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Abstract

A central challenge in sensory neuroscience involves understanding how neural circuits shape computations
across cascaded cell layers. Here we develop a computational framework to reconstruct the response properties
of experimentally unobserved neurons in the interior of a multilayered neural circuit. We combine non-smooth
regularization with proximal consensus algorithms to overcome difficulties in fitting such models that arise
from the high dimensionality of their parameter space. Our methods are statistically and computationally
efficient, enabling us to rapidly learn hierarchical non-linear models as well as efficiently compute widely used
descriptive statistics such as the spike triggered average (STA) and covariance (STC) for high dimensional
stimuli. For example, with our regularization framework, we can learn the STA and STC using 5 and 10
minutes of data, respectively, at a level of accuracy that otherwise requires 40 minutes of data without
regularization. We apply our framework to retinal ganglion cell processing, learning cascaded linear-nonlinear
(LN-LN) models of retinal circuitry, consisting of thousands of parameters, using 40 minutes of responses to
white noise. Our models demonstrate a 53% improvement in predicting ganglion cell spikes over classical
linear-nonlinear (LN) models. Internal nonlinear subunits of the model match properties of retinal bipolar
cells in both receptive field structure and number. Subunits had consistently high thresholds, leading to
sparse activity patterns in which only one subunit drives ganglion cell spiking at any time. From the model’s
parameters, we predict that the removal of visual redundancies through stimulus decorrelation across space,
a central tenet of efficient coding theory, originates primarily from bipolar cell synapses. Furthermore, the
composite nonlinear computation performed by retinal circuitry corresponds to a boolean OR function applied
to bipolar cell feature detectors. Our general computational framework may aid in extracting principles of
nonlinear hierarchical sensory processing across diverse modalities from limited data.

Author Summary

Computation in neural circuits arises from the cascaded processing of inputs through multiple cell layers.
Each of these cell layers performs operations such as filtering and thresholding in order to shape a circuit’s
output. It remains a challenge to describe both the computations and the mechanisms that mediate them
given limited data recorded from a neural circuit. A standard approach to describing circuit computation
involves building quantitative encoding models that predict the circuit response given its input, but these
often fail to map in an interpretable way onto mechanisms within the circuit. In this work, we build two
layer linear-nonlinear cascade models (LN-LN) in order to describe how the retinal output is shaped by
nonlinear mechanisms in the inner retina. We find that these LN-LN models, fit to ganglion cell recordings
alone, identify filters and nonlinearities that are readily mapped onto individual circuit components inside
the retina, namely bipolar cells and the bipolar-to-ganglion cell synaptic threshold. This work demonstrates
how combining simple prior knowledge of circuit properties with partial experimental recordings of a neural
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circuit’s output can yield interpretable models of the entire circuit computation, including parts of the circuit
that are hidden or not directly observed in neural recordings.

Introduction

Motivation

Computational models of neural responses to sensory stimuli have played a central role in addressing
fundamental questions about the nervous system, including how sensory stimuli are encoded and represented,
the mechanisms that generate such a neural code, and the theoretical principles governing both the sensory
code and underlying mechanisms. These models often begin with a statistical description of the stimuli that
precede a neural response such as the spike-triggered average (STA) [1,2] or covariance (STC) [3–8]. These
statistical measures characterize to some extent the set of effective stimuli that drive a response, but do not
necessarily reveal how these statistical properties relate to cellular mechanisms or neural pathways. Going
beyond descriptive statistics, an explicit representation of the neural code can be obtained by building a
model to predict neural responses to sensory stimuli.

A classic approach involves a single stage of spatiotemporal filtering and a time-independent or static
nonlinearity; these models include linear-nonlinear (LN) models with single or multiple pathways [1, 9–11] or
generalized linear models (GLMs) with spike history feedback [12, 13]. However, these models do not directly
map onto circuit anatomy and function. As a result, the interpretation of such phenomenological models, as
well as how they precisely relate to underlying cellular mechanisms, remains unclear. Ideally, one would like to
generate more biologically realistic models of sensory circuits, in which sub-components of the model map in a
one-to-one fashion onto cellular components of neurobiological circuits [14]. For example, model components
such as spatiotemporal filtering, thresholding, and summation are readily mapped onto photoreceptor or
membrane voltage dynamics, synaptic and spiking thresholds, and dendritic pooling, respectively.

A critical aspect of sensory circuits is that they operate in a hierarchical fashion in which sensory signals
propagate through multiple nonlinear cell layers [15–17]. Fitting models that capture this widespread structure
using neural data recorded from one layer of a circuit in response to controlled stimuli raises significant
statistical and computational challenges [18–22]. A key issue is the high dimensionality of both stimulus and
parameter space, as well as the existence of hidden, unobserved neurons in intermediate cell layers. The high
dimensionality of parameter space can necessitate prohibitively large amounts of data and computational
time required to accurately fit the model. One approach to address these difficulties is to incorporate prior
knowledge about the structure and components of circuits to constrain the model [11,21,23–25]. Although
prior knowledge of the exact network architecture and sequence of nonlinear transformations would greatly
constrain the number of possible circuit solutions, such prior knowledge is typically minimal for most neural
circuits.

In this work, we develop a computational framework that addresses these challenges and use it to learn
hierarchical nonlinear models of ganglion cells in the salamander retina. In particular, we focus on models
with three cell layers connected by two stages of linear-nonlinear processing (LN-LN models). As described
below, the cell layers of these models map in one-to-one fashion onto the three principal cell layers of the
retina: photoreceptors, bipolar cells, and retinal ganglion cells. We demonstrate that these models are both a
more accurate description of the retinal code, as well as more amenable to biophysical interpretation. In
particular, we find a match between the properties of subunits in the intermediate, hidden layer of our models
and the properties of bipolar cells in the retina. Further analysis of our learned models reveals novel insight
into retinal function, namely that, (1) transmission between every subunit and ganglion cell pair is well
described by a high threshold expansive nonlinearity, (2) bipolar cells are sparsely active, (3) visual inputs
are most decorrelated at the subunit layer, pre-synaptic to ganglion cells, and (4) the composite computation
performed by the retinal ganglion cell output corresponds to a boolean OR function of bipolar cell feature
detectors. Collectively, these results shed light on the nature of hierarchical nonlinear computation in the
retina. Our computational framework is general, however, and we hope it will aid in providing insights into
hierarchical nonlinear computations across the nervous system.
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Background

The retina is a classic system for exploring the relationship between quantitative encoding models and
measurements of neurobiological circuit properties [26,27]. Signals in the retina flow from photoreceptors
through populations of horizontal, bipolar, and amacrine cells before reaching the ganglion cell layer.

To characterize this complex multilayered circuitry, many studies utilize descriptive statistics such as the
spike-triggered average, interpreted as the average feature encoded by a ganglion cell [1–3]. Responses are
often then modeled using a linear-nonlinear (LN) framework (schematized in Figure 1a). A major reason
for the widespread adoption of LN models is their high level of tractability; learning their parameters can
be accomplished by solving a simple convex optimization problem [2], or alternatively, estimated using
straightforward reverse correlation analyses [1]. However, LN models have two major drawbacks: it is difficult
to map them onto biophysical mechanisms in retinal circuitry, and they do not accurately describe ganglion
cell responses across diverse stimuli. Regarding mechanisms, the spatiotemporal linear filter of the LN model
is typically interpreted as mapping onto the aggregate sequential mechanisms of phototransduction, signal
filtering and transmission through bipolar and amacrine cell pathways, and summation at the ganglion cell,
while the nonlinearity is mapped onto the spiking threshold of ganglion cells. Regarding accuracy, while
previous studies have found that these simple models can, for some neurons, capture most of the variance
of the responses to low-resolution spatiotemporal white noise [9, 12,20], they do not describe responses to
stimuli with more structure such as natural scenes [13,28–30]. A likely reason for these drawbacks are the
nonlinearities within the retina. There can be strong rectification of signals that occurs pre-synaptic to
ganglion cells [15, 31–33], breaking the assumption of composite linearity in the pathway from photoreceptors
just up to the ganglion cell spiking threshold [17]. Indeed, nonlinear spatial integration within ganglion cell
receptive fields was first described in the cat retina [34] in Y -type ganglion cells. A hypothetical model for
this computation was proposed as a cascade of two layers of linear-nonlinear operations (LN-LN) [35, 36].
If one keeps the mean luminance constant, avoiding light adaptation in photoreceptors, the first major
nonlinearity is thought to lie at the presynaptic terminal of the bipolar to ganglion cell synapse. Ganglion
cells pool over multiple bipolar cell inputs, each of which can be approximated as linear-nonlinear components,
termed subunits of the ganglion cell1. The second LN layer corresponds to summation or pooling across
multiple subunits at the ganglion cell soma, followed by a spiking threshold. The subunit nonlinearities in
these models have been shown to underlie many retinal computations including latency encoding [27], object
motion sensitivity [37], and sensitivity to fine spatial structure (such as edges) in natural scenes [32]. Figure 1
shows a schematic of the LN-LN cascade and its mapping onto retinal anatomy. Functionally, these models
with multiple nonlinear pathways are both more amenable to interpretation and potentially provide a more
accurate description of ganglion cell responses.

Related work

Early work on characterizing these multiple pathways motivated the use of the significant eigenvectors
of the spike-triggered covariance (STC) matrix as the set of features that drives a cell, focusing on low-
dimensional full field flicker stimuli [10, 38] to reduce the amount of data required for accurately estimating
these eigenvectors. Significant STC eigenvectors will span the same linear subspace as the true biological
filters that make up the pathways feeding onto a ganglion cell [3, 39–41]. However, the precise relationship
between these eigenvectors (which obey a biologically implausible orthogonality constraint) and the individual
spatiotemporal filtering properties intrinsic to multiple parallel pathways in a neural circuit remains unclear.

Instead, we take the approach of directly fitting a hierarchical, nonlinear, neural model, enabling us to
jointly learn a set of non-orthogonal, biophysically plausible set of pathway filters, as well as an arbitrary,
flexible nonlinearity for each pathway. Much recent and complementary work on fitting such models used
simplifying assumptions in order to make model fitting tractable. For example, assuming the subunits are
shifted copies of a template results in models with a single convolutional subunit filter [21,23,24]. However,
this obscures individual variability in the spatiotemporal filters of subunits of the same type across visual

1Note that subunits that combined linearly would be indistinguishable from a computational perspective. Due to the roughly
linear integration [9] that occurs at bipolar cells, we (computationally) distill mechanisms in photoreceptors and inhibitory
horizontal cells into a single spatiotemporal filter with positive and negative elements that gives rise to bipolar cell signals.
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space, which has been shown to be functionally important in increasing retinal resolution [42]. Restricting the
number of subunits to a small number, such as two, yields models with separate ON- and OFF- pathways [18]
but these do not meaningfully map onto anatomical pathways. Another common assumption is that the
subunit nonlinearities have a particular form, such as quadratic [11,25] or sigmoidal [43]. Fitting multi-layered
models with convolutional filters and fixed nonlinearities has also been successfully used to describe retinal
responses to natural scenes [30], although this work maximizes predictive accuracy at the expense of a one-to-
one mapping of model components onto retinal circuit elements. Finally, other work focuses on particular
ganglion cell types with a small number of inputs [22], constrains the input stimulus to a low-dimensional
subspace (such as two halves of the receptive field [44]), or constrains the coefficients of receptive fields to be
non-negative [45], thus discarding known properties of the inhibitory surround.

In this work, we do not make assumptions about or place restrictions on the number or tiling of
subunit filters, the shapes of the subunit nonlinearities, the sign of receptive field elements, or the stimulus
dimensionality. Instead, we place penalties on model parameters that encourage subunit filters to conform
more closely to known statistical properties, namely that they should be sparse (contain few non-zero elements)
and low-rank (approximately spatiotemporally separable) [46,47], properties that are common to receptive
fields in a wide variety of sensory systems. We describe computational methods based on proximal consensus
algorithms, described below, that allow us to utilize this prior knowledge about model parameters in a
computationally and statistically efficient manner to perform both spike-triggered analyses and fit hierarchical
nonlinear models using much less data than otherwise required.

Fig 1. Schematics of the LN and LN-LN models and corresponding retinal circuitry. (a) The
linear-nonlinear (LN) model consists of a single linear spatiotemporal filter followed by a static nonlinearity.
(b) The LN-LN cascade contains a bank of LN subunits, whose outputs are pooled at a second linear stage
before being passed through a final nonlinearity. (c) The LN-LN model mapped on to a retinal circuit. The
first LN stage consists of bipolar cell subunits and the bipolar-to-ganglion cell synaptic threshold. The
second LN stage is pooling at the ganglion cell, plus a spiking threshold.

Results

Regularization techniques for model fitting

Fitting encoding models or computing descriptive statistics requires collecting enough neural data to constrain
model parameters. Limited recording time, higher resolution stimuli, and more varied experimental conditions
all necessitate being able to do more with less data. Depending on these factors, collecting enough data for
fitting LN models is a challenge, and for an LN-LN model the problem is even more extreme. Regularization
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is also an issue for estimating descriptive statistics, like the spike-triggered average (STA) and covariance
(STC), especially when the dimensionality of the stimulus is high.

To better constrain parameters of sensory encoding models as well as descriptive statistics we incorporate
prior knowledge about simple statistical properties of the parameters in the form of regularization penalties.
We encourage spatiotemporal filters in LN or LN-LN models, or the STA or STC eigenvectors to be
sparse and approximately space-time separable (low-rank) by applying `1-norm and nuclear norm penalties,
respectively. These penalties have the additional benefit that they can efficiently be incorporated into
optimization procedures using proximal algorithms (see Methods for details). Proximal algorithms [48,49]
are an appropriate choice for this problem because they can flexibly incorporate different penalty terms and
they efficiently scale as the amount of data or stimulus dimensionality increases. In particular, they are
better suited for problems with non-smooth terms (such as the regularization penalties we use) compared to
gradient descent [48]. As a proof of concept for using these specific penalties, we utilized them to regularize
the spike-triggered average (STA) (Eq. 1 in Methods) or eigenvectors of the spike-triggered covariance (STC)
matrix (Eq. 3 in Methods) for retinal data.

Figure 2a compares a regularized spike-triggered average with the raw, un-regularized STA. For long
recordings, the regularized STA closely matches the raw STA, while for short recordings the regularized STA
has less high frequency noise and retains much of the structure observed if the STA had been estimated using
more data. Figure 2b shows the performance of the regularized STA across different regularization weights,
scanned over a broad range, demonstrating that performance is largely insensitive to the strengths of the
weights of the `1 and nuclear norm penalty functions. Thus regularization weights need not be fine tuned to
achieve superior performance. We further quantified the performance of the regularized STA by employing
it as the linear filter of an LN model, and found that with regularization, about 5 minutes of recording
was sufficient to achieve the performance obtained through 40 minutes of recording without regularization
(Figure 2c).

Beyond the STA, we also extended our framework to regularize essential information content in the
eigenvectors of the sample STC matrix. Figure 3 demonstrates the improvement in our ability to estimate
the relevant subspace spanned by significant STC eigenvectors, both in terms of the qualitative improvement
in eigenvectors for an example cell (Fig. 3a) and quantified across the population (Fig. 3b). In Fig. 3a, we
show the top regularized STC eigenvectors for different values of the nuclear norm (γ∗) and `1-norm (γ1)
regularization penalties (Eq. 3 in Methods and Table S4). We score the performance of the STC subspace in
Fig 3b in terms of how well stimuli, after projection onto the subspace, can be used to predict spikes, by
computing the subspace overlap (defined in Methods) between the raw or regularized STC subspace and the
best fit LN-LN subspace, obtained in the next section. This quantity ranges between zero for orthogonal
subspaces and one for overlapping subspaces. Since the LN-LN subspace is the best subspace found by the
LN-LN model for predicting spiking, a large subspace overlap between the regularized STC and LN-LN
subspaces indicates the ability of regularized STC to find stimulus subspaces predictive of neural firing
without actually fitting a model of the neuron.

With appropriate regularization, one can recover the best predictive subspace using about 10 minutes
of data; without regularization, one requires 40 minutes of data to recover a subspace with comparative
predictive accuracy. Note that even for the full length of this experiment (40 minutes), regularization still
improves our regularized STC estimate. Our much improved performance of regularized STC with limited
amounts of data highlights the power of regularized eigenvector recovery using `1 and nuclear norm penalties
on the STC eigenvectors to find stimulus subspaces that are highly predictive of neural spiking, without ever
directly fitting a parameterized model of the neuron.

Related work on regularizing the STA using Bayesian methods [46,50,51], often requires inversion of an
N -by-N prior covariance matrix, where N is the dimension of stimulus space (a costly O(N3) operation)
prohibitive for high-dimensional stimuli. For regularized STC, they would require the inversion of N2-by-N2

matrices, thus demanding a step of computational complexity O(N6) in each iteration of the internal loop
required to learn the prior over STC matrices. In contrast, methods based on proximal consensus algorithms
for regularizing STA or eigenvectors of STC matrices are much more efficient. The most costly step in
terms of computational time for such regularization involves computing the proximal operator for the nuclear
norm applied to each of the d columns of the matrix X in (3), when each column is viewed as an Ns

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/120956doi: bioRxiv preprint 

https://doi.org/10.1101/120956
http://creativecommons.org/licenses/by-nc/4.0/


Ra
w 

ST
A

(a) 30s 1 min. 5 min. 40 min.

Re
gu

lar
ize

d 
ST

A

10 1 101

Nuclear norm penalty

100

Sp
ar

sit
y p

en
alt

y

(b) Sensitivity to hyperparameters

0.45

0.55

0.65

0 20 40
Length of recording (minutes)

0.0

0.2

0.4

Co
rre

lat
ion

 co
ef

fic
ien

t

(c) Benefits of regularization

Regularized
Raw

Fig 2. Regularization for estimating receptive fields (via a regularized spike-triggered-average). (a) Top row:
the raw spike-triggered average computed using different amounts of data (from left to right, 30s to 40min),
bottom row: the regularized spike-triggered average computed using the same amount of data as the
corresponding column. (b) Performance (log-likelihood) as a function of two regularization weights, the
nuclear norm (x-axis, encourages low-rank structure) and the `1-norm (y-axis, encourages sparsity). (c)
Correlation coefficient between the firing rate of a retinal ganglion cell and LN model whose filter is fixed to
be a regularized or raw (un-regularized) STA, as a function of the amount of training data for estimating the
STA (length of recording).

by Nt spatiotemporal matrix. The proximal operator for the nuclear norm involves computing a singular
value decomposition (SVD) of this matrix, and the computational cost of computing any such SVD is

O([min(Ns, Nt)] × [max(Ns, Nt)]
2
). If the number of spatial bins Ns and number of temporal bins Nt are

both of the same order of magnitude (and therefore each is of order
√
N), then the computational cost of

a single SVD is O(N3/2). Thus the computational cost of STC eigenvector regularization through nuclear
norm scales with stimulus dimension N as N3/2 in contrast to N6, as would be the case for empirical Bayes
methods applied to STC matrices. One disadvantage of the regularization methods we use is that they cannot
handle some of the more flexible priors employed in empirical Bayes methods.

Learning hierarchical nonlinear models of the retinal response

Given the power of our regularization framework to efficiently learn the STA and STC, demonstrated above,
we now apply this framework to learn LN-LN models. In the LN-LN architecture schematized in Figure 1,
the stimulus is passed through a set of LN subunits. Each subunit filter is a spatiotemporal stimulus filter,
constrained to have unit norm. The subunit nonlinearity is parameterized using a set of basis functions
(Gaussian bumps) that tile the input space [12,20] (see Methods). This parameterization is flexible enough
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Fig 3. (a) Example panels of the output of our regularized spike-triggered covariance algorithm. Each panel
contains the five most significant regularized eigenvectors of the STC matrix, reshaped as spatiotemporal
filters. The bottom panel shows the result with no regularization added, and the upper panels show the
result with increasing weights on the regularization penalties. Here γ1 is the regularization weight applied to
an `1 penalty encouraging sparsity, and γ∗ is a regularization weight applied to a nuclear norm penalty,
encouraging approximate spatiotemporal separability of the eigenvectors, when reshaped as spatiotemporal
filters. (b) Summary across a population of cells. The heatmap shows the performance of regularized STC
(measured as the subspace overlap with the best fit LN-LN subspace, see text for details). The y-axis in (b)
represents a line spanning 3 orders of magnitude in two-dimensional regularization parameter space (Eq. 3 in
Methods) (γ∗, γ1), ranging from the point (γ∗ = 10−4, γ1 = 10−3) to (γ∗ = 10−1, γ1 = 1).

that we could in principle learn, for each individual subunit, any smooth nonlinearity that can be expressed
as a linear combination of our basis functions. The second LN layer pools subunits through weighted
summation, followed by a spiking nonlinearity that we model using a parameterized soft rectifying function
r(x) = g log(1 + ex−θ). Here g is an overall gain, and θ is a threshold. The full set of parameters for the
model consists of the spatiotemporal subunit filters, the subunit nonlinearity parameters, and the gain and
threshold of the final nonlinearity.

Model fitting and performance

We fit LN and LN-LN models to salamander ganglion cells using the 40 minute recording described previously.
For both LN and LN-LN models we learned the model parameters by optimizing the sum of the log-likelihood
of recorded spikes under a Poisson noise model [12] and the regularization terms. We chose the weights of the
`1 and nuclear norm regularization penalties, both for the LN and LN-LN models, through cross-validation on
a small subset of cells, and then held these weights constant across all cells. Our subsequent results indicate
that we do not have to fine tune these hyperparameters on a cell by cell basis to achieve good predictive
performance. Finally, because different cells may have different numbers of functional subunits, for the
LN-LN models, we chose the optimal number of subunits on a cell-by-cell basis by maximizing performance
on held-out data through cross-validation. No additional structure was imposed on the subunits such as
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spatial repetition, overlap, or non-negativity.
We find that the LN-LN model significantly outperforms the LN model at describing responses of ganglion

cells, for all recorded cells. Figure 4a shows firing rate traces for an example cell, comparing the recorded
response (gray) with an LN model (blue) and an LN-LN model (red). We quantify the similarity between
predicted and recorded firing rate traces using either the Pearson correlation coefficient or the log-likelihood
of held-out data under the model. All log-likelihood values are reported as an increase over the log-likelihood
of a fixed mean firing rate model, scaled by the firing rate (yielding units of bits/spike). Summarized across
n = 23 recorded ganglion cells, we find that the LN-LN model yields a consistent improvement over the
LN model using either metric (Fig. 4bc). Overall, this demonstrated performance improvement indicates
that nonlinear spatial integration is fundamental in driving ganglion cell responses, even to white noise
stimuli, and that an LN model is not sufficient to capture the response to spatiotemporal white noise. This
salient, intermediate rectification that we identify computationally is consistent with previous measurements
of bipolar-to-ganglion cell transmission in the retina [44,52].
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Fig 4. LN-LN models predict held-out response data better than LN models. (a) Firing rates for an
example neuron. The recorded firing rate (shaded, gray), is shown along with the LN model prediction
(dashed, green) and the LN-LN prediction (solid, red). (b) LN-LN performance on held out data vs. the LN
model, measured using correlation coefficient between the model and held out data. Note that all cells are
above the diagonal. (c) Same as in (b), but with the performance metric of log-likelihood improvement over
the mean rate in bits per spike.

The internal structure of the learned models

Given the improved performance of our hierarchical nonlinear subunit models, we examined the internal
structure of the models to assess their potential to reveal insights into retinal structure and computation.
Figure 5 shows a visualization of the parameters learned for an example cell. Figure 5ab shows the parameters
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for the classical LN model, for comparison, while Figure 5cd shows the corresponding subunit filters and
subunit nonlinearities in the first stage of the LN-LN model, fit to the same cell. The subunit filters
had a similar temporal structure, but smaller spatial profiles compared to that of the LN model and the
nonlinearities associated with each subunit were roughly monotonic with high thresholds (quantified below).
These qualitative properties were consistent across all cells.
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Fig 5. Example LN-LN model parameters fit to a recording of an OFF retinal ganglion cell. (a and b):
LN-model parameters, consisting of a single spatial filter (a) and nonlinearity (b). (c and d) LN-LN model
parameters. (c) First layer filters (top) and nonlinearities (bottom) of an LN-LN model fit to the same cell.
Spatial profiles of filters are shown in gray to the right of the filters. The subunit filters have a much smaller
spatial extent compared to the LN filter, but similar temporal profiles.

Physiological properties of learned LN-LN models

Here we examine, in more detail, quantitative properties of learned LN-LN models that can be compared to
physiological properties of the retina. In the next three sub-sections we find that model subunits quantitatively
resemble bipolar cells in terms of receptive field properties and number, and that these intermediate subunits
consistently have high-threshold nonlinearities.

Inferred hidden units quantitatively resemble bipolar cell receptive fields

Mapping the LN-LN model onto retinal anatomy leads us to believe that the first layer filters (some examples
of which are shown in Figure 5c) should mimic or capture filtering properties pre-synaptic to bipolar cells
in the inner retina. To examine this possibility, we compared the first layer model filters to properties of
bipolar cell receptive fields. An example learned model subunit receptive field is shown in Fig. 6a, while a
bipolar cell receptive field, obtained from direct intracellular recording of a bipolar cell, is shown in Figure 6b.
Qualitatively, we found that the filters in the LN-LN model matched these bipolar cell RFs, as well as
previously reported bipolar cell receptive fields [52,53]: both had center-surround receptive fields with similar
spatial extents. We further quantified the degree of space-time separability of the filters using the numerical
or stable rank [54], which is a measure of rank insensitive to small amounts of noise in the matrix (a stable
rank of one indicates the filter is exactly space-time separable). We found that the degree of space-time
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separability of recorded bipolar cell receptive fields and inferred model subunits were quite similar (1.28 ±
0.01 and 1.39 ± 0.03, respectively), indicating that the nuclear norm penalty was not artificially reducing the
rank of our model filters. This also demonstrates the advantage of using a soft rank penalty, such as the
nuclear norm, as opposed to explicitly constraining the rank to any specific integer.

Fig 6. Comparison of subunit filter parameters with intracellular bipolar cell recordings. (a) An example
subunit bipolar cell. (b) A recorded bipolar cell receptive field. (c) Receptive field centers sizes for subunit
filters (blue), LN model filters (green), and recorded bipolar cells (black point). (c) Same as in (b), but with
receptive field surround sizes.

To quantitatively compare these model-derived and ground-truth bipolar cell receptive fields, we fit the
spatial receptive field with a difference of Gaussians function to estimate the RF center and surround sizes.
We find the RF centers for the LN-LN subunit filters are much smaller than the corresponding LN model
filter. Furthermore, the size of these LN-LN subunit centers matched the size of the RF center measured
from intracellular recordings of n = 8 bipolar cells (Figure 6c). The recorded bipolar cells, LN model filters
(ganglion cells), and LN-LN subunit filters all had similar surround sizes (Figure 6d). More example bipolar
cell receptive fields are provided in Figure S2.

Note that this match between LN-LN model subunits and the RF properties of bipolar cells was not a
pre-specified constraint placed on our model, but instead arose as an emergent property of predicting ganglion
cell responses to white noise stimuli. These results indicate that our modeling framework not only enables
higher performing predictive models of the retinal response, but can also reconstruct important aspects of
the unobserved interior of the retina.

Number of inferred subunits

The number of subunits utilized in the LN-LN model for any individual cell was chosen to optimize model
predictive performance on a held-out data set via cross-validation. That is, we fit models with different
numbers of subunits and selected the one with the best performance on a validation set. We find that for
models with more subunits than necessary, extra subunits are ignored (the learned nonlinearity for these
subunits is flat, thus they do not modulate the firing rate).

Figure 7a shows the model performance, quantified as the difference between the LN-LN model and the
LN model, across a population of cells as a function of the number of subunits included in the LN-LN model.
We find that models with four to six subunits maximized model performance on held-out data. Note that the
stimuli used here are one-dimensional spatiotemporal bars that have constant luminance across one spatial
dimension. Thus each model subunit likely corresponds to the combination of multiple bipolar cell inputs
whose receptive fields overlap a particular bar in the stimulus. Previous anatomical studies of bipolar cell
density and axonal branching width [55,56] as well as functional studies [45] suggest that a typical ganglion
cell in the salamander retina receives input from 10–50 bipolar cells whose receptive fields are tiled across two
dimensional space. The number of independently activated groups of such a two dimensional array of bipolar
cells, in response to a one dimensional bar stimulus is then expected to be reduced from the total number of
bipolar cells, roughly, by a square root factor: i.e. 25→

√
25 = 5. This estimate is largely consistent with the
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Fig 7. LN-LN model parameter analysis. (a) Performance improvement (increase in correlation coefficient
relative to an LN model) as a function of the number of subunits used in the LN-LN model. Error bars
indicate the standard error across 23 cells. (b) Subunit nonlinearities learned across all ganglion cells. For
reference the white noise input to a subunit nonlinearity has standard deviation 1, which sets the scale of the
x-axis. Red line and shaded fill indicate the mean and s.e.m. of nonlinearity thresholds (see text for details).
(c) Visualization of the principal axes of variation in subunit nonlinearities by adding or subtracting principal
components from the mean nonlinearity. (top) The principal axis of variation in subunit nonlinearities results
in a gain change, while (bottom) the second principal axis corresponds to a threshold shift. These two
dimensions captured 63% of the nonlinearity variability across cells.

typical number of subunits in Figure 7a, required to optimize model predictive performance. This estimate
also suggests that the large majority of bipolar-to-ganglion cell synapses are rectifying (strongly nonlinear),
as linear connections are not uniquely identifiable in an LN-LN cascade. Indeed, in the salamander retina,
strong rectification appears to be the norm [44,52].

LN-LN models have subunit nonlinearities with consistently high thresholds

The nonlinearities for all of the measured subunits are overlaid in Figure 7b. Each LN-LN subunit nonlinearity
takes as input the projection of the stimulus onto the corresponding subunit spatiotemporal filter. Since the
stimulus components are white noise with unit standard deviation, and the spatiotemporal filter is constrained
to have unit norm, the projection of the stimulus onto the filter has a standard Normal distribution, thus
we can compare nonlinearities on a common axis. Despite the fact that the model could separately learn
an arbitrary function over the input for each subunit nonlinearity, we find that the nonlinearities are fairly
consistent across the different subunits of many cells. Subunit nonlinearities look roughly like thresholding
functions, relatively flat for most inputs but then increasing sharply after a threshold. We quantified
the threshold as input for which the nonlinearity reaches 40% of the maximum output, across n = 92
model-identified subunits the mean threshold was 3.09 ± 0.14 (s.e.m.) standard deviations. We additionally
computed LN thresholds for ganglion cells and found that they were similarly consistent across the population
(3.22 ± 0.11 standard deviations). We decomposed the set of nonlinearities using principal components
analysis and show the two primary axes of variation in Figure 7c. The primary axis of variation results
in a gain change, while the secondary axis induces a threshold shift. Due to the high thresholds of these
nonlinearities, subunits only impact ganglion cell firing probability for large input values. The slight rise
on the left side of the nonlinearities is likely due to weak ON- inputs to the ganglion cell, and a stimulus
ensemble that drives the ON- pathways more strongly [38,57] may be necessary to uniquely identify them.
Our ganglion cell population consisted of 18 Fast-Off, 4 Slow-Off, and 1 On cell (classification shown in
Figure S3). We did not find significant differences across cell types in terms of the number of identified
subunits or the subunit thresholds.

11

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2017. ; https://doi.org/10.1101/120956doi: bioRxiv preprint 

https://doi.org/10.1101/120956
http://creativecommons.org/licenses/by-nc/4.0/


Computational properties of learned LN-LN models

We now turn from a quantitative analysis of the physiological properties of the retina, described above,
to their implications in terms of the computational function of the retina in processing visual stimuli. In
particular, in the next two sub-sections we predict that the dominant contribution to stimulus decorrelation
in efficient coding theory occurs at the bipolar cell synaptic threshold, and that the composite function
computed by a retinal ganglion cell corresponds to a logical OR of its bipolar cell inputs.

Stimulus decorrelation at different stages in hierarchical retinal processing

Natural stimuli have highly redundant structure. Efficient coding theories [58, 59] state that sensory systems
ought to remove these redundancies in order to efficiently encode natural stimuli. The simplest such
redundancy is that nearby points in space and time contain similar, or correlated, luminance levels [60]. The
transmission of such correlated structure would thus be highly inefficient. Efficient coding has been used to
explain why responses are much less correlated than natural scenes, although the mechanistic underpinnings
of decorrelation in the retina remain unclear.

Early work [61] suggested a simple mechanism: the linear center-surround receptive field of ganglion cells
(and more recently, of bipolar cells [62]) could contribute to redundancy reduction simply by transmitting only
differences in stimulus intensity across nearby positions in space. However, it was recently shown [63] using
LN models that most of the decorrelation of naturalistic stimuli in the retina could be attributed to ganglion
cell nonlinearities, as opposed to linear filtering. Given that we fit an entire layer of subunits pre-synaptic to
each ganglion cell layer, we can analyze the spatial representation of naturalistic images at different stages of
hierarchical retinal processing, thereby localizing the computation of decorrelation to a particular stage in
the model.

To do so, we generated the response of the entire population of model subunits to a spatial stimulus similar
to previous work [63], namely spatially pink noise, low pass filtered in time. We computed the correlation of
stimulus intensities as a function of spatial distance, as well as the correlation between pairs of model units
as a function of spatial distance. We examined pairs of units across different stages of the LN-LN model:
after linear filtering by the subunits, after the subunit nonlinearity, and finally at the ganglion cell firing
rates (the final stage). Figure 8 shows that the correlation at these stages drops off with distance between
either the subunits or ganglion cells (with distance measured between receptive field centers). Similar to
previous work [63], we find that most of the decorrelation is due to nonlinear processing, as opposed to linear
filtering. However, our model predicts that this decorrelation is primarily due to the subunit nonlinearities,
as opposed to ganglion cell spiking nonlinearities. In fact, the correlation between the ganglion cell model
firing rates slightly increases after pooling across subunits. The most decorrelated representation occurs just
after thresholding at the subunit layer. In this manner, our modeling framework suggests a more precisely
localized mechanistic origin for a central tenet of efficient coding theory. Namely, our results predict that
the removal of visual redundancies, through stimulus decorrelation across space, originates primarily from
high-threshold nonlinearities associated with bipolar cell synapses.

The nature of nonlinear spatial integration across retinal subunits

Retinal ganglion cells emit responses in sparse, temporally precise patterns [64], presumably to keep firing
rates low thereby preserving energy [63,65]. LN models can emulate sparse, precise firing in only one way: by
using nonlinearities with high thresholds relative to the distribution of stimuli projected onto their linear filter.
This way, only a small fraction of stimuli will cause the model to generate a response. Indeed, nonlinearities
in LN models fit to ganglion cells have high thresholds [9]. LN-LN models, in contrast, can generate sparse
responses using two qualitatively distinct operating regimes: either the subunit thresholds (first nonlinearity)
could be high and the ganglion cell or spiking threshold (second nonlinearity) could be low, or the subunit
thresholds could be low and spiking thresholds could be high. Both of these scenarios give rise to sparse firing
at the ganglion cell output. However, they correspond to categorically distinct functional computations.

These various scenarios are diagrammed in Figure 9a-c. Each panel shows the response of a model in
a two-dimensional space defined by the projection of the stimulus onto two subunit filters pre-synaptic
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Fig 8. Decorrelation in LN-LN subunit models. A naturalistic (pink noise) stimulus was shown to a
population of nonlinear subunits. The correlation in the population after filtering at the subunit layer (blue),
after the subunit nonlinearity (green), and after pooling and thresholding at the ganglion cell layer (red), in
addition to the stimulus correlations (gray) are shown. Left: the correlation as a function of distance on the
retina for Off-Off cell pairs. Right: correlation for Off-On cell pairs. For each plot, distances were binned
every 70µm, and error bars are the s.e.m. within each bin.

to the ganglion cell (the two-dimensional space is easier for visualization, but the same picture holds for
multiple subunits). We show the response as contours where the firing probability is constant (iso-response
contours). Here, the subunit nonlinearities play a key role in shaping the geometry of the response contours,
and therefore shape the computation performed by the cell. Note that the ganglion cell nonlinearity would
act to rescale the output, but cannot change the shape of the contours. Therefore, it is fundamentally the
subunit nonlinearities alone that determine the geometry of the response contours.

Low-threshold subunit nonlinearities give rise to concave contours (Figure 9b), whereas high-threshold
subunits give rise to convex contours (Figure 9c). Because final output rate is determined by the subunit
and final thresholds, both of these descriptions could yield sparse firing output with the same overall rate
(by adjusting the final threshold), but correspond to different computations. Low-threshold subunits can be
simultaneously active across many stimuli, and thus yield spiking when subunits are simultaneously active
(an AND-like combination of inputs). On the other hand, high-threshold subunits are rarely simultaneously
active and thus usually only one subunit is active during a ganglion cell firing event, giving rise to an OR-like
combination of inputs. By comparison, a cell that linearly integrates its inputs would have linear contours
(Figure 9a).

In our models fit to retinal ganglion cells, we find all cells are much more consistent with the high threshold
OR-like model. Subunit nonlinearities tend to have high thresholds, and therefore result in convex contours
(shown for different pairs of subunits for two example cells in Figure 9d-e). For each example ganglion cell,
we show the corresponding model contours along with the 2 standard deviation contour of the stimulus
distribution (gray oval) and the empirical firing histogram (red checkers) in the 2D space defined by the
projection of the stimulus onto a given pair of subunit filters identified by the LN-LN cascade model. Note
that while the stimulus is uncorrelated (i.e. white, or circular), non-orthogonality of subunit filters themselves
yield correlations in the subunit activations obtained by applying each subunit filter to the stimulus. Hence
the stimulus distribution in the space of subunit activations (grey shaded ovals) is not circular. In all recorded
cells, we find that the composite computation implemented by retinal ganglion cell circuitry corresponds
to an OR function associated with high subunit thresholds (as schematized in Figure 9c). Moreover, both
the AND computation and the linear model are qualitatively ruled out by the shape of the model response
contours as well as the empirical firing histogram over subunit activations, which closely tracks the model
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response contours (i.e. the boundaries of the red histograms are well captured by the model contours).

Fig 9. Visualization of subunit contours. Contours of equal firing probability are shown in a 2D space
defined by the projection of the visual stimulus along each of two subunits. (a) Example contour plots for a
model with low threshold subunit nonlinearities (inset) has concave contours. (b) A model with high
threshold subunit nonlinearities has convex contours. (c & d) Contours from a model for two example
ganglion cells, for three different pairs of subunits (left to right). In each panel, a histogram of the recorded
firing rate is shown (red squares) as well as the stimulus distribution (gray oval).

These results are consistent with previous studies of nonlinear spatial integration in the retina. For
example, Bollinger et. al. [44] discovered convex iso-response contours for a very simple two dimensional spatial
stimulus, and Kaardal et. al. [43] performed an explicit hypothesis test between an AND-like and OR-like
nonlinear integration over a low dimensional subspace obtained via the un-regularized STC eigenvectors,
finding that OR outperformed AND. However, the techniques of [44] can only explore a low-dimensional
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stimulus space, whereas our methods enable the discovery of iso-response contours for high-dimensional
stimuli. Moreover, in contrast to the hypothesis testing approach taken in [43], our general methods to learn
LN-LN models reveal that an OR-model of nonlinear integration is a good model on an absolute scale of
performance amongst all models in the LN-LN family, rather than simply being better than an AND-model.

A multi-dimensional view of cascaded retinal computation

A simple, qualitative schematic of the distinct computational regime in which retinal ganglion cells operate in
response to white noise stimuli can be obtained by considering the geometry of the spike triggered ensemble
in N dimensional space. In particular, the distribution of stimuli concentrates on a constant radius sphere
in N dimensional stimulus space. More precisely, any high dimensional random stimulus realization x has
approximately the same vector length, because the fluctuations in length across realizations, relative to the
mean length, is O(1/

√
N). Thus we can think of all likely white-noise stimuli as occurring on the N − 1

dimensional surface of a sphere in N dimensional space. Each subunit filter can be thought of as a vector
pointing in a particular direction in N dimensional stimulus space. The corresponding input to the subunit
nonlinearity for any stimulus is the inner-product of the stimulus with the subunit filter, when both are
viewed as N dimensional vectors. The high threshold of the subunit nonlinearity means that the subunit only
responds to a small subset of stimuli on the sphere, corresponding to a small cap centered around the subunit
filter. For a single subunit model (i.e. an LN model), the set of stimuli that elicit a spike then corresponds
simply to this one cap (Figure 10a). In contrast, the OR like computation implemented by an LN-LN model
with high subunit thresholds responds to stimuli in a region consisting of a union of small caps, one for each
subunit (Figure 10b).

To verify this conceptual picture, in Figure 10c we visualize a two-dimensional projection of the spike-
triggered stimulus ensemble for three example ganglion cells, using principal components analysis of the
spike-triggered subunit activations. That is, we project the spike-triggered ensemble onto the subunit filters
identified in the LN-LN model, and subsequently project those subunit activations onto the two dimensions
that capture the most variance in subunit activations. Note that this is different from just taking the top
two principal components of the STC matrix, as the top STC component is typically the average of the
subunit filters [10], which does not differentiate the subunit activations. This procedure identifies a subspace
that captures the radial spread of subunit filters in high-dimensional stimulus space. We find that the
spike-triggered ensemble projected onto this subspace (Figure 10c) curves around the radial shell defined by
the stimulus distribution, and matches the conceptual picture shown in Figure 10b. For ease of visualization,
we colored elements in the spike-triggered ensemble by which LN-LN model subunit was maximally active
during that spike, and we normalize the spike-triggered histogram by the raw stimulus distribution (gray
ovals). This picture provides a simple, compelling view for why LN models are insufficient to capture the
retinal response to white noise, and further visualizes the aspect of retinal computation LN-LN models
capture that the LN model does not: ganglion cells encode the union of different types of stimuli, with each
stimulus type having large overlap with precisely one subunit filter.

Discussion

In summary, we provide a computational framework to model stimulus driven neural processing in circuits
with multiple parallel, hierarchical nonlinear pathways using limited experimental data. This framework
elucidates relationships between biophysical circuit properties (spatiotemporal filtering properties of individual
pathways, and nonlinear pooling of such pathways across multiple cell layers) and the statistical structure of
the spike-triggered stimulus ensemble. We found that models employing two stages of linear and nonlinear
computation, namely LN-LN models, demonstrated a robust improvement over the classical standard of LN
models at predicting responses to white noise across a population of ganglion cells.

Beyond performance considerations alone, the gross architecture of the LN-LN model maps directly onto
the hierarchical, cascaded, anatomy of the retina, thereby enabling the possibility that we can generate
quantitative hypotheses about neural signal propagation and computation in the unobserved interior of the
retina simply by examining the structure of our model’s interior. Since learning our model only requires
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Fig 10. Stimulus selectivity in LN and LN-LN models. Each panel shows the raw stimulus distribution
(gray contours) projected onto the top two principal components of the spike-triggered subunit activations
(with subunits identified by the LN-LN model). The LN model (a) fires in response to stimuli in a single
region, or cap, of stimulus space (indicated by the arrow and dashed threshold), whereas the LN-LN model
(b) fires in response to a union of caps, each defined by an individual subunit. (c) Spike-triggered subunit
activations for three representative cells are shown as colored histograms (colors indicate which
model-identified subunit was maximally active during the spike), with the corresponding subunit filter
directions shown as colored arrows (see text for details). Color intensity of the histogram indicates the
probability density of the spike-triggered ensemble (STE), thus drops in intensity between changes in color
indicate a multimodal STE, with high density modes centered near subunit filter directions.

measurements of the inputs and outputs to the retinal circuit, this approach is tantamount to the computational
reconstruction of unobserved hidden layers of a neural circuit. The advantage of applying this method in the
retina is that we can experimentally validate aspects of this computational reconstruction procedure.

Indeed, using intracellular recordings of bipolar cells, we found that our learned subunits matched
properties of bipolar cells, both in terms of their receptive field center-surround structure, and in terms of
the approximate number of bipolar cells connected to a ganglion-cell. However care must be taken not to
directly identify the learned subunits in our model with bipolar cells in the retina. Instead, they should be
thought of as functional subunits that reflect the combined contribution of not only bipolar cells, but also
horizontal cells and amacrine cells that sculpt the composite response of retinal ganglion cells to stimuli.
Nevertheless, the correspondence between subunits and bipolar cell RFs (which are also shaped by horizontal
cells), suggests learning functional subunits that loosely correspond to the composite effect bipolar cells
and associated circuitry have on ganglion-cell synapses is important in explaining the overall ganglion cell
response, even to white-noise stimuli.

The interior of our models also reveal several functional principles underlying retinal processing. First, all
subunits across all cells had strikingly consistent nonlinearities corresponding to monotonically increasing
threshold-like functions with very high thresholds. This inferred biophysical property yields several important
consequences for neural signal processing in the inner retina. First, it predicts that subunit activation patterns
are sparse across the ensemble of stimuli, with typically only one subunit actively contributing to any given
ganglion cell spike. Second, it predicts that the dominant source of stimulus decorrelation, a central tenet of
efficient coding theory, has its mechanistic origin at the first strongly nonlinear processing stage of the retina,
namely in the synapse from bipolar cells to ganglion cells. Third, it implies that the composite function
computed by individual retinal ganglion cells corresponds to a Boolean OR function of bipolar cell feature
detectors.

Taken together, our framework provides a unified way to estimate hierarchical nonlinear models of sensory
processing by combating both the statistical and computational curses of dimensionality associated with
learning such models. When applied to the retina, these techniques demonstrably recover known properties in
the interior of the retina without requiring direct measurements of these properties. Moreover, by identifying
candidate mechanisms for cascaded nonlinear computation in retinal circuitry, our results provide a higher
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resolution view of retinal processing compared to classic LN models, thereby setting the stage for the next
generation of efficient coding theories that may provide a normative explanation for such processing. For
example, considerations of efficient coding have been employed to explain aspects of the linear filter [66] and
nonlinearity [63] of retinal ganglion cells when viewed through the coarse lens of an LN model. An important
direction for future research would be the extension of these basic theories to more sophisticated ones that can
explain the higher resolution view of retinal processing uncovered by our learned LN-LN models. Principles
that underlie such theories of LN-LN processing might include subthreshold noise rejection [67,68], sensitivity
to higher order statistical structure in natural scenes, and energy efficiency [65]. Indeed the ability to extract
these models from data in both a statistically and computationally efficient manner constitutes an important
step in the genesis and validation of such a theory.

Another phenomenon robustly observed in the retina is adaptation to the luminance and contrast of the
visual scene. Adaptation is thought to be a critical component of the retinal response to natural scenes [28],
and a promising direction for extensions of our work would be to include luminance and contrast adaptation
in subunit models. Luminance adaptation (adapting to the mean light intensity) is mediated by photoreceptor
cells, and could be modeled by prepending a simple photoreceptor model (e.g. [69]) to an LN-LN model.
There are two major sites of contrast adaptation, at the bipolar-to-ganglion cell synapse [70,71] and at the
spiking mechanism of ganglion cells [70, 72]. Extending the simple thresholding nonlinearities in our model
with a dynamical model of adaptation (e. g. [19]) is a first step towards understanding the interaction between
nonlinear subunits and adaptation.

While our work utilized white noise stimuli, our methods do not make assumptions about the stimulus
statistics and will likely generalize to other stimulus distributions. In particular, stimuli that differentially
activate subunits will be the most effective at differentiating LN and LN-LN models. Stimuli with coarse
spatial resolution will not differentially activate subunits within the receptive field, thus are a poor choice for
studying nonlinear spatial integration. However, fine textures as present in natural stimuli, are very likely to
activate these nonlinear mechanisms in the retina, and thus are a critical component for understanding vision
in the context of ethologically relevant stimuli.

The computational motifs identified by LN-LN models are likely to generalize across different species
because they rely on a few key properties. For example, our predictions about the primary source of
decorrelation in the retina rely on three features of the underlying circuitry identified by LN-LN models: (a)
bipolar cell receptive fields are smaller than those of ganglion cells, (b) bipolar cell receptive field centers
are largely non-overlapping, and (c) bipolar cell synapses have high thresholds. In addition, the logical OR
combination of features relies on high thresholds and bipolar receptive fields that are (largely) non-overlapping.
These properties (high threshold subunits with smaller, non-overlapping receptive fields) are common across
multiple species.

Beyond the retina, multiple stages of cascaded nonlinear computation constitutes a ubiquitous motif in
the structure and function of neural circuits. The tools we have developed to elucidate hierarchical nonlinear
processing in the retina are similarly applicable across neural systems more generally. Thus we hope our work
provides mathematical and computational tools for efficiently extracting and analyzing both informative
descriptive statistics and hierarchical nonlinear models across many different sensory modalities, brain regions,
and stimulus ensembles, thereby furthering our understanding of general principles underlying nonlinear
neural computation.

Methods

Experiments

Experimental data was collected from the tiger salamander retina using a multi-electrode array (Multi-channel
systems), as described elsewhere [9]. Isolated ganglion cells were identified using custom spike sorting software.
The stimulus used was a 100Hz white noise bars stimulus, where the luminance of each bar was drawn
independently from a Gaussian distribution. Spatially, the stimulus spanned approximately 2.8mm on the
retina (50 bars at 55.5µm / bar). Intracellular recordings were performed as described elsewhere [73]. Off
bipolar cells were identified by their flash response, receptive field size, and level in the retina.
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Regularized spike-triggered analysis

To illustrate the benefits of the regularization terms used to fit the LN-LN models, we apply these penalties to
perform regularized spike-triggered analysis. We expect both the STA and the STC eigenvectors to be linear
combinations of filters in encoding models with multiple pathways (derivation in Appendix S1). Therefore,
we expect certain types of structure in said pathways to persist after the linear combination, assuming the
number of pathways is small relative to the stimulus dimension. We thus impose this structure directly
on the descriptive statistics through a set of penalty functions (regularizers). For example, these penalties,
as functions on a candidate descriptive statistic, could encourage smoothness in the spatial and temporal
domains, low rank spatiotemporal structure, or sparsity (i.e. encouraging many filter coefficients to be zero).
The proximal algorithms framework allows us to easily incorporate these penalties into our analysis. Below,
we formulate optimization problems for regularizing the spike-triggered average and covariance which only
require access to the un-regularized estimates. This is useful for the situation where working with the full
spike-triggered ensemble or raw dataset is prohibitive due to computational space or time constraints.

Regularized STA

To compute a regularized STA, without explicitly building an encoding model, we can form an optimization
problem that directly denoises the STA:

x̂STA = min
x
‖x− xSTA‖22 +

m∑
i=1

γi φi(x). (1)

Here, φi(x) are the regularization penalty functions, with an associated regularization weight γi, and xSTA is
the raw (sample) STA from recorded data (which is noisy due to finite sampling). Note that we use mean
squared error to quantify distance from the raw estimate, but other loss functions may be also used. For the
penalty functions φi, we use an `1 penalty that encourages the estimated filter to be sparse (few non-zero
coefficients), and a nuclear norm penalty, which is the sum of the singular values of the spatiotemporal filter
x when viewed as a spatiotemporal matrix. The nuclear norm penalty is advantageous compared to explicitly
forcing the spacetime filter x to be low-rank, as it is a “soft” penalty which allows for many small singular
values, whereas explicitly forcing the filter to be low-rank forces those to be zero.

Regularized STC Analysis

The STC eigenvectors are obtained by an eigendecomposition of the STC matrix C [10,74], which is equivalent
to solving an optimization problem:

maximize Tr(UTCU) (2)

subject to UTU = I,

where U denotes a matrix whose columns are the orthonormal eigenvectors of C. In order to regularize these
eigenvectors, we wish to add penalty terms to (2), which precludes a closed form solution to the problem.
We circumvent this by reformulating the problem using a convex relaxation. First, we consider the matrix
X = UUT , corresponding to the outer product of the eigenvectors. Because of the cyclic property of the
trace, namely that Tr(UTCU) = Tr(UUTC) = Tr(XC), the function to be optimized in (2) depends on
the eigenvector matrix U only through the combination X = UUT . Thus we can directly optimize over the
variable X. However, the non-convex equality constraint UTU = I in (2) is not easily expressible in terms of
X. X is however a projection operator, obeying X2 = X. We replace this with the constraint that X should
be contained within the convex hull of the set of rank-d projection matrices. This space of matrices is a
convex body known as the fantope [75].

The advantage of this formulation is that we obtain a convex optimization problem which can be further
augmented with additional functions that penalize the columns of X to impose prior knowledge about the
structure of the eigenvectors of C. Columns of X are linear combinations of the eigenvectors of C, which
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are themselves linear combinations of the small set of spatiotemporal filters we are interested in identifying.
Therefore, if we expect the spatiotemporal filters of individual biological pathways to have certain structure
(for example, smooth, low-rank, or sparse), then we also expect to see those properties in both the eigenvectors
and in the columns of X.

Putting this logic together, to obtain regularized STC eigenvectors, we solve the following convex
optimization problem:

X̂ = max
X

Tr(XC) +
∑
i

γi φi(X) (3)

subject to X ∈ Fd.

Here C is the raw (sample) STC matrix, which is again noisy due to limited recorded data, and Fd denotes
the fantope, or convex hull of all rank d projection matrices. Each φi is a regularization penalty function
applied to each of the columns of X; i.e. φi(X) ≡

∑N
j=1 φi(x

j), where xj denotes the j’th column of X.
Again, we can solve this optimization problem efficiently using proximal consensus algorithms, described
below. Common regularization penalties and their corresponding proximal operators are shown in Table
S4. The optimization yields a matrix X̂ in the fantope Fd, which may itself have rank higher than d, so
we perform a final eigendecomposition of this matrix to obtain its top-eigenvectors. These eigenvectors
constitute our regularized estimate of the eigenvectors of the significant (expansive) STC eigenvectors (to find
suppressive directions, one could invert C in (3)). A major computational advantage of this formulation is
that we only need to store and work with the N by N raw STC covariance matrix itself, without ever needing
access to the spike-triggered ensemble, an N by M matrix where M (the number of spikes) is typically much
greater than N .

Proximal operators and algorithms

The framework of proximal algorithms allows us to efficiently optimize functions with non-smooth terms.
The name proximal comes from the fact that these algorithms utilize the proximal operator (defined below)
as subroutines or steps in the optimization algorithm. For brevity, we skip the derivation of these algorithms,
instead referring the reader to the more thorough treatment by Parikh and Boyd [48] or Polson et al. [49].
The proximal operator for a function φ given a starting point v is defined as:

Pφ(v, ρ) = argminx

[
φ(x) +

ρ

2
‖x− v‖22

]
. (4)

The proximal operator is a mapping from a starting point v to a new point x that tries to minimize the
function φ(x) (first term above) but stays close to the starting point v (second term). The proximal operator
is a building block that we will use to create more complicated algorithms. We will take advantage of the
fact that for many functions φ of interest to us, we can analytically compute their proximal operators, thus
making these operators a computationally cheap building block.

We used these building blocks to solve optimization problems involving the sum of a number of simpler
terms:

F (x) =
k∑
i=1

φi(x) (5)

where in our application the φi’s represent either data fitting terms (e.g. a log-likelihood) or different
regularization terms or penalty functions on the parameters, x. With respect to learning the parameters of a
linear filter in an LN model, the objective consists of a log-likelihood f(x) along with regularization penalties
that impose prior beliefs about the filter, x. We focus on two main penalties. Sparsity, which encodes
the belief that many filter coefficients are zero, is penalized by the `1-norm (φ1(x) = ‖x‖1). Additionally,
spatiotemporal filters are often approximately space-time separable (they are well modeled as the outer
product of a few spatial and temporal factors). We encoded this penalty by the nuclear norm, `∗, which
encourages the parameters x, when reshaped to form a spatiotemporal matrix, to be a low-rank matrix (the
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nuclear norm `∗ of a matrix is simply the sum of its singular values). Another natural penalty would be
one that encourages the parameters to be smooth in space and/or time, which could be accomplished by
applying an `1 or `2 penalty to the spatial or temporal differences in parameters. As shown below, these
types of penalties are easy to incorporate into the proximal algorithm framework. Other commonly used
regularization penalties, and their corresponding proximal operators, are listed in Table S4.

The proximal consensus algorithm is an iterative algorithm for solving (5) that takes a series of proximal
operator steps. It first creates a copy of the variable x for each term φi in the objective. The algorithm
proceeds by alternating between taking proximal steps for each function φi using that variable copy xi, and
then enforcing all of the different variable copies to agree (reach consensus) by averaging them. The algorithm
is:

xk+1
i = Pφi

(x̄k − uki )

x̄k+1 =
1

k

k∑
i=1

xi

uk+1
i = uki + xk+1

i − x̄k+1,

where i indexes each of the terms in the objective function, xi is a copy of the variable, x̄ is the average of
the variable copies, and ui is known as a dual variable that can be thought of as keeping a running average
of the error between each variable copy and the average. Intuitively, we can think of each variable copy xi
as trying to minimize a single term φi in the objective, and the average, or consensus x̄ forces the different
copies to agree on the best value for the global parameters. After convergence, each copy xi will be close to
the mean value x̄, which is the set of parameters that minimizes the original composite objective.

This algorithm has a number of desirable properties. First, the updates for each term xi can be carried
out in parallel, therefore allowing for speedups when run on a cluster or multi-core computer. Second, it
converges even when terms in the objective are non-differentiable. Due to the repeated application of the
proximal operator, this algorithm works best when the terms φi have proximal operators that are easy to
compute.

This is exactly the case for the regularization terms described above: for the `1 norm, the proximal
operator corresponds to soft thresholding of the parameters. For the nuclear norm, the proximal operator
corresponds to soft thresholding of the singular values of parameters reshaped as a matrix. Occasionally, the
proximal operator may not have a closed form solution. In this case, the proximal step can be carried out
through gradient based optimization of (4) directly. This is the case for some log-likelihoods, such as the
log-likelihood of a particular firing rate under Poisson spiking. In this case, gradient step based optimization
of (4) often dominates the computational cost of the algorithm. As many methods for fitting neural models
involve gradient step updates on the log-likelihood, such methods can then be augmented with additional
regularization terms with no appreciable effect on runtime, by using proximal consensus algorithms for
optimization. Our code for solving formulating and solving optimization problems using proximal algorithms
is provided online at https://github.com/ganguli-lab/proxalgs.

LN-LN models

In this section, we specify the mathematical formulation of our LN-LN models. The model takes a spatiotem-
poral stimulus, represented as a vector x, and generates a predicted firing rate, r(x). First, the stimulus
is projected onto a number of subunit filters. The number of subunits is a hyper-parameter of the model,
chosen through cross validation (we repeatedly fit models with increasing numbers of subunits until held-out
performance on a validation set decreases). If we have k subunits, then the stimulus is projected onto each of
the k filters: wi for i = 1, . . . , k. These projections are then passed through separate subunit nonlinearities.
The nonlinearities are parameterized using a set of Gaussian basis functions (or bumps) that tile the relevant
input space [12, 20], this enforces the nonlinearities to be smooth. We typically use p = 30 evenly spaced
Gaussian bumps that tile the range spanned by the projection of the stimulus onto the linear filter (results
were not sensitive to the number of bumps over a range of 10–30 bumps). For example, a nonlinearity h(u) is
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parameterized as

h(u) =

p∑
j=1

ajφj(u)

=

p∑
j=1

ajφ(u−∆j),

where φ is the basis function, e.g. φ(x) = exp(−x2), ∆j indicates the spacing between the basis functions, p
is the number of bases used, and aj is a weight on that particular basis function. Since the basis functions
and spacings are fixed beforehand, the only free parameters are the aj ’s. For subunit i, the corresponding
nonlinearity has a set of weights aij for j = 1, . . . , p.

The output of the k subunits is then summed and passed through a final nonlinearity. This final
nonlinearity is parameterized as a soft rectifying function r(x) = g log(1 + ex−θ), with two parameters: g is
an overall gain and θ is the threshold. The full LN-LN model is then given by:

r(x) = g log

1 + exp

 k∑
i=1

p∑
j=1

aiφ(wT
i x−∆j)

− θ
 ,

where the parameters to optimize are the subunit filters wi for i = 1, . . . , k, subunit nonlinearity weights aij
for j = 1, . . . , p, and final nonlinearity parameters θ and g.

We optimize the parameters using a maximum likelihood objective assuming a Poisson noise model for
spiking. Rather than optimize all of the parameters simultaneously, we alternate between optimizing blocks
of parameters (joint optimization using gradient descent was prone to getting stuck at solutions that were
less accurate). That is, we alternate between optimizing three blocks of parameters: the subunit filters wi,
the subunit nonlinearities aij , and the final nonlinearity parameterized by θ and g. We optimize each block
of parameters by minimizing the negative log-likelihood of the data plus any regularization terms using
proximal algorithms. The subunit filters are the only parameters with regularization penalties (the nuclear
norm applied to the filter reshaped as a spatiotemporal matrix and the `1 norm), to encourage space-time
separability and sparseness of the filters. The proximal operator for each of these regularization penalties is
given in Table S4, and the proximal operator for the log-likelihood term (which does not have a closed-form
solution) is solved using gradient descent. In addition, after optimizing the block of parameters corresponding
to the subunit filters, we rescale them to have unit norm before continuing the alternating minimization
scheme. This ensures that the distribution of input to the nonlinearities spans the same range, and gets rid of
an ambiguity between the scale of the subunit filters and the scale of the domain of the subunit nonlinearity.
We find that the parameters converge after several rounds of alternating minimization, and are robust with
respect to random initialization of the parameters.

Subspace overlap

We quantify the overlap between two subspaces as the average of the cosine of the principal (or canonical)
angles between the subspaces. The principal angles between two subspaces X ∈ Rn×p and Y ∈ Rn×q
generalize the idea of angles between vectors. Here we describe a pair of p and q dimensional subspaces in n
dimensional space as the span of the columns of the matrices X and Y. Assuming without loss of generality
that p ≤ q, then we have p principal angles θ1, . . . , θp that are defined recursively for k = 1, . . . , p as:

cos θk = max
x∈X

max
y∈Y

xTy = xk
Tyk,

subject to the constraints that the vectors are unit vectors (xTx = yTy = 1) and are orthogonal to the
previously identified vectors (xj

Tx = 0,yj
Ty = 0 for j = 1, 2, . . . , k − 1). That is, the first principal angle is

found by indentifying a unit vector within each subspace such that the correlation, or dot product, between
these vectors (these are known as the principal vectors) is maximized. This principal angle is then the inverse
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cosine of the dot product. Each subsequent principal angle is found by performing the same maximization but
restricting each new pair of vectors to be orthogonal to the previous principal vectors in each subspace. The
principal angles can be efficiently computed via the QR decomposition [76]. We define subspace overlap as
the average of the cosine of the principal angles, 1

p

∑p
k=1 cos θk. This quantity is at most 1 (for two subspaces

that span the same space), and at least 0 (for two orthogonal subspaces that share no common directions).
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S1 Appendix

Relationship between descriptive statistics and encoding models

Here, we derive the relationship between the pathways of any differentiable encoding model and spike-triggered
statistics under Gaussian noise stimulation. We represent a visual stimulus as an N dimensional vector x.
We view a functional neural model as an arbitrary nonlinear function r = f(x), over N dimensional stimulus
space, where r determines the probability that the neuron fires in a small time window following a stimulus
x: r(x) = p(spike | x). The derivation will show how the STA is related to the gradient of the model ∇r(x),
and the STC is related to the Hessian, ∇2r(x).

The STA and STC are the mean and covariance, respectively, of the spike-triggered stimulus ensemble,
which reflects the collection of stimuli preceding each spike [3]. This distribution over stimuli, conditioned on
a spike occurring, can be expressed via Bayes rule,

p(x | spike) =
p(spike | x)p(x)

p(spike)
, (6)

where p(x) is the prior distribution over stimuli and p(spike) is the average firing probability over all stimuli.
Here, we assume a white noise stimulus distribution, in which each component of x is chosen independently
from a Gaussian distribution with zero mean and unit variance. The STA and STC are given by

xSTA = Ep(x|spike)[x] (7)

CSTC = Ep(x|spike)[xxT ]− (xSTA)(xSTA)
T

(8)

Focusing first on the STA:

xSTA =

∫
x p(x | spike) dx

=
1

µ

∫
x r(x)p(x) dx

=
1

µ
Ep(x)[x r(x)]

=
1

µ
Ep(x)[∇r(x)], (9)

where µ = p(spike) is the overall probability of spiking. The last step in the derivation uses Stein’s lemma,
which states that E[xf(x)] = E[∇f(x)] if the expectation is taken over a multivariate Gaussian distribution
with identity covariance matrix, corresponding to our white noise stimulus assumption. This calculation
thus yields the simple statement that the spike-triggered average is proportional to the gradient (or gain)
of the response function, averaged over the input distribution [77]. Applying Stein’s lemma again yields an
expression for the STC matrix:

CSTC =

∫
xxT p(x | spike)dx− (xSTA)(xSTA)

T

=
1

µ

∫
xxT r(x)p(x)dx− (xSTA)(xSTA)

T

=
1

µ
Ep(x)[xxT r(x)]− (xSTA)(xSTA)

T

=
1

µ
Ep(x)[∇2r(x)]− (xSTA)(xSTA)

T
(10)

Intuitively, these results state that the STA is related to the slope (first derivative) and the STC is related to
the Hessian curvature (matrix of second derivatives) of the multi-dimensional nonlinear response function
r(x).
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For example, consider a linear-nonlinear model r = f(wTx) which has the following gradient: ∇r(x) =
f ′(wTx)w and Hessian: ∇2r(x) = f ′′(wTx)wwT . Plugging these expressions into equations (9) and (10)
reveals that the STA is proportional to w and the STC is proportional to wwT . Therefore, we recover the
known result [2] that the STA of the LN model is proportional to the linear filter, and there will be one
significant direction in the STC, which is also proportional to the linear filter (with mild assumptions on the
nonlinearity, f , to ensure that slope and curvature terms in (9) and (10) are non-zero).

We can extend this to the case of a multilayered circuit with k pathways, each of which first filters the
stimulus with a filter w1 . . .wk. Regardless of how these pathways are then combined, we can write this
circuit computation as r = f(WTx) where W is a matrix whose columns are the k pathway filters, and f
is a k-dimensional time-independent (static) nonlinear function. We can think of the k dimensional vector
u = WTx as the activity pattern across each of the k pathways before any nonlinearity. The gradient for
such a model is ∇r(x) = WT∇f(u), where ∇f(u) is the gradient of the k-dimensional nonlinearity. Using
equation (9), the STA is then a linear combination of the pathway filters:

xSTA =
1

µ

k∑
i=1

αiwi,

where the weights are given by

αi = Ep(x)[ ∂uir(u) ],

and correspond to the average sensitivity, or slope of the neural response r with respect to changes in the
activity of the ith filter.

The Hessian for the multilayered model is ∇2r(x) = W∇2fWT, where ∇2f is the k-by-k matrix of second
derivatives of the k-dimensional nonlinearity f(u). From equation (10), the STC is then given by:

CSTC =
1

µ2
WHWT , (11)

where the k-by-k matrix H is:

H = µE[∇2f(u)]− E[∇f(u)]E[∇f(u)]
T
.

This expression implies that nontrivial directions in the column space of CSTC correspond to (span the same
space as) the column space of W. Therefore, the significant eigenvectors of the STC matrix will be linear
combinations of the k pathway filters, and the number of significant eigenvectors is at most k.

Note that equations (9) and (10) are valid for any differentiable model, including those with more than
two layers, divisive interactions, feedback, and so on.
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S2 Figure

Example bipolar cell receptive fields

Fig 11. Example bipolar cell receptive fields. Each panel shows a spatiotemporal receptive field of a bipolar
cell, recorded intracellularly from the salamander retina (see Methods).
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S3 Figure

Subunit and retinal ganglion cell types

Fig 12. Cell type classification for salamander ganglion cell and subunit filters. (a) K-Means clustering
applied to the temporal kernel (temporal component of the spatiotemporal receptive field) of n = 23 recorded
retinal ganglion cells. (b) K-Means clustering applied to temporal kernels of n = 92 model-identified subunits.
(c) Frequency of the different cell types, both for RGCs and subunits.
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S4 Table

Proximal operators for common regularization penalties

Table 1. Common regularization penalties and their proximal operators (in closed form).

Penalty function, φ(x) Proximal operator, Pφ(v, ρ) Computational complexity

`2-norm, γ‖x‖2 v
1+1/ρ O(n)

`1-norm, γ‖x‖1


vi − γ/ρ vi ≥ γ/ρ
vi + γ/ρ vi ≤ −γ/ρ
0 otherwise

O(n)

Nuclear norm, ‖X‖∗ X = USVT , Pφ(v, ρ) = US
′
VT , S

′
=

{
σi − γ/ρ σi ≥ γ/ρ
0 otherwise

O(min(mn2, nm2))

Non-negativity, I(x > 0)

{
vi vi > 0

0 vi ≤ 0
O(n)
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