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Abstract

A central challenge in sensory neuroscience involves understanding how neural circuits shape computations
across multiple nonlinear cell layers. Here we develop a computational framework to reconstruct the response
properties of experimentally unobserved neurons in the interior of a multilayered neural circuit. We combine
non-smooth regularization techniques with proximal consensus algorithms to overcome traditional difficulties
in fitting such models due to the high dimensionality of their parameter space. Our methods are both
statistically and computationally efficient, enabling us to not only rapidly learn hierarchical non-linear
models, but also efficiently compute widely used descriptive statistics such as the spike triggered average
(STA) and covariance (STC) for high dimensional stimuli. We apply our framework to retinal ganglion cell
processing, learning STAs and STCs to similar accuracy using just 12% of recorded data, reducing
experiment time by an order of magnitude. Furthermore, we learn three layer nonlinear models of retinal
circuitry, consisting of thousands of parameters, using only 40 minutes of responses to white noise. Our
models demonstrate a 53% improvement in predicting ganglion cell spikes over classical linear-nonlinear (LN)
models. The internal structure of these models reveals that hidden nonlinear subunits match the properties of
retinal bipolar cells in both receptive field structure and number. Subunits had consistently high thresholds,
leading to sparse activity patterns in which only one subunit drives ganglion cell spiking at any time. From
the model’s parameters, we predict that the removal of visual redundancies through stimulus decorrelation
across space–a central tenet of efficient coding theory—originates primarily from bipolar cell synapses.
Furthermore, the composite nonlinear computation performed by retinal circuitry corresponds to a boolean
OR function applied to bipolar cell feature detectors. Our general computational framework may aid in
extracting principles of nonlinear hierarchical sensory processing across diverse modalities from limited data.

Introduction

Motivation

Computational models of neural responses to sensory stimuli have played a central role in addressing
fundamental questions about the nervous system, including how sensory stimuli are encoded and represented,
the mechanisms that generate such a neural code, and the theoretical principles that govern both the sensory
code and underlying mechanisms. Such models often begin with a statistical description of the stimuli that
precede a neural response including the spike-triggered average (STA) [1, 2] or covariance (STC) [3–8]. These
statistical measures characterize to some extent the set of effective stimuli that drive a response, but do not
necessarily reveal how these statistical properties relate to cellular mechanisms or neural pathways. Going
beyond these descriptive statistics, an explicit representation of the neural code can be obtained by learning
a model to predict neural responses to sensory stimuli. A classic approach involves a single stage of
spatiotemporal filtering and a time-independent or static nonlinearity; these models include linear-nonlinear
(LN) models with single or multiple pathways [1, 9–11] or generalized linear models (GLMs) [12,13]. Similar
to STA and STC analyses, these models do not directly map onto circuit anatomy and function. As a result,
the interpretation of such descriptive statistics and phenomenological models, as well as how they precisely
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relate to underlying cellular mechanisms remains unclear. Ideally, one would like to generate more
biologically realistic models of sensory circuits, in which the learned parameters are highly interpretable and
sub-components of the model map in a one-to-one fashion onto cellular components of neurobiological
circuits. For example, model components such as spatiotemporal filtering, thresholding, and summation are
readily mapped onto photoreceptor or membrane voltage dynamics, synaptic and spiking thresholds, and
dendritic pooling, respectively.

A critical aspect of sensory circuits is that they operate in a hierarchical fashion in which sensory signals
propagate through multiple nonlinear cell layers. Fitting models that capture this widespread anatomical
structure using measurements of neurons in one layer of a circuit in response to controlled stimuli raises
significant statistical as well as computational challenges [14–18], in contrast to LN models [2] and GLMs. A
key issue is the high dimensionality of both stimulus and parameter space, as well as the existence of hidden,
unobserved neurons in intermediate cell layers that remain unrecorded. The high dimensionality of
parameter space can necessitate prohibitively large amounts of data to accurately fit the model (the
statistical challenge). Furthermore, this high dimensionality, combined with hidden neurons, can
prohibitively extend the computational time required to optimize the model (the computational challenge).
One approach to address these difficulties is the use of prior knowledge about the structure and components
of the circuits [11,17,19–21]. Although prior knowledge of the exact network architecture and sequence of
nonlinearities from properties such as synapses and spiking, would greatly constrain the number of possible
circuit solutions, such prior knowledge is typically minimal for most neural circuits.

In this work, we present a computational framework that addresses these challenges by incorporating
prior knowledge only about the into the estimates of descriptive statistics and the relationship of those
statistics to model parameters. We then utilize this framework to formulate and fit parameters of
hierarchical nonlinear models to recordings of ganglion cells in the retina. In particular, we focus on models
with 3 cell layers connected by two stages of linear-nonlinear processing (LN-LN models). As described
below, the cell layers of these models map in one-to-one fashion onto the three principal cell layers of the
retina: photoreceptors, bipolar cells, and retinal ganglion cells. We demonstrate that these models are both a
more accurate description of the retinal code, as well as more amenable to biophysical interpretation. In
particular, we find a match between the properties of subunits in the intermediate, hidden layer of our
models and the properties of bipolar cells in the retina. Further analysis of our learned models reveal novel
insights into retinal function, namely that, (1) transmission between every subunits and ganglion cell pair is
well described by a high threshold expansive nonlinearity, (2) bipolar cells are sparsely active, (3) visual
inputs are most de-correlated at the subunit layer, pre-synaptic to ganglion cells, and (4) the composite
computation performed by the retinal ganglion cell output corresponds to a boolean OR function of bipolar
cell feature detectors. Collectively, these results shed light on the nature of hierarchical nonlinear
computation in the retina. Our computational framework is general, however, and we hope it will aid in
providing insights into hierarchical nonlinear computations across the nervous system.

Background on retinal physiology and modeling

The retina is a classic system for exploring the relationship between descriptive statistics, quantitative
encoding models, and measurements of neurobiological circuit properties [22,23]. Signals in the retina flow
from photoreceptors through populations of horizontal, bipolar, and amacrine cells before reaching the
ganglion cell layer. Despite this complex multilayered computation, many studies have characterized retinal
ganglion cell responses using simple descriptive statistics such as spike-triggered average or
covariance [10,24, 25]. Responses are often then modeled using a linear-nonlinear (LN) framework. A major
reason for the widespread adoption of LN models is their high level of tractability; learning their parameters
can be accomplished by solving a simple convex optimization problem [1], or alternatively, estimated using
straightforward reverse correlation analyses [2]. While previous studies have found that these simple models
can for some neurons capture most of the variance of the responses to spatiotemporal white noise [9, 12,16],
they do not accurately describe responses to stimuli with more structure such as natural scenes [13,26–28].

Furthermore, the precise relationship between both the descriptive statistics and LN models, and the
underlying multilayered neural circuit that generates the ganglion cell response remains unclear. Often, the
spatiotemporal linear filter of the LN model is presented as mapping onto the aggregate sequential

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2017. ; https://doi.org/10.1101/120956doi: bioRxiv preprint 

https://doi.org/10.1101/120956
http://creativecommons.org/licenses/by-nc/4.0/


mechanisms of phototransduction, signal filtering and transmission through bipolar and amacrine cell
pathways, and summation at the ganglion cell, while the nonlinearity is mapped onto the spiking threshold of
ganglion cells. However, there can be strong rectification of signals that occurs pre-synaptic to ganglion
cells [29–31], breaking the assumption of composite linearity in the pathway from photoreceptors just up to
the ganglion cell spiking threshold [32]. Indeed, nonlinear spatial integration within ganglion cell receptive
fields was first described in the cat retina by Hochstein and Shapley [33] and Victor and Shapley [34] in
Y -type ganglion cells. These authors proposed a hypothetical model for this computation: a cascade of two
layers of linear-nonlinear operations (LN-LN). The first major nonlinearity acting at a constant mean
luminance is thought to lie at the bipolar-to-ganglion cell synapse, with each of the first layer LN being
termed a subunit of the ganglion cell1. The second LN layer corresponds to summation or pooling across
multiple subunits at the ganglion cell soma, followed by a spiking threshold. The subunit nonlinearities in
these models have been shown to underlie many retinal computations including latency encoding [23], object
motion sensitivity [35], and sensitivity to fine spatial structure (such as edges) in natural scenes [30]. Figure 1
shows a schematic of the LN-LN cascade and its mapping onto retinal anatomy.
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Fig 1. A schematic of the LN-LN cascade and its mapping onto retinal anatomy. (a) Each LN unit consists
of a linear spatiotemporal filter followed by a static nonlinearity. The LN-LN cascade is then a bank of LN
subunits, whose outputs are pooled at a second linear stage before being passed through a final nonlinearity.
(b) The LN-LN model mapped on to a retinal circuit. The first LN stage consists of bipolar cell subunits and
the bipolar-to-ganglion cell synaptic threshold. The second LN stage is pooling at the ganglion cell, plus a
spiking threshold.

Identifying the parameters of subunit models given limited experimental data is a significant challenge.
Typically, simplifying assumptions are made about the form of the subunit nonlinearities [21,36,37], the
similarity of different subunits [19,20], or the number of subunits [14]. Another approach is to incorporate
prior knowledge about the model parameters, through a process known as regularization in the statistics and
machine learning literature [38]. In this paper, we describe computational methods based on proximal
consensus algorithms, described below, that allow us to utilize minimal prior knowledge about model
parameters in a computationally and statistically efficient manner to perform both spike-triggered analyses
and fit hierarchical nonlinear models using much less data than otherwise required.

To achieve our results, we first elucidate the precise relationship between widely used descriptive
statistics, like the STA and STC, and the parameters of model neurons. By establishing how these statistics

1Note that subunits that combined linearly would be indistinguishable from a computational perspective. Due to the roughly
linear integration [9] that occurs at bipolar cells, we (computationally) distill mechanisms in photoreceptors, horizontal cells, and
their synaptic connections into a single spatiotemporal filter that gives rise to bipolar cell signals.
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depend on neuronal filters and nonlinearities, we develop theoretically principled regularization methods for
utilizing prior knowledge about neuronal biophysics to rapidly and efficiently estimate descriptive statistics.
Moreover, by understanding how the biophysical properties of neural circuits shapes the geometry of the
spike-triggered ensemble, we endow these statistics with much greater interpretive power, and enable them to
provide a lens through which we can understand the differences between different hierarchical, nonlinear
computations. With this computational framework in hand, we then move on to learning hierarchical
nonlinear models of retinal responses to spatiotemporal white noise, focusing specifically on the
linear-nonlinear cascade (LN-LN) model. We demonstrate that our learned LN-LN models both yield
improved predictive performance as well as insights into hierarchical nonlinear computations in the retina.
We end by discussing the precise relationship between our work and other work on retinal modeling.

Results

Relationship between descriptive statistics and neural models

We represent a visual stimulus as an N dimensional vector x of luminance levels. For example, if the
stimulus is a segment of a spatiotemporal movie, discretized with Ns spatial bins, and Nt temporal bins,
then N = NsNt, and each component xi of the vector reflects the luminance level of the i’th spatiotemporal
bin. Moreover, in this section we view a functional neural model as an arbitrary nonlinear function r = f(x),
over N dimensional stimulus space, where r determines the probability that the neuron fires in a small time
window following a stimulus x: r(x) = p(spike | x). Our goal in this section is to understand at a general
level, how and which properties of the function f determine the STA and STC. This analysis will yield a
mapping between neural response properties and descriptive statistics that will greatly aid in both the rapid
learning and interpretation of descriptive statistics. Readers who are specifically interested in how to fit
hierarchical nonlinear models and the lessons we learn from them can safely skip the derivations in this
section.

The STA and STC are the mean and covariance, respectively, of the spike-triggered stimulus ensemble,
which reflects the collection of stimuli preceding each spike [3]. This distribution over stimuli, conditioned on
a spike occurring, can be expressed via Bayes rule,

p(x | spike) =
p(spike | x)p(x)

p(spike)
, (1)

where p(x) is the prior distribution over stimuli and p(spike) is the average firing probability over all stimuli.
Here, we assume a white noise stimulus distribution, in which each component of x is chosen independently
from a Gaussian distribution with zero mean and unit variance. The STA and STC are given by

xSTA = Ep(x|spike)[x] (2)

CSTC = Ep(x|spike)[xxT ]− (xSTA)(xSTA)T (3)

Focusing first on the STA:

xSTA =

∫
x p(x | spike) dx

=
1

µ

∫
x r(x)p(x) dx

=
1

µ
Ep(x)[x r(x)]

=
1

µ
Ep(x)[∇r(x)], (4)

where µ = p(spike) is the overall probability of spiking. The last step in the derivation uses Stein’s lemma,
which states that E[xf(x)] = E[∇f(x)] if the expectation is taken over a multivariate Gaussian distribution
with identity covariance matrix, corresponding to our white noise stimulus assumption. This calculation thus
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yields the simple statement that the spike-triggered average is proportional to the gradient (or gain) of the
response function, averaged over the input distribution.

Applying Stein’s lemma again yields an expression for the STC matrix:

CSTC =

∫
xxT p(x | spike)dx− (xSTA)(xSTA)T

=
1

µ

∫
xxT r(x)p(x)dx− (xSTA)(xSTA)T

=
1

µ
Ep(x)[xxT r(x)]− (xSTA)(xSTA)T

=
1

µ
Ep(x)[∇2r(x)]− (xSTA)(xSTA)T (5)

Intuitively, these results state that the STA is related to the slope (first derivative) and the STC is related to
the Hessian curvature (matrix of second derivatives) of the multi-dimensional nonlinear response function
r(x).

For example, consider a linear nonlinear model r = f(wTx) which has the following gradient:
∇r(x) = f ′(wTx)w and Hessian: ∇2r(x) = f ′′(wTx)wwT . Plugging these expressions into equations (4)
and (5) reveals that the STA is proportional to w and the STC is proportional to wwT . Therefore, we
recover the known result [2] that the STA of the LN model is proportional to the linear filter, and there will
be one significant direction in the STC, which is also proportional to the linear filter (with mild assumptions
on the nonlinearity, f , to ensure that slope and curvature terms in (4) and (5) are non-zero).

We can extend this to the case of a multilayered circuit with k pathways, each of which first filters the
stimulus with a filter w1 . . .wk. Regardless of how these pathways are then combined, we can write this
circuit computation as r = f(WTx) where W is a matrix whose columns are the k pathway filters, and f is
a k-dimensional time-independent (static) nonlinear function. We can think of the k dimensional vector
u = WTx as the activity pattern across each of the k pathways before any nonlinearity. Then, the STA and
STC can be written explicitly in terms of the pathway filters wi and the statistics of the nonlinear neural
response function r with respect to the pathway activity pattern u.

The gradient for such a model is ∇r(x) = WT∇f(u), where ∇f(u) is the gradient of the k-dimensional
nonlinearity. Using equation (4), the STA is then a linear combination of the pathway filters:

xSTA =
1

µ

k∑
i=1

αiwi,

where the weights are given by

αi = Ep(x)[ ∂ui
r(u) ]

and they correspond to the average sensitivity, or slope of the neural response r with respect to changes in
the activity of the ith filter.

The Hessian for the multilayered model is ∇2r(x) = W∇2fWT, where ∇2f is the k-by-k matrix of
second derivatives of the k-dimensional nonlinearity f(u). From equation (5), the STC is then given by:

CSTC =
1

µ2
WHWT , (6)

where the k-by-k matrix H is:

H = µE[∇2f(u)]− E[∇f(u)]E[∇f(u)]T .

This expression implies that nontrivial directions in the column space of CSTC correspond to (span the same
space as) the column space of W. Therefore, the significant eigenvectors of the STC matrix will be linear
combinations of the k pathway filters, and the number of significant eigenvectors is at most k.
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Regularized spike-triggered analysis

Computing the STA and STC requires estimating N and N2 parameters, respectively, where N = NsNt is
the dimensionality of the spatiotemporal stimulus. Increasing the stimulus dimensionality then demands
prohibitively long experiments in order to accurately estimate these statistics. To address this difficulty, we
formulated a computational framework that allows us to exploit expected structure in either the STA or STC
eigenvectors using prior knowledge about these features. This prior knowledge is often previously known to
the experimenter, and can otherwise be learned using a small number of experiments and then generalized to
many new experiments. This framework allows us to quickly and efficiently estimate the STA and STC using
drastically less data than otherwise required. Using prior knowledge to prevent overfitting is known in the
mathematics and statistics literature as regularization, so we call our methods regularized spike-triggered
analysis.

Although it is not a priori obvious how to translate prior knowledge about parallel pathways in
multilayered neural circuits into expected structure in the STA/STC, results from the previous section
provide a theoretically principled route forward. In particular, if the number of parallel pathways is small
relative to the dimensionality of the stimulus then the STA and columns of the STC matrix consist of a
linear combination of a small number of individual pathway filters. Therefore, given prior knowledge only
related to the number of independent neural pathways, we expect certain types of structure (i.e. smoothness,
sparsity, and low spatiotemporal rank) in said pathways to persist after the linear combination.

We thus impose this structure directly on the descriptive statistics through a set of penalty functions, or
regularizers. For example, these penalties, as functions on a candidate descriptive statistic, could encourage
smoothness in the spatial and temporal domains, low rank spatiotemporal structure, or sparsity (i.e.
encouraging many filter coefficients to be zero). The objective we minimize is the sum of these regularizers
plus a data fidelity term that preserves similarity (i.e. squared error) between the candidate descriptive
statistic and the raw (noisy) spike-triggered statistic.

Regularized STA

Following the above framework, we use the following optimization problem to estimate the regularized STA:

x̂STA = min
x
‖x− xSTA‖22 +

m∑
i=1

γi φi(x). (7)

Here φi(x) are the regularization penalty functions, and the regularization weight γi associated with each
penalty function is a hyperparameter that controls how strongly to weight or enforce that penalty. xSTA is
the raw STA obtained from simply averaging all stimuli preceding a spike; it is noisy due to sampling spikes
from a limited amount of recording time. The output of the optimization x̂STA ideally reflects a denoised
STA which balances maintaining fidelity to the raw STA (via a least-squares loss term) while conforming to
prior structure promoted by the penalty functions. If these penalties φi(x) are convex, then (7) is a convex
optimization problem, which we can solve efficiently. To solve it, we employ a proximal consensus algorithm.
Proximal algorithms are well suited to this problem because they can flexibly incorporate many different
penalty terms, including non-smooth terms, and they efficiently scale as the amount of data or stimulus
dimensionality increases. For an overview of these algorithms, see Methods. For the convex penalty functions
φi, we use an `1 penalty that encourages the estimated filter to be sparse (few non-zero coefficients), and a
nuclear norm penalty, which is the sum of the singular values of the spatiotemporal filter x when viewed as a
spacetime matrix. This latter penalty encourages many singular values to be zeros, thus causing the filter to
be low-rank with respect to this spacetime matrix representation. If all but one are zero, the filter becomes
spacetime separable. The nuclear norm penalty is advantageous compared to explicitly forcing the spacetime
filter x to be low-rank, as it is a “soft” penalty which allows for many small singular values, whereas
explicitly forcing the filter to be low-rank forces those to be zero. See methods for mathematical details
about the regularization penalty functions.

Figure 2a compares a regularized spike-triggered average (rSTA) obtained from (7) with the raw,
un-regularized STA. For long recordings, the regularized STA closely matches the raw STA, indicating that
regularization does not adversely bias the result when there is sufficient data. For short recordings (less than
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Fig 2. Regularization for estimating receptive fields (via a regularized spike-triggered-average). (a) Top row:
the raw spike-triggered average computed using different amounts of data (from left to right, 30s to 40min),
bottom row: the regularized spike-triggered average computed using the same amount of data as the
corresponding column. (b) Performance (log-likelihood) as a function of two regularization weights, the
nuclear norm (x-axis, encourages low-rank structure) and the `1-norm (y-axis, encourages sparsity). (c)
Correlation coefficient of LN models whose filter is fixed to be a regularized or raw (un-regularized) STA, as
a function of the amount of training data for model fitting (length of recording).

a few minutes), the regularized STA is much cleaner than the raw STA, and retains much of the structure
observed if the STA had been measured using much longer amounts of data. In situations where we wish to
quickly estimate a spike-triggered average (e.g. if we are exploring how the STA changes under different
contrasts [9], or in response to different adapting stimuli [39]), then utilizing regularization can make new
experiments possible that require rapid estimation of the STA.

Figure 2b shows the performance of the regularized STA across different regularization weights (i.e. the γi
in (7)), scanned over a wide range. It demonstrates that performance is largely insensitive to the strengths of
the weights of the `1 and nuclear norm penalty functions, over a large range. Thus regularization weights
need not be fine tuned to achieve superior performance.

We quantified the performance of the regularized STA by employing it as the linear filter of an LN model,
with a nonlinearity that was then optimized to fit the data. We measured the ability of the resulting model
to predict ganglion cell activity on held-out data, and found that with regularization, about 5 minutes of
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recording was sufficient to achieve the performance obtained through 40 minutes of recording without
regularization (Figure 2c). Thus regularization not only has the ability to recover a clean STA using little
data, but also a useful STA that retains the power to predict the neural response to new stimuli.

Regularized STC Analysis

Beyond the STA, we can also extend our framework to regularize essential information content in the STC
matrix. In particular, the eigenvectors of the STC matrix have been interpreted as phenomenological
pathway filters [10,37], and they often constitute an important final target of STC analysis. The STC matrix
has N2 parameters compared to the N parameters of the STA, and small errors in the estimate of each of
the many elements of the STC matrix can propagate to generate errors in estimated STC eigenvectors. Thus
accurate estimation of STC eigenvectors can require considerably more data than the estimation of the STA
itself. Since we expect the eigenvectors of the STC matrix to be linear combinations of biophysically relevant
spatiotemporal filters of individual neural pathways, we should be able to utilize prior knowledge about these
filters to regularize the eigenvectors directly, thereby estimating them with far less data. Here we introduce a
computational framework to achieve this result.

The STC eigenvectors are obtained by an eigendecomposition of the STC matrix C, which is equivalent
to solving an optimization problem:

maximize Tr(UTCU) (8)

subject to UTU = I, (9)

where U denotes a matrix whose columns are the orthonormal eigenvectors of C. In order to regularize the
computation of these eigenvectors, we need to add penalty terms to (8), which precludes a closed form
solution to the problem. We circumvent this by reformulating the problem using a convex relaxation, which
allows us to solve it efficiently with additional penalty terms (regularization) on the STC eigenvectors. First,
we consider the matrix X = UUT , corresponding to the outer product of the eigenvectors. Because of the
cyclic property of the trace, namely that Tr(UTCU) = Tr(UUTC) = Tr(XC), the function to be optimized
in (8) depends on the eigenvector matrix U only through the combination X = UUT . Thus we could
directly optimize over the variable X. However, the non-convex equality constraint UTU = I in (9) is not
easily expressible in terms of X. X is however a projection operator, obeying X2 = X. Indeed if U were a
truncated N by d eigenvector matrix whose d columns were the top d eigenvectors of C with the largest
eigenvalues, then X would be a rank d projection operator that projects stimuli onto the d dimensional
principal subspace of the STC matrix. Moreover, we have seen that the number of nontrivial eigenvectors,
with eigenvalues differing from unity in the STC matrix, corresponds generically to the small number of
nonlinear, parallel pathways in the neural circuit. To reflect this prior knowledge in our recovery of clean
STC eigenvectors in a computationally tractable manner, we relax the constraint that X is a rank d
projection operator (a non-convex constraint), and replace it with the constraint that X should be contained
within the convex hull of the set of rank-d projection matrices. This space of matrices is a convex body
known as the fantope [40].

The advantage of this theoretical formulation is that we obtain a convex optimization problem which can
be further augmented with additional functions that penalize the columns of X to impose prior knowledge
about the structure of the eigenvectors of C. Each column of X is a linear combination of the eigenvectors of
C, which are themselves in turn linear combinations of the small set of filters that define the relevant low
dimensional sensitive subspace of the cell. Therefore, if we expect the true filters wi to have certain structure
(for example, smooth, low-rank, or sparse), then we also expect to see those properties in both the
eigenvectors and in the columns of X.

Putting this logic together, to obtain regularized STC eigenvectors, we solve the following convex
optimization problem

X̂ = max
X

Tr(XC) +
∑
i

γi φi(X) (10)

subject to X ∈ Fd. (11)
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Here C is the raw STC matrix, which is noisy due to estimating its elements from limited amounts of data,
and Fd denotes the fantope, or convex hull of all rank d projection matrices. Each φi is a regularization
penalty function applied to each of the columns of X; i.e. φi(X) ≡

∑N
j=1 φi(x

j), where xj denotes the j’th
column of X. Again, we can solve this optimization problem efficiently using proximal consensus algorithms
(see Methods). The optimization yields a matrix X̂ in the fantope Fd, which may itself have rank higher
than d. We perform a final eigendecomposition of this matrix to obtain its top-eigenvectors. These
eigenvectors constitute our regularized estimate of the eigenvectors of the STC. Finally, we note that one
major computational advantage of this formulation is that we only need to store and work with the N by N
raw STC covariance matrix itself. This is in contrast to applying matrix factorization directly to the
spike-triggered ensemble, an N by M matrix where M , the number of spikes, is typically much greater than
N .

Fig 3. Regularized spike-triggered covariance. (a) Example panels of the output of our regularized
spike-triggered covariance algorithm. Each panel contains the five most significant regularized eigenvectors of
the STC matrix, reshaped as spatiotemporal filters. The bottom panel shows the result with no regularization
added, and the upper panels show the result with increasing weights on the regularization penalties. Here γ1
is the regularization weight applied to an `1 penalty encouraging sparsity, and γ∗ is a regularization weight
applied to a nuclear norm penalty, encouraging approximate spatiotemporal separability of the eigenvectors,
when reshaped as spatiotemporal filters. (b) Summary across a population of cells. The heatmap shows the
performance of rSTC (measured as the subspace overlap with the best fit LN-LN subspace, see methods for
details). The y-axis in (b) represents a line spanning 3 orders of magnitude in two-dimensional regularization
parameter space (γ∗, γ1), ranging from the point (γ∗ = 10−4, γ1 = 10−3) to (γ∗ = 10−1, γ1 = 1).

Figure 3 demonstrates the improvement in our ability to estimate the relevant subspace spanned by
significant STC eigenvectors. Just as in the rSTA, we include only two types of prior knowledge, simply that
the eigenvectors should be sparse and low-rank. Sparse and low-rank structure are mild forms of prior
knowledge and generalize to a variety of other neural systems (they are not uniquely applicable for retinal
data analysis). The former is implemented by applying an `1 penalty to the columns of X, while the latter is
implemented by applying a nuclear norm penalty to the columns of X, with each column reshaped as a
spacetime matrix. Our results in Figure 3 reveal that as we increase regularization, we get a better estimate
of the STC subspace.

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2017. ; https://doi.org/10.1101/120956doi: bioRxiv preprint 

https://doi.org/10.1101/120956
http://creativecommons.org/licenses/by-nc/4.0/


While we obtain a regularized STC subspace spanned by the top d eigenvectors of X̂ in (10), an
important issue is what is the appropriate baseline STC subspace for comparison? If we had access to the
true model, the correct subspace would be the span of the subunit filters (6). However, in the absence of
such ground truth, we can instead score the performance of the STC subspace in terms of how well stimuli,
after projection onto the subspace, can be used to predict spikes. We directly fit an LN-LN model with d
subunits to predict spikes from stimuli, knowing that the model’s d initial subunit filters and its STC matrix
span the same subspace. To the extent this model has been optimized, the STC of this model is also
optimized to be the most predictive STC subspace for a model of this structure. We compared this model
STC subspace to that obtained from our rSTC for different amounts of data and regularization, quantified
using subspace overlap (see Methods), a metric that varies between zero if the subspaces are orthogonal and
share no common directions, and one if the subspaces are identical. When d = 1, this subspace overlap
measure reduces to the cosine of the angle between the two single filter directions.

In Figure 3b, we show that with very limited amounts of data, rSTC can approximately recover the best
predictive subspace obtained by LN-LN model fitting in the next section. In particular, contour plots of
performance reveal that with appropriate regularization, one can recover the best predictive subspace using
about 10 minutes of data; without regularization, one requires 40 minutes of data to recover a subspace with
comparative predictive accuracy. We note however, that even for the full length of this experiment (40
minutes), regularization still improves our rSTC estimate. This continued improvement indicates that even
40 minutes of data does not suffice to correctly estimate an unregularized STC, in contrast to the STA.
These prohibitive data requirements point to the importance of regularization in STC analyses. Indeed our
much improved performance of rSTC with limited amounts of data highlights the power of regularized
eigenvector recovery from the STC matrix to find stimulus subspaces that are highly predictive of neural
spiking, without ever directly fitting a parameterized model of the neuron.

Hierarchical nonlinear models of the retinal response

We now move beyond descriptive statistics for efficiently learning the parameters of hierarchical, nonlinear
neural models. We focus on understanding how intermediate nonlinear subunits shape the response of retinal
ganglion cells by fitting two layer (LN-LN) models to the activity of ganglion cells in response to white noise
flickering bar stimuli. Fitting the parameters of these hierarchical nonlinear models is challenging due to the
high-dimensionality of the model parameter space, and because maximum likelihood estimation is a
non-convex optimization problem due to hidden subunits intervening between inputs and outputs. Previous
efforts to fit this class of models have used particular ganglion cells with a favorable non-overlapping
architecture [18] or assumptions of the underlying circuitry such as spatial repetition of the nonlinear
subunits [19, 20]. We formalize methods for dealing with both of these challenges by employing the proximal
algorithms framework described above.

The LN-LN model architecture is schematized in Figure 1. The stimulus is passed through a set of LN
subunits. Each subunit filter is a spatiotemporal stimulus filter, constrained to have unit norm. The subunit
nonlinearity is parameterized using a set of basis functions (Gaussian bumps) that tile the input
space [12,16] (see Methods). This parameterization is flexible enough that we could in principle learn, for
each individual subunit, any smooth nonlinearity that can be expressed as a linear combination of our basis
functions. The second LN layer pools subunits through weighted summation, followed by a spiking
nonlinearity that we model using a parameterized soft rectifying function r(x) = g log(1 + ex−θ). Here g is an
overall gain, and θ is a threshold.

Model fitting and performance

We recorded ganglion cell responses to 40 minutes of a flickering Gaussian white noise bars sequence. Using
this dataset, we fit both LN and LN-LN models to the same set of cells to see which class of models better
predicted cell responses. For both LN and LN-LN models we employed a proximal consensus algorithm (see
Methods) to learn the model parameters by optimizing a function similar to that used in learning the
regularized STA in (7). However, the data fidelity term in (7) is replaced with the log-likelihood of recorded
spikes under a Poisson noise model, with firing rate being the output of the neural model. To combat the
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curse of dimensionality due to the large number of parameters, we focused also on regularizing both the LN
model filter and the LN-LN model subunit filters through an `1 regularization term (encouraging sparsity),
and a nuclear norm term (encouraging low-rank structure). We chose the weights γi of the regularization
penalties in (7), both for the LN and LN-LN models, through cross-validation on a small subset of cells, and
then held these weights constant across all cells. Our subsequent results indicate that we do not have to fine
tune these hyperparameters on a cell by cell basis to achieve good predictive performance. Finally, because
different cells may have different numbers of functional subunits, for the LN-LN models, we chose the
optimal number of subunits on a cell-by-cell basis by maximizing performance on held-out data through
cross-validation. Note that no additional structure is imposed on the subunits such as spatial repetition or
overlap, in contrast to previous work [19].

We find that the LN-LN model significantly outperforms the LN model at describing responses of
ganglion cells, for all recorded salamander ganglion cells. Figure 4a shows firing rate traces for an example
cell, comparing the recorded response (gray) with an LN model (green) and an LN-LN model (red). We
quantify the similarity between predicted and recorded firing rate traces using either the Pearson correlation
coefficient or the log-likelihood of held-out data under the model. All log-likelihood values are reported as an
increase over the log-likelihood of a fixed mean firing rate model, scaled by the firing rate (yielding units of
bits/spike). Summarized across n = 23 recorded ganglion cells, we find that the LN-LN model yields a
consistent improvement over the LN model using either metric (Fig. 4bc). Overall, this demonstrated
performance improvement indicates that nonlinear spatial processing is fundamental in driving ganglion cell
responses, even to white noise stimuli, and that an LN model is not sufficient to capture the response to
spatiotemporal white noise. This salient, intermediate rectification that we computationally identify is
consistent with previous measurements of bipolar-to-ganglion cell transmission in the retina [41,42].

The internal structure of the learned models

Given the improved performance of our hierarchical nonlinear subunit models, we examined the internal
structure of the models to assess their potential to reveal insights into retinal structure and computation.
Figure 5 shows a visualization of the parameters learned for an example cell. Figure 5ab shows the
parameters for the classical LN model, for comparison, while Figure 5cd shows the corresponding subunit
filters and subunit nonlinearities in the first stage of the LN-LN model, fit to the same cell. The subunit
filters had a similar temporal structure, but smaller spatial profiles compared to that of the LN model and
the nonlinearities associated with each subunit were roughly monotonic with high thresholds. These
qualitative properties were consistent across all cells. We next examine more quantitatively this learned, and
consistent internal structure across cells to extract lessons about the anatomy, physiology, and functional
design principles underlying retinal circuitry.

Inferred hidden units quantitatively resemble bipolar cell receptive fields

Mapping the LN-LN model onto retinal anatomy leads us to believe that the first layer filters (some
examples of which are shown in Figure 5c) should mimic or capture filtering properties pre-synaptic to
bipolar cells in the inner retina. To examine this possibility, we compared the first layer model filters to
properties of bipolar cell receptive fields. An example learned model subunit receptive field is shown in Fig.
6a, while a bipolar cell receptive field, obtained from direct intracellular recording of a bipolar cell, is shown
in Figure 6b. Qualitatively, we found that the filters in the LN-LN model matched these bipolar cell RFs, as
well as previously reported bipolar cell receptive fields [41,43]: both had center-surround receptive fields with
similar spatial extents. To compare these model-derived and ground-truth bipolar cell receptive fields
quantitatively, we fit the spatial receptive field with a difference of Gaussians function to estimate the RF
center and surround sizes. We find the RF centers for the LN-LN subunit filters are much smaller than the
corresponding LN model filter. Furthermore, the size of these LN-LN subunit centers matched the size of the
RF center measured from intracellular recordings of bipolar cells (Figure 6c). The recorded bipolar cells, LN
model filters (ganglion cells), and LN-LN subunit filters all had similar surround sizes (Figure 6d). We note
that this match between LN-LN model subunits and the RF properties of bipolar cells was not an a priori
constraint placed on our model, but instead arose as an emergent property of predicting spiking responses to
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Fig 4. LN-LN models predict held-out response data better than LN models. (a) Firing rates for an
example neuron. The recroded firing rate (shaded, gray), is shown along with the LN model prediction
(dashed, green) and the LN-LN prediction (solid, red). (b) LN-LN performance on held out data vs. the LN
model, measured using correlation coefficient between the model and held out data. Note that all cells are
above the diagonal. (c) Same as in (b), but with the performance metric of log-likelihood improvement over
the mean rate in bits per spike.

white noise stimuli. These results indicate that our modeling framework not only enables higher performing
predictive models of the retinal response, but can also veridically reconstruct important aspects of processing
in the unobserved interior of the retina, from measurements of inputs and outputs alone.

Number of inferred subunits

The number of subunits utilized in the LN-LN model for any individual cell was chosen to optimize model
predictive performance on a held-out data set via cross-validation. That is, we fit models with different
numbers of subunits and selected the one with the best performance on a validation set. We find that for
models with more subunits than necessary, extra subunits are ignored (the learned nonlinearity for these
subunits is flat, thus they do not modulate the firing rate).

Figure 7a shows the model performance, quantified as the difference between the LN-LN model and the
LN model, across a population of cells as a function of the number of subunits included in the LN-LN model.
We find that models with four to six subunits maximized model performance on held-out data. Note that the
stimuli used here are one-dimensional spatiotemporal bars that have constant luminance across one spatial
dimension. Thus each model subunit likely corresponds to the conglomeration of any actual bipolar cell
subunits whose receptive fields happen to overlap a particular bar in the stimulus. Previous anatomical
studies of bipolar cell density and axonal branching width [44,45] suggest that a typical ganglion cell in the
salamander retina receives input from 10-50 bipolar cells whose receptive fields are tiled across two
dimensional space. The number of independently activated groups of such a two dimensional array of bipolar
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Fig 5. Example LN-LN model parameters fit to a recording of an OFF retinal ganglion cell. (a and b):
LN-model parameters, consisting of a single spatial filter (a) and nonlinearity (b). (c and d) LN-LN model
parameters. (c) First layer filters (top) and nonlinearities (bottom) of an LN-LN model fit to the same cell.
Spatial profiles of filters are shown in gray to the right of the filters. The subunit filters have a much smaller
spatial extent compared to the LN filter, but similar temporal profiles.

Fig 6. Comparison of subunit filter parameters with intracellular bipolar cell recordings. (a) An example
subunit bipolar cell. (b) A recorded bipolar cell receptive field. (c) Receptive field centers sizes for subunit
filters (blue), LN model filters (green), and recorded bipolar cells (black point). (c) Same as in (b), but with
receptive field surround sizes.

cells, in response to a one dimensional bar stimulus is then expected to be reduced from the total number of
bipolar cells, roughly, by a square root factor: i.e. 25→

√
25 = 5. This estimate is largely consistent with the

typical number of subunits in Figure 7a, required to optimize model predictive performance. This estimate
also suggests that the large majority of bipolar-to-ganglion cell synapses are rectifying (strongly nonlinear),
as linear connections are not uniquely identifiable in an LN-LN cascade. Indeed, in the salamander retina,
strong rectification appears to be the norm [41,42]. Together, these results indicate that our framework not
only veridically reconstructs the RF structure of individual bipolar cells, but also the number of bipolar cells
presynaptic to a retinal ganglion cell.
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Fig 7. LN-LN model parameter analysis. (a) Performance improvement (increase in correlation coefficient
relative to an LN model) as a function of the number of subunits used in the LN-LN model. Error bars
indicate the standard error across 23 cells. (b) Subunit nonlinearities learned across all ganglion cells. For
reference the white noise input to a subunit nonlinearity has standard deviation 1, which sets the scale of the
x-axis. Red line and shaded fill indicate the mean and s.e.m. of nonlinearity thresholds (see text for details).
(c) Visualization of the principal axes of variation in subunit nonlinearities by adding or subtracting principal
components from the mean nonlinearity. (top) The principal axis of variation in subunit nonlinearities results
in a gain change, while (bottom) the second principal axis corresponds to a threshold shift. These two
dimensions captured 63% of the nonlinearity variability across cells.

LN-LN models have subunit nonlinearities with consistently high thresholds

Our LN-LN model finds the best fit smooth nonlinearity for each subunit. Each nonlinearity takes as input
the projection of the stimulus onto the corresponding subunit spatiotemporal filter. Because the stimulus is a
white noise stimulus, and the spatiotemporal filter is constrained to have unit norm, the resulting projection
of the stimulus onto the spatiotemporal filter has a standard Normal distribution.

The nonlinearities for all of the measured subunits are overlaid in Figure 7b. Despite the fact that the
model could separately learn an arbitrary function over the input for each subunit nonlinearity, we find that
the nonlinearities are fairly consistent across the different subunits of many cells. Subunit nonlinearities look
roughly like thresholding functions, relatively flat for most inputs but then increasing sharply after a
threshold. We quantified the threshold as input for which the nonlinearity reaches 40% of the maximum
output, across n = 92 model-identified subunits the mean threshold was 3.09 ± 0.14 (s.e.m.) standard
deviations. We decomposed the set of nonlinearities using principal components analysis and show the two
primary axes of variation in Figure 7c. The primary axis of variation results in a gain change, while the
secondary axis induces a threshold shift. Due to the high thresholds of these nonlinearities, subunits only
impact ganglion cell firing probability for large input values. We next examine the consequences of these high
subunit thresholds for two important aspects of retinal processing: decorrelation across ganglion cells and
functional computation within a single ganglion cell.

Stimulus decorrelation at different stages in hierarchical retinal processing

Natural stimuli have highly redundant structure. Early theories of sensory processing, known as efficient
coding or redundancy reduction [46,47], argued that sensory systems ought to remove these redundancies in
order to efficiently encode natural stimuli. The simplest such redundancy is that nearby points in space and
time contain similar, or correlated, luminance levels [48]. The transmission of such correlated structure would
thus be highly inefficient. Efficient coding theories have been used to explain why retinal repsonses are much
less correlated than natural scenes, although the mechanistic underpinnings of such decorrelation remain
unclear.
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Early work [49] suggested a simple mechanism: the linear center-surround receptive field of ganglion cells
(and more recently, of bipolar cells [50]) could contribute to redundancy reduction simply by transmitting
only differences in stimulus intensity across nearby positions in space. However, it was recently shown [51]
using LN models that most of the decorrelation of naturalistic stimuli in the retina could be attributed to
ganglion cell nonlinearities, as opposed to linear filtering. Given that we fit an entire layer of subunits
pre-synaptic to each ganglion cell layer, we can now ask fundamental questions about the spatial
representation of naturalistic images at different stages of hierarchical retinal processing, thereby localizing
the mechanistic origin of stimulus decorrelation to a particular retinal layer.

To do so, we generated the response of the entire population of learned nonlinear subunits to a spatial
stimulus similar to that used in [51], namely spatially pink noise, low pass filtered in time. We computed the
correlation of stimulus intensities as a function of spatial distance, as well as the correlation between pairs of
model units as a function of spatial distance. We examined pairs of units across different stages of the
LN-LN model: after linear filtering by the subunits, after the subunit nonlinearity, and finally at the
ganglion cell firing rates (the final stage). Figure 8 shows that the correlation at these stages drops off with
distance between either the subunits or ganglion cells (with distances measured between receptive field
centers). Similar to [51], we find that most of the decorrelation is due to nonlinear processing, as opposed to
linear filtering. However, this decorrelation is primarily due to the subunit nonlinearities, as opposed to
ganglion cell spiking nonlinearities. In fact, the correlation between the ganglion cell model firing rates
slightly increases after pooling across subunits. The most decorrelated representation occurs just after
thresholding at the subunit layer. In this manner, our modeling framework provides a more precisely
localized mechanistic origin for a central tenet of efficient coding theory. Namely, our results predict that the
removal of visual redundancies, through stimulus decorrelation across space, originates primarily from
high-threshold nonlinearities associated with bipolar cell synapses.
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Fig 8. Decorrelation in LN-LN subunit models. A naturalistic (pink noise) stimulus was shown to a
population of nonlinear subunits. The correlation in the population after filtering at the subunit layer (blue),
after the subunit nonlinearity (green), and after pooling and thresholding at the ganglion cell layer (red), in
addition to the stimulus correlations (gray) are shown. Left: the correlation as a function of distance on the
retina for Off-Off cell pairs. Right: correlation for Off-On cell pairs. For each plot, distances were binned
every 70µm, and error bars are the s.e.m. within each bin.
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The nature of nonlinear spatial integration across retinal subunits

Another fundamental aspect of retinal processing is the sparse and precise firing patterns of retinal ganglion
cells [52], presumably due to reasons of energy efficiency [51,53]. LN models can capture such sparse firing in
only one way: by using high thresholds relative to the distribution of stimuli projected onto their linear filter.
Indeed learned nonlinearities in LN models typically have such high thresholds [9]. LN-LN models, in
contrast, can generate sparse responses using two qualitatively distinct operating regimes: either the subunit
thresholds (first nonlinearity) could be high and the ganglion cell or spiking threshold (second nonlinearity)
could be low, or the subunit thresholds could be low and spiking thresholds could be high. Both of these
scenarios give rise to sparse firing at the ganglion cell output. However, they correspond to qualitatively
different functional computations.

These various scenarios are diagrammed in Figure 9a-c. Each panel shows the response of a model in a
two-dimensional space defined by the projection of the stimulus onto two subunit filters pre-synaptic to the
ganglion cell (the two-dimensional space is easier for visualization, but the same picture holds for multiple
subunits). We show the response as contours where the firing probability is constant (iso-response contours).
Here, the subunit nonlinearities play a key role in shaping the geometry of the response contours, and
therefore shape the computation performed by the cell. Note that the ganglion cell nonlinearity would act to
rescale the output, but cannot change the shape of the contours. Therefore, it is fundamentally the subunit
nonlinearities alone that determine the geometry of the response contours.

Low-threshold subunit nonlinearities give rise to concave contours (Figure 9b), whereas high-threshold
subunits give rise to convex contours (Figure 9c). Because final output rate is determined by the subunit and
final thresholds, both of these descriptions could yield sparse firing output with the same overall rate (by
adjusting the final threshold), but correspond to different computations. Low-threshold subunits can be
simultaneously active across many stimuli, and thus yield spiking when subunits are simultaneously active
(an AND-like combination of inputs). On the other hand, high-threshold subunits are rarely simultaneously
active and thus usually only one subunit is active during a ganglion cell firing event, giving rise to an OR-like
combination of inputs. By comparison, a cell that linearly integrates its inputs would have linear contours
(Figure 9a).

In our models fit to retinal ganglion cells, we find all cells are much more consistent with the high
threshold OR-like model. Subunit nonlinearities tend to have high thresholds, and therefore result in convex
contours (shown for different pairs of subunits for two example cells in Figure 9d-e). For each example
ganglion cell, we show the corresponding model contours along with the 2 standard deviation contour of the
stimulus distribution (gray oval) and the empirical firing histogram (red checkers) in the 2D space defined by
the projection of the stimulus onto a given pair of subunit filters identified by the LN-LN cascade model.
Note that while the stimulus is uncorrelated (i.e. white, or circular), non-orthogonality of subunit filters
themselves yield correlations in the subunit activations obtained by applying each subunit filter to the
stimulus. Hence the stimulus distribution in the space of subunit activations (marked by grey ovals) is not
circular. In all recorded cells, we find that the composite computation implemented by retinal ganglion cell
circuitry corresponds to an OR function associated with high subunit thresholds (as schematized in Figure
9c). Moreover, both the AND computation and the linear model are qualitatively ruled out by the shape of
the model response contours as well as the empirical firing histogram over subunit activations, which closely
tracks the model response contours (i.e. the boundaries of the red histograms are well captured by the model
contours).

These results are consistent with previous studies of nonlinear spatial integration in the retina. For
example, Bollinger et. al. [42] discovered convex iso-response contours for a very simple two dimensional
spatial stimulus, and Kaardal et. al. [54] performed an explicit hypothesis test between an AND-like and
OR-like nonlinear integration over a low dimensional subspace obtained via the un-regularized STC
eigenvectors, finding that OR outperformed AND. However, the techniques of [42] are limited to
fundamentally low dimensional stimuli, whereas our methods enable the discovery of iso-response contours
for high dimensional stimuli by learning LN-LN models with multiple subunits. Moreover, in contrast to the
hypothesis testing approach taken in [54], our general methods to learn LN-LN models reveal that an
OR-model of nonlinear integration is a good model on an absolute scale of performance amongst all models
in the LN-LN family, rather than simply being better than an AND-model.
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A simple, qualitative picture of the distinct computational regime in which retinal-ganglion cells operate
in response to white noise stimuli can be obtained by considering the geometry of the spike triggered
ensemble in N dimensional space. In particular, the distribution of white noise stimuli concentrates on a
constant radius sphere in N dimensional stimulus space. More precisely, any high dimensional random
stimulus realization x has approximately the same vector length, because the fluctuations in length across
realizations, relative to the mean length, is O(1/

√
N). Thus we can think of all likely white-noise stimuli as

occurring on the N − 1 dimensional surface of a sphere in N dimensional space. Moreover, each subunit filter
can be thought of as a vector pointing in a particular direction in N dimensional stimulus space. The
corresponding input to the subunit nonlinearity for any stimulus is the inner-product of the stimulus with
the subunit filter, when both are viewed as N dimensional vectors. The high threshold of the subunit
nonlinearity means that the subunit only responds to a small subset of stimuli on the sphere, corresponding
to a small cap centered around the subunit filter. For a single subunit model (i.e. an LN model), the set of
stimuli that elicit a spike then corresponds simply to this one cap (Figure 10a). In contrast, the OR like
computation implemented by an LN-LN model with high subunit thresholds responds to stimuli in a region
consisting of a union of small caps, one for each subunit (Figure 10b).

To verify this conceptual picture, in Figure 10c) we visualize a low, two dimensional projection of the
spike-triggered stimulus ensemble for three example ganglion cells, using principal components analysis of the
spike-triggered subunit activations. That is, we project the spike-triggered ensemble onto the subunit filters
identified in the LN-LN model, and subsequently project those subunit activations onto the two dimensions
that capture the most variance in subunit activations. This procedure identifies a subspace that captures the
radial spread of subunit filters in high-dimensional stimulus space. We find that the spike-triggered ensemble
projected onto this subspace (Figure 10c) curves around the radial shell defined by the stimulus distribution,
and matches the conceptual picture shown in Figure 10b. For ease of visualization, we colored elements in
the spike-triggered ensemble by which LN-LN model subunit was maximally active during that spike, and we
normalize the spike-triggered histogram by the raw stimulus distribution (gray ovals). This picture provides
a simple, compelling view for why LN models are insufficient to capture the retinal response to white noise,
and further visualizes the aspect of retinal computation LN-LN models capture that the LN model does not:
ganglion cells encode the union of different types of large-magnitude stimuli.

Related work

A number of reports have pointed out the limitations of the LN model, the most significant being that it is
sensitive to only a single direction in stimulus space. Indeed, the pioneering work of Hochstein and
Shapley [33] motivated the use of hierarchical cascade models through careful measurements of the retinal
response to stimuli with spatial structures occurring at finer resolution than the width of a ganglion cell
receptive field. Early work searching for more than one direction of stimulus sensitivity motivated the use of
the significant eigenvectors of the STC matrix as the set of features that drives a cell [10], focusing on low
dimensional full field flicker stimuli to reduce data requirements required for correctly estimating these
eigenvectors. However, the precise relationship between these eigenvectors and the individual spatiotemporal
filtering properties intrinsic to multiple parallel pathways remained unclear. Moreover, the STC eigenvectors
obey a biologically implausible orthogonality constraint, if they are to be directly interpreted as filters of
individual pathways. Recent work [54] has discussed this issue and proposed a solution by finding linear
combinations of STC eigenvectors that align well with a set of pre-specified nonlinearities in order to predict
spiking. Our regularization methods for finding an improved STC eigenvector subspace with limited data can
greatly aid these methods. But more generally, the approach of directly fitting a hierarchical, nonlinear
neural model enables us to jointly learn a set of non-orthogonal, biophysically plausible set of pathway filters,
as well as an arbitrary, flexible nonlinearity for each pathway, in contrast to a potentially suboptimal,
two-step, process of first finding the STC eigenvectors and then finding filters within this subspace by
performing hypothesis tests between different nonlinearities.

Much recent and complementary work has focused on learning hierarchical, nonlinear subunit models [19].
Such models often require simplifying assumptions in order to make model fitting tractable. A common
assumption is that subunit stimulus filters are convolutional (that is, there is a single filter that is shifted or
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Fig 9. Visualization of subunit contours. Contours of equal firing probability are shown in a 2D space
defined by the projection of the visual stimulus along each of two subunits. (a) Example contour plots for a
model with low threshold subunit nonlinearities (inset) has concave contours. (b) A model with high
threshold subunit nonlinearities has convex contours. (c & d) Contours from a model for two example
ganglion cells, for three different pairs of subunits (left to right). In each panel, a histogram of the recorded
firing rate is shown (red squares) as well as the stimulus distribution (gray oval).

copied in space) [17, 20] or that the subunit nonlinearities have a particular form (e.g. quadratic) [11, 21]. In
contrast, we do not make either assumption. In particular, by not demanding that each subunit type’s
spatiotemporal filter is shifted across space in a translation invariant manner (the convolutional assumption),
our method can detect individual variability in the spatiotemporal filters of subunits of the same type across
visual space. Indeed such variability, at least at the level of ganglion cell RFs, has been shown to be
functionally important in increasing retinal resolution [55].

Alternatively, Freeman et. al. [18] learned hierarchical subunit models of OFF-type midget ganglion cells
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Fig 10. Stimulus selectivity in LN and LN-LN models. Each panel shows the raw stimulus distribution
(gray contours) projected onto the top two principal components of the spike-triggered subunit activations
(with subunits identified by the LN-LN model). The LN model (a) fires in response to stimuli in a single
region, or cap, of stimulus space (indicated by the arrow and dashed threshold), whereas the LN-LN model
(b) fires in response to a union of caps, each defined by an individual subunit. (c) Spike-triggered subunit
activations for three representative cells are shown as colored histograms (colors indicate which
model-identified subunit was maximally active during the spike), with the corresponding subunit filter
directions shown as colored arrows (see text for details).

in the primate retina. OFF midget ganglion cells, which mediate high resolution vision in primates, typically
receive inputs from a very small number of individual cones. The focus on this particular cell-type enabled
several assumptions to ease model fitting in [18]. First, the authors assumed subunits have non-overlapping
receptive fields (similar to individual cone RFs). Second, the fact that a very small number of subunits
contribute to any OFF midget ganglion cell enabled a greedy algorithm for fitting subunits to succeed.
Third, they did not consider the contribution of receptive field surrounds. These three simplifications, while
largely valid for this particular cell type, do not hold in general for all cell types. For example, parasol RGCs
are not well described by subunits with non-overlapping RFs. In contrast, we do not make any assumptions
about subunit RF overlaps.

Finally, earlier work in the retina mapped out arbitrary nonlinear integration over visual space by
following iso-contours of the neural response via a closed loop stimulus paradigm [42]. However, because
iso-response contours are only one dimension lower than the dimension of stimulus space, this method is
fundamentally limited to very low dimensional stimuli. Indeed [42] applied their methods to a 2 dimensional
spatial stimulus in which luminance independently varied across two halves of visual space, but was
otherwise constant in each half. Within this two-dimensional stimulus space they found one-dimensional
nonlinear iso-response contours reflecting nonlinear integration across the two halves of space. In contrast,
our methods enable us to learn multiple subunits over many stimulus dimensions, under the assumption of
hierarchical nonlinear computation corresponding to an LN-LN cascade.

Other related work has focused on various methods for exploiting prior knowledge to learn STAs or filters
in LN models. Bayesian methods are a popular approach for incorporating such knowledge. However,
obtaining the minimum mean squared error (MMSE) estimate through exact Bayesian methods involves a
high dimensional integral over the space of model parameters, which is generically computationally
intractable. Therefore, computationally tractable Bayesian approaches often resort to either approximations,
or extremely simple priors that enable analytic integration. Some interesting work applied to the estimation
of sensory receptive fields (i.e. STAs and LN models) [56,57] showed how to use a set of approximation
methods known as empirical Bayes to both learn an appropriate prior from data (from a pre-specified set of
priors in a parametric family) and to compute the maximum a-priori (MAP) estimate of the RF given the
learned prior. However, each iteration of the internal loop of the algorithm used to learn the prior naively
requires (without any further simplifying assumptions) the inversion of an N by N matrix, where N is the
dimension of stimulus space. Such an inversion requires a computational time that is order O(N3) using the
simple Gauss-Jordan elimination algorithm. These methods are thus difficult to scale both to the estimation
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of high dimensional RFs, as well as to the estimation of STCs, even for relatively low dimensional stimuli.
For example, if these methods were straightforwardly extended to STC estimation using parameterized priors
over covariance matrices, they would require the inversion of N2 by N2 matrices, thus demanding a step of
computational complexity O(N6) in each iteration of the internal loop required to learn the prior over STC
matrices.

In contrast, our methods based on proximal consensus algorithms for regularizing the eigenvectors of STC
matrices are much more efficient. The most costly step in terms of computational time for such regularization
involves computing the proximal operator for the nuclear norm applied to each of the d columns of the
matrix X in (10), when each column is viewed as an Ns by Nt spatiotemporal matrix. The computational
cost of computing any such SVD is O([min(Ns, Nt)]× [max(Ns, Nt)]

2). If the number of spatial bins Ns and
number of temporal bins Nt are both of the same order of magnitude (and therefore each is of order

√
N),

then the computational cost of a single SVD is O(N3/2). Thus the computational cost of STC eigenvector
regularization through nuclear norm scales with stimulus dimension N as N3/2 in contrast to N6, as would
be the case for empirical Bayes methods applied to STC matrices. Also, the analog of learning the prior from
a parametric family of priors in empirical Bayes corresponds to optimizing the hyperparameters, or
regularization weights αi in (10). As we have seen, due to the robustness of our performance results to
choices of regularization weights within a large range, we can find these optimal regularization weights by
cross-validation through a relatively coarse search over hyperparameter space for a small number of cells, and
then hold them fixed for all future recorded cells. One important restriction of the regularization methods
that we use is that they cannot handle some of the more flexible priors employed in empirical Bayes methods,
especially those involving correlations between different components of STA, STC, or neural model
parameters. However, our performance results indicate that we can learn each of these objects using very
little data, and therefore demonstrate that even the simple regularizers amenable to our proximal consensus
algorithms framework provide both high statistical efficiency (high estimation performance with limited data)
as well as high computational efficiency (high estimation performance with limited computational time).

Discussion

In summary, we provide a computational framework to model stimulus driven neural processing in circuits
with multiple parallel, hierarchical nonlinear pathways using limited experimental data. This framework
elucidates relationships between biophysical circuit properties (spatiotemporal filtering properties of
individual pathways, and nonlinear pooling of such pathways across multiple cell layers) and the statistical
structure of the spike-triggered stimulus ensemble. We find that the mean of this ensemble (the STA) is
simply a weighted combination of pathway filters, weighted by the average gain, or slope of the nonlinearity
relating pathway activation to neural spiking probability. Similarly, the second moment of this ensemble (the
STC) is a sum of outer products of pathway filters, weighted by the multi-dimensional curvature of the
pooling nonlinearity. This latter fact implies that the significant STC eigenvectors, just like the STA, are
linear combinations of pathway filters.

These connections enable us to derive theoretically principled algorithms for estimating STAs and STC
eigenspaces by translating prior knowledge about the spatiotemporal filtering properties of parallel neural
pathways into expected structure in the STA and STC. These theoretically principled algorithms yield highly
efficient estimation methods from both a statistical and a computational perspective. Statistically, these
methods require little data to achieve high estimation performance; indeed the regularization approach can
reduce the amount of data by as much as a factor of 10 to estimate the STA and a factor of 8 to estimate
STC eigenvectors, at a level of performance obtained by no regularization. Moreover, computationally, the
time complexity of our algorithms scales favorably with respect to stimulus dimensionality N due to the use
of efficient proximal operators (see Methods). Indeed, the regularization component of our algorithm for
STC eigenspace estimation has time complexity O(N3/2), compared to O(N6) for generic empirical Bayes
methods (see Related Work section for more details).

Moving beyond the widely used descriptive statistics of the STA and STC, we also applied our proximal
consensus algorithm based framework to directly learn hierarchical nonlinear models of the retinal response
to white noise stimuli. These models have the advantage of directly learning biophysically plausible pathway
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filters and nonlinearities, rather than simply extracting linear combinations of them with weighting
coefficients that depend on the shapes of nonlinearities. We found that models employing two stages of linear
and nonlinear computation, namely LN-LN models, demonstrated a robust improvement over the classical
standard of LN models at predicting responses to white noise across a population of ganglion cells.

Beyond performance considerations alone, the gross architecture of the LN-LN model maps directly onto
the hierarchical, cascaded, anatomy of the retina, thereby enabling the possibility that we can generate
quantitative hypotheses about neural signal propagation and computation in the unobserved interior of the
retina simply by examining the structure of our model’s interior. Since learning our model only requires
measurements of the inputs and outputs to the retinal circuit, this approach is tantamount to the
computational reconstruction of unobserved hidden layers of a neural circuit. The advantage of applying this
method in the retina is that we can experimentally validate aspects of this computational reconstruction
procedure.

Indeed, using intracellular recordings of bipolar cells, we found that our learned subunits matched
properties of bipolar cells, both in terms of their receptive field center-surround structure, and in terms of
the approximate number of bipolar cells connected to a ganglion-cell. However care must be taken not to
directly identify the learned subunits in our model with bipolar cells in the retina. Instead, they should be
thought of as functional subunits that reflect the combined contribution of not only bipolar cells, but also
horizontal cells and amacrine cells that sculpt the composite response of retinal ganglion cells to stimuli.
Nevertheless, the correspondence between subunits and bipolar cell RFs (which are also shaped by horizontal
cell processes), suggests learning functional subunits that loosely correspond to the composite effect bipolar
cells and associated circuitry have on ganglion-cell synapses is an important aspect of correctly describing the
overall ganglion cell response, even to white-noise stimuli.

The interior of our models also reveal several functional principles underlying retinal processing. First, all
subunits across all cells had strikingly consistent nonlinearities corresponding to monotonically increasing
threshold-like functions with high thresholds. This inferred biophysical property yields several important
consequences for neural signal processing in the inner retina. First, it predicts that subunit activation
patterns are sparse across the ensemble of stimuli, with typically only one subunit actively contributing to
any given ganglion cell spike. Second, it predicts that the dominant source of stimulus decorrelation, a
central tenet of efficient coding theory, has its mechanistic origin at the first strongly nonlinear processing
stage of the retina, namely in the synapse from bipolar cells to ganglion cells. Third, it implies that the
composite function computed by individual retinal ganglion cells corresponds to a Boolean OR function of
bipolar cell feature detectors.

Taken together, our framework provides a unified way to estimate hierarchical nonlinear models of
sensory processing by combating both the statistical and computational curses of dimensionality associated
with learning such models. When applied to the retina, these techniques demonstrably recover known
properties in the interior of the retina without requiring direct measurements of these properties. Moreover,
by identifying candidate mechanisms for cascaded nonlinear computation in retinal circuitry, our results
provide a higher resolution view of retinal processing compared to classic LN models, thereby setting the
stage for the next generation of efficient coding theories that may provide a normative explanation for such
processing. For example, considerations of efficient coding have been employed to explain aspects of the
linear filter [58] and nonlinearity [51] of retinal ganglion cells when viewed through the coarse lens of an LN
model. An important direction for future research would be the extension of these basic theories to more
sophisticated ones that can explain the higher resolution view of retinal processing uncovered by our learned
LN-LN models. Principles that underlie such theories of LN-LN processing might include subthreshold noise
rejection [59,60], sensitivity to higher order statistical structure in natural scenes, and energy efficiency [53].
Indeed the ability to extract these models from data in both a statistically and computationally efficient
manner constitutes an important step in the genesis and validation of such a theory.

Another phenomenon robustly observed in the retina is adaptation to the luminance and contrast of the
visual scene. Adaptation is thought to be a critical component of the retinal response to natural scenes [26],
and a promising direction for extensions of our work would be to include luminance and contrast adaptation
in subunit models. Luminance adaptation (adapting to the mean light intensity) is mediated by
photoreceptor cells, and could be modeled by prepending a simple photoreceptor model (e.g. [61]) to an
LN-LN model. There are two major sites of contrast adaptation, at the bipolar-to-ganglion cell
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synapse [62,63] and at the spiking mechanism of ganglion cells [62, 64]. Extending the simple thresholding
nonlinearities in our model with a dynamical model of adaptation (e.g. [15]) is a first step towards
understanding the interaction between nonlinear subunits and adaptation.

Beyond the retina, multiple stages of cascaded nonlinear computation constitutes a ubiquitous motif in
the structure and function of neural circuits. The tools we have developed to elucidate hierarchical nonlinear
processing in the retina are applicable across neural systems more generally. Indeed, the proximal algorithms
we use for optimization allow for a single framework in which many possible forms of prior information
(regularization) can be utilized. Many types of prior knowledge about model parameters in neural systems
involve non-smooth (and non-differentiable) mathematical formulations. For example, stimulus filters,
synaptic weight matrices, and population firing patterns, are commonly thought to be some combination of
smooth, low-rank, and sparse. Proximal algorithms are a fast and scalable way of utilizing this prior
information to fit models and gain insight into neural systems using modest amounts of experimental data.
Thus we hope our work provides mathematical and computational tools for efficiently extracting and
analyzing both informative descriptive statistics and hierarchical nonlinear models across many different
sensory modalities, brain regions, and stimulus ensembles, thereby furthering our understanding of general
principles underlying nonlinear neural computation.

Methods

LN-LN models

We optimize the parameters using a maximum likelihood objective assuming a Poisson noise model for
spiking. Rather than optimize all of the parameters simultaneously, we alternate between optimizing the
filter parameters and optimizing the nonlinearity parameters (and find that this is more stable than
optimizing everything jointly).

The nonlinearities are parameterized using a set of tent basis functions (Gaussian bumps) that tile the
relevant input space [12, 16]. We typically use 30 evenly spaced Gaussian bumps that tile the range spanned
by the projection of the stimulus onto the linear filter. For example, a nonlinearity is parameterized as

h(u) =

p∑
j=1

ajφj(u)

=

p∑
j=1

ajφ(u−∆j),

where φ is the tent basis function, such as φ(x) = exp(−x2), ∆j indicates the spacing between the tents,
and aj is a parameter. Since the basis functions and spacings are fixed beforehand, the only free parameters
are the aj ’s.

We choose the number of subunits using a validation set. That is, we fit models with increasing numbers
of subunits until held-out performance on a validation set decreases.

Proximal operators and algorithms

The framework of proximal algorithms allows us to optimize non-differentiable and non-smooth terms easily.
The name proximal comes from the fact that these algorithms utilize the proximal operator (defined below)
as subroutines or steps in the optimization algorithm. For brevity, we skip the derivation of these algorithms,
instead referring the reader to the more thorough treatment by Parikh and Boyd [65] or Polson et al. [66].
The proximal operator for a function φ given a starting point v is defined as:

Pφ(v, ρ) = argminx

[
φ(x) +

ρ

2
‖x− v‖22

]
. (12)

The proximal operator is a mapping from a starting point v to a new point x that tries to minimize the
function φ(x) (first term above) but stays close to the starting point v (second term). The proximal operator
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is a building block that we will use to create more complicated algorithms. We will take advantage of the
fact that for many functions φ of interest to us, we can analytically compute their proximal operators, thus
making these operators a computationally cheap building block.

We used these building blocks to solve optimization problems involving the sum of a number of simpler
terms:

F (x) =
k∑
i=1

φi(x) (13)

where in our application the φi’s represent either data fitting terms (e.g. a log-likelihood) or different
regularization terms or penalty functions on the parameters, x. With respect to learning the parameters of a
linear filter in an LN model, the objective consists of a log-likelihood f(x) along with regularization penalties
that impose prior beliefs about the filter, x. We focus on two main penalties. Sparsity, which encodes the
belief that many filter coefficients are zero, is penalized by the `1-norm (φ1(x) = ‖x‖1). Additionally,
spatiotemporal filters are often approximately space-time separable (they are well modeled as the outer
product of a few spatial and temporal factors). We encoded this penalty by the nuclear norm, `∗, which
encourages the parameters x, when reshaped to form a spatiotemporal matrix, to be a low-rank matrix (the
nuclear norm `∗ of a matrix is simply the sum of its singular values). Another natural penalty would be one
that encourages the parameters to be smooth in space and/or time, which could be accomplished by applying
an `1 or `2 penalty to the spatial or temporal differences in parameters. As shown below, these types of
penalties are easy to incorporate into the proximal algorithm framework. Other commonly used
regularization penalties, and their corresponding proximal operators, are listed in Table 1.

The proximal consensus algorithm is an iterative algorithm for solving (13) that takes a series of proximal
operator steps. It first creates a copy of the variable x for each term φi in the objective. The algorithm
proceeds by alternating between taking proximal steps for each function φi using that variable copy xi, and
then enforcing all of the different variable copies to agree (reach consensus) by averaging them. The
algorithm is:

xk+1
i = Pφi(x̄

k − uki )

x̄k+1 =
1

k

k∑
i=1

xi

uk+1
i = uki + xk+1

i − x̄k+1,

where i indexes each of the terms in the objective function, xi is a copy of the variable, x̄ is the average of
the variable copies, and ui is known as a dual variable that can be thought of as keeping a running average of
the error between each variable copy and the average. Intuitively, we can think of each variable copy xi as
trying to minimize a single term φi in the objective, and the average, or consensus x̄ forces the different
copies to agree on the best value for the global parameters. After convergence, each copy xi will be close to
the mean value x̄, which is the set of parameters that minimizes the original composite objective.

This algorithm has a number of desirable properties. First, the updates for each term xi can be carried
out in parallel, therefore allowing for speedups when run on a cluster or multi-core computer. Second, it
converges even when terms in the objective are non-differentiable. Due to the repeated application of the
proximal operator, this algorithm works best when the terms φi have proximal operators that are easy to
compute.

This is exactly the case for the regularization terms described above: for the `1 norm, the proximal
operator corresponds to soft thresholding of the parameters. For the nuclear norm, the proximal operator
corresponds to soft thresholding of the singular values of parameters reshaped as a matrix. Occasionally, the
proximal operator may not have a closed form solution. In this case, the proximal step can be carried out
through gradient based optimization of (12) directly. This is the case for some log-likelihoods, such as the
log-likelihood of a particular firing rate under Poisson spiking. In this case, gradient step based optimization
of (12) often dominates the computational cost of the algorithm. As many methods for fitting neural models
involve gradient step updates on the log-likelihood, such methods can then be augmented with additional
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regularization terms with no appreciable effect on runtime, by using proximal consensus algorithms for
optimization. Our code for solving formulating and solving optimization problems using proximal algorithms
is provided online at https://github.com/ganguli-lab/proxalgs.

Table 1. Common regularization penalties and their proximal operators (in closed form).

Penalty function, φ(x) Proximal operator, Pφ(v, ρ) Computational complexity
`2-norm, γ‖x‖2 v

1+1/ρ O(n)

`1-norm, γ‖x‖1


vi − γ/ρ vi ≥ γ/ρ
vi + γ/ρ vi ≤ −γ/ρ
0 otherwise

O(n)

Nuclear norm, ‖X‖∗ X = USVT , Pφ(v, ρ) = US
′
VT , S

′
=

{
σi − γ/ρ σi ≥ γ/ρ
0 otherwise

O(min(mn2, nm2))

Non-negativity, I(x > 0)

{
vi vi > 0

0 vi ≤ 0
O(n)

Experiments

Experimental data was collected from the tiger salamander retina using a multi-electrode array
(Multi-channel systems). Isolated ganglion cells were identified using custom spike sorting software. The
stimulus used was a 100Hz white noise bars stimulus, where the luminance of each bar was drawn
independently from a Gaussian distribution. Spatially, the stimulus spanned approximately 2.8mm on the
retina (50 bars at 55.5µm / bar).

Subspace overlap

We quantify the overlap between two subspaces as the average of the cosine of the principal (or canonical)
angles between the subspaces. The principal angles between two subspaces X ∈ Rn×p and Y ∈ Rn×q
generalize the idea of angles between vectors. Here we describe a pair of p and q dimensional subspaces in n
dimensional space as the span of the columns of the matrices X and Y. Assuming without loss of generality
that p ≤ q, then we have p principal angles θ1, . . . , θp that are defined recursively for k = 1, . . . , p as:

cos θk = max
x∈X

max
y∈Y

xTy = xk
Tyk,

subject to the constraints that the vectors are unit vectors (xTx = yTy = 1) and they are orthogonal to the
previously identified vectors (xj

Tx = 0,yj
Ty = 0 for j = 1, 2, . . . , k − 1). That is, the first principal angle is

found by finding a unit vector within each subspace such that the correlation, or dot product, between these
vectors (these are known as the principal vectors) is maximized. This dot product is the cosine of the
principal angle. Then, each subsequent principal angle is found by performing the same maximization but
restricting each new pair of vectors to be orthogonal to the previous principal vectors in each subspace. The
principal angles can be efficiently computed via the QR decomposition [67]. We define subspace overlap as
the average of the cosine of the principal angles, 1

p

∑p
k=1 cos θk. This quantity is at most 1 (for two subspaces

that span the same space), and at least 0 (for two orthogonal subspaces that share no common directions).
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