatively restricted:726

at least one marker is segregating in the CeMEE RILs at >5%727

minor allele frequency within 95.5% of 20Kb segments across728

the genome (97.2% of autosomal segments; for reference, protein729

coding genes are spaced just under 5Kb apart on average in the730

100Mb C. elegans N2 genome).731

Analysis of differentiation across variant functional classes732

showed large departures in frequency for coding variation733

(synonymous and non-synonymous) and the smallest for in-734

tronic variation (Figure 3D). Putative regulatory variation was735

most variable across experimental phases, being the most dy-736

namic class during the funnel intercross and initial adaptation737

(founders to A140) but below the mean value for generations738

between the A140 and RILs. This pattern was observed across739

all of the sub-panels that make up the CeMEE (not shown), no-740

tably the A140 RILs which differ from the outbred A140 by only741

inbreeding, suggesting differential dominance of coding and742

regulatory variation (Wray 2007; Gruber et al. 2012). Without743

sequence data for the outbred CA50, GA50, GM50 or GT50 popu-744

lations, we cannot assess the impact of inbreeding on the fixation745

of alleles more generally. These effects are expected to depend746

on reproductive mode and selection (Charlesworth and Wright747

2001; Morran et al. 2009; Chelo and Teotónio 2013; Chelo et al.748

2014; Kamran-Disfani and Agrawal 2014) and will be addressed749

in future work.

Figure 3 Minor allele frequency between founders and the
outbred A140 population (A), A140 and RILs (inbreeding only
for the A140 RILs, further adaptation then inbreeding for G50
RILs; B), and founders against all RILs (C). Insets show fre-
quency quantiles. D. Change in allele frequency (absolute log
ratios) for the same contrasts by functional class: intronic, syn-
onymous and non-synonymous, putative regulatory variation
(US/DS; ≤200bp from an annotated transcript or N2 pseu-
dogene), or intergenic (none of the above). Points are mean
values (diameter exceeds the standard errors).

750

Local linkage disequilibrium, while non-uniform among chro-751

mosomes, decays relatively rapidly on average, approaching752

background levels by 0.5cM (F2 map scale) on average (Fig-753

ure 4 and Figure S2). Disequilibrium between pairs of loci on754

different chromosomes is, as expected, very weak (0.99, 0.95755

quantiles = 0.538, 0.051 within chromosomes versus 0.037, 0.022756

across chromosomes), with the prominent exception of a sin-757

gle pair of loci on chromosomes II and III (r2 > 0.5 between758

II:2,284,322; tagging an intact MARINER5 transposon (WBTrans-759

poson00000128) that harbors an expressed miRNA in the N2760

reference, and III:1,354,894-1,425,217; a broad region of mostly761

unannotated genes, against maximum interchromosomal values762

for all other pairs r2 6 0.27). Alleles in repulsion phase are rare763

across these regions (p < 10−70, Fisher Exact Test), absent in the764

founders, and present in only 1 of 124 wild isolates surveyed765

with unambiguous variant calls in these regions (Caenorhabditis766

elegans Natural Diversity Resource). This suggests the presence767

of at least one two-locus incompatibility exposed by inbreeding768

or, perhaps more likely given the uncertainties of reference-769

based genotyping, a transposon-mediated II-III transposition770

polymorphism among founders. Three founders contribute the771
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Founder haplotype blocks and genetic map expansion RESULTS AND DISCUSSION

chromosome II non-reference haplotype, but extremely poor772

read mapping in this region for these and other isolates, consis-773

tent with high local divergence as well as potential structural774

variation, means our short read data are not informative in re-775

solving these alternatives.776

To better quantify the extent of subtle interchromosomal777

structure in the CeMEE we compared the observed correlations778

among chromosomes to values from permutations, shuffling779

lines within sub-panels, among chromosomes (Figure 4). The780

observed mean value for the genome, while extremely low, is781

highly significant (p < 2× 10−4 from 5000 permutations), in-782

dicating the presence of extensive weak interactions. Further783

permutations dropping single or pairs of chromosomes showed784

that interactions between autosomes and the X chromosome785

contribute disproportionately.786

Figure 4 Linkage disequilibrium in founders (A) and all Ce-
MEE RILs (B; F2 genetic map distance, LOESS fit to mean
r2). C. Interchromosomal structure is weak but significant.
Observed mean r2 across all chromosomes (red vertical bar)
plotted against the null distribution from permutations ran-
domizing lines across chromosomes (within sub-panels to
exclude effects of population structure). D. Permutations drop-
ping pairs of chromosomes implicate X-autosome interactions.
Point size and color is scaled by enrichment over the null dis-
tribution (95% percentile), relative to the genome-wide mean
value.

Founder haplotype blocks and genetic map expansion787

The CeMEE panel is highly recombined and any simple, large-788

effect incompatibilities between founders are likely to have been789

purged. For example, a haplotype containing peel-1 and zeel-1, a790

known incompatibility locus that segregates among the founders791

on the left arm of chromosome I (Seidel et al. 2008, 2011), is fixed792

in the RILs (Figure 5a). Cases such as this are best appreciated793

when the mosaic of founder haplotypes across the genome is794

inferred.795

For each CeMEE RIL, founder haplotypes across the genome796

were reconstructed with the multiparent HMM framework RAB-797

BIT (Zheng et al. 2015), assigning 96.9% of markers to a single798

founder haplotype at posterior probability > 0.2 (84.2% > 0.5;799

median value across lines. Haplotype sharing in the 16 founders800

means that unambiguous assignment to a single founder is not801

always possible). For illustration purposes, a summary of re-802

constructed haplotypes for the A140 RILs on chromosomes I,803

IV and X are shown in Figure 5, at both physical and genetic804

scales to make the differences between these units plain. The805

observed recombination landscapes generally recapitulate those806

inferred from the N2/CB4856 cross (Rockman and Kruglyak807

2009; Kaur and Rockman 2014; Bernstein and Rockman 2016),808

with recombination rate high in chromosome arms and low in809

centers. With the additional map expansion gained here (see810

below), we note that suppression of recombination is clearly811

strong, but not complete, within subtelomeric regions (see, for812

example, the exceptionally large right tip of chromosome X,813

spanning almost 2Mb, in Figure 5c).814

Founder haplotype diversity among all CeMEE RILs remains815

high: the median number of founder haplotypes across recon-816

structed intervals is 12 (posterior probability > 0.5, haplotypes817

observed in > 1 RIL). Contributions clearly vary from equal-818

ity, with lines most divergent from the reference (CB4856 and819

MY16) overrepresented and lines more similar to the reference820

underrepresented (with the exception of the large region of chro-821

mosome X, spanning npr-1, which is largely fixed for N2/CB4507822

alleles (Figure 5c). To establish if these biases are merely techni-823

cal, and establish expectations for reconstruction resolution in824

the presence of haplotype redundancy, we simulated genomes of825

varying pedigree length (up to 150 generations). As expected, re-826

construction was hampered by increasing recombination, and by827

ambiguity between similar founders (Figure S3). Bias toward di-828

vergent haplotypes was not observed in the reconstruction sim-829

ulations, however, suggesting the overrepresentation of CB4856830

and MY16 may be due to selection, notably for long haplotypes831

across the central domain of chromosome IV (Figure 5b). Re-832

construction completeness for the A140 RILs is generally in line833

with expectations for a pedigree of 150 generations. Clear excep-834

tions are chromosome IV, where we recover more than expected835

under random sampling, and chromosome V, where we recover836

less. Haplotype lengths from simulated reconstructions showed837

we progressively underestimate recombination breakpoints due838

to imperfect resolution of small haplotypes (Figure S3).839

The relationship between known generation and estimated840

realized map expansion from reconstruction simulations allows841

prediction of the number of effective generations of outcross-842

ing within the CeMEE panel. Across the five sub-panels, mean843

autosomal generation ranges from 227 (GM monoecious RILs)844

to 284 (CA androdioecious lines), with a weighted average of845

260 for the CeMEE as a whole (Figure S4). Estimated genetic846

map expansion is variable across chromosomes: IV appears to847

be exceptionally recombinant in all sub-panels with expansion848

more than twice that of chromosomes I-III, due largely to a high849

frequency, highly structured haplotype on the far right arm and850

tip (Figure 5b). This region spans one of the two large C. el-851

egans piRNA clusters (Ruby et al. 2006), which encodes more852

than 15,000 piRNA transcripts, interspersed with active trans-853

posons and protein coding genes. Several trivial explanations854

for the unusual apparent expansion, such as elevated genotyp-855

ing error rate or founder haplotype ambiguity, or distortions856

in the N2/CB4856 genetic map use to condition reconstruction857
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probabilities, are not supported (data not shown), although the858

extent of large-scale structural variation among founders in this859

region (with the exception of CB4856, which does not show860

unusual levels of SNP or copy number variation) is unknown.861

Setting aside potential technical artifacts, the locus may rep-862

resent a hitherto undetected recombination hotspot (whether863

through attraction, or suppression of observed recombination864

elsewhere on the chromosome), a site of rampant gene conver-865

sion, or the focus of early and sustained selection during the866

initial intercross phase (potentially epistatic in nature, see Neher867

and Shraiman (2009)). Earlier work proposed that evolution of868

this region may have involved a recombination rate modifier869

(through gene conversion) during the first 140 generations of870

experimental evolution in order to explain the observed excess871

haplotype diversity (see discussion and Figures S4 and S5 of Ch-872

elo and Teotónio (2013)). In contrast, chromosome V, which has873

been the focus of a recent large-scale selective sweep (Andersen874

et al. 2012), shows more variable expansion across sub-panels875

suggestive of ongoing selection (Figure S4).876

Population stratification877

We examined additional genetic structure in the CeMEE RIL878

panel stemming from the inclusion of distinct sub-panels of RILs879

that vary in experimental evolution histories. In the context of880

QTL mapping, this genetic structure represents nuisance vari-881

ation that can bias estimates of heritability if unknown factors882

covary with the trait of interest, structure that is causally associ-883

ated with a trait, or non-causal structure due solely to population884

stratification.885

To gauge the extent of population stratification we compared886

the results of supervised and unsupervised discriminant analysis887

of principal components (DAPC; Jombart (2008)), which parti-888

tions within and between group variation, using either known889

or inferred populations, based on linear combinations of princi-890

pal components. By selection of discriminant functions that best891

predict known CeMEE sub-panel membership, it is clear that892

the varied evolutionary history has, unsurprisingly, generated893

significant genetic structure. The number of principal compo-894

nents selected by cross-validation that best predicts population895

membership is 40, which together explain 25% of the variance896

(though only a fraction of these components are significantly897

associated, considered singly or in pairs, see 3). Unsupervised898

DAPC, which infers groups based on variance minimization and899

model penalization criteria (k-means clustering, BIC), selected 5-900

8 clusters which best explain the data (∆ BIC < 1 over this range).901

These corresponded significantly with sub-panel identity (e.g., p902

= 0.036 at k=5, permutation test), although the rate of successful903

assignment was low (36% at k=5). This suggests that genetic904

structure within, as well as between sub-panels, is significant.905

Heritability and predictability of fitness-proximal traits906

We measured two traits that are important components of fitness907

– the fertility and size of young adult hermaphrodites – and thus908

represent challenging case studies for mapping of complex traits909

in the panel (Poullet et al. 2016). The traits are correlated (Fig-910

ure S1), and vary extensively in the CeMEE RILs: hermaphrodite911

fertility varies more than five-fold, size varies more than three-912

fold (Figure 7).913

Under the uncommonly met assumptions of complete tag-914

ging of causal variation and uniform linkage, narrow sense her-915

itability (h2) can be estimated from phenotypic and additive916

genetic covariances (Henderson 1975; Robinson 1991; Yang et al.917

2010; Speed et al. 2012; de los Campos et al. 2015). Estimates,918

assuming appreciable heritability, are influenced by the extent919

to which markers reflect the genetic architecture of the trait in920

the population under study, and the method by which similarity921

is defined from them (reviewed in Speed and Balding (2015),922

and see Materials and Methods). Different covariance metrics923

can therefore provide useful information on the genetic basis of924

complex traits, such as partitioning chromosomal contributions,925

the frequency distribution of causal variants, and the propor-926

tion of epistatic variance, without the statistical limitations (and927

precision) of GWAS that attempt to explain phenotypic variance928

as the sum of individually significant additive marker effects.929

As emphasized by Speed and Balding, genomic heritability esti-930

mation is best viewed as a model-fitting exercise, the problem931

being to find the most appropriate measure of genetic similar-932

ity for the trait, population and genetic data in question, and933

the answer being the most likely estimate of the contribution of934

genetic variance to trait variance given the data.935

Repeatability, genomic heritability and prediction While RIL re-936

peatability (an upper bound on broad sense heritability, H2,937

under certain assumptions (Dohm 2002)) for both traits was938

relatively high – 0.76 for fertility and 0.80 for size – genomic939

heritability estimates for trait coefficients with a simple addi-940

tive genetic similarity matrix based on the probability of allele941

sharing at all markers, equally weighted, were not significantly942

different to 0 (likelihood ratio test; not shown). This suggested943

that genome-wide genotypic similarity is poorly correlated with944

causal variation for these traits, potentially due to variable LD or945

epistatic cancellation. We thus examined alternative measures946

of genetic similarity to address the apparent lack of additive947

genomic heritability, comparing model predictive power (r2) by948

leave-one-out cross-validation (see Materials and Methods).949

Heritability estimates and prediction accuracy are summa-950

rized in Table 1, comparing the simplest models – additive (A)951

only, or additive + additive-by-additive (A2) genetic covariance952

at the genome level – and the most predictive models for each953

trait. Given relatively high variance in relatedness, we are pow-954

ered to detect large differences in additive heritabilities despite955

modest sample sizes for analysis of this kind, although the dif-956

ferences between individual models are generally minor. For957

fertility, with just 227 lines we have 50% power to reject h2 = 0958

if h2 = 0.38, and >95% power at our estimate of H2 (at a signifi-959

cance level of 0.05), while for size, the corresponding values are960

50% power at h2 = 0.35 and >99% power at repeatability (based961

on the best performing measure of additive similarity for each962

trait; Visscher et al. (2014)). Given the multiplicative scaling of963

epistatic similarity, low power is unavoidable.964

While phenotype prediction accuracy is generally poor, some965

broad trends are apparent in the ranking. Additive heritabil-966

ity based on LD-weighted markers was relatively high for size967

(0.58), though less so for fertility (0.24). In neither case was addi-968

tive similarity alone the best predictor of phenotype, however.969

Nine of the top 10 models for fertility all incorporated epistasis970

in some form, with the best of these giving 57% improvement971

over the best additive model. For size, the advantage was less972

clear: three of the top four models included epistasis, though the973

performance differential between the best epistatic and additive974

models was only 3%.975

Notably, partitioning of the genome based on recombina-976

tion rate domains performed well for both traits, and was the977

preferred model for fertility. In general, model type was more978

influential on prediction than allele frequency scaling (α), how-979
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(a) Chromosome I

Figure 5 A140 RIL founder haplotype reconstruction and structure for chromosomes I, IV and X. A. Founder haplotypes recon-
structed for the A140 RILs shown in physical and genetic distances. Each plotted point is a marker, with its size scaled by posterior
probability (minimum 0.2). Founder contributions are summarized below in B. Loci discussed in the text are indicated: the zeel-
1/peel-1 incompatibility on the left arm of chromosome I (haplotype compatibility group, either experimentally tested in Seidel et al.
(2008) or determined here from genotype data, is indicated below as an arrowhead for Bristol (N2) or an x for Hawaii (CB4856); ex-
treme haplotype differentiation within a piRNA cluster on the right arm and tip of chromosome IV; and the fixation of N2/CB4507
haplotypes over a large region of the X chromosome left arm spanning npr-1, which has known pleiotropic effects on behavior and
laboratory adaptation (de Bono and Bargmann 1998; Gloria-Soria and Azevedo 2008; McGrath et al. 2009; Andersen et al. 2014).
C-G show summary statistics evaluated at 5Kb or 0.01cM resolution, with vertical scales for each metric fixed across chromosomes,
and the positions of recombination rate boundaries inferred for the N2×CB4856 RIAILs (Rockman and Kruglyak 2009) indicated
with shaded bars. C. Haplotype length; mean length extending from the focal position. D. p (haplo.); test of reconstructed founder
haplotype proportions, relative to expectation based on reconstruction frequency from G150 simulations (−log10(p) from a χ2

goodness-of-fit test). E. t (geno.); change in allele frequency from the founders (absolute value of Welch’s t statistic for founder
vs. RIL genotype counts). F. N haplo.; the number of unique founder haplotypes detected at each position, with the maximum
value of 16 indicated. G. N RILs; the number of RIL haplotypes reconstructed at each interval (> 0.2 posterior probability), with the
maximum value of 178 indicated.

ever within models, negative values of α (rarer alleles having980

larger effects) were generally preferred for size, and positive for981

fertility, suggesting the frequency spectrum of causal variants982

for the two traits varies in the RILs.983

Effects of population stratification on heritability estimation984

Given the stratified nature of the CeMEE panel, we tested for ef-985

fects on heritability estimation in three ways. First, we estimated986

heritability for individual sub-panels (best additive models only).987

Although highly uncertain given the very small sample sizes,988

estimates were positive for two of the three sub-panels for adult989

body size and for both of two sub-panels tested (n > 50) for990

fertility, spanning the reported values for all lines.991

Second, we estimated within sub-panel heritability by fitting992

within population means as covariates (best A and A+A2 mod-993
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(b) Chromosome IV

els). For adult body size, where GA RILs are significantly larger994

than other panels, this reduced estimated heritability to 0.15 (A)995

and 0.38 (A+A2, with A2=0.30). Fertility, for which trait values996

vary only weakly with sub-panel, was largely unchanged at 0.45997

(A) and (the unreasonably high, and uncertain) estimate of 1.44998

(SD 0.75) for A+A2, with a dominant contribution from epistasis.999

Third, we applied the method of Yang et al. (2011), developed1000

for unrelated human populations, which compares the sum1001

of heritabilities estimated for single chromosomes to that of a1002

model fitting all chromosomes jointly. In the former case, genetic1003

correlations across chromosomes due to population structure1004

will result in ∑ h2
C(single) > h2

C, since the genotype of one chro-1005

mosome will be predictive of that of others, while fitting all1006

chromosomes jointly gives independent conditional estimates.1007

The reasonable underlying assumptions are that structure is1008

more significant between than within populations, and is not1009

causally associated with phenotypic variance, although the latter1010

might not hold for fitness-proximal traits. Comparing the sum1011

of heritability estimates from samples of half the chromosomes1012

(∑ h2
/2) to that from all chromosomes (additive similarity only),1013

results suggested stratification may contribute significantly to1014

our estimates for size, with mean ∑ h2
/2=0.72 (contributing 20%1015

of the total given h2=0.60 for a joint chromosome model), but not1016

for fertility (mean ∑ h2
/2 < h2). Fitting up to 80 principal compo-1017

nents as covariates for size failed to bring this ratio to equality,1018

but progressively eroded the heritability estimate (minimum1019

10% inflation for 80 PCs, h2=0.30), while fitting three DAPCs1020

(based on the top 40 PCs) fully accounted for the difference1021

(mean ∑ h2
/2 = h2 = 0.39). Notably, performing the same analy-1022

sis within sub-panels, however, gave a similar level of ‘inflation‘’1023

for size within the largest group of RILs (28%), suggesting that1024

structure not associated with sub-panel is also influential.1025

The above analyses lead us to conclude that results presented1026

in Table 1 for fertility are robust, while those for adult size are1027

somewhat less so. The extent of inflation, however, is unlikely1028

to be as severe as indicated by disjoint genome partitioning, and1029

no covariates were fit for subsequent analyses.1030

GWAS1031

QTL mapping power and precision We first explored the char-1032

acteristics of the CeMEE panel relevant to mapping quantitative1033

traits. We carried out association tests by linear mixed effects1034

model on simulated phenotypes, varying the effect size of causal1035

variation and the degree of polygenicity (see Materials and Meth-1036

ods). The panel reaches 50% power for an allele explaining 0.0471037

of the phenotypic variance (permutation 5% significance thresh-1038

old of p < 1.62 × 10-6), with recall (% true positives) greater than1039

50%, (Figure 6). When detected, the median QTL support inter-1040
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(c) Chromosome X

val (a drop in LOD of 2) spans < 10Kb for variants explaining1041

>2.5% of trait variance. Given an average gene size of approxi-1042

mately 5Kb in C. elegans N2, including intergenic sequence, the1043

CeMEE reaches sub-genic resolution for alleles of moderate ef-1044

fect (>10%), yielding high mapping precision (Figure 6). We note1045

that our simulations are unbiased with respect to chromosomal1046

location, while causal variation for many traits may be enriched1047

on the highly recombinant arms, so these estimates are likely to1048

be conservative.1049

1D mapping of fertility and size We carried out single marker1050

genome-wide association tests by linear mixed effects model,1051

controlling for genome-wide relatedness using the most predic-1052

tive LD-weighted additive genetic similarity matrix for each1053

trait (see above). Based on permutation thresholds, no single1054

marker reached significance in either case (α = 0.1 thresholds1055

= 4.38×10−6 and 5.57×10−7 for size and fertility, with mini-1056

mum observed p-values of 2.8×10−5 and 7.23×10−5 respec-1057

tively; Figure 7). For size, p-values were moderately inflated1058

at the high end, with a number of regions approaching signif-1059

icance, but were strongly deflated for fertility, consistent with1060

model misspecification. Results were largely independent of1061

the method used to define similarity or, for fertility, whether1062

correction for relatedness was applied at all (Figure S5). LD1063

score regression, a related approach that explicitly assumes an1064

infinitesimal architecture (Bulik-Sullivan et al. 2015), gave fur-1065

ther support for extensive polygenicity with effects distributed1066

across the genome (again, mostly clearly for fertility; Figure S6).1067

Given significant heritabilities for both traits, and the results1068

of GWAS simulations, the absence of individually significant1069

associations suggests architectures comprising many variants1070

with additive effects explaining <5% of the phenotypic variance.1071

2D mapping of additive-by-additive interactions Given sugges-1072

tive evidence for epistasis from variance decomposition and a1073

lack of individually significant additive effects by 1D mapping,1074

we sought to identify interactions by explicitly testing pairs of1075

markers. As summary statistics we retained the ANOVA inter-1076

action F statistic, as well as the sum of values for each marker1077

across all tests for a chromosome pair (thresholded at F>0, 8 and1078

16, the latter corresponding approximately to the most signifi-1079

cant 1D associations seen). At a significance level of α=0.1 we de-1080

tect four interactions (between seven loci) for fertility and two for1081

size, with modest marginal additive effects (Figure 8; best single-1082

locus statistics per pair ranging p = 9.1× 10−3 − 9.9× 10−5 for1083

fertility and p = 1.1× 10−3 − 9.9× 10−6 for size). The variance1084

explained by each pair, considered individually, is high: 12-15%1085

for fertility and 7-8% for size, and a joint linear model explains1086

32% and 15% of the phenotypic variances.1087

By summing interaction scores in 1-dimensional space to test1088
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Figure 6 Additive QTL mapping simulations. Detection power
(A), recall (B) and resolution (C; 2-LOD drop interval size for
detected QTL) from single QTL simulations for the full map-
ping panel of 507 lines, as a function of detection threshold
(significance at 0.01, 0.05 and 0.1) and phenotypic variance ex-
plained by the simulated QTL. Total heritability of simulated
phenotypes is twice that of the focal QTL, with the polygenic
contribution spread over 10, 100 or 1000 background mark-
ers (plotted in A, combined in B and C). In B, points are mean
± standard error. Recall declines with SNP variance at high
levels as chance associations reach significance, although the
median value (+ symbols) is 1.0 at 5% significance for variants
that explain > 7.5% of trait variance.

Table 1 Genomic heritability estimates

Trait GSM α r2 ĥ2 (SD) LR

Size A -0.5 0.073 A 0.58 (0.14) 10.8

A+A2 -0.5 0.093 A 0.57 (0.15) 10.9

A2 0.21 (0.51)

Fertility A 1 0.012 A 0.24 (0.24) 0.01

A+A2 1 0.029 A 0.36 (0.21) 2.67

A2 1.24 (0.87)

(A+A2)rec 1 0.064 Aarm 0.44 (0.18) 6.98

Acen. 0.02 (0.07)

Results are shown for additive (A) and additive-by-additive
(A2) genetic similarity matrices (GSM), and for the most pre-
dictive model tested (if neither of the above), shown in bold.
α is the scaling parameter from (Speed et al. 2012), which de-
termines the effect size expectation for markers as a function
of allele frequency, where 0 is unweighted and smaller values
assign greater weight to rare alleles. Unconstrained REML es-
timates and standard deviations are shown for components
that were >0 at convergence. LR is improvement over the null
model (likelihood ratio). A+A2)rec is additive and additive-by-
additive similarity at the level of recombination rate domains
(tips, arms and central domains).

for polygenic epistasis, we detect 10 unique markers with ex-1089

cess interchromosomal interactions for 3 chromosome pairs for1090

fertility (α=0.1, across all three minimum F threshold classes),1091

and one for size (at F>0; Figure 8). Only one of these sites also1092

reaches significance in single pair tests: position 1,914,315 on1093

chromosome IV, which is involved in individually significant1094

interactions of opposite effect with chromosome II and III for1095

fertility, and, remarkably, has at least one interaction of weak1096

to moderate effect (10−5 < p < 10−4) with all other chromo-1097

somes. A flanking marker in modest linkage disequilibrium1098

(IV:1,894,021, r2 = 0.31) also shows a significant excess of in-1099

teraction scores with chromosome III that do not appear to be1100

driven solely by LD: 6/12 interactions (F > 16 for IV:1,894,021)1101

are shared with IV:1,914,315, and among all 26 interactions in-1102

volving these two sites (F > 16 for either), interactions statistics1103

are uncorrelated (r = −0.15, p = 0.49). Nevertheless, experi-1104

ment will be required to test these loci independently.1105

IV:1,914,315 is found within an intron of egl-18 (encoding a1106

GATA transcription factor), while IV:1,894,021 falls within the1107

large intergenic region between egl-18 and egl-4 (encoding a1108

cyclic-GMP-dependent protein kinase thought to act in the TGF-1109

beta pathway), both of which vary in coding and UTR sequence1110

among founders, and have numerous known phenotypes from1111

classical induced mutations and RNAi spanning the gamut of1112

behavior, development and reproduction. Their eponymous phe-1113

notype, egg-laying abnormal (Egl), is retention of oocytes and1114

embryos, a phenotype selected during experimental evolution1115

in which embryos were extracted each generation by bleaching1116

(Poullet et al. 2016).1117
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GWAS RESULTS AND DISCUSSION

Figure 7 1D GWAS. A-B. Trait value distributions across RILs (replicate means; bars show data range or the standard error for
samples with >2 replicates) and (C) single-SNP association results for fertility and adult body size (colors as above). Values for the
reference N2 strain are shown for comparison. Note that values are raw replicate means on the original scale, and so include all
sources of technical variation (unlike model coefficients used for mapping).
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CONCLUSIONS

Figure 8 Strong sign epistasis and highly polygenic interac-
tions contribute to trait variance. A. The distribution of sig-
nificant interactions for fertility and size (genetic distance).
Pairwise interactions are plotted over 1D GWAS test statistics
(−log10(p) > 1) for each trait. Markers with a significant ex-
cess of summed interactions for a given chromosome pair are
indicated with black points, and the chromosome identities
and locations of interacting loci are shown as smaller plots at
their approximate positions. 2D sum tests are directed inter-
actions between a single focal marker, and all other markers
on one other chromosome, with the sum of interaction scores
reaching significance (α = 0.1) under a null permutation
model. Note interactions between chromosome V:3,145,783
and 16 loci on the right tip of chromosome IV are clustered
over a physical interval of 0.44Mb (in weak LD) and appear as
a single link at this resolution. B. Genotype class trait means
(± SE) for significant pairs (fertility in red, size in blue). C.
Genotype class trait means for all individual pairs that con-
tribute to significant summed interactions, at each of the three
evaluated F statistic thresholds (interactions significant at F>0
are filtered to F>2 for plotting). Line color and intensity is
scaled by F for each constituent interaction. Strong sign epista-
sis (including weak reciprocal sign epistasis) is the prevalent
epistatic mode.

Conclusions1118

We have described the generation, characterization and appli-1119

cation of the first multiparental mapping panel for the model1120

organism C. elegans. Drawing on effectively 260 generations of1121

moderate population sizes and predominant outcrossing during1122

laboratory culture, full reference-based genome sequencing of1123

the 16 inbred wild founders, and dense genotyping of the RILs,1124

the CeMEE panel yields gene level mapping resolution for alle-1125

les of 5% effect or greater. For traits such as gene expression, for1126

which the proportion of variance explained by local variation1127

is typically upwards of 20% (e.g., Brem and Kruglyak (2005);1128

Rockman et al. (2010); King et al. (2014), the majority of QTL1129

intervals will dissect single genes.1130

While reference-based genotyping will remain a necessity for1131

some time yet, it leaves the contribution of certain classes of1132

genetic variation uncertain, and can hamper variant calling due1133

to mapping bias and erroneous alignments at copy number vari-1134

ants. The genome of only one wild-isolate, the Hawaiian CB4856,1135

has been assembled de novo to a high standard, revealing exten-1136

sive divergence (Thompson et al. 2015). The ultimate goal of full1137

genomes for all founders will yield both better accuracy in calcu-1138

lating genetic similarity, and ability to measure the phenotypic1139

effects of this recalcitrant variation. Similarly undetermined,1140

given RIL genotyping by mostly low coverage sequencing, is1141

the extent and fate of novel mutations during experimental evo-1142

lution. With a mutation rate of around 1/genome/generation1143

for SNPs, and more for multinucleotide mutations and copy1144

number variation (Denver et al. 2004a,b; Seyfert et al. 2008; Den-1145

ver et al. 2010; Phillips et al. 2009; Lipinski et al. 2011; Meier1146

et al. 2014), the contribution of new mutations to trait variation1147

in the RILs may well be non-negligible. Theory suggests that1148

fixation of adaptive mutations should not be significant dur-1149

ing experimental evolution (Hill 1982; Caballero and Santiago1150

1995; Matuszewski et al. 2015), but empirical evidence is mixed1151

(Estes 2004; Estes et al. 2011; Denver et al. 2010; Chelo et al. 2013).1152

Both of these factors would erode phenotype prediction accu-1153

racy, which, theoretically, should converge on H2 given perfect1154

genotyping of all causal variation and appropriate description1155

of genetic covariance (de los Campos et al. 2015).1156

The native androdioecious mating system of C. elegans and1157

the ability to archive strains indefinitely confer significant ad-1158

vantages to further use, bestowing almost microbial powers on1159

a metazoan model. For one, the preservation of intermediate1160

outbred populations means that the CeMEE is readily extensible,1161

limited only by effective population sizes. However, RIL panels1162

have several potential shortcomings. First, despite inbreeding1163

during RIL construction, a nagging concern in use of RIL panels1164

is residual heterozygosity (Barrière et al. 2009; Chelo et al. 2014),1165

and the possibility of further evolution of genotypes and phe-1166

notypes subsequent to characterization. While heterozygosity1167

appears to be at a low level in the CeMEE RILs, on average, it is1168

not absent (see Materials and Methods). Importantly, however,1169

given that lines are in stasis the opportunity for segregation dur-1170

ing further use is both limited and known. A second concern is1171

the possibility of inbreeding depression, particularly for fitness-1172

proximal traits. This is a concern for predominantly outcrossing1173

organisms (Barrière et al. 2009; Philip et al. 2011; King et al. 2012;1174

Chelo et al. 2014), but it is also applicable to multiparental experi-1175

mental evolution of C. elegans. As mentioned in the introduction,1176

at least during the initial stage of laboratory adaptation, excess1177

heterozygosity may have been maintained by epistatic overdom-1178

inant selection, and closely linked recessive deleterious alleles1179
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in repulsion could be maintained by balancing selection during1180

inbreeding (Chelo et al. 2013, 2014). Assaying the F1 progeny of1181

nested crosses among RILs may be a useful approach to estimate1182

(or avoid) the effects of inbreeding depression (Long et al. 2014).1183

Using subsets of the CeMEE panel, we outlined the genetics1184

of two traits associated with fitness. Fertility, as defined here1185

by the experimental evolution protocol employed, is correlated1186

with hermaphrodite body size at the time of reproduction (Poul-1187

let et al. 2016). For both traits, and size in particular, additive1188

genomic heritability based on LD-weighted similarity explained1189

a significant fraction of H2, although heritability estimates were1190

generally higher with the inclusion of epistatic similarity. This1191

is consistent with a polygenic architecture with additive effects1192

below the detection limit, whether solely additive, or due to1193

weak or opposing effects of multiple interactions. Variance in1194

fitness-related traits, in particular, may be maintained despite1195

consistent selection on additive variation through a number of1196

processes, including stabilizing selection under a stable environ-1197

ment (Whitlock et al. 1995; Wolf et al. 2000; Barton and Keightley1198

2002; Phillips 2008; Hemani et al. 2013). Results from variance1199

decomposition, phenotype prediction and interaction tests are1200

all consistent with this prediction: phenotypic variance remains1201

high, and we find support for epistasis for both traits. Notably1202

for fertility, which is expected to be well aligned with fitness1203

under the experimental evolution scheme, strong interactions1204

among four pairs of alleles with weak marginal main effects1205

jointly explain almost a third of the phenotypic variance. All six1206

interactions detected for fertility and size are instances of sign1207

epistasis, where the directional effect of one allele is reversed1208

in the presence of another. Five of these represent the extreme1209

form, reciprocal sign epistasis (the reversal is, to some extent at1210

least, symmetric; Poelwijk et al. (2011)). Sign epistasis, in par-1211

ticular, has important implications for a population’s capacity1212

to adapt, by creating rugged fitness landscapes and constrain-1213

ing exploration of them (Weinreich et al. 2005, 2013), and for1214

the repeatability of evolution, since the outcome of selection on1215

the marginal additive effects of interacting alleles will be deter-1216

mined by their relative frequencies (Wright 1932; Whitlock et al.1217

1995; Phillips et al. 2000). Our tests for excess interactions among1218

individually non-significant marker pairs additionally revealed1219

a number of cases of highly polygenic epistasis, again, mostly for1220

fertility. While tests of this type have the unsatisfying property1221

of leaving the identities of the interacting partners uncertain,1222

they have the potential to combat the loss of power that comes1223

with explicit 2-dimensional testing (Crawford et al. 2016).1224

Fertility and body size at reproduction show broad-sense1225

heritabilities that are relatively high for fitness-proximal traits1226

(Lynch and Walsh 1998). This high heritability is likely a conse-1227

quence of novel genetic variation created in the multiparental1228

cross and realignment of selection to novel laboratory environ-1229

ments. While all mapping panels are synthetic systems, the mix-1230

ing of natural variation and experimental evolution represents1231

a perturbation that may have some parallels, for example, with1232

that of a simultaneous founder event and environmental change,1233

which can reveal novel incompatibilities and promote further1234

differentiation (Cheverud and Routman 1996; Wolf et al. 2000).1235

In this context, it will be useful to determine the directional ef-1236

fects of epistasis on the genotype-phenotype map during further1237

evolution, as a function of recombination, a task for which the1238

CeMEE is well suited. As in other systems such as Arabidop-1239

sis, where similar resources exist (Weigel 2012) and epistasis for1240

fitness-related traits has been found (e.g., Malmberg et al. (2005);1241

Simon et al. (2008)), it will also be important to begin a com-1242

prehensive comparison of QTL for fitness traits in the CeMEE1243

and natural populations – where linked selection coupled with1244

predominant selfing and meta-population dynamics have gener-1245

ated limited, structured genetic diversity (Andersen et al. 2012;1246

Rockman et al. 2010; Cutter 2015) – and also with mutational1247

variances obtained in mutation accumulation experiments (Baer1248

et al. 2005; Baer 2008; Joyner-Matos et al. 2009). Such compar-1249

isons have the potential to provide significant insights into how1250

the distributions of QTL effects and frequencies are shaped in1251

natural populations.1252
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Figure S5 p-value quantile-quantile plots genome-wide (A), comparing the effects of relatedness corrections (where LM is linear
model; LMM (ASP) is linear mixed model with relatedness based on allele sharing probability (all markers, equally weighted);
LMM (LDAK) is the best performing LD-weighted similarity for each trait; LMM (LD) is based on markers pruned by local LD,
but unweighted), and by chromosome (B), for the best LD-weighted similarity for each trait. While strong, spurious inflation is
seen for size without polygenic correction (A), this is not seen for fertility, likely due the greater heterogeneity of trait values among
sub-panels for size. Notably, deflation is seen for fertility for all models, although LD weighting introduces the strongest penalty,
which may indicate a relationship between low LD and causal variation for this trait.
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Figure S6 Fitness-proximal traits are polygenic. Regression of
association statistics (mean value of χ2 percentiles) on marker
LD weightings (mean of w percentiles, Speed et al. (2012)) for
fertility and size (after Bulik-Sullivan et al. (2015)). While there
is a significant positive relationship between trait association
and the amount of variation tagged by markers, fertility shows
much stronger evidence of polygenicity (slope=0.44, p = 2.7×
10−6, versus slope=0.19, p = 0.029 for size).
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