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Abstract

In this work we study the limit distribution of an appropriately
normalized cophenetic index of the pure birth tree on n contemporary
tips. We show that this normalized phylogenetic balance index is a
submartingale that converges almost surely and in L2. We link our
work with studies on trees without branch lengths and show that
in this case the limit distribution is a contraction type distribution,
similar to the Quicksort limit distribution. In the continuous branch
case we suggest approximations to the limit distribution. We propose
heuristic methods of simulating from these distributions and it may be
observed that these algorithms result in reasonable tails. Therefore,
we postulate using quantiles of the derived distributions for hypothesis
testing, whether an observed phylogenetic tree is consistent with the
pure birth process. Simulating a sample by the proposed heuristics is
rapid while exact simulation (simulating the tree and then calculating
the index) is a time–consuming procedure.

Keywords : Contraction type distribution; Cophenetic index; Martin-
gales; Phylogenetics; Significance testing

1 Introduction

Phylogenetic trees are now a standard when analyzing groups of species.
They are inferred from molecular sequences by algorithms that often assume
a Markov chain for mutations of the individual entries of the genetic sequence.
Given a phylogenetic tree it is often of interest to quantify the rate(s) of
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speciation and extinction for the studied species. To do this one commonly
assumes a birth–death process with constant rates. However, what we seem
to be lacking are formal statistical tests whether a given tree comes from a
given branching process model. For example, is a tree consistent with a pure
birth tree, i.e. a Yule tree? The reason for the apparent lack of widespread
use of such tests (but see Blum and François, 2005) could be the lack of a
commonly agreed on test statistic. This is as a tree is a complex object and
there are multiple ways in which to summarize it in a single number.

One proposed way of summarizing a tree is through indices that quantify
how balanced it is, i.e. how close is it to a fully symmetric tree. Two such
indices have been with us for many years now: Sackin’s (Sackin, 1972) and
Colless’ (Colless, 1982). Recently a new one was proposed—the cophenetic
index (Mir et al., 2013). The two former have already been studied and here
we focus on the latter. This work is inspired by private communication with
evolutionary biologist Gabriel Yedid (current affiliation Nanjing Agricultural
University, Nanjing, China) who posed the question of how to use the cophe-
netic index for significance testing of whether a given tree is consistent with
the pure birth process. He noticed that simulated distributions of the in-
dex have much heavier tails than those of the normal and t distributions and
hence, comparing centred and scaled cophenetic indices with the usual Gaus-
sian or t quantiles is not appropriate for significance testing. It would lead
to a higher false positive rate—rejecting the null hypothesis of no extinction
when a tree was generated by a pure birth process.

Our aim here is to propose an approach for working analytically with
the cophenetic index, especially to improve hypothesis tests for phylogenetic
trees. We show that there is a relationship between the cophenetic index
and the Quicksort algorithm. This suggests that the methods exploring (e.g.
Fill and Janson, 2000, 2001; Janson, 2015) the limiting distribution of the
Quicksort algorithm can be an inspiration for studying analytical properties
of the cophenetic index.

The paper is organized as follows. In Section 2 we formally define the
cophenetic index, derive an associated with it submartingale, show that it
converges almost surely and in L2 (Thm. 2.5), propose an elegant representa-
tion (Thm. 2.10) and very good approximation (Def. 2.12). Then, in Section
3 we study the second order properties of this decomposition and conjecture
a Central Limit Theorem (CLT, Rem. 3.12). Afterwards in Section 4, we
link our work with previous studies which considered trees without branch
lengths. In this discrete setting we show that the limit law of the normalized
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cophenetic index is a contraction type distribution. Based on this we propose
alternative approximations to the limit law of the normalized (with branch
lengths) cophenetic index. In Section 5 we describe heuristic algorithms to
simulate from these limit laws, show simulated quantiles and discuss the use-
fulness of the various proposed approaches. We end the paper with Section
6 by describing alternative representations of the cophenetic index.

2 The cophenetic index

Mir et al. (2013) recently proposed a new balance index for phylogenetic
trees.

Definition 2.1 (Mir et al. (2013)) For a given phylogenetic tree on n tips
and for each pair of tips (i, j) let φ̃ij be the number of branches from the root
to the most recent common ancestor of tips i and j. We then the define the
discrete cophenetic index as

Φ̃(n) =
∑

1≤i<j≤n

φ̃
(n)
ij .

Mir et al. (2013) show that this index has a better resolution than the “tra-
ditional” ones. In particular the cophenetic index has a range of values of
the order of O(n3) while Colless’ and Sackin’s ranges have an order of O(n2).
Furthermore, unlike the other two previously mentioned, Φ̃(n) makes mathe-
matical sense also for not fully resolve (i.e. not binary) trees.

In this work we study phylogenetic trees with branch lengths and hence
consider a variation of the cophenetic index.

Definition 2.2 For a given phylogenetic tree on n tips and for each pair of
tips (i, j) let φij be the time from the most recent common ancestor of tips i
and j to the root/origin (depending on the tree model) of the tree. We then
the define the continuous cophenetic index as

Φ(n) =
∑

1≤i<j≤n

φ
(n)
ij .

Remark 2.3 In the original setting, when the distance between two nodes
was measured by counting branches, Mir et al. (2013) did not consider the
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edge leading to the root. In our work here, where our prime concern is with
trees with random branch lengths, we include the branch leading to the root.
This is not a big difference, one just has to remember to add to each distance
between nodes the same exponential with rate 1 random variable (see next
paragraph for description of the tree’s growth).

We study the asymptotic distributional properties of Φ(n) for the pure
birth tree model using techniques from our previous papers on branching
Brownian and Ornstein–Uhlenbeck processes (Bartoszek and Sagitov, 2015b;
Bartoszek, 2014; Bartoszek and Sagitov, 2015a; Sagitov and Bartoszek, 2012).
We assume that the speciation rate of the tree is λ = 1. The key property we
will use is that in the pure–birth tree case the time between two speciation
events, k and k+ 1 (the first speciation event is at the root), is exponentially
distributed with rate k, as the minimum of k rate 1 exponential random
variables. We furthermore, assume that the tree starts with a single species
(the origin) that lives for exp(1) time and then splits (the root of the tree)
into two species. We consider a conditioned on n contemporary species tree.
This conditioning translates into stopping the tree process just before the
n+1 speciation event, i.e. the last interspeciation time is exp(n) distributed.
We introduce the notation that U (n) is the height of the tree, τ (n) is the time
to coalescent of two randomly selected tip species and Tk is the time between
speciation events k and k + 1 (see Fig. 1 and Bartoszek and Sagitov, 2015b;
Sagitov and Bartoszek, 2012).

Theorem 2.4 The cophenetic index is an increasing sequence of random
variables, Φ(n+1) > Φ(n) and has the recursive representation

Φ(n+1) = Φ(n) + nU (n) −
n∑
i=1

ξ
(n)
i

n∑
i6=j

τ
(n)
ij , (1)

where ξ
(n)
i is an indicator random variable whether tip i split at the n–th

speciation event.

Proof From the definition we can see that

Φ(n) =
∑

1≤i<j≤n

(
U (n) − τ (n)ij

)
=

(
n

2

)(
U (n) − E

[
τ (n)|Yn

])
,
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Figure 1: A pure–birth tree with the various time components marked on it.
The between speciation times on this lineage are T1, T2, T3 + T4 and T5. If
we “randomly sample” the pair of extant species “A” and “B”, then the two
nodes coalesced at time τ (n).

where τ
(n)
ij is the time to coalescent of tip species i and j. We now develop

a recursive representation for the cophenetic index. First notice that when a
new speciation occurs all coalescent times are extended by Tn+1, i.e.

∑
1≤i<j≤n+1

τ
(n+1)
ij =

∑
1≤i<j≤n

(
τ
(n)
ij + Tn+1

)
+

n∑
i=1

ξ
(n)
i

n∑
i6=j

(
τ
(n)
ij + Tn+1

)
+ Tn+1,

where the “lone” Tn+1 is the time to coalescent of the two descendants of the

split tip. The vector
(
ξ
(n)
1 , . . . , ξ

(n)
n

)
consists of n − 1 0s and exactly one 1

(a categorical distribution with n categories all with equal probability). For

each i the marginal probability that ξ
(n)
i is 1 is 1/n. We rewrite
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∑
1≤i<j≤n+1

τ
(n+1)
ij =

(
n+1
2

)
Tn+1

∑
1≤i<j≤n

τ
(n)
ij +

n∑
i=1

ξ
(n)
i

n∑
i6=j

τ
(n)
ij

and then obtain the recursive form

Φ(n+1) =
(
n+1
2

)
U (n) +

(
n+1
2

)
Tn+1 −

(
n+1
2

)
Tn+1 −

∑
1≤i<j≤n

(
τ
(n)
ij + Tn+1

)
−

n∑
i=1

ξ
(n)
i

n∑
i6=j

τ
(n)
ij

=
(
n+1
2

)
U (n) −

∑
1≤i<j≤n

(
τ
(n)
ij + Tn+1

)
−

n∑
i=1

ξ
(n)
i

n∑
i6=j

τ
(n)
ij

= Φ(n) + nU (n) −
n∑
i=1

ξ
(n)
i

n∑
i6=j

τ
(n)
ij .

Obviously, Φ(n+1) > Φ(n).
�

Let Yn be the σ–algebra containing all the information on the Yule with
n tips tree. We introduce the notation

Hn,m :=
n∑
k=1

1/km.

We will now associate an almost surely and L2 convergent submartingale
with Φ(n).

Theorem 2.5 Consider a scaled cophenetic index

Wn =

(
n

2

)−1
Φ(n).

Wn is a positive submartingale that converges almost surely and in L2 to a
finite first and second moment random variable.

Proof Obviously

Wn+1 =
n− 1

n+ 1
Wn +

2

n+ 1
U (n) −

(
n+ 1

2

)−1 n∑
i=1

ξ
(n)
i

n∑
i6=j

τ
(n)
ij
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and

E [Wn+1|Yn] = n−1
n+1

Wn +
(
n+1
2

)−1(
nU (n) − 1

n

n∑
i=1

n∑
i6=j

τ
(n)
ij

)

= n−1
n+1

Wn +
(
n+1
2

)−1 2
n

(
n2

2
U (n) −

n∑
i<j

τ
(n)
ij

)
= n−1

n+1
Wn +

(
n+1
2

)−1 2
n

((
n
2

)
Wn + n

2
U (n)

)
=

(
n−1
n+1

+
(
n+1
2

)−1 2
n

(
n
2

))
Wn +

(
n+1
2

)−1
U (n)

= (n−1)(n+2)
n(n+1)

Wn +
(
n+1
2

)−1
U (n)

> Wn +
(
n+1
2

)−1
U (n) > Wn.

Hence, Wn is a positive submartingale with respect to Yn. Notice that

E
[
W 2
n

]
= E

[
(U (n) − E

[
τ (n)|Yn

]
)2
]
≤ E

[
(U (n) − τ (n))2

]
.

Then using the general formula for the moment of U (n) − τ (n) (Appendix A,
Bartoszek and Sagitov, 2015b) we see that

E
[
(U (n) − τ (n))2

]
= 2n+1

n−1

n−1∑
j=1

1
(j+1)(j+2)

(
H2
j,1 +Hj,2

)
= 2n+1

n−1

(
n
n+1

Hn,2 − n
n+1
− Hn,2

n+1
+

n−1∑
j=1

H2
j,1

(j+1)(j+2)

)
↗ 2

3
π2.

Hence, E [Wn] and E [W 2
n ] are O(1) and by the martingale convergence theo-

rem Wn converges almost surely and in L2 to a finite first and second moment
random variable.

�

Corollary 2.6 Wn has finite third moment and is L3 convergent.

Proof Using the general formula for the moment of U (n)− τ (n) again we see
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E
[
(U (n) − E

[
τ (n)|Yn

]
)3
]
≤ E

[
(U (n) − τ (n))3

]
= 2n+1

n−1

n−1∑
j=1

1
(j+1)(j+2)

(Hj,1 + 3Hj,1 + 3Hj,2 +Hj,3)

< 16n+1
n−1

n−1∑
j=1

Hj,1

(j+1)(j+2)

= 16n+1
n−1

n−Hn,1

n+1
= 16n−Hn,1

n−1 ↗ 16.

This implies that E [W 3
n ] = O(1) and hence L3 convergence and finiteness of

the third moment.
�

Remark 2.7 Notice that we (Appendix A, Bartoszek and Sagitov, 2015b)
made a typo in the general formula for the cross moment of

E
[
(U (n) − τ (n))mτ (n)r

]
.

The (−1)m+r should not be there, it will cancel with the (−1)m+r from the
derivative of the Laplace transform.

Definition 2.8 For k = 1, . . . , n−1 let us define 1
(n)
k as the indicator random

variable taking the value of 1 if a randomly sampled pair of species coalesced
at the k–th (counting from the origin of the tree) speciation event.

We know (e.g. Bartoszek and Sagitov, 2015b; Stadler, 2009; Steel and McKen-
zie, 2001) that

P(1
(n)
k = 1) = E

[
1
(n)
k

]
= 2

n+ 1

n− 1

1

(k + 1)(k + 2)
≡ πn,k. (2)

Definition 2.9 For i = 1, . . . , n− 1 let us introduce the random variable

V
(n)
i :=

1

i

n−1∑
k=i

E
[
1
(n)
k |Yn

]
. (3)

Theorem 2.10 Wn can be represented as

Wn =
n−1∑
i=1

V
(n)
i Zi, (4)

where Z1, . . . , Zn−1 are i.i.d. exponential with rate 1 random variables.
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Proof We write Wn as

Wn = U (n) − E
[
τ (n)|Yn

]
= E

[
U (n) − τ (n)|Yn

]
= E

[
n−1∑
k=1

1
(n)
k

k∑
i=1

Ti|Yn
]

= E

[
n−1∑
i=1

Ti
n−1∑
k=i

1
(n)
k |Yn

]
=

n−1∑
i=1

Ti
n−1∑
k=i

E
[
1
(n)
k |Yn

]
=

n−1∑
i=1

(
1
i

n−1∑
k=i

E
[
1
(n)
k |Yn

])
Zi =

n−1∑
i=1

V
(n)
i Zi,

where Z1, . . . , Zn−1 are i.i.d. exponential with rate 1 random variables.
�

Remark 2.11 We notice that we may equivalently rewrite

Wn =
n−1∑
k=1

E
[
1
(n)
k |Yn

]( k∑
i=1

Ti

)
=

n−1∑
k=1

E
[
1
(n)
k |Yn

]( k∑
i=1

1

i
Zi

)
. (5)

Definition 2.12 Define the random variable W n as

W n =
n−1∑
i=1

E
[
V

(n)
i

]
Zi, (6)

where Z1, . . . , Zn−1 are i.i.d. exponential with rate 1 random variables.

Remark 2.13 Despite the apparent elegance, it is not visible how to derive
a Central Limit Theorem (CLT) or limit statements concerning Wn from the
representations of Eqs. (4) or (5). Initially one could hope (based on “typi-
cal” results on limits for randomly weighted sums, e.g. Thm. 1 of Rosalsky
and Sreehari, 1998) that Wn could converge a.s. to a random variable that
has the same limiting distribution as W n.

Similarly, as ((n + 2)(n − 1)/(n(n + 1)) > 1, we have that W n is an L2

bounded submartingale

E
[
W n+1|W n

]
=

(n+ 2)(n− 1)

n(n+ 1)
W n +

2

n2(n+ 1)
> W n.

Hence W n converges almost surely. Simulations presented in Fig. 2 can
easily mislead one to believe in the equality of the limiting distributions of
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Wn and W n. However, in Thm. 3.8 we can see that Var [Wn] and Var
[
W n

]
convergence to different limits. Therefore, Wn and W n cannot converge in
distribution to the same limit.
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Figure 2: Left: the black is a histogram of values of Wn from 10000 simulated
Yule trees with λ = 1. The gray is a histogram of the approximation of W n

(independent exponentials with rate 1 variables were drawn). Right: the
black curve is an estimate (via R’s density() function) of Wn’s density
and gray is an density estimate of W n’s density. The simulated sample of
Wn has mean 2, variance 1.214, skewness 1.609 and excess kurtosis 4.237
while the simulated sample of W n has mean 1.973, variance 1.109, skewness
1.634 and excess kurtosis 4.159. It is obvious that E [Wn] = E

[
W n

]
, but we

have shown that their variances differ (simulations agree with Thm. 3.8).
Therefore, the differences in skewness and kurtosis could be true (despite
being of the magnitude of differences in sample averages).

3 Second order properties

In this Section we prove a series of rather technical Lemmata and Theorems
concerning the second order properties of 1

(n)
k , V

(n)
i and Wn. Even though

we will not obtain any weak limit the derived properties do give insight on
the delicate behaviour of Wn and also show that no “simple” limit, e.g. Eq.
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(6), is possible. To obtain our results we used Mathematica 9.0 for Linux
x86 (64–bit) running on Ubuntu 12.04.5 LTS to evaluate the required sums
in closed forms. The Mathematica code is available as an appendix to this
paper.

Lemma 3.1

Var
[
1
(n)
k

]
= 2

n+ 1

n− 1

1

(k + 1)(k + 2)

(
1− 2

n+ 1

n− 1

1

(k + 1)(k + 2)

)
(7)

Proof

Var
[
1
(n)
k

]
= E

[
1
(n)2

k

]
− E

[
1
(n)
k

]2
= πn,k − π2

n,k = πn,k(1− πn,k)

= 2n+1
n−1

1
(k+1)(k+2)

(
1− 2n+1

n−1
1

(k+1)(k+2)

)
.

�
The following lemma is an obvious consequence of the definition of 1

(n)
k .

Lemma 3.2 For k1 6= k2

Cov
[
1
(n)
k1
, 1

(n)
k2

]
= −πn,k1πn,k2 =

(−4)(n+ 1)2

(n− 1)2(k1 + 1)(k1 + 2)(k2 + 1)(k2 + 2)
.

(8)

Lemma 3.3

Var
[
E
[
1
(n)
k |Yn

]]
= 4 n+1

n(n−1)2
(n−(k+1))(n(3k2+5k−4)−(k2−k−8))

(k+1)2(k+2)2(k+3)(k+4)
(9)

Proof Obviously

Var
[
E
[
1
(n)
k |Yn

]]
= E

[
E
[
1
(n)
k |Yn

]2]
− E

[
E
[
1
(n)
k |Yn

]]2
.

We notice (as Bartoszek and Sagitov, 2015b; Bartoszek, 2016, in Lemmata
11 and 2 respectively) that we may write

E

[
E
[
1
(n)
k |Yn

]2]
= E

[
1
(n)
k,11

(n)
k,2

]
,
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where 1
(n)
k,1 , 1

(n)
k,2 are two independent copies of 1

(n)
k , i.e. we sample a pair

of tips twice and ask if both pairs coalesced at the k–th speciation event.
There are three possibilities, we (i) drew the same pair, (ii) drew two pairs
sharing a single node or (iii) drew two disjoint pairs. Event (i) occurs with

probability
(
n
2

)−1
, (ii) with probability 2(n−2)

(
n
2

)−1
and (iii) with probability(

n−2
2

)(
n
2

)−1
. As a check notice that 1 + 2(n − 2) +

(
n−2
2

)
=
(
n
2

)
. In case (i)

1
(n)
k,1 = 1

(n)
k,2 , hence writing informally

E
[
1
(n)
k,11

(n)
k,2 |(i)

]
= E

[
1
(n)
k

]
= πn,k.

Figure 3: The three possible cases when drawing two random pairs of tip
species that coalesce at the k–th speciation event. In the picture we “ran-
domly draw” pairs (A,B) and (C,D).

To calculate cases (ii) and (iii) we visualize the situation in Fig. 3 and
recall the proof of Bartoszek and Sagitov (2015b)’s Lemma 1. Using Mathe-
matica we obtain

E
[
1
(n)
k,11

(n)
k,2 |(ii)

]
=

n−1∑
j=k+1

(
1− 3

(n
2)

)
. . .

(
1− 3

(j+2
2 )

)
1

(j+1
2 )

(
1− 1

(j
2)

)
. . .

·
(

1− 1

(k+2
2 )

)
1

(k+1
2 )

= 4 (n+1)
(n−1)(n−2)

n−(k+1)
(1+k)(2+k)(3+k)

.

Similarly for case (iii)
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E
[
1
(n)
k,11

(n)
k,2 |(iii)

]
=

n−1∑
j2=k+2

j2+1∑
j1=k+1

(
1− 6

(n
2)

)
. . .

(
1− 6

(j2+2
2 )

)
4

(j2+1
2 )

·
(

1− 3

(j2
2 )

)
. . .

(
1− 3

(j1+2
2 )

)
1

(j1+1
2 )

(
1− 1

(j1
2 )

)
. . .

·
(

1− 1

(k+2
2 )

)
1

(k+1
2 )

= 16 (n+1)
(n−1)(n−2)(n−3)

(n−(k+1))(n−(k+2))
(k+1)(k+2)(k+3)(k+4)

.

We now put this together as

Var
[
E
[
1
(n)
k |Yn

]]
=

(
n
2

)−1
πn,k + 2(n− 2)

(
n
2

)−1
E
[
1
(n)
k,11

(n)
k,2 |(ii)

]
+
(
n−2
2

)(
n
2

)−1
E
[
1
(n)
k,11

(n)
k,2 |(iii)

]
− π2

n,k

we obtain (through Mathematica)

Var
[
E
[
1
(n)
k |Yn

]]
= 4 n+1

n(n−1)2
(n−(k+1))(n(3k2+5k−4)−(k2−k−8))

(k+1)2(k+2)2(k+3)(k+4)

→ 4 3k2+5k−4
(k+1)2(k+2)2(k+3)(k+4)

.

�

Lemma 3.4 For k1 < k2

Cov
[
E
[
1
(n)
k2
|Yn
]
,E
[
1
(n)
k1
|Yn
]]

= (−8)(n+1)
n(n−1)2

(3n−(k2−2))(n−(k2+1))
(k1+1)(k1+2)(k2+1)(k2+2)(k2+3)(k2+4)

.

(10)

Proof Obviously

Cov
[
E
[
1
(n)
k1
|Yn
]
,E
[
1
(n)
k2
|Yn
]]

= E
[
E
[
1
(n)
k1
|Yn
]

E
[
1
(n)
k2
|Yn
]]
− E [1k1 ] E [1k2 ] .

We notice that

E
[
E
[
1
(n)
k1
|Yn
]

E
[
1
(n)
k2
|Yn
]]

= E
[
1
(n)
k1

1
(n)
k2

]
,
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where 1
(n)
k1

, 1
(n)
k2

are the indicator variables if two independently sampled
pairs coalesced at speciation events k1 < k2 respectively. There are now two
possibilities represented in Fig. 4 (notice that since k1 6= k2 the counterpart
of event (i) in Fig. 3 cannot take place). Event (ii) occurs with probability
4/(n+1) and (iii) with probability (n−3)/(n+1). Event (iii) can be divided
into three “subevents”.

Figure 4: The possible cases when drawing two random pairs of tip species
that coalesce at speciation events k1 < k2 respectively. In the picture we
“randomly draw” pairs (A,B) and (C,D).

Again we recall the proof of Bartoszek and Sagitov (2015b)’s Lemma 1
and we write informally for (ii) using Mathematica

E
[
1
(n)
k1

1
(n)
k2
|(ii)
]

=

(
1− 3

(n
2)

)
. . .

(
1− 3

(k2+2
2 )

)
1

(k2+1
2 )

(
1− 1

(k2
2 )

)
. . .

·
(

1− 1

(k1+2
2 )

)
1

(k1+1
2 )

= 4 (n+1)(n+2)
(n−1)(n−2)

1
(k1+1)(k1+2)(k2+2)(k2+3)

.

In the same way for the subcases of (iii)

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2017. ; https://doi.org/10.1101/120931doi: bioRxiv preprint 

https://doi.org/10.1101/120931


E
[
1
(n)
k1

1
(n)
k2
|(iii)

]
=

(
1− 6

(n
2)

)
. . .

(
1− 6

(k2+2
2 )

)
1

(k2+1
2 )

·
(

1− 3

(k2
2 )

)
. . .

(
1− 3

(k1+2
2 )

)
1

(k1+1
2 )

+
k2−1∑
j=k1+1

(
1− 6

(n
2)

)
. . .

(
1− 6

(k2+2
2 )

)
1

(k2+1
2 )

·
(

1− 3

(k2
2 )

)
. . .

(
1− 3

(j+2
2 )

)
2

(j+1
2 )

(
1− 1

(j
2)

)
. . .

·
(

1− 1

(k1+2
2 )

)
1

(k1+1
2 )

+
n−1∑

j=k2+1

(
1− 6

(n
2)

)
. . .

(
1− 6

(j+2
2 )

)
4

(j+1
2 )

·
(

1− 3

(j
2)

)
. . .

(
1− 3

(k2+2
2 )

)
2

(k2+1
2 )

(
1− 1

(k2
2 )

)
. . .

·
(

1− 1

(k1+2
2 )

)
1

(k1+1
2 )

= 4 (n+2)(n+1)
(n−1)(n−2)(n−3)

n(k2+6)−5k2−14
(k1+1)(k1+2)(k2+2)(k2+3)(k2+4)

.

We now put this together as

Cov
[
E
[
1
(n)
k1
|Yn
]
,E
[
1
(n)
k2
|Yn
]]

= 2(n− 2)
(
n
2

)−1
E
[
1
(n)
k1

1
(n)
k2
|(ii)
]

+
(
n−2
2

)(
n
2

)−1
E
[
1
(n)
k1

1
(n)
k2
|(iii)

]
− πn,k1πn,k2

and we obtain

Cov
[
E
[
1
(n)
k1
|Yn
]
,E
[
1
(n)
k2
|Yn
]]

= (−8)(n+1)
n(n−1)2

(3n−(k2−2))(n−(k2+1))
(k1+1)(k1+2)(k2+1)(k2+2)(k2+3)(k2+4)

→ (−24) 1
(k1+1)(k1+2)(k2+1)(k2+2)(k2+3)(k2+4)

.

�

Theorem 3.5

E
[
V

(n)
i

]
= 2

1

n− 1

n− i
i(i+ 1)

(11)
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Proof We immediately have

E
[
V

(n)
i

]
= 1

i

n−1∑
k=i

E
[
E
[
1
(n)
k |Yn

]]
= 2n+1

n−1
1
i

n−1∑
k=i

1
(k+1)(k+2)

= 2 1
n−1

n−i
i(i+1)

→ 2
i(i+1)

.

�

Theorem 3.6

Var
[
V

(n)
i

]
= 4

(n+ 1)

n(n− 1)2
(n− i)(n− (i+ 1))(i− 1)

i2(i+ 1)2(i+ 2)(i+ 3)
(12)

Proof We immediately may write using Lemmata 3.3, 3.4 and Mathematica

Var
[
V

(n)
i

]
= 1

i2

(
n−1∑
k=i

Var
[
E
[
1
(n)
k |Yn

]]
+ 2

n−1∑
i=k1<k2

Cov
[
E
[
1
(n)
k1
|Yn
]
,E
[
1
(n)
k2
|Yn
]])

= 4
i2

(
n−1∑
k=i

n+1
n(n−1)2

(n−(k+1))(n(3k2+5k−4)−(k2−k−8))
(k+1)2(k+2)2(k+3)(k+4)

−4
n−1∑

i=k1<k2

(n+1)
n(n−1)2

(3n−(k2−2))(n−(k2+1))
(k1+1)(k1+2)(k2+1)(k2+2)(k2+3)(k2+4)

)
= 4 (n+1)

n(n−1)2
(n−i)(n−(i+1)(i−1)
i2(i+1)2(i+2)(i+3)

→ 4 (i−1)
i2(i+1)2(i+2)(i+3)

.

�

Theorem 3.7 For 1 ≤ i1 < i2 ≤ n− 1 we have

Cov
[
V

(n)
i1
, V

(n)
i2

]
= 4

(n+ 1)

n(n− 1)2
(i1 − 1)(n− i2)(n− (i2 + 1))

i1(i1 + 1)i2(i2 + 1)(i2 + 2)(i2 + 3)
. (13)

Proof Again using Lemmata 3.3, 3.4, Mathematica and the fact that i1 < i2
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Cov
[
V

(n)
i1
, V

(n)
i2

]
= 1

i1i2

(
Cov

[
n−1∑
k=i1

E
[
1
(n)
k |Yn

]
,
n−1∑
k=i2

E
[
1
(n)
k |Yn

]])
= 1

i1i2

(
Var

[
n−1∑
k=i2

E
[
1
(n)
k |Yn

]]
+ Cov

[
i2−1∑
k=i1

E
[
1
(n)
k |Yn

]
,
n−1∑
k=i2

E
[
1
(n)
k |Yn

]])
= 1

i1i2

(
(i22) Var

[
V

(n)
i2

]
+

i2−1∑
k1=i1

n−1∑
k2=i2

Cov

[
E
[
1
(n)
k1
|Yn
]
,
n−1∑
k=i2

E
[
1
(n)
k2
|Yn
]])

= 4 (n+1)
n(n−1)2

(i1−1)(n−i2)(n−(i2+1)
i1(i1+1)i2(i2+1)(i2+2)(i2+3)

→ 4 i1−1
i1(i1+1)i2(i2+1)(i2+2)(i2+3)

.

�

Theorem 3.8

Var

[
n−1∑
i=1

V
(n)
i

]
= 1

54n2(n−1)2 (179n4 + 588n3 + 133n2 − 432n

−468− 108n2(n+ 1)(n+ 3)Hn−1,2

−144nHn−1,1)→ 179
54
− π2

3
≈ 1.347,

Var

[
n−1∑
i=1

V
(n)
i Zi

]
= 1

9n2(n−1)2 (12n2(n2 − 6n− 4)Hn−1,2 − 9n4

+102n3 + 51n2 − 24nHn−1,1 − 72n− 72)
→ 2

9
π2 − 1 ≈ 1.193,

Var

[
n−1∑
i=1

E
[
V

(n)
i

]
Zi

]
= 2

3n2(n−1)2 ((12Hn−1,2 − 18)n4 − 24n3

+12n2(2n+ 1)Hn−1,2 − 24n2 + 24n+ 12)
→ 4

3
π2 − 12 ≈ 1.159,

Var

[
n−1∑
i=1

(
V

(n)
i − E

[
V

(n)
i

])
Zi

]
= 1

9n2(n−1)2 (99n4 + 174n3 − 21n2 − 144n

−108− 12n2(n+ 1)(5n+ 7)Hn−1,2
−24nHn−1,1)→ 11− 10

9
π2 ≈ 0.034.

(14)

Proof We use Mathematica to first calculate
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Var

[
n−1∑
i=1

V
(n)
i

]
=

n−1∑
i=1

Var
[
V

(n)
i

]
+ 2

n−1∑
1=i1<i2

Cov
[
V

(n)
i1
, V

(n)
i2

]
= 1

54n2(n−1)2 (179n4 − 108n2(n+ 1)(n+ 3)Hn−1,2 + 588n3

+133n2 − 144nHn−1,1 − 432n− 468)

→ 179
54
− π2

3
≈ 1.347.

For the second we again use Mathematica and the fact that the Zis are i.i.d.
exp(1).

Var

[
n−1∑
i=1

E
[
V

(n)
i

]
Zi

]
=

n−1∑
i=1

(
2 1
n−1

n−i
i(i+1)

)2
=

2(12Hn−1,2−18)n4+2(6n2(2n+1)Hn−1,2−12n3−12n2+12n+6)
3n2(n−1)2

→ 4
3
π2 − 12 ≈ 1.159.

For the third equality we use Mathematica and the fact that for independent
families {X} and {Y } of random variables we have

Var [XY ] = E [Y 2] Var [X] + (E [X])2 Var [Y ] ,
Cov [X1Y1, X2Y2] = E [Y1] E [Y2] Cov [X1, X2] + E [X1] E [X2] Cov [Y1, Y2] .

As the Zis are i.i.d. exp(1) we use Mathematica to obtain

Var

[
n−1∑
i=1

V
(n)
i Zi

]
=

n−1∑
i=1

Var
[
V

(n)
i Zi

]
+ 2

n−1∑
1=i1<i2

Cov
[
V

(n)
i1
Zi1 , V

(n)
i2
Zi2

]
= 2

n−1∑
i=1

Var
[
V

(n)
i

]
+

n−1∑
i=1

(
E
[
V

(n)
i

])2
+ 2

n−1∑
1=i1<i2

Cov
[
V

(n)
i1
, V

(n)
i2

]
= 1

9n2(n−1)2 (12n2(n2 − 6n− 4)Hn−1,2 − 9n4 + 102n3

+51n2 − 24nHn−1,1 − 72n− 72)
→ 1

9
(2π2 − 9) ≈ 1.193.

For the fourth equality we use the same properties and pair–wise indepen-
dence of Zis.
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Var

[
n−1∑
i=1

(
V

(n)
i − E

[
V

(n)
i

])
Zi

]
=

n−1∑
i=1

Var
[
V

(n)
i Zi

]
+

n−1∑
i=1

Var
[
E
[
V

(n)
i

]
Zi

]
−2

n−1∑
1=i1<i2

Cov
[
V

(n)
i1
Zi1 ,E

[
V

(n)
i2

]
Zi2

]
=

n−1∑
i=1

Var
[
V

(n)
i Zi

]
+

n−1∑
i=1

(
E
[
V

(n)
i

])2
− 2

n−1∑
i=1

(
E
[
V

(n)
i

])2
=

n−1∑
i=1

Var
[
V

(n)
i Zi

]
−

n−1∑
i=1

(
E
[
V

(n)
i

])2
= 1

9n2(n−1)2 (99n4 − 12n2(n+ 1)(5n+ 7)Hn−1,2 + 174n3 − 21n2

−24nHn−1,1 − 144n− 108)→ 11− 10
9
π2 ≈ 0.034.

�
It is worth noting that the above Lemmata and Theorems were confirmed
by numerical evaluations of the formulae and comparing these to simulations
performed to obtain Fig. 2. As a check also notice that, as implied by
variance properties,

Var

[
n−1∑
i=1

E
[
V

(n)
i

]
Zi

]
+ Var

[
n−1∑
i=1

(
V

(n)
i − E

[
V

(n)
i

])
Zi

]
→ 4

3
π2 − 12 + 11− 10

9
π2 = 2

9
π2 − 1← Var

[
n−1∑
i=1

V
(n)
i Zi

]
.

Theorem 3.9

E
[
Φ(n)

]
=

(
n
2

)2(n−Hn,1)

n−1 ∼ n2

Var
[
Φ(n)

]
=

(n
2)

2

9n2(n−1)2 (12n2(n2 − 6n− 4)Hn−1,2 − 9n4 + 102n3

+51n2 − 24nHn−1,1 − 72n− 72)
∼ 1

36
(2π2 − 9)n4.

(15)

Proof The proof of the expectation part is due to Mir et al. (2013); Sagitov
and Bartoszek (2012) while the variance is a consequence of the previously
derived lemmata and theorems in this Section.

�

Remark 3.10 We recall that in Thm. 3.9 we include the branch leading to
the root. If we would not, then we would have to decrease the expectation by(
n
2

)
and variance by

(
n
2

)2
. This is due to each pair of tips “having” the exp(1)

root edge included in the cophenetic distance between them.
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Theorem 3.11

E

Var

(n)−1
n−2∑
i=2

V
(n)
i Zi−E

[
V

(n)
i

]
√

Var
[
V

(n)
i

]
∣∣∣∣∣{V (n)

i }

→ 0.5. (16)

Proof Using the limit for the variance of V
(n)
i (Thm. 3.6) and the indepen-

dence of the Zis we have

E

Var

 1
n

n−2∑
i=2

V
(n)
i Zi−E

[
V

(n)
i

]
√

Var
[
V

(n)
i

]
∣∣∣∣∣{V (n)

i }

 ∼ 1
4n2

n−2∑
i=2

i2(i+1)2(i+2)(i+3)
(i−1) E [(V

(n)
i )2] .

Now from Thms. 3.6 and 3.5 we have

E [(V
(n)
i )2] = 4 n+1

n(n−1)2
(n−i)(n−(i+1))(i−1)
i2(i+1)2(i+2)(i+3)

+
(

2
n−1

n−i
i(i+1)

)2
= 4 1

(n−1)2
(n−i)2
i2(i+1)2

(
n+1
n(n−i)

(n−(i+1))(i−1)
(i+2)(i+3)

+ 1
)
→ 4 i+5

i2(i+1)(i+2)(i+3)
.

Plugging this in (and using Mathematica)

1
4n2

n−2∑
i=2

i2(i+1)2(i+2)(i+3)
(i−1) E [(V

(n)
i )2] ∼ 1

4n2

n−2∑
i=2

i2(i+1)2(i+2)(i+3)4(i+5)
(i−1)i2(i+1)(i+2)(i+3)

= n−2
n−2∑
i=2

(i+1)(i+5)
(i−1) = n−2 1

2
(n2 + 11n+ 24Hn,1 − 42)→ 0.5.

�

Remark 3.12 Simulations presented in Fig. 5 and Thm. 3.11 suggest a
different possible CLT, namely

(n)−1
n−2∑
i=2

V
(n)
i Zi − E

[
V

(n)
i

]
√

Var
[
V

(n)
i

] weakly−→ some distribution(mean = 0, variance =
1

2
).

(17)
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We sum over i = 2, . . . n−2 as V
(n)
1 = 1 and V

(n)
n−1 =

(
n
2

)−1
for all n. It would

be tempting to take the distribution to be a normal one. However, we should
be wary after Rem. 2.13 and Fig. 2 that for our rather delicate problem
even very fine simulations can indicate incorrect weak limits. It remains to
study the variance of the conditional variance in Eq. (16). It is not entirely
clear if this variance of the conditional variance will converge to 0. Hence,
it remains an open problem to investigate the conjecture of Eq. (17).
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Figure 5: Histogram and density estimates of scaled and centred cophenetic
indices for 10000 simulated 500 tip Yule trees with λ = 1. Left: the histogram
of (Φ(n) − E

[
Φ(n)

]
)/
√

Var [Φ(n)]. The darker curve is the density fitted by
R’s density() function, the light is the N (0, 1) density. Right: simulation of
Eq. (17), the light curve is the N (0, 1/2) density, and the darker curve is R’s
density() from the simulated data. The sample variance of the simulated
Eq. (17) values is 0.385 indicating that with n = 500 we still have a high
variability or alternatively that the variance of the sample variance in Eq.
(16) does not converge to 0.

4 Contraction type limit distribution

Even though the representations of Eqs. (4) and (5) are very elegant ones
it is not obvious how to derive asymptotic properties of the process from it
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(compare Section 3). We turn to considering the recursive representation
proposed by Mir et al. (2013)

Φ̃(n) = Φ̃(Ln) + Φ̃(Rn) +

(
Ln
2

)
+

(
Rn

2

)
(18)

where Ln and Rn are the number of left and right daughter tip descendants.
We remind again that in their definition of the cophenetic index Mir et al.
(2013) do not include the root tip (or root branch of length 1 in our formu-
lation). Obviously Ln +Rn = n.

Definition 4.1 We naturally define the scaled discrete cophenetic index as

W̃n =

(
n

2

)−1
Φ̃(n). (19)

Theorem 4.2 W̃n is a almost surely and L2 convergent submartingale.

Proof The argumentation is analogous to the proof of Thm. 2.5 by using
the recursion

Φ̃(n+1) = Φ̃(n) +
n∑
i=1

ξ
(n)
i

(
n∑
i6=j

φ̃ij + Υ
(n)
i

)
,

where Υ
(n)
i is the number of nodes on the path from the root (or appropriately

origin) of the tree to tip i, (see also Bartoszek, 2014, esp. Fig. A.8). An
alternative proof for almost sure convergence can be found in Section 6.1.

�
From Eq. (18) we will be able to deduce the form of the limit of the process.
We recall (Mir et al., 2013; Cardona et al., 2013)

E
[
Φ̃(n)

]
=

(
n
2

) (4(n−Hn,1)

n−1 − 2
)

= 2
(
E
[
Φ(n)

]
−
(
n
2

))
Var

[
Φ̃(n)

]
= 1

12
(n4 − 10n3 + 131n2 − 2n)− 4n2Hn,2 − 6nHn,1.

(20)

Notice that if the root edge was included this would increase the expectation
by
(
n
2

)
and leave the variance unchanged (the distance between all pairs is

increased by 1, hence the change is deterministic). Equation (18) is for the
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discrete case (i.e. all branches of length 1). In the case with branch lengths we
attempt to approximate the cophenetic index with the following contraction
type law (NRE, no root edge)

Φ
(n)
NRE = Φ

(Ln)
NRE + Φ

(Rn)
NRE +

(
Ln
2

)
T0.5 +

(
Rn

2

)
T ′0.5 (21)

where T0.5, T
′
0.5 are independent exponential random variables with rate 2 (we

index with the mean to avoid confusion with T2 the time between the second
and third speciation event which is also exponential with rate 2). These are
the branch lengths leading from the speciation point. The rationale behind
the choice of distribution is that a randomly chosen internal branch of a
conditioned Yule tree with rate 1 is exponentially distributed with rate 2
(Corr. 3.2 and Thm. 3.3 Stadler and Steel, 2012). This is of course an
approximation, as we cannot expect that the law of every branch length
should be the same as that of a random one. In fact we should expect this
law to depend on n, i.e. the level of the recursion. However, as we shall see
simulations indicate that approximating with the average law still could still
yield acceptable heuristics, but not as good as the approximation by W n.
We use the notation Φ

(n)
NRE to differentiate from Φ(n) where the root branch

is counted, i.e.

Φ(n) = Φ
(n)
NRE +

(
n

2

)
T1, where T1 ∼ exp(1).

Define now

Y (n) = n−2
(

Φ
(n)
NRE − E

[
Φ

(n)
NRE

])
Ỹ (n) = n−2

(
Φ̃(n) − E

[
Φ̃(n)

])
and using Eqs. (15) and (20) we obtain the following recursions

Y (n) =
(
Ln

n

)2
Y (Ln) +

(
Rn

n

)2
Y (Rn) + n−2

(
Ln

2

)
T0.5 + n−2

(
Rn

2

)
T ′0.5

+n−2
(

E
[
Φ

(Ln)
NRE|Ln

]
+ E

[
Φ

(Rn)
NRE|Rn

]
− E

[
Φ

(n)
NRE

])
and

Ỹ (n) =
(
Ln

n

)2
Ỹ (Ln) +

(
Rn

n

)2
Ỹ (Rn) + n−2

(
Ln

2

)
+ n−2

(
Rn

2

)
+n−2

(
E
[
Φ̃(Ln)|Ln

]
+ E

[
Φ̃(Rn)|Rn

]
− E

[
Φ̃(n)

])
.
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The process Ỹ (n) is related to the process W̃n as

W̃n = 2(1 + n−1)Ỹ (n) +

(
n

2

)−1
E
[
Φ̃(n)

]
.

In the continuous case we do not have an exact equality, we rather hope for

Wn ≈ 2(1 + n−1)Y (n) +

(
n

2

)−1(
E
[
Φ(n)

]
−
(
n

2

))
+ T1

in some sense of approximation. Hence, knowledge of the asymptotic be-
haviour of Y (∞), Ỹ (∞) will immediately give us information about W (∞),
W̃ (∞) in the obvious way

W̃ (∞) = 2Ỹ (∞) + 2
W (∞) ≈ 2Y (∞) + 1 + T1.

The processes Y (n), Ỹ (n) look very similar to the scaled recursive represen-
tation of the Quicksort algorithm (e.g. Rösler, 1991). In fact, it is of interest
that, just as in the present work, a martingale proof first showed convergence
of Quicksort (Régnier, 1989), but then a recursive approach is required to
show properties of the limit. The random variable Ln/n → τ ∼ Unif[0, 1]
weakly and as weak convergence is preserved under continuous transfor-
mations (Thm. 18, p. 316 Grimmett and Stirzaker, 2009) we will have
(Ln/n)2 → τ 2 weakly. Therefore, we would expect the almost sure limits to
satisfy the following equalities in distribution (remembering the asymptotic
behaviour of the expectations)

Y (∞) D= τ 2Y
′(∞) + (1− τ)2Y

′′(∞) +
1

2
τ 2T0.5 +

1

2
(1− τ)2T ′0.5 − τ(1− τ), (22)

and

Ỹ (∞) D= τ 2Ỹ
′(∞) + (1− τ)2Ỹ

′′(∞) +
1

2
− 3τ(1− τ) (23)

where τ is uniformly distributed on [0, 1], Y (∞), Y
′(∞) and Y

′′(∞) are identi-
cally distributed random variables, so are Ỹ (∞), Ỹ

′(∞) and Ỹ
′′(∞), and Y

′(∞),
Y
′′(∞), Ỹ

′(∞) and Ỹ
′′(∞) are independent. Following Rösler (1991)’s approach

it turns out that the limiting distributions do satisfy the equalities of Eqs.
(22) and (23).

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2017. ; https://doi.org/10.1101/120931doi: bioRxiv preprint 

https://doi.org/10.1101/120931


Let D be the space of distributions with zero first moment and finite
second moment. We consider on D the Wasserstein metric

d(F,G) = inf
X∼F,Y∼G

‖X − Y ‖L2 .

Theorem 4.3 (cf. Thm. 2.1, Rösler (1991)) Let F ∈ D and assume that
Y, Y ′ ∼ F , τ ∼ Unif[0, 1], T0.5, T

′
0.5 ∼ exp(2) and Y, Y ′, τ, T, T ′ are all inde-

pendent. Define transformations S1 : D → D, S2 : D → D as

S1(F ) = τ 2Y + (1− τ)2Y ′ +
1

2
τ 2T0.5 +

1

2
(1− τ)2T ′0.5 − τ(1− τ), (24)

and

S2(F ) = τ 2Y + (1− τ)2Y
′
+

1

2
− 3τ(1− τ) (25)

respectively. Both transformations S1 and S2 are contractions on (D, d) and
converge exponentially fast in the d–metric to the fixed points of S1 and S2

respectively.

Proof Let C be some random variable. Then we can see that we can write
both S1 and S2 in the form

S(F ) = τ 2Y + (1− τ)2Y
′
+ C,

where S : D → D and C is some value which may depend on τ or other
parameters/random variables. Now remembering that random variables dis-
tributed by laws from D have 0 mean, it holds for F,G ∈ D, X,X ′ ∼ F ,
Y, Y ′ ∼ G

d2(S(F ), S(G)) ≤ ‖τ 2Y + (1− τ)2Y
′
+ C − τ 2X − (1− τ)2X

′ − C‖2L2

= ‖τ 2(Y −X) + (1− τ)2(Y
′ −X ′)‖2L2 = E [τ 4] E [(X − Y )2]

+ E [(1− τ)4] E [(X ′ − Y ′)2] = 2
5

E [(X − Y )2] .

Hence,

d(S(F ), S(G)) ≤
√

2

5
d(F,G).
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Following Rösler (1991) the sequence Sn(F ) will be a Cauchy sequence in
the d–metric as for m ≤ n,

d(Sm(F ), Sn(F )) ≤
n−1∑
j=m

d(Sj(F ), Sj+1(F )) ≤
n−1∑
j=m

(
2
5

)j/2
d(F, S(F ))

≤ 5
3
d(F, S(F ))

(
2
5

)m/2
.

Hence, we have exponential convergence to some limit that must be a fixed
point. We showed that the contraction is strict and hence, this fixed point is
unique.

Hence, both S1 and S2 are contractions with a unique fixed point (but
potentially different for the two maps). Both transformations converge ex-
ponentially fast to their fixed point.

�

Remark 4.4 Compared to the Quicksort algorithm (Rösler, 1991) we can
see that we have a 2/5 instead of 2/3 upper bound on the convergence rate.
This speed–up should be expected as have τ 2 and (1 − τ)2 instead of τ and
(1− τ).

Lemma 4.5 Define for i ∈ {1, . . . , n}

C̃n(i) = n−2
(

E
[
Φ̃(i)
]

+ E
[
Φ̃(n−i)

]
− E

[
Φ̃(n)

]
+

(
n

2

)
− i(n− i)

)
and for x ∈ [0, 1]

C̃(x) =
1

2
− 3x(1− x)

then

sup
x∈[0,1]

|C̃n(dnxe)− C(x)| ≤ 2n−1 lnn+O(n−1).

Proof Writing out
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C̃n(i) = n−2 (i2 + i− 2iHi,1 + (n− i)2 + (n− i)− 2(n− i)Hn−i,1 − n2

−n+ 2nHn,1 +
(
n
2

)
− i(n− i)

)
= n−2

(
3i2 − 3in+ 1

2
n2 + 2nHn,1 − 1

2
n− 2iHi,1 − 2(n− i)Hn−i,1

)
< 1

2
− 3 i

n

(
1− i

n

)
+ 2n−1 lnn

Therefore, assuming that 1 ≤ dnxe ≤ n− 1

|C̃n(dnxe)− C̃(x)| ≤ 3| dnxe
n

(1− dnxe
n

)− x(1− x)|+ 2n−1 lnn
≤ sup
|y−z|<1/n

|C(y)− C(z)|+ 2n−1 lnn ≤ 6
n

+ 2n−1 lnn+O(n−2).

If dnxe = n, we notice that x ∈ (1− 1/n, 1] and directly obtain

|C̃n(dnxe)− C̃(x)| ≤ 3|x(1− x)|+ 2n−1 lnn ≤ 2n−1 lnn+ 3
n
.

�

Lemma 4.6 Define for i ∈ {1, . . . , n}, T, T ′ ∼ exp(2)

Cn(i, T, T ′) =
1

n2

(
E
[
Φ

(i)
NRE

]
+ E

[
Φ

(n−i)
NRE

]
− E

[
Φ

(n)
NRE

]
+

(
i

2

)
T +

(
n− i

2

)
T ′
)

and for x ∈ [0, 1], T, T ′ ∼ exp(2)

C(x, T, T ′) =
1

2
x2T +

1

2
(1− x)2T ′ − x(1− x)

then

sup
x∈[0,1]

|Cn(dnxe, T, T ′)− C(x, T, T ′)| ≤ n−1 lnn+O(n−1) +Bn,

where Bn is a positive random variable that converges to 0 almost surely with
expectation decaying as O(n−1) and second moment as O(n−2).
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Proof Similarly, as in the proof of Lemma 4.5 we write out

Cn(i, T, T ′) = n−2
((

i
2

)
T +

(
n−i
2

)
T ′ + 1

2
(i2 + i)− iHi,1 + 1

2
((n− i)2 + (n− i))

−(n− i)Hn−i,1 − 1
2
(n2 − n) + nHn,1

)
< 1

2

(
i
n

)2
T + 1

2

(
n−i
n

)2
T ′ − i

n

(
1− i

n

)
+ n−1 lnn− 1

2

(
i
n2T + n−i

n2 T
′) .

We denote An = (1/2)
(
i
n2T + n−i

n2 T
′) and notice that it converges almost

surely to 0 with n. Now, assuming that 1 ≤ dnxe ≤ n− 1

|Cn(dnxe)− C(x)| ≤ 1
2
|
(
dnxe
n

)2
− x2|T

+1
2
|
(

1− dnxe
n

)2
− (1− x)2|T ′ + | dnxe

n
(1− dnxe

n
)− x(1− x)|+ n−1 lnn+ An

< sup
|y−z|<1/n

1
2
|y2 − z2|T + sup

|y−z|<1/n

1
2
|y2 − z2|T ′ + sup

|y−z|<1/n

|y(1− y) + z(1− z)|

+n−1 lnn+ An
≤ (n−1 +O(n−2))T + (n−1 +O(n−2))T ′ + 2

n
+O(n−2) + n−1 lnn+ An.

If dnxe = n, we notice that x ∈ (1− 1/n, 1] and directly obtain

|Cn(dnxe)− C(x)| ≤ 1
2
n−2T + 1

2
n−2T ′ + n−1 + n−1 lnn+ An.

Therefore, if we now denote

Bn = An + (n−1 +O(n−2))T + (n−1 +O(n−2))T ′

we obtain the statement of the Lemma.
�

We now turn to showing that Y (n) and Ỹ (n) converge in the Wasserstein d–
metric to Y (∞) and Ỹ (∞) whose laws are fixed points of S1 and S2 respectively.

Definition 4.7 Define the maps M1,M2 :
∞⋃
n=1

Dn → D as

M1 (G1, . . . , Gn−1) = L
((

Ln

n

)2
Y (Ln) +

(
n−Ln

n

)2
Y
′(n−Ln) + n−2

(
Ln

1

)
T0.5

+n−2
(
n−Ln

n

)
T ′0.5 + n−2

(
E
[
Φ

(Ln)
NRE|Ln

]
+ E

[
Φ

(n−Ln)
NRE |Ln

]
− E

[
Φ

(n)
NRE

]))
,

(26)
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and

M2 (G1, . . . , Gn−1) = L
((

Ln

n

)2
Ỹ (Ln) +

(
n−Ln

n

)2
Ỹ
′(n−Ln) + n−2

(
Ln

1

)
+n−2

(
n−Ln

n

)
+ n−2

(
E
[
Φ̃(Ln)|Ln

]
+ E

[
Φ̃(n−Ln)|Ln

]
− E

[
Φ̃(n)

]))
,

(27)

where by L(X) we denote the law of the random variable X.

For every G ∈ D we are interested in two sequences

G
(1)
1 = G, G

(1)
2 = M1(G

(1)
1 ), G

(1)
3 = M1(G

(1)
1 , G

(1)
2 ), . . . (28)

and

G
(2)
1 = G, G

(2)
2 = M2(G

(2)
1 ), G

(2)
3 = M2(G

(2)
1 , G

(2)
2 ), . . . (29)

We obtain similarly to Rösler (1991)’s Thm. 3.1

Theorem 4.8 Let G correspond to the point measure on 0, i.e.

G(x) =

{
1 x ≥ 0
0 x < 0

Then G
(1)
n and G

(2)
n , as defined in Eqs. (28) and (29) converge in the Wasser-

stein d–metric to the unique fixed points of S1 and S2 respectively.

Proof We write the proof for G
(1)
n as for G

(2)
n it will be nearly identical. We

take Y (∞) and Y
′(∞) independent and distributed as F , the fixed point of S1.

Then, for i = 1, . . . , n − 1 we choose independent versions of Y (i) and Y
′(i).

We define

Vx =
n∑
i=1

1(i−1)/n<x≤i/nY
(i−1)

and

V ′x =
n∑
i=1

1(i−1)/n<x≤i/nY
′(i−1).

Now, for independent random variables τ ∼ Unif[0, 1], T0.5, T
′
0.5 ∼ exp(2)
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d2(G
(1)
n , F ) ≤ E

[((
dnτe−1

n

)2
Vτ − τ 2Y (∞) +

(
n−dnτe−1

n

)2
V ′τ − (1− τ)2Y

′(∞)

+Cn(dnτe, T0.5, T ′0.5)− C(τ, T0.5, T
′
0.5))

2]
≤ 2 E

[((
dnτe−1

n

)2
Vτ − τ 2Y (∞)

)2
]

+ 2 E

[((
n−dnτe−1

n

)2
V ′τ − (1− τ)2Y

′(∞)

)2
]

+2 E
[
(Cn(dnτe, T0.5, T ′0.5)− C(τ, T0.5, T

′
0.5))

2] .
We consider the first term of the right–hand side of the inequality.

E

[((
dnτe−1

n

)2
Vτ − τ 2Y (∞)

)2
]

= E

[
n∑
i=1

1(i−1)/n<τ≤i/n

((
i−1
n

)2
Y (i−1) − τ 2Y (∞)

)2]
≤ 1

n

n∑
i=1

(
n−i
n

)4
E
[(
Y
′(n−i) − Y ′(∞)

)2]→ 0.

The last convergence to 0 is a direct generalization of Rösler (1991)’s Prop.
3.3. Applying the same reasoning to the second term and invoking Lemma
4.6 we have

d2(G
(1)
n , F ) ≤ 2

n

n∑
i=1

(
i−1
n

)4
E
[(
Y (i−1) − Y (∞)

)2]
+ 2

n

n∑
i=1

(
i−1
n

)4
E
[(
Y (i−1) − Y (∞)

)2]
+2n−2 ln2 n+O(n−2) + 2 E [B2

n]→ 0.

�

Remark 4.9 One may directly obtain from the recursive representation that

E
[
Y (∞)

]
= EỸ (∞) = 0, Var

[
Y (∞)

]
= 1/16 = 0.0635 and Var

[
Ỹ (∞)

]
=

1/12. We can therefore, see that in the discrete case the variance agrees.
However, in the continuous case we can see that it slightly differs

Var [(Wn − T1)/2] = π2/18− 0.5 ≈ 0.048.

Remark 4.10 One can of course calculate what the mean and variance of
T0.5, T

′
0.5 should be so that E

[
Y (∞)

]
= 0 and Var

[
Y (∞)

]
= Var [(Wn − T1)/2].

We should have E [T0.5] = E [T ′0.5] = 0.5 and Var [T0.5] = Var [T ′0.5] = π2/3 −
25/8. This, in particular, means that these branch lengths cannot be expo-
nential. We therefore also experimented by drawing T0.5, T

′
0.5 from a gamma

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2017. ; https://doi.org/10.1101/120931doi: bioRxiv preprint 

https://doi.org/10.1101/120931


distribution with rate equalling 1/(2(π2/3−25/8)) and shape equalling π2/6−
25/16. However, this increased the duration of the computations about 4.5
times and did not result in any visible improvements in comparison to Table
1.

5 Significance testing

One of the main motivations to undertake the study of the limiting behaviour
of the cophenetic index is to construct a statistic based on it that will allow
for testing if an observed phylogenetic tree is consistent with the pure birth
process. Sackin’s and Colless’ indices have been studied with respect to
their limiting distributions (Blum and François, 2005; Blum et al., 2006).
In particular it was shown that the study of Sackin’s index is equivalent to
studying the Quicksort distribution (Blum and François, 2005). Alternatively
McKenzie and Steel (2000) proposed to measure balance by counting cherries
on the tree, this index after appropriate centring and scaling converges to
the standard normal (McKenzie and Steel, 2000). However, the cophenetic
index might be a better candidate as it has a higher resolution and can
handle non–binary trees (Mir et al., 2013). The analysis done in this work
clearly indicates that a normal approximation is not appropriate. The tail of
the scaled cophenetic index is much heavier and using normal quantiles will
result in wrong significance levels of a test.

Unfortunately an analytical form of the density of any scaled cophenetic
index is not known so one will have to resort to simulations. Directly simulat-
ing a large number of pure birth trees can take an overly long time, measured
in hours. In Tab. 1 we only report the time needed to simulate the sample
of Yule trees, as we used a suboptimal O(n2) algorithm to obtain the cophe-
netic indices. The cophenetic index can be calculated in O(n) time (Corr. 3
Mir et al., 2013). In order to speed up the computations we use the same
set of simulated Yule trees for both the continuous and discrete cases. On
the other hand, the suggestive (but wrong) approximations of Eq. (6) and
contraction limiting distributions Eqs. (22) and (23) are significantly faster
to simulate, see Tabs. 1 and 2. Therefore, these should methods should ap-
peal to applied researchers who want to use this index for testing consistency
with the pure–birth process.

Simulating from the approximate Eq. (6) is straightforward. One just
draws n − 1 independent exponential 1 random variables. Simulating ran-
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dom variables satisfying Eqs. (22) and (23) is more involved and probably
an exact rejection algorithm can be developed (cf. Devroye et al., 2000).
Here we choose simple, approximate but still effective, heuristics in order to
demonstrate the usefulness of the approach for significance testing.

We describe the algorithms for simulating from a more general distribu-
tion, F , that satisfies

Y
D
= g1(τ)Y ′ + g2(τ)Y ′′ + C(τ, θ),

where Y, Y ′, Y ′′ ∼ F , Y ′, Y ′′, τ, θ are independent, τ ∼ Fτ , θ ∼ Fθ is some
random vector, g1, g2 : R → R and C : Rp → R for some appropriate p that
depends on θ’s dimension. Of course for our case of Φ(n), Φ̃(n) we have τ ∼
Unif[0, 1], g1(τ) = τ 2, g2(τ) = (1−τ)2, C(τ, T, T ′) = τ 2T+(1−τ)2T ′−τ(1−τ)
and C(τ) = 1/2− 3τ(1− τ) for Φ(n), Φ̃(n) respectively. Of course, T , T ′ are
independent and exponential 2 distributed. If one considers also the root
edge, then to the simulated random variable one needs to add T1 ∼ exp(1)
when simulating n−2Φ(n) or appropriately 1 if one considers n−2Φ̃(n).

Algorithm 1 Population approximation

1: Initiate population size N
2: Set P [0, 1 : N ] = Y0 . Initial population
3: for i = 1 to imax do
4: fi−1 =density(P [i− 1, ]) . density estimation by R

5: for j = 1 to N do
6: Draw τ from Fτ
7: Draw θ from Fθ
8: Draw Y1, Y2 independently from fi−1
9: P [i, j] = g1(τ)Y1 + g2(τ)Y2 + C(τ, θ)

10: end for
11: end for
12: return P [imax, ]
13: . Add root branch (exp(1) or 1) if needed for each individual.

The recursion of Alg. 2 for a given realization of τ and θ random variables
can be directly solved. In the case of Y0 = 0 it will equal (in a directly
implementable representation)
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Algorithm 2 Recursive approximation

1: procedure Yrecursion(n, Y0)
2: if n = 0 then
3: Y1 = Y0, Y2 = Y0
4: else if n = 1 and Y0 = 0 then
5: Draw τ1, τ2 independently from Fτ
6: Draw θ1, θ2 independently from Fθ
7: Y1 = C(τ1, θ1)
8: Y2 = C(τ2, θ2)
9: else

10: Y1 =Yrecursion(n− 1 , Y0)
11: Y2 =Yrecursion(n− 1 , Y0)
12: end if
13: Draw τ from Fτ
14: Draw θ from Fθ
15: return g1(τ)Y1 + g2(τ)Y2 + C(τ, θ),
16: end procedure
17: return Yrecursion(N , Y0)
18: . Add root branch (exp(1) or 1) if needed.

Y (N) = C(τ0,0, θ0,0)

+
N−1∑
j=1

(
2j−1∑

i=0,i even

(
C(τj,i, θj,i) · g1(τ0,0)Y0 ·

j−1∏
k=1

(
g1(τk,i[0:(k−1)])

(i[k]+1)2 · g2(τk,i[1:k]+1)
i[k]
))

+
2j−1∑

i=0,i odd

(
C(τj,i, θj,i) · g2(τ0,0)Y0 ·

j−1∏
k=1

(
g1(τk,i[0:(k−1)])

(i[k]+1)2 · g2(τk,i[1:k]+1)
i[k]
)))

,

(30)
where i[k] is the value (either 0 or 1) of the bit corresponding to 2k in i’s
binary representation and i[0 : (k − 1)] is the value obtained when only
the k youngest bits are taken from i’s binary representation. For different
i, j ∈ {0, . . . , N − 1} pairs, τi,j ∼ Fτ and θi,j ∼ Fθ are independent. The
operation (·)2 means taking the value modulo 2. If Y0 6= 0, then the formula
will be very similar except lengthier. However, in our case taking Y0 = 0 is
reasonable as the cophenetic index is 0 for trees with 0, 1 and 2 tips. The
reader should remember that we do not have a leading root branch in the
contraction setup, we correct for it later if needed.
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In Tabs. 1 and 2 we also compare the quantiles from the different distri-
butions. We can see that the approximation of W n for Wn is a very good
one and can be used when one needs to work with the distribution of the
cophenetic index with branch lengths. In the case of the discrete cophenetic
index we have found an exact limit distribution which is a contraction–type
distribution. Therefore, one can relatively quickly simulate a sample from it
without the need to do lengthy simulations of the whole tree and then cal-
culations of the cophenetic index. Unfortunately this contraction approach
does not seem to give such good results in the Yule tree with branch lengths
case. We used an approximation when constructing the contraction. Instead
of taking the law of the length of two daughter branches, we took the law
of an random internal branch. This induces a difference between the tails
of the distributions that is clearly visible in the simulations. Even at the
second moment level there is a large difference. We calculated (Thm. 3.8)
that Var [Wn] → 2π2/9 − 1 ≈ 1.193, Var

[
W n

]
→ 4π2/3 − 12 ≈ 1.159 while

Var
[
2Y (n) + T1

]
= 1.25. Therefore, the approximation by W n seems better

even at the second moment level. Generally if one cannot afford the time and
memory to simulate a large sample of Yule tree, simulating W n values seems
a very attractive option, as the discrepancy between the two distributions
seems very small.

In Fig. 6 we compare the histograms (and density estimates) of (scaled
and centred) both continuous and discrete branches cophenetic indices and
their respective contraction–type limit distributions. The histograms gener-
ally agree but we know from Tab. 1 that for Φ(n) this is only an approxima-
tion. We simulated 10000 Yule trees and hence the 0.0005 upper and lower
quantile estimates are very inaccurate. This is especially visible in Tab. 2.
All the quantiles, except the 0.9995 one agree with the quantiles from the
Yule tree simulation. We should expect this as for Φ̃(n) we have shown an
exact limit distribution.

It is also encouraging that all three proposed heuristics of simulating
from the contraction–type limit give similar results even with as few as 10
iterations. Simulating with Alg. 1 is the fastest, however the results also seem
to be the least accurate. This could certainly be due to the dependencies
building up in the population after each generation. Simulating by Alg. 2
seems to give the best results (out of the three proposed methods) and is still
very fast, especially compared to using Eq. (30). Hence, if the distribution of
the cophenetic index (discrete branches) is required, then there is no need to
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simulate Yule trees. The recursion–type limit distribution is an exact result
and using Alg. 2 with even a recursion depth of n = 10 will yield a useful
sample. Of course paying with time for a deeper recursion will give even
more accuracy.
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Figure 6: Histogram and density estimates of scaled (by theoretical standard
deviation) and centred (by theoretical expectation) cophenetic indices (black)
for 10000 simulated 500 tip Yule trees with λ = 1 and of simulation by Alg.
2 (gray), also scaled and centred to mean 0 and variance 1. Left: histogram
of Φ(n), right: Φ̃(n). The curves are based on R’s density() function.

6 Alternative descriptions

6.1 Difference process

Let us consider in detail the families of random variables V
(n)
i and E

[
1
(n)
k |Yn

]
.

Obviously V
(n)
i is

(
n
2

)
i times the number of pairs that coalesced after the i−1

speciation event for a given Yule tree. Denote

A
(n)
i := iV

(n)
i .

As going from n to n + 1 means a new speciation event and coalescent at
this new nth event, then
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(√
Var [Φ(n)]

)−1
(Φ(n) − E

[
Φ(n)

]
) limit approximation

Yule N (0, 1) WN Y (N) Alg. 1 Y (N) Alg. 2 Y (N) Eq. (30)
Running time 4.458h — 15.877s 1.661s 8.617m 46.018m
Average (= 0) 0.021 0 −0.003 0.014 0.019 −0.001
Variance (= 1) 1.018 1 0.929 1.024 1.023 0.988

Skewness 1.609 0 1.634 1.836 1.778 1.865
Excess kurtosis 4.237 0 4.159 5.013 4.308 5.54

q(0.0005) −1.462 −3.291 −1.449 −1.271 −1.252 −1.248
q(0.001) −1.431 −3.090 −1.420 −1.245 −1.239 −1.235
q(0.005) −1.337 −2.576 −1.330 −1.181 −1.194 −1.191
q(0.01) −1.285 −2.326 −1.281 −1.153 −1.165 −1.154
q(0.025) −1.199 −1.96 −1.183 −1.094 −1.097 −1.093
q(0.05) −1.113 −1.644 −1.095 −1.028 −1.031 −1.031
q(0.95) 1.995 1.644 1.855 2.004 2.052 1.962
q(0.975) 2.658 1.96 2.482 2.687 2.773 2.61
q(0.99) 3.326 2.326 3.366 3.593 3.574 3.587
q(0.995) 3.935 2.576 4.056 4.359 4.393 4.211
q(0.999) 5.342 3.090 5.161 5.943 5.576 5.580
q(0.9995) 6.423 3.291 5.857 6.361 5.885 6.183

Table 1: Simulations based on 10000 draws of each random variable (pop-
ulation size for Alg. 1) i.e. columns, bar N (0, 1). The rows q(α) corre-
spond to the, simulated, bar N (0, 1), quantiles i.e. for a random variable X,
P (X ≤ q(α)) = α. All simulations were done in R with the package TreeSim
(Stadler, 2009, 2011) used to obtain the Yule trees. All results correspond to
Yule trees with speciation rate λ = 1 and n = 500 tips. The Yule tree Φ(n)

values are centred and scaled by expectation and standard deviation from
Eq. (15). W n is centred by E [Wn] and scaled by

√
(2π2 − 9)/9 (Thm. 3.8)

Y (∞) is centred by 1 (root branch), scaled by
√

1 + 1/16. N = 10 for Algs.
1, 2 and Eq. (30) is the number of generations and recursion depth of the
respective algorithm. In Alg. 1 the initial population is set at 0 and also
Y0 = 0 for Alg. 2 and Eq. (30). The simulations were run in R 3.2.5 for
Ubuntu 12.04.5 LTS on a 1.4GHz. AMD Opteron Proc. 6274

A
(n+1)
i ≥

(
n+ 1

2

)−1((
n

2

)
A

(n)
i + 1

)
.
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(√
Var

[
Φ̃(n)

])−1
(Φ̃(n) − E

[
Φ̃(n)

]
) limit approximation

Yule N (0, 1) Ỹ (N) Alg. 1 Ỹ (N) Alg. 2 Ỹ (N) Eq. (30)
Running time — — 1.384s 3.141m 38.089m
Average (= 0) 0.011 0 −0.014 −0.008 0.003
Variance (= 1) 1.013 1 1.004 0.998 0.003

Skewness 1.206 0 1.289 1.279 1.003
Excess kurtosis 1.714 0 2.142 2.103 1.227

q(0.0005) −1.478 −3.291 −1.499 −1.458 −1.454
q(0.001) −1.442 −3.090 −1.475 −1.435 −1.436
q(0.005) −1.372 −2.576 −1.389 −1.366 −1.371
q(0.01) −1.327 −2.326 −1.339 −1.326 −1.322
q(0.025) −1.255 −1.96 −1.260 −1.25 −1.249
q(0.05) −1.166 −1.644 −1.184 −1.159 −1.160
q(0.95) 1.961 1.644 1.913 1.933 1.951
q(0.975) 2.496 1.96 2.535 2.463 2.472
q(0.99) 3.167 2.326 3.261 3.152 3.213
q(0.995) 3.649 2.576 3.813 3.684 3.600
q(0.999) 4.642 3.090 4.682 4.899 4.627
q(0.9995) 4.734 3.291 5.026 5.158 4.954

Table 2: Simulations based on 10000 draws of each random variable (pop-
ulation size for Alg. 1) i.e. columns, bar N (0, 1). The rows q(α) corre-
spond to the, simulated, bar N (0, 1), quantiles i.e. for a random variable X,
P (X ≤ q(α)) = α. All simulations were done in R with the package TreeSim
(Stadler, 2009, 2011) used to obtain the Yule trees. All results correspond to
Yule trees with speciation rate λ = 1 and n = 500 tips. The Yule tree Φ̃(n)

values are centred and scaled by expectation and standard deviation from
Eq. (20). Ỹ (∞) is scaled by (2

√
3)−1. N = 10 for Algs. 1, 2 and Eq. (30) is

the number of generations and recursion depth of the respective algorithm.
In Alg. 1 the initial population is distributed set at 0 and also Y0 = 0 for
Alg. 2 and Eq. (30). The simulations were run in R 3.2.5 for Ubuntu 12.04.5
LTS on a 1.4GHz. AMD Opteron Proc. 6274

We also know by previous calculations that

E
[
A

(n)
i

]
= iE

[
V

(n)
i

]
= 2(n− i)/((n− 1)(i+ 1))→ 2/(i+ 1).
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Let
(
n+1
2

)
ε
(n)
i denote the number of newly introduced coalescent events after

the (i− 1)–one when we go from n to n + 1 species. Obviously ε
(n)
i >

(
n+1
2

)
Then, we may write

A
(n+1)
i =

(
n+ 1

2

)−1(
n

2

)
A

(n)
i + ε

(n)
i .

Now,

E
[
ε
(n)
i

]
= E

[
A

(n+1)
i

]
−
(
n+1
2

)−1(n
2

)
E
[
A

(n)
i

]
= 2(n+1−i)

n(i+1)
− n(n−1)

n(n+1)
2(n−i)

(n−1)(i+1)

= 2
i+1

(
n+1−i
n
− n−i

n+1

)
= 2

i+1
(n−i+1)(n+1)−n(n−i)

n(n+1)
= 2

i+1
n(n−i)+n+n−i+1−n(n−i)

n(n+1)

= 2
i+1

2n+1−i
n(n+1)

→ 0.

Therefore, for every i, ε
(n)
i → 0 almost surely as it is a positive random

variable whose expectation goes to 0. However, A
(n)
i is bounded by 1, as it

can be understood as the conditional (on tree) cumulative density function
for the random variable κ—at which speciation event did a random pair of
tips coalesce, i.e. for all i = 1, . . . , n− 1

P (κ ≤ i− 1|Yn) = 1− A(n)
i .

Therefore, as A
(n)
i is bounded by 1 and the difference process

A
(n)
i − A

(n−1)
i = ε

(n)
i

goes almost surely to 0 we may conclude that A
(n)
i converges almost surely to

some random variable Ai. In particular, this implies the almost sure conver-

gence of V
(n)
i to a limiting random variable Vi. Furthermore, as E

[∑n−1
i=1 V

(n)
i

]
and Var

[∑n−1
i=1 V

(n)
i

]
are both O(1) we may conclude that

∑n−1
i=1 V

(n)
i also

converges almost surely. This means that the discrete version (all Ti = 1,
corresponding to Φ̃(n)) of the cophenetic index converges almost surely (com-
pare with Thm. 4.2).

6.2 Polyá urn description

The cophenetic index both in the discrete and continuous version has the
following Polyá urn description. We start with an urn filled with n balls.
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Each ball has a number painted on it, 0 initially. At each step we remove a
pair of balls, say with numbers x and y and return a ball with the number
(x + 1)(y + 1) painted on it. We stop when there is only one ball, it will
have value

(
n
2

)
. Denote Bk,i,n as the value painted on the k–th ball in the

i–th step when we initially started with n balls. Then we can represent the
cophenetic index as

Φ(n) =
n−1∑
i=1

(
i∑

k=1

Bk,i,n

)
Ti

or alternatively, in the discrete case

Φ̃(n) =
n−1∑
i=1

i∑
k=1

Bk,i,n.
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2000.

J. A. Fill and S. Janson. Approximating the limiting Quicksort distribution.
Rand. Struct. Alg., 19(3-4):376–406, 2001.

G. Grimmett and D. Stirzaker. Probability and Random Processes (Third
Edition). Oxford University Press, Oxford, 2009.

S. Janson. On the tails of the limiting Quicksort distribution. Electronic
Comm. Probab., 81:1–7, 2015.

40

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2017. ; https://doi.org/10.1101/120931doi: bioRxiv preprint 

https://doi.org/10.1101/120931


A. McKenzie and M. Steel. Distributions of cherries for two models of trees.
Math. Biosci., 164:81–92, 2000.
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Appendix: Mathematica code for Section 3

(∗
Mathematica code used to obta in the c l o s e d form formulae
o f Sec t i on 3 . Second order p r o p e r t i e s in K. Bartoszek
Exact and approximate l i m i t behaviour o f the Yule t ree ’ s
cophenet i c index .
The s c r i p t was run us ing Mathematica 9 .0 f o r Linux x86
(64− b i t ) running on Ubuntu 1 2 . 0 4 . 5 LTS . I t has to be noted
that Mathematica ’ s output should be manually pos tproce s s ed
in order to have the formulae in terms o f harmonic sums and
not d e r i v a t i v e s o f polygamma f u n c t i o n s .
Al l the r e f e r e n c e s in t h i s s c r i p t po int to appropr ia t e fragments
o f the manuscript .
∗)

(∗
We choose the p a i r s in order , i . e . f i r s t the f i r s t pa i r to
c o a l e s c e then the second pa i r to c o a l e s c e .
∗)
(∗ Compare with proo f o f Lemma 1 o f Bartoszek and Sag i tov (2015b) ∗)
FcoalProb [ n , k , c ]= F u l l S i m p l i f y [ Product [(1− c / ( ( r ∗( r −1))/2))
,{ r , k+2,n } ] ]

(∗ Def . 2 . 8 , Eq . (2 ) ∗)
E1k [ n , k ] :=(2∗ ( n+1)/((n−1)∗(k+1)∗(k+2)))
(∗ Lemma 3 . 1 , Eq . (6 ) ∗)
Var1k [ n , k ] :=( E1k [ n , k]−E1k [ n , k ]∗E1k [ n , k ] )
(∗ Lemma 3 . 2 , Eq . (7 ) ∗)
Cov1k11k2 [ n , k1 , k2 ]:=(−E1k [ n , k1 ]∗E1k [ n , k2 ] )

(∗ Lemma 3 . 3 , Eq . (8 ) ∗)
VarE1k [ n , k ]=( F u l l S i m p l i f y [
(1/( n∗(n−1)/2))∗(2∗(n+1)/((n−1)∗(k+1)∗(k+2)))
+
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(2∗ (n−2)/(n∗(n−1)/2))∗(Sum[ FcoalProb [ n , j , 3 ] ∗ ( 1 / ( ( j +1)∗ j /2) )
∗FcoalProb [ j , k , 1 ] ∗ ( 1 / ( ( k+1)∗k /2) ) ,{ j , k+1,n−1} ])
+
( ( n−2)∗(n−3)/2/(n∗(n−1)/2))∗(
Sum[Sum[ FcoalProb [ n , j1 , 6 ] ∗ ( 4 / ( ( j 1 +1)∗ j 1 /2) )
∗FcoalProb [ j1 , j2 , 3 ] ∗ ( 1 / ( ( j 2 +1)∗ j 2 /2) )
∗FcoalProb [ j2 , k , 1 ] ∗ ( 1 / ( ( k+1)∗k /2) ) ,{ j1 , j 2 +1,n−1} ] ,{ j2 , k+1,n−2}]
)− (E1k [ n , k ] ) ∗ ( E1k [ n , k ] ) ] )

(∗ Lemma 3 . 4 , Eq . (9 ) ∗)
CovE1k1E1k2 [ n , k1 , k2 ]=( F u l l S i m p l i f y [
(2∗ (n−2)/(n∗(n−1)/2))∗( FcoalProb [ n , k2 , 3 ] ∗ ( 1 / ( ( k2+1)∗k2 /2))
∗FcoalProb [ k2 , k1 , 1 ] ∗ ( 1 / ( ( k1+1)∗k1 /2 ) ) )
+
( ( n−2)∗(n−3)/2/(n∗(n−1)/2))∗( FcoalProb [ n , k2 , 6 ]
∗ (1/ ( ( k2+1)∗k2 /2))∗ FcoalProb [ k2 , k1 , 3 ] ∗ ( 1 / ( ( k1+1)∗k1 /2))
+
Sum[ FcoalProb [ n , k2 , 6 ] ∗ ( 1 / ( ( k2+1)∗k2 /2))∗ FcoalProb [ k2 , j , 3 ]
∗ (2/ ( ( j +1)∗ j /2))∗ FcoalProb [ j , k1 , 1 ] ∗ ( 1 / ( ( k1+1)∗k1 /2) ) ,{ j , k1+1,k2−1}]
+
Sum[ FcoalProb [ n , j , 6 ] ∗ ( 4 / ( ( j +1)∗ j /2))∗ FcoalProb [ j , k2 , 3 ]
∗ (1/ ( ( k2+1)∗k2 /2))∗ FcoalProb [ k2 , k1 , 1 ] ∗ ( 1 / ( ( k1+1)∗k1 /2) ) ,{ j , k2+1,n−1}]
)−(E1k [ n , k1 ] ) ∗ ( E1k [ n , k2 ] ) ] )

(∗ Thm. 3 . 5 , Eq . (10) ∗)
EVi [ n , i ] :=( F u l l S i m p l i f y [Sum[ E1k [ n , k ] ,{ k , i , n−1}]/ i ] )

(∗ Thm. 3 . 6 , Eq . (10) ∗)
VarVi [ n , i ]=( F u l l S i m p l i f y [ ( Sum[ VarE1k [ n , k ] ,{ k , i , n−1}]
+2∗Sum[Sum[ CovE1k1E1k2 [ n , k1 , k2 ] ,{ k2 , k1+1,n−1} ] ,{k1 , i , n−1} ] )/( i ∗ i ) ] )

(∗ Thm. 3 . 7 , Eq . (11) ∗)
CovVi1Vi2 [ n , i 1 , i 2 ]=( F u l l S i m p l i f y [ ( i 2 ∗ i 2 ∗VarVi [ n , i 2 ]
+Sum[Sum[ CovE1k1E1k2 [ n , k1 , k2 ] ,{ k2 , i2 , n−1} ] ,{k1 , i1 , i2 −1} ] )/( i 1 ∗ i 2 ) ] )

(∗ Thm. 3 . 8 , formula 1 ∗)
EVi2 [ n , i ]=( F u l l S i m p l i f y [ VarVi [ n , i ]+(EVi [ n , i ] ˆ 2 ) ] )
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VarSumVi [ n ]=( F u l l S i m p l i f y [Sum[ EVi2 [ n , i ] ,{ i , 1 , n−1}]
+2∗Sum[Sum[ CovVi1Vi2 [ n , i1 , i 2 ] ,{ i2 , i 1 +1,n−1} ] ,{ i1 , 1 , n−2} ] ] )

(∗ Thm. 3 .8 Eq . (13 ) , formula 2 ∗)
VarWn[ n ]=( F u l l S i m p l i f y [2∗Sum[ VarVi [ n , i ] ,{ i , 1 , n−1}]
+Sum [ ( EVi [ n , i ] ) ˆ 2 ,{ i , 1 , n−1}]+2∗Sum[Sum[ CovVi1Vi2 [ n , i1 , i 2 ]
,{ i2 , i 1 +1,n−1} ] ,{ i1 , 1 , n−1} ] ] )

(∗ Thm. 3 .8 Eq . (13 ) , formula 3 ∗)
VarWnBar [ n ]=( F u l l S i m p l i f y [Sum [ ( EVi [ n , i ] ) ˆ 2 ,{ i , 1 , n−1} ] ] )

(∗ Thm. 3 .8 Eq . (13 ) , formula 4 ∗)
VarWnCentre [ n ]=( F u l l S i m p l i f y [2∗Sum[ VarVi [ n , i ] ,{ i , 1 , n−1}]
+2∗Sum[Sum[ CovVi1Vi2 [ n , i1 , i 2 ] ,{ i2 , i 1 +1,n−1} ] ,{ i1 , 1 , n−1} ] ] )

(∗ Thm. 3 .10 ∗)
Fina lPart [ n ]=(Sum [ ( i +1)∗( i +5)/( i −1) ,{ i , 2 , n−2} ])
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