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ABSTRACT  

Cancer genomes often harbor hundreds of molecular aberrations. Such genetic variants 

can be drivers or passengers of tumorigenesis and, as a side effect, create new 

vulnerabilities for potential therapeutic exploitation. To systematically identify genotype-

dependent vulnerabilities and synthetic lethal interactions, forward genetic screens in 

different genetic backgrounds have been conducted. Here, we extended genetic 

interaction network analysis approaches that were established for model organisms to 

integrate and analyze data from 83 CRISPR/Cas9 screens in human cancer cell lines. 

We integrated functional data with information on loss-of-function variants to explore the 

relationships of more than 2.2 million gene-gene combinations. In addition to known 

gene-gene dependencies, our analysis identified new genotype-specific vulnerabilities 

of cancer cells. By clustering genes with similar genetic interaction profiles, we drew the 

largest map of genetic interactions in a cancer cell to date. This approach is scalable 

and highlights how diverse genetic screens can be integrated to comprehensively build 

maps of genetic interactions in cancer. 
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INTRODUCTION 

Genes rarely function in isolation to affect phenotypes at the cellular or organismal 

level. Many studies have described how genes act in complex networks to maintain 

homeostasis by fine-tuning cellular or organismal reactions to internal or external stimuli 

(Bergman & Siegal 2003). A loss of genetic buffering can result in the emergence of 

diseases, such as cancer, in humans (Hartman et al. 2001; Hartwell et al. 1997). 

Mutations can create genetic vulnerabilities in cancer cells, for example, by deactivating 

one of two genetically buffered pathways (Nagel et al. 2016; Torti & Trusolino 2011; Luo 

et al. 2009). Therapeutic approaches attempt to exploit such events by selectively 

inducing cell death in cancer cells while causing little harm to normal cells (Kaelin 2005; 

Nijman 2011)  

 To systematically identify genetic interactions, pairwise gene knockouts or 

knockdowns experiments can be performed (Mani et al. 2008) In cases where a 

measured phenotype of the double knockout is stronger than expected based on the 

the two single knockout phenotypes, it is called aggravating or synthetic lethal 

interaction (Bridges 1922). In contrast, a buffering (or alleviating) interaction is observed 

when the measured double phenotype is weaker than expected. Arrayed screens, 

performed by mating of loss-of-function mutant yeast strains have pioneered 

combinatorial gene screening (Tong et al. 2001; Davierwala et al. 2005; Baryshnikova 

et al. 2010; Costanzo et al. 2010) Methods of pairwise gene perturbation were later 

extended using combinatorial RNAi to map genetic interactions in cultured metazoan 

cells (Horn et al. 2011; Laufer et al. 2013; Fischer et al. 2015; Martin et al. 2015; Byrne 

et al. 2007; Snijder et al. 2013; Srivas et al. 2016) However, the screening of all 

pairwise gene combinations scales poorly with increasing genome size. 

 Genome-scale perturbation screens can now be efficiently performed in many 

cell lines using single-guide (sg)RNA libraries, whereby the CRISPR/Cas9 is used for 

the targeted inactivation of genes (Doudna & Charpentier 2014; Barrangou 2014; 

Shalem et al. 2014; Wang et al. 2014; Horlbeck et al. 2016). Since each cell line has a 

different genetic background, this enables the investigation of genotype-specific 
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vulnerabilities (Hart et al. 2015; Steinhart et al. 2017; Wang et al. 2017; Tzelepis et al. 

2016; Garnett et al. 2012; Iorio et al. 2016), thus providing an alternative approach to 

comprehensively map gene-gene interactions. 

 Here, we present an integrated analysis based on a curated and reanalyzed data 

set of 83 genome-scale CRISPR/Cas9 screens in 55 different human cancer cell lines 

to score gene-gene combinations for genetic interactions. Filtering all annotated 

mutations for loss-of-function mutations enabled us to create a global profile of loss-of-

function perturbations in each cancer cell line. For each cell line included in our dataset, 

we combined the intrinsic gene loss-of-function profile with gene-level fitness scores 

derived from single-perturbation CRISPR-screens. By applying a linear mixed-effects 

model, we tested 2.2 million pairwise gene combinations by comparing wild-type  

against loss-of-function alleles in cell lines. From genetic interaction profiles, we 

generated a map of genetic interactions in cancer cells by connecting genes with similar 

profiles and identified network modules with similar functional characteristics.  

 

RESULTS 

Integration of somatic variation and copy number data creates loss-of-function 
profiles of cancer cells 

We devised a workflow to create an aggregated dataset containing relative fitness 

scores for each gene perturbation across all genes that were analyzed (Figure 1A-D). 

First, we assembled cell line-specific information about gene copy-numbers and 

somatic mutations from the Cancer Cell Line Encyclopedia (CCLE; Barretina et al. 

2012) and COSMIC (Forbes et al. 2017) Loss of both genetic alleles and disruptive 

mutations such as frameshift or nonsense mutations on at least one allele were 

considered as loss-of-function events. To correct for sequencing errors and variants 

that are exclusive to the cell line model, loss-of-function events were compared to 

variants observed in primary tumors, as reported in COSMIC, and to mutations listed in 

dbSNP (Sherry et al. 2001) Overall, our analysis revealed 54,064 loss-of-function 

events across 1,412 cancer cell lines (Supplementary Table 1). We identified a variety 
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of tumor suppressor genes as being commonly affected by loss-of-function events, with 

CDKN2A as the most frequently mutated gene (Figure S2C) (p16, Liggett & Sidransky 

1998) p16, which is encoded by CDKN2A, has recently been reported to directly 

interact with p53 and to enhance its transcriptional and apoptotic functions (Al-Khalaf et 

al. 2017). Similarly, loss of CSMD1, which ranked second in our analysis of loss-of-

function events in cancer cell lines, has been linked to the development of a variety of 

cancers (Escudero-Esparza et al. 2016; Zhu et al. 2016; Tang et al. 2012; Zhang & 

Song 2014) 

 We further compared the frequency of loss-of-function events across tissues. In 

our dataset, most gene deletions can be found in colorectal, prostate and endometrial 

cancer cell lines (Figure 2B). On average, we identified 38 loss-of-function events per 

cell line, while few cell lines harbored more than 400 loss-of-function mutations (Figure 

2C). Next, we examined whether cell lines could be clustered by tissue types on their 

loss-of-function genotypes. For example, our analysis allowed for colorectal cell lines to 

be distinguished from pancreatic and skin cancer cell lines based on the presence of 

loss-of-function mutations in nine characteristic genes. Pancreatic and skin cancer cell 

lines commonly share loss-of-function of CDKN2A, MTAP, DKN2B and DMRTA1 loss-

of-function, all of which are located on region p21.3 of chromosome 9, indicating a 

mutual mutation or deletion event. On the other hand, APC loss-of-function is 

characteristic of colorectal cancer cell lines (Figure 2D). 

 

Integrated analysis of CRISPR-Cas9 screens identifies genotype-specific 
vulnerabilities 

To examine whether the genotypic makeup of a cell can influence the effect of 

CRISPR/Cas9-mediated gene perturbation, we analyzed all viability screens that were 

available in the GenomeCRISPR database (Supplementary Table 2, Figure S2A). 

These screens are pooled loss-of-function screens using lentiviral single-guide RNA 

(sgRNA) libraries. Using BAGEL, the degree of essentiality of a gene can be quantified 

by deriving a fitness score (Hart & Moffat 2016). We individually performed BAGEL for 

each screen individually (Figure S2C).  
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To assess the quality of each screen we created precision-recall curves to 

assess how well gold-standard sets of core-essential and non-essential genes could be 

identified. Based on the results, we excluded seven screens from downstream analysis 

(Figure S2B). We then integrated the results by performing quantile normalization 

(Figure S2D-E). Clustering analysis revealed strong batch effects, which correlate with 

the fact that the analyzed screens were derived from different laboratories using 

different protocols and sgRNA libraries (Figure S2F). Therefore, we performed a batch-

correction using ComBat (Leek et al. 2012) to remove confounding effects from the data 

(Figure S2G; Supplementary Table 3; Figure 3A). After batch-correction we observed 

that screens in similar cell lines and tissues clustered together (Figure S2G). We 

robustly observed low fitness scores for known core-essential genes (Figure 3B) and 

high fitness scores for non-essential genes (Figure 3C).  

 To investigate how the response to CRISPR/Cas9-mediated gene disruption can 

vary across tissue, we performed one-way ANOVA analysis to identify genes that 

display significantly altered fitness scores in different tissues. As an example, we found 

that colorectal cancer cells are more sensitive to perturbation of β-catenin compared to 

cell lines that originated from other tissues (CTNNB1; Figure 3D). Especially in 

colorectal cancer, Wnt/β-catenin signaling has been frequently shown to be aberrantly 

upregulated (Zhan et al. 2017). Furthermore, we identified a strong dependency of 

hematopoietic and lymphoid cancer cells on CBFB, CCND3 and MYB, all of which have 

been identified as essential regulators of hematopoiesis (C. Q. Wang et al. 2015; 

Cooper et al. 2006; Greig et al. 2008). Moreover, we analyzed genes frequently 

mutated in various types of cancer. As a prominent example, MYC is dysregulated in 

more than half of all human cancers (Meyer & Penn 2008) and is a well-known driver of 

cancer development (Little et al. 1983) From our dataset, we selected all cancer cell 

lines harboring MYC mutations. Based on these data, we performed a gene set 

enrichment test to identify pathways that either confer a fitness advantage or 

disadvantage when perturbed by loss-of-function mutations using CRISPR. 

Interestingly, we observed that the knockout of several genes that are either part of the 

SWI/SNF chromatin remodeling complex or EGFR signaling significantly reduces the 
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fitness of MYC-mutated cancer cell lines. Vice versa, loss-of-function of genes 

implicated in FGFR3 signaling or the Unfolded Protein Response (UPR) significantly 

enhances the cellular fitness of the aforementioned cell lines (Fig. 3D). Interactions and 

the mutual regulation of gene expression between several parts of the SWI/SNF 

chromatin remodeling complex and MYC have been previously described (Nagl et al., 

2006 16452181, Dingar et al., 2015 25452129 (Stojanova et al. 2016). We speculate 

that mutations within the SWI/SNF complex could perturb the transcriptional regulation 

of target genes that are mutually regulated by SWI/SNF and MYC, thus resulting in 

reduced cellular fitness.  

Furthermore, it has been shown that increased MYC function can lead to an 

increased cellular dependency on glucose and glutamine in cancer cells. Glutamine 

uptake in glucose-deprived cells triggers UPR, which results in the inhibition of cell 

growth by JNK activation in most cases (Shajahan-Haq et al. 2014). This could explain 

the observed increase in mean fitness upon disruption of UPR in MYC mutated cell 

lines. Interestingly, there are observed different cellular responses upon either targeting 

components of EGFR or FGFR3 signaling. Recently, it has been reported that in 

KrasG12D-driven cancers, MYC expression, phosphorylation and MYC target gene 

expression are induced in an EGFR-dependent manner and that EGFR inhibition 

prevents KrasG12D-induced Myc protein expression (Diersch et al. 2016). In FGFR-

mutated cancers, c-MYC has been described as a key downstream effector that 

precedes FGFR-MEK/ERK signaling, and ectopic expression of non-degradable c-Myc 

conferred resistance to FGFR inhibition (Liu et al. 2017).  

 We next hypothesized that genes that play a role in similar biological pathways 

could be identified based on similar response to perturbation following specific driver 

mutations in cancer cells. Again, we selected three genes (NRAS, PIK3CA and FGFR3) 

that are frequently mutated across multiple cancer types. Using a one-way ANOVA, we 

identified genes with significantly altered fitness scores based on the mutation status of 

the selected cancer drivers. We observed, that NRAS-mutated cells, along with NRAS 

itself, are dependent on TFAP4, DNAJC9 and STK11 (Figure 3F). These findings 

suggest that these genes might contribute to NRAS-mediated carcinogenesis. 
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Furthermore, we observed that cells with mutations in FGFR3 or PIK3CA share many 

genetic dependencies (e.g. KIF18A, NDE1, Figure 3F). Simultaneous mutations in 

PIK3CA and FGFR3 have commonly been described in bladder tumors (Kompier et al. 

2010; López-Knowles et al. 2006) which might indicate common dependencies that 

arise upon perturbation of either pathway. 

 

A linear mixed-effects model identifies synthetic interactions 
To systematically identify synthetic genetic dependencies, we formed all pairwise 

combinations between genes that were perturbed in screening experiments (target 

genes) and genes that are frequently lost in cancer cell lines (query genes). We then 

used a linear mixed-effects model (LME) to test each of these combinations for 

differential fitness effects between the mutated and the wild-type cell lines. An 

advantage of using an LME in the context of our data is that it allows for the 

consideration of potential batch effects in the form of random effect modeling. Among 

the ~2.2 million gene-gene-combinations that were tested, we found 2,365 significant 

interactions at a 20% false discovery rate (FDR; Figure 4A; Supplementary Table 4). 

Globally, we observed an increase in fitness sensitivity more frequently than an 

increase in resistance. 

By this approach, we found that SMAD4-depleted cells showed a higher 

sensitivity to KLF5 perturbation (Figure 4B). It has been previously reported that KLF5 

can prevent SOX4-induced apoptosis in SMAD4-deficient cells (David et al. 2016), 

suggesting KLF5 as potentially interesting target for drug therapy in SMAD4-negative 

cancers. Similarly, we observed an increased sensitivity to ERBB2 mutation depending 

on the mutation status of SMAD4, which we could also corroborate with drug sensitivity 

data from Iorio et al. (Fig. 4C, Iorio et al. 2016). Deleterious SMAD4 mutations were 

previously shown to elevate levels of ERBB2 in lung and pancreatic tumors and thereby 

create a dependency on ERBB2 that can be exploited using drug treatment (Liu et al. 

2015; Zhao et al. 2010). Extending this approach to other gene pairs, we also identified 

an induced vulnerability of BCOR mutant cancer cell lines to MET mutation or inhibition 

by Crizotinib (Fig. 4D). We hypothesized that the loss of BCOR sensitizes cells to 
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apoptosis by up-regulating BCL6, thereby creating a vulnerability to anti-proliferative 

treatment (Grossmann et al. 2011; Huynh et al. 2000; Tortora et al. 2003).  

Finally, we noticed that many cell lines with disruptions of the tumor suppressor 

gene FHIT (Waters et al. 2014) showed high sensitivity to perturbation of β-catenin 

(CTNNB1; Figure 4D). Previous studies have shown that FHIT can repress the 

transcriptional activity of β-catenin (Weiske et al. 2007) suggesting that loss of FHIT 

could mediate Wnt signaling-driven oncogenesis. However, within the panel of FHIT-

mutant cell lines, we observed a cell line-specific dependency on the function of 

CTNNB1, indicating that additional genetic alterations might explain the differences that 

were observed. Therefore, we searched for mutation patterns that separated separating 

the β-catenin sensitive from the resistant FHIT-deficient cell lines. We observed that all 

resistant cell lines share a 3-base-pair deletion in the tumor suppressor gene GUCY2C 

(Lin et al. 2010), whereas it remains unaltered in all sensitive cell lines. Other genes 

with different mutation patterns were CAMTA1, C10orf11, CWF19L2, and PRSS2 (loss-

of-function in CTNNB1-LoF-sensitive cell lines) as well as TMEM123, CSMD1, NPR1, 

CLTCL1 and EPHA6 (loss-of-function in CTNNB1-LoF-resistant cell lines). Taken 

together, these mutations could provide a differential genetic background, which could 

explain why some cell lines exhibit CTNNB1 interactions with FHIT while others do not. 

 

∏-scores quantify genetic interaction strength 

To quantify genetic interactions, we have previously described the π-score to describe 

the difference between the observed fitness score and a prediction based on a non-

interacting model (Laufer et al. 2013; Horn et al. 2011) We computed π-scores for all 

pairwise combinations of perturbed genes and loss-of-function mutations (Figure 5A; 

Supplementary Table 5). We observed a tendency towards positive interactions among 

genes with low interaction counts, while genes with intermediate interaction counts 

displayed more negative (synthetic lethal) interactions at an absolute π-score cutoff of 

0.3 (Figure 5B). These findings agree with results previously reported in yeast 

(Costanzo et al. 2010). We examined interaction scores of synthetic interactions 
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described above (Figure 5C-E). For all three interactions, the measured fitness strongly 

differed from the median fitness scores that were individually observed for the target 

and query across all data points. We noticed, that the query main effect is very small 

throughout all query genes. This could be explained by the fact, that cancer cells are 

able to acquire loss-of-function mutations in these genes without suffering selective 

disadvantage. For our analysis, this implies that the difference between target main 

effect and the measured effect is the main determinant of genetic interaction strength. 

 Previous studies have shown that genes sharing common functions can be 

clustered based on the similarity of their interaction profiles (Costanzo et al. 2010; 

Baryshnikova et al. 2010; Horn et al. 2011; Laufer et al. 2013; Fischer et al. 2015; 

Costanzo et al. 2016) To investigate whether such a clustering could be achieved 

based on interaction scores derived from CRISPR/Cas9 mediated knockout screens, 

we selected members from the NADH-ubiquinone oxidoreductase and mediator 

complexes and clustered them by the similarity of their interaction profiles with query 

gene/loss-of-function mutations. Members of both complexes could be separated, 

forming distinct clusters based on Ward’s hierarchical clustering method. As a negative 

control, we added four ribosomal proteins to the clustering. As these proteins constitute 

essential housekeeping genes, we did not expect them to show strong interactions with 

any query gene. This assumption could be further confirmed by the clustering analysis 

(Figure 5F). 

 

Interaction profile similarities map a network of genetic interactions in cancer 
cells 

To generate a network of genetic interactions in cancer cells, we defined genetic 

interactions based on a combined threshold (absolute π-score > 0.2, p-value < 0.01) 

and calculated the Pearson correlation coefficient between pairs of interaction profiles 

among all target genes. We selected all target gene pairs whose profiles similarity 

exceeded a correlation of 0.6 and connected them to a network, applying a force-

directed spring-embedded layout that can position highly correlating genes proximal to 

each other (Figure 6A). We next used Spatial Analysis of Functional Enrichment (SAFE; 
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Baryshnikova 2016) to identify regions in the network enriched for specific biological 

processes as annotated by Gene Ontology (GO; Ashburner et al. 2000; Figure 6B; 

Supplementary File 1; Supplementary Table 6). SAFE analysis revealed clustering of 

16 network regions, which were associated with 66 different GO terms and comprised 

in total 601 genes. Many of the enriched modules display functional profiles in 

metabolism, signaling and developmental processes and are as such known to be 

aberrant in cancer cells. During cancer development and based on the accumulation of 

cancer-driving mutations, cancer cells commonly acquire changes in signaling 

pathways that affect proliferation, motility and survival (Martin 2003). These alterations 

constitute main drivers of malignant transformation. In accordance with this, we could 

observe a high number of genetic interactions focusing on “tissue development and 

signal transduction” in cancer cells (Fig. 6B). Other related clusters were “cellular 

locomotion” and “cell adhesion and immune response”. “Cellular respiration” was 

among the largest clusters obtained in our analysis with 21 GO terms and 46 genes 

related to mitochondrial oxidative phosphorylation and metabolic processes. To achieve 

a high proliferation rate and growth, cancer cells require a large amount of energy in 

form of ATP as well as metabolite building blocks for the synthesis of e.g. nucleic acids, 

proteins (Dell’ Antone 2012). In line with this, we obtained a second cluster centering on 

the conversion of pyruvate to acetyl-CoA, the latter one being the main metabolite 

required for driving the production of ATP in the citric acid cycle (“Pyruvate 

metabolism”, Fig. 6B). The high need for building blocks could further explain the strong 

epistatic interactions of genes implicated in “molecule transport” and “macromolecule 

biosynthesis”, two additional clusters we obtained with our analysis of genetic 

interactions in cancer cells. Surprisingly, cancer cells commonly switch from the highly-

efficient process of mitochondrial oxidative phosphorylation to the, in terms of ATP 

production, less efficient degradation of pyruvate into lactate – a metabolic change that 

is thought to provide the increased amount of nutrients needed to maintain high 

proliferation rates (Van der Heiden et al. 2009). However, a recent report supports the 

notion that mitochondrial respiration nevertheless provides an advantage in tumor 
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development and progression. Thus re-establishment of lost mitochondrial function is 

also favored in tumor cells (Tan et al. 2015).  

In addition, we found processes that are less widely studied and not directly 

linked to cancer. Protein UFMylation, for example, is a post-translational protein 

Ubiquitin-like modification, that comprises the conjugation of ubiquitin fold modifier 1 

(UFM1) to target proteins. Aberrations in the UFMylation pathways have been linked to 

several diseases, including cancer (Wei & Xu 2016; Yoo et al. 2014). Interestingly, 

genes implicated in protein ufmylation cluster with genes regulating intracellular 

estrogen receptor signaling in our analysis. One major target protein of UFM1 

conjugation is activating signal cointegrator 1 (ASC1). Polyufmylation of ASC1 has 

been shown to promote breast cancer development by transcriptional regulation of 

estrogen receptor a signaling (Yoo et al., 2014). Similar genetic interactions of genes 

involved in protein ufmylation and estrogen receptor signaling support the notion of 

ufmylation as an modulator of estrogen receptor signaling.  

 

DISCUSSION 

To identify novel functions of known genes or to assign cellular function to unknown 

genes, forward genetic screens have been conducted in many model systems ranging 

from bacteria to human cells (Boutros & Ahringer 2008). Combining high-throughput 

screening methods with the ability to reliably knock out every gene in the human 

genome by programmable nucleases now opens up the possibility of studying the 

consequences of complete or partial loss-of-function mutations with unprecedented 

accuracy in various mutational backgrounds. Genome-wide screens, predominantly for 

gene essentiality, have been performed and have identified a large number of known, 

new and context-specific essential genes (Hart et al. 2015; Wang et al. 2015; Wang et 

al. 2014; Evers et al. 2016; Morgens et al. 2016; Rauscher et al. 2017; Zhan & Boutros 

2016) We developed an analytical approach to integrate dozens of high-throughput 

CRISPR/Cas9 viability screens independent of screen size, library, Cas9 type and 

screening protocol. Because, compared to other techniques, CRISPR/Cas9 screens 

have shown to be a more sensitive method by which perturbation-induced phenotypes 
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can be discovered in human cells (Wang et al. 2015; Hart et al. 2015), such an 

approach shows great promise for the systematic discovery of cancer vulnerabilities. 

We integrated data from 83 screens in human cancer cell lines and analyzed the 

viability effects of CRISPR/Cas9 perturbations in the context of the cell lines’ genetic 

backgrounds. Using this data, we uncovered novel genetic interactions among genes 

implicated in tumorigenesis and the resistance to therapy. We further show that genetic 

interactions differ in cancer cells derived from different tissues, which can shed light on 

pathways that play important roles in specific cancer types, e.g. CTNNB1-dependent 

Wnt signaling. Furthermore, differential response to gene perturbation can be analyzed 

in the context of specific driver mutations. Beyond this, genes can be clustered by 

similarities in their genotype-dependent perturbation response, which can also 

associate them with joint biological processes but limited currently available data still 

poses challenges on the analysis. 

 In our analysis, we grouped mutations into gain-of-function and loss-of-function 

mutations. However, specific mutations can have distinct functional implications, which 

could confound the analysis. Moreover, in our analysis we have only been able to look 

at a limited number of mutated genes. We believe that as more data become available, 

it will be possible to analyze the mutations at a higher resolution, which could then 

highlight very specific interactions that could not be discovered previously. Moreover, 

richer data will allow for a more in-depth investigation of driver genes. 

 Many efforts have been dedicated to the identification of synthetic lethal 

interactions and findings have been translated into clinical successes (Lord et al. 2015) 

We systematically evaluated 2.2 million combinations of genes and found many 

candidates for synthetic genetic interactions. Among these, we found known 

interactions, suggesting that our approach could identify known biological pathways. 

Furthermore, we identified new dependencies that could be interesting targets for drug 

therapy. One potentially actionable example is a synthetic lethal interaction between 

MET and the BCL6 co-repressor BCOR. Crizotinib, an FDA-approved MET inhibitor, 

might be an interesting candidate for the treatment of BCOR-deficient cancers, 

including stomach, head and neck or esophageal cancer (Gao et al. 2013).  
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 It has previously been demonstrated that profiles of synthetic genetic interactions 

can group functionally related genes through “guilt by association”. Studies in human 

cells have formerly relied on RNA interference. However, it has been shown that this 

method has limitations, such as off-targeting and dosage compensation effects, that 

can be overcome by CRISPR/Cas9. Our approaches allowed us to analyze interaction 

profiles using data from many high throughput CRISPR/Cas9 experiments. We created 

a network that groups genes into clusters with enriched functional profiles. Findings 

from this analysis may be important for two reasons: first, hypotheses about the 

function of weakly characterized genes that are frequently deleted in cancer cells can 

be generated by looking at the common interaction partners members within functional 

network modules; and second, such a network may serve as a powerful tool to infer the 

function of entirely uncharacterized genes based on the function of connected genes. 

For example, over 10% of the genes in our network are not annotated with GO 

biological processes.  

We noticed that our network does not enrich for modules corresponding to 

housekeeping processes even though this is frequently observed in analogous 

analyses in other organisms. This is a consequence of the fact that in our data query 

main effects are consistently very small causing the strength of an interaction to be 

determined mainly by the difference in target main effect and measured effect. We 

reason that small query effects are explained by the fact that cancer cells can acquire 

loss-of-function variants in these genes with suffering selective disadvantage. 

Consequently, as the knockout of core-essential genes tends to be lethal irrespective of 

the genetic background of the cell, a genetic interaction is here rarely observed. Our 

approach therefore specifically maps interactions in pathways that are, in one way or 

another, relevant in the context of cancer. We believe, however, that screening in 

isogenic cell line models, where loss-of-function variants that do not naturally occur are 

introduced artificially, could extend this context.  

In its current state, a limiting factor of this type of analysis is the amount of 

available data. At present, there are approximately 200 genes that have been found to 

be frequently deleted in the cell lines included in our data and for which synthetic 
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genetic interactions can be tested. Therefore, only genes that interact with these 

frequently deleted genes can currently be examined. Nevertheless, this number will 

improve rapidly as new data are published, which will then allow for the creation of 

increasingly complex interaction networks. Our approach is scalable and can easily be 

expanded as new data becomes available. All in all, we believe that the presented 

approach can be a powerful way to systematically discover synthetic genetic 

interactions that may be of clinical interest. Furthermore, we believe that it can serve as 

an important asset to the quest towards more complete understanding of how human 

genes function. The presented workflow scales well as increasing amounts of data are 

becoming available.  

 We expect many more CRISPR/Cas9 screens in various cell lines to be carried 

out in future. We will expand our analysis once these data become available to improve 

and diversify our findings. Finally, we aim to extend our analysis to also include data 

from other experiment types such as physical interactions derived from protein-protein 

interaction studies. Most synthetic genetic interactions, for example, do not link genes 

that are members of the same pathways but instead they connect members of two 

interacting pathways (Kelley & Ideker 2005). Therefore, integrating synthetic 

interactions and physical interactions derived from protein-protein-interaction 

experiments might provide important new insights into how biological pathways interact 

with each other. 

 

 
METHODS 

Genetic profiles of cancer cell lines 
To generate a profile of all loss-of-function genes in cancer cell lines all somatic 

mutation data was downloaded from the COSMIC database (Forbes et al. 2017). 

Mutations of type ‘Unknown’, ‘Substitution - coding silent’, ‘Complex - deletion inframe’, 

‘Complex - insertion inframe’, ‘Deletion - In frame’, ‘Insertion - In frame’, ‘Nonstop 

extension’ and ‘Substitution - Missense’ were excluded from the data.  Additional 

mutation data was downloaded from the Cancer Cell Line Encyclopaedia (Barretina et 
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al. 2012) All mutations classified as one of ‘Frame_Shift_Del’ (frameshift deletion), 

‘Frame_Shift_Ins’ (frameshift insertion), ‘Nonsense_Mutation’, ‘Stop_Codon_del’ 

(deletion of start codon) and ‘Stop_Codon_Ins’ (insertion of a stop codon) were retained 

for further analysis. Furthermore, copy number data was downloaded from CCLE 

(Barretina et al. 2012). These data contain log2-transformed copy number fold changes 

between healthy samples and cancer cell lines at the gene level. The absolute copy 

number of each gene per cell line was inferred from the fold change data as 

 		C = 2x ×2⎢⎣ ⎥⎦   

Where C is the absolute copy number and x is the log2 fold change between cell line 

and healthy sample. In order to assess whether this provides a realistic estimate of the 

total copy number we analyzed the derived copy number for all Y-chromosome genes 

in all 378 female cell lines (Figure S1) where copy numbers of 0 were robustly 

estimated.  Finally, we downloaded pre-processed gene-level copy number data from 

COSMIC. All genes where a copy number of 0 was estimated in a cell line were marked 

as loss-of-function genes, excluding Y-chromosome genes. Loss-of-function data from 

COSMIC and CCLE was aggregated into one matrix which was used as the final profile 

of cancer cell line loss-of-function. To eliminate sequencing errors and variants specific 

to the cell line model, we then compared identified loss-of-function events to primary 

tumor data. We used primary tumor data reported in COSMIC, which include amongst 

others information from The Cancer Genome Atlas (TCGA; Cancer Genome Atlas 

Research Network et al. 2013). We removed all loss-of-function events that could not 

be found in any primary tumor. We furthermore excluded somatic variants for which no 

entry could be found in dbSNP (Sherry et al. 2001). 

 
Analysis of CRISPR-Cas9 screens 
To compare fitness phenotypes of high-throughput CRISPR-Cas9 screens, all screens 

were reanalyzed uniformly using the Bayesian Analysis of Gene Essentiality (BAGEL; 

Hart & Moffat 2016). As a first step, all negative selection screens for cell viability were 

downloaded from the GenomeCRISPR database (Rauscher et al. 2017). Screens in cell 
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lines that could not be mapped to any of the cell lines in the loss-of-function profile were 

removed. Moreover, screens in the HeLa cell line were excluded from further analysis, 

as this cell line is known to be very heterogeneous (Masters 2002). Essentiality scores 

for all remaining screens were calculated for each screen individually using BAGEL 

(Hart & Moffat 2016). BAGEL takes as input a table containing log2-transformed fold 

changes of single guide RNA (sgRNA) read counts. To generate the input, raw read 

count data provided by the original authors of the experiment were scaled to a median 

of 1 and fold changes were calculated for each replicate individually as 

		
fcsgRNA = log2(

rcsample
rcT0

)  

 where rcsample is the normalized read-count measured in the sample cell population and 

rcT0 is the normalized read count measured at time point 0. In some cases, the read-

count abundance in the plasmid DNA pool was given instead of time point 0 sequencing 

data of cells. Thus, the plasmid DNA read-counts were used to calculate the fold 

changes for all sample replicates of those screens. Furthermore, in 2 cases (Doench et 

al. 2016; Munoz et al. 2016) no read count data was available. Here we used the fold 

change values provided by the authors of the original experiment as input for BAGEL. 

In each screen, all sgRNAs with a measured read count of < 20 at time point 0 were 

removed from the analysis. Furthermore we excluded all sgRNAs in the GeCKOv2 

library (Sanjana et al. 2014) that were flagged as ‘isUsed = FALSE’ in the 

‘Achilles_v3.3.8.reagent.table.txt’ 

(https://portals.broadinstitute.org/achilles/datasets/7/download) on the Project Achilles 

(Aguirre et al. 2016) website. To estimate essentiality scores for genes in a screen, 

BAGEL relies on a training set of core-essential genes and non-essential genes. These 

are lists of genes that are known to be essential or non-essential, respectively, in 

almost every cell line (Hart et al. 2014). For our analysis, we used the gene lists 

provided on the BAGEL SourceForge webpage (https://sourceforge.net/projects/bagel-

for-knockout-screens/files/?source=navbar). Overall, 83 screens in 55 different cell lines 

were analyzed. 
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Quality control of screening data 

To assess the quality of each screen after BAGEL re-analysis we determined if 

reference core- and non-essential genes could be identified successfully. We used the 

ROCR R package (Sing et al. 2005) to generate precision-recall-curves for each 

experiment (Figure S3). Here the Bayes Factors in the BAGEL output calculated for 

these core- and non-essential reference genes were considered as predictions. Seven 

screens achieved an area under the precision-recall-curve of less than 0.85. They were 

excluded from downstream analysis (Figure S3). 

 

Data normalization 

For each gene perturbation in a screen BAGEL provides a Bayes Factor (BF) that can 

serve as a quantitative measure of essentiality of the gene in that screen (Steinhart et 

al. 2017) where higher Bayes Factors indicate more essentiality (Hart et al. 2015). In 

the following we refer to negative Bayes Factors as fitness scores. Gene-level fitness 

scores determined for all screens were aggregated into one matrix where each column 

represents one screen and each row represents one gene. Fitness scores were 

quantile-normalized using the ‘normalize.quantiles’ function in the ‘preprocessCore’ 

R/Bioconductor package (Bolstad 2013; Gentleman et al. 2004). Clustering the 

normalized fitness scores of each screen, we observed clear batch effects. This was 

unsurprising as most screens were generated using different lab protocols and libraries. 

For the analysis shown in Figure 3, batch effects were corrected with the ‘ComBat’ 

function in the ‘sva’ R/Bioconductor package (Leek et al. 2012) using the PubMed ID of 

each screen as batch variable and the tissue of the screened cell lines as biological 

covariate. The ‘ward.D’ method as implemented in R was used for hierarchical 

clustering of screens. For the clustering 1,000 genes with the biggest standard 

deviation in fitness scores across screens were selected. 

 
Identification of genotype-specific vulnerabilities 

To identify MYC-dependent fitness effects in pancreatic cell lines, these cell lines were 

divided into MYC-mutated and MYC-wild-type based on COSMIC (Forbes et al. 2017) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 27, 2017. ; https://doi.org/10.1101/120964doi: bioRxiv preprint 

https://doi.org/10.1101/120964


 19 

somatic mutation data, excluding silent mutations and mutations of type ‘unknown’ but 

considering all other mutation types. To select differential genes, a two-sided Student’s 

t-test was performed. False discovery rate was controlled at 20 % using the Benjamini-

Hochberg method (Benjamini & Hochberg 1995). To find genes with differential fitness 

effects in pan-cancer cell lines with NRAS, PIK3CA or FGFR3 mutations mutated cell 

lines were selected as described above. One-way ANOVA followed by computation of 

Tukey's Honestly Significant Differences (Abdi & Williams 2010) was used to identify 

candidate genes. This approach was also applied to find genes with differential effects 

across tissues. The ‘ward.D’ hierarchical clustering method as implemented in R was 

used for clustering. 

 

Combinatorial testing of gene-gene interactions 
To test for differences in fitness response based on loss-of-function genotypes, fitness 

scores for all CRISPR-Cas9 screens in cell lines that are contained in both COSMIC 

(Forbes et al. 2017) and CCLE (Barretina et al. 2012) databases were selected. From 

the global loss-of-function profile we selected all genes that were marked as lost in at 

least 3 distinct cell lines of the remaining screening data as query genes. In total, 169 

genes were selected. Consequently, we identified all combinations between these 

query genes and genes perturbed in screens (target genes). Target genes were 

selected such that, fitness scores were available for at least 3 distinct cell lines with and 

without a query loss-of-function. Overall, we identified ~2.2 million such combinations. 

As input data for the test, we used quantile-normalized fitness scores before batch-

correction. We fitted a linear mixed-effects model for each combination, modeling the 

loss-of-function genotype as fixed effect and the PubMed ID as a random effect. We 

additionally modeled the cell line as random effect to account for cell-line-specific 

biases. For modeling, the R package ‘lme4’ (Bates et al. 2014) was used. The R 

package ‘lmerTest’ (Kuznetsova et al. 2016) was used to calculate an estimation of 

significance (p-value) for each model. The false discovery rate (FDR) was estimated 

using the Benjamini-Hochberg method (Benjamini & Hochberg 1995). To separate cell 

lines based on their mutation profile all copy number and somatic mutation data were 
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taken from COSMIC and CCLE and mutations of type ‘silent’ and ‘unknown’ were 

removed. Furthermore, copy number observations of 1-3 were removed from the 

analysis. We created a binary matrix where 1 denotes an alteration and 0 implies no 

alteration. We used Fisher’s exact test to identify genes with different mutation patterns 

across sensitive and insensitive cell lines. 

 

Quantification of genetic interactions 

Interactions between genes were quantified using the π-score statistic (Horn et al. 

2011). π -scores were calculated using the ‘ HD2013SGImaineffects ’  function 

implemented in the R/Bioconductor package ‘HD2013SGI ’ (Laufer et al. 2013). To 

generate the input for the ‘HD2013SGImaineffects’ function, batch corrected fitness 

scores were entered by subtracting column means and scaled by dividing columns by 

their standard deviation. To cluster genes from the NADH-ubiquinone oxidoreductase 

and Mediator complexes by their π -score profiles, complex member showing low 

interaction frequency with the query genes, determined by a π-score standard deviation 

threshold of 0.4, were removed. The remaining genes were clustered using the ‘ward.D’ 

method for hierarchical  clustering as implemented in R. 

 

Network modeling 

To create a map of genetic interactions we used the matrix of π-scores as calculated in 

the previous step and applied a double cutoff to select interactions. We considered 

every target-query combination as an interaction if its absolute π-score was greater 

than 0.2 and if it achieved a p-value of less than 0.01 in the combinatorial tests. Positive 

interactions (positive π-score > 0) were assigned the value 1, negative interactions 

(negative π-score) were assigned the value -1 and non-interacting pairs were given the 

value 0. Based on the resulting ternary matrix we calculated the Pearson-correlation 

between the interaction profiles of all possible target gene combinations. Correlations 

between genes > 0.6 were selected as edges for the network and were rescaled to a 

range of 0-1. The network was visualized using Cytoscape (Shannon et al. 2003). A 
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force-directed spring-embedded layout was used to position the nodes of the network, 

using the rescaled correlation values as edge-weights. The visual representation of the 

network was inspired by previous studies in yeast (Baryshnikova 2016a). The Spatial 

Analysis of Functional Enrichment (SAFE; Baryshnikova 2016b) Cytoscape-plugin was 

used to identify functional modules in the network. For SAFE analysis, the map-based 

distance-metric was chosen with a maximum distance threshold of 0.6 (percentile). To 

build the composite map, a minimal landscape size of 10 was chosen and the Jaccard 

distance was used as a similarity metric for group attributes with a similarity threshold of 

0.75. As background for the enrichment, all nodes in the annotation standard were 

chosen (Baryshnikova 2016b). In SAFE the annotation standard is a binary matrix of 

genes (rows) and annotation terms (columns). A value of 1 indicates that a gene is 

annotated with a specific annotation term. For our analysis, we generated such an 

annotation standard containing Gene Ontology (GO; Ashburner et al. 2000) Biological 

Process annotations for all target genes tested. GO annotations were downloaded from 

the example data section of the SAFE algorithm’s GitHub page 

(https://github.com/baryshnikova-lab/safe-

data/blob/master/attributes/go_Hs_P_160509.txt.gz) and filtered to contain only genes 

tested in our interaction analysis. 

 

Availability of source code 
All R code that was written for the analyses described in this study is available as a R 

markdown file (Supplementary Code). Furthermore, Cytoscape session files related to 

Figures 6 and S6 are available (Supplementary Files 1 and 2). 
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Figure 1 An integrated analysis approach to find genetic interactions in cancer cells. (A) 
Data from CRISPR-Cas9 screens in 83 cancer cell lines were reanalyzed and 
integrated. The results were combined into a global perturbation response profile. (B) 
Mutation and copy number data from the COSMIC and CCLE databases were used to 
create a map of loss-of-function alterations across over 1,000 cancer cell lines. (C) To 
identify synthetic lethal dependencies between gene combinations that could serve as 
potential targets for new drug development, perturbation response of more than 2.2 
million gene-gene combinations were examined using a linear mixed-effects model. (D) 
Interaction profiles were calculated for gene combinations based on the correlation of 
their interactions as determined by interaction scores ( π scores) and statistical 
significance. Spatial enrichment analysis was performed to identify functional modules 
in the network. 
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Figure 2 Mapping loss-of-function variations in cancer cells. (A) A summary of 8 tissues 
in which corresponding cell lines show the highest abundance of loss-of-function 
events. (B) Distribution of the number of loss-of-function mutations in the cell lines. (C) 
Clustering of loss-of-function profiles separates cells that originated from large intestine, 
pancreatic and skin cancers. Red squares indicate a loss-of-function mutation. 
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Figure 3 Analysis of cell fitness phenotypes highlights context-dependent 
vulnerabilities. (A) Distribution of the calculated fitness scores. (B, C) Fitness scores of 
core-essential and non-essential gold standard gene set across screens. (D) Tissue-
specific effects of gene perturbation on the fitness of cancer cell lines. Shown here are 
15 genes in which highly significant fitness differences were observed across tissues. 
Each dot represents one experiment. (E) Volcano plot showing differential fitness 
response to CRISPR/Cas9 perturbations in cell lines with a c-Myc mutation. The 
horizontal line indicates the 20% false discovery rate (FDR) threshold. Negative values 
on the x-axis indicate increase vulnerability of c-Myc mutated cells, and positive values 
suggest resistance to the perturbation. Genes that belong to pathways that are enriched 
among significant genes are highlighted. (F) Clustering of the differential responses to 
genetic perturbation based on the mutation status of the PIK3CA, NRAS and FGFR3 
oncogenes in pan-cancer cell lines.  
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Figure 4 Predicted gene-gene associations. (A) A volcano plot showing effect size 
(difference between the mean fitness effect of a CRISPR perturbation in cells with and 
without a specific loss-of-function mutation) and the significance of the associations. 
The horizontal line indicates a 0.2 false discovery rate threshold. Each circle represents 
one genetic interaction. The circle size indicates the number of cell lines with the 
respective loss-of-function variation (minimum 3). Insets 1 and 2 show a magnified view 
of highly significant positive and negative interactions, respectively. Labels indicate the 
perturbed gene and the loss-of-function gene (in brackets). (B-D) Loss-of-function-
dependent effects of the genetic perturbations for 3 selected candidates, including the 
response of to the corresponding inhibitors. (E) Details of the response to β-catenin 
perturbation in FHIT-deficient cells. Colors link FHIT-deficient cell lines to a mutation 
profile detailing the mutational status of 10 genes, thereby identifying cells that are 
sensitive and resistant to β-catenin knockout, respectively. 
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Figure 5 Scoring of synthetic genetic interactions based on π scores. (A) Distribution of 
the interaction scores ( π  scores). (B) Distribution of the positive and negative 
interactions of genes. (C-E) Comparison of the combined (measured) effect and the 
main effects of both target gene and query gene for the selected interactions. (I) 
Clustering of members of the NADH-ubiquinone oxidoreductase, mediator complex 
proteins and ribosomal proteins by their genetic interaction profiles. 
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Figure 6 A map of genetic interactions in a human cancer cells. (A) In the correlation-
based network, 4,616 nodes (genes) are connected by 39,805 links (Pearson 
correlation of interaction profiles >0.6). An edge-weighted spring embedded layout was 
used to position the nodes. Nodes with similar interaction profiles are located proximal 
to each other. (B) Spatial enrichment analysis with the SAFE algorithm highlights 
network modules that contain genes with similar functional annotations based on Gene 
Ontology biological processes. These GO terms are summarized by the module labels 
in the figure. 
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