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Figure 4: Electrode sampling density by location. A. Electrode sampling density by voxel
in Dataset 1. Each voxel is colored by the proportion of total electrodes in the dataset that are
located within a 20 MNI unit radius sphere centered on the given voxel. B. Electrode sampling
density by voxel in Dataset 2. This panel displays the sampling density map for Dataset 2, in
the same format as Panel A. C. Correspondence in sampling density by voxel across Datasets
1 and 2. The two-dimensional histogram displays the by-voxel densities in the two Datasets,
and the one-dimensional histograms display the proportions of voxels in each dataset with the
given density value. The correlation reported in the panel is across voxels in the 4 mm3 MNI
brain.

the proportion of other patients’ electrodes within 20 MNI units of the given electrode). We272

then correlated these density values with the across-patient reconstruction accuracies for each273

electrode. We found no reliable correlations between reconstruction accuracy and density for274

either dataset (Dataset 1: r � 0.09, p � 0.44; Dataset 2: r � −0.30, p � 0.15). This indicates that275

the reconstruction accuracies we observed are not driven solely by sampling density, but rather276

may also reflect higher order properties of neural dynamics such as functional correlations277

between distant voxels [3].278

In neurosurgical applications where one wishes to infer full-brain activity patterns, can our279

framework yield insights intowhere the electrodes should be placed? Abasic assumption of our280

approach (and ofmost prior ECoGwork) is that electrode recordings aremost informative about281

the neural activity near the recording surface of the electrode. But if we consider that activity282

patterns throughout the brain are meaningfully correlated, are there particular implantation283
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locations that, if present in a patient’s brain, yield especially high reconstruction accuracies284

throughout the rest of the brain? For example, one might hypothesize that brain structures285

that are heavily interconnected with many other structures could be more informative about286

full-brain activity patterns than comparatively isolated structures.287

To gain insights into whether particular electrode locations might be especially informative,288

we first computed the average reconstruction accuracy across all of each patient’s electrodes289

(using the across-patients cross validation test; black histograms in Fig. 3A and B). We labeled290

each patient’s electrodes in each dataset with the average reconstruction accuracy for that291

patient. In other words, we assigned every electrode from each given patient the same value,292

reflecting how well the activity patterns at those electrodes were reconstructed on average.293

Next, for each voxel in the 4 mm3 MNI brain, we computed the average value across any294

electrode (from any patient) that came within 20 MNI units of that voxel’s center. Effectively,295

we computed an information score for each voxel, reflecting the average reconstruction accuracy296

across any patientswith electrodes near each voxel–where the averageswereweighted to reflect297

patients who had more electrodes implanted near that location. This yielded a single map for298

each dataset, highlighting regions that are potentially promising implantation targets in terms299

of providing full-brain activity information via SuperEEG (Fig. 5A, B). Despite task and patient300

differences across the two datasets, we nonetheless found that the maps of the most promising301

implantation targets derived from both datasets were similar (voxelwise correlation between302

information scores across the two datasets: r � 0.20, p < 10−10). While the correspondence303

between the twomaps was imperfect, our finding that there were some commonalities between304

the two maps lends support to the notion that different brain areas are differently informative305

about full-brain activity patterns. We also examined the intersection between the top 10%most306

informative voxels across the two datasets (white outlines in Fig. 5A, B, Fig. S5). Supporting the307

notion that structures that are highly interconnectedwith the rest of the brainmight be especially308
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Figure 5: Most informative electrode locations. A. Dataset 1 information score by voxel.
The voxel colors reflect the weighted average reconstruction accuracy across all electrodes from
any patients with at least one electrode within 20 MNI units of the given voxel. B. Dataset 2
information score by voxel. This panel is in the same format as Panel A. In both panels the
contours indicate the intersections between the top 10% most informative voxels in each map
(also see Fig. S5). C. Correspondence in information scores by voxel across Datasets 1 and 2.
Same format as Figure 4C.

good targets for implantation, this intersecting set of voxels with the highest information scores309

includedmajor portions of the dorsal attention network (e.g., inferior parietal lobule, precuneus,310

inferior temporal gyrus, thalamus, and striatum) as well as some portions of the default mode311

network (e.g., angular gyrus) that are highly interconnected with a large proportion of the312

brain’s gray matter [e.g., 39].313

Discussion314

Are our brain’s networks static or dynamic? And to what extent are the network properties315

of our brains stable across people and tasks? One body of work suggests that our brain’s316

functional networks are dynamic [e.g., 24], person-specific [e.g., 9], and task-specific [e.g.,317

40]. In contrast, although the gross anatomical structure of our brains changes meaningfully318

over the course of years as our brains develop, on the timescales of typical neuroimaging ex-319

periments (i.e., hours to days) our anatomical networks are largely stable [e.g., 4]. Further,320
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many aspects of brain anatomy, including white matter structure, are largely preserved across321

people [e.g., 15, 26, 37]. There are several possible means of reconciling this apparent inconsis-322

tency between dynamic person- and task-specific functional networks versus stable anatomical323

networks. For example, relatively small magnitude anatomical differences across people may324

be reflected in reliable functional connectivity differences. Along these lines, one recent study325

found that diffusion tensor imaging (DTI) structural data is similar across people, but may be326

used to predict person-specific resting state functional connectivity data [2]. Similarly, other327

work indicates that task-specific functional connectivity may be predicted by resting state func-328

tional connectivity data [5, 38]. Another (potentially complementary) possibility is that our329

functional networks are constrained by anatomy, but nevertheless exhibit (potentially rapid)330

task-dependent changes [e.g., 36].331

Here we have taken a model-based approach to studying whether high spatiotemporal332

resolution activity patterns throughout the human brain may be explained by a static connec-333

tome model that is shared across people and tasks. Specifically, we trained a model to take334

in recordings from a subset of brain locations, and then predicted activity patterns during the335

same interval, but at other locations that were held out from the model. Our model, based on336

Gaussian process regression, was built on three general hypotheses about the nature of the337

correlational structure of neural activity (each of which we tested). First, we hypothesized that338

functional correlations are stable over time and across tasks. We found that, although aspects of339

the patients’ functional correlations were stable across tasks, we achieved better reconstruction340

accuracy when we trained the model on within-task data [we acknowledge that our general341

approach could potentially be extended to better model across-task changes, following 5, 38,342

and others]. Second, we hypothesized that some of the correlational structure of people’s brain343

activity is similar across individuals. Consistent with this hypothesis, our model explained the344

data best when we trained the correlation model using data from other patients– even when345
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compared to a correlation model trained on the same patient’s data. Third, we resolved am-346

biguities in the data by hypothesizing that neural activity from nearby sources will tend to be347

similar, all else being equal. This hypothesis was supported through our finding that all of the348

models we trained that incorporated this spatial smoothness assumption predicted held-out349

data well above chance.350

One potential limitation of our approach is that it does not provide a natural means of351

estimating the precise timing of single-neuron action potentials. Prior work has shown that352

gamma band and broadband activity in the LFP may be used to estimate the firing rates of353

neurons that underly the population contributing to the LFP [6, 14, 20, 25]. Because SuperEEG354

reconstructs LFPs throughout the brain, one could in principle use gamma or broadband power355

in the reconstructed signals to estimate the corresponding firing rates (though not the timings356

of individual action potentials).357

Beyond providing a means of estimating ongoing activity throughout the brain using al-358

ready implanted electrodes, our work also has implications for where to place the electrodes in359

the first place. Electrodes are typically implanted to maximize coverage of suspected epilep-360

togenic tissue. However, our findings suggest that this approach could be further optimized.361

Specifically, one could leverage not only the non-invasive recordings taken during an initial362

monitoring period (as is currently done routinely), but also recordings collected from other363

patients. We could then ask: given what we learn from other patients’ data (and potentially364

from the scalp EEG recordings of this new patient), where should we place a fixed number365

of electrodes to maximize our ability to map seizure foci? As shown in Figures 5 and S5,366

recordings from different locations are differently informative in terms of reconstructing the367

spatiotemporal activity patterns throughout the brain. This property might be leveraged in368

decisions about where to surgically implant electrodes in future patients.369
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Concluding remarks370

Over the past several decades, neuroscientists have begun to leverage the strikingly profound371

mathematical structure underlying the brain’s complexity to infer how our brains carry out372

computations to support our thoughts, actions, and physiological processes. Whereas tradi-373

tional beamforming techniques rely on geometric source-localization of signals measured at the374

scalp, here we propose an alternative approach that leverages the rich correlational structure375

of two large datasets of human intracranial recordings. In doing so, we are one step closer to376

observing, and perhaps someday understanding, the full spatiotemporal structure of human377

neural activity.378
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