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Abstract

We present a model-based method for inferring full-brain neural activity at millimeter-
scale spatial resolutions and millisecond-scale temporal resolutions using standard human
intracranial recordings. Our approach makes the simplifying assumptions that different
people’s brains exhibit similar correlational structure, and that activity and correlation pat-
terns vary smoothly over space. One can then ask, for an arbitrary individual’s brain: given
recordings from a limited set of locations in that individual’s brain, along with the observed
spatial correlations learned from other people’s recordings, how much can be inferred about
ongoing activity at other locations throughout that individual’s brain? We show that our
approach generalizes across people and tasks, thereby providing a person- and task-general
means of inferring high spatiotemporal resolution full-brain neural dynamics from standard
low-density intracranial recordings.

Keywords: Electrocorticography (ECoG), intracranial electroencephalography (GEEG), local field
potential (LFP), epilepsy, maximum likelihood estimation, Gaussian process regression

Introduction

Modern human brain recording techniques are fraught with compromise (Sejnowski et al.
2014). Commonly used approaches include functional magnetic resonance imaging (fMRI),
scalp electroencephalography (EEG), and magnetoencephalography (MEG). For each of these
techniques, neuroscientists and electrophysiologists must choose to optimize spatial resolution

at the cost of temporal resolution (e.g., as in fMRI) or temporal resolution at the cost of spatial
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s resolution (e.g., as in EEG and MEG). A less widely used approach (due to requiring work
2 with neurosurgical patients) is to record from electrodes implanted directly onto the cortical
27 surface (electrocorticography; ECoG) or into deep brain structures (intracranial EEG; iEEG).
s However, these intracranial approaches also require compromise: the high spatiotemporal
20 resolution of intracranial recordings comes at the cost of substantially reduced brain coverage,
%0 since safety considerations limit the number of electrodes one may implant in a given patient’s
st brain. Further, the locations of implanted electrodes are determined by clinical, rather than
s2 research, needs.

3 An increasingly popular approach is to improve the effective spatial resolution of MEG or
s scalp EEG data by using a geometric approach called beamforming to solve the biomagnetic or
s bioelectrical inverse problem (Sarvas|1987). This approach entails using detailed brain conduc-
s tance models (often informed by high spatial resolution anatomical MRI images) along with
57 the known sensor placements (localized precisely in 3D space) to reconstruct brain signals orig-
s inating from theoretical point sources deep in the brain (and far from the sensors). Traditional
s beamforming approaches must overcome two obstacles. First, the inverse problem beamform-
w ing seeks to solve has infinitely many solutions. Researchers have made progress towards
s constraining the solution space by assuming that signal-generating sources are localized on a
22 regularly spaced grid spanning the brain and that individual sources are small relative to their
s distances to the sensors (Baillet et al.|2001; |Hillebrand et al.|2005; Snyder|1991). The second,
« and in some ways much more serious, obstacle is that the magnetic fields produced by external
s (noise) sources are substantially stronger than those produced by the neuronal changes being
s sought (i.e., at deep structures, as measured by sensors at the scalp). This means that obtaining
«» adequate signal quality often requires averaging the measured responses over tens to hundreds
s of responses or trials (e.g., see review by |Hillebrand et al.|[2005).

49 Another approach to obtaining high spatiotemporal resolution neural data has been to col-
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so lect fMRI and EEG data simultaneously. Simultaneous fMRI-EEG has the potential to balance
st the high spatial resolution of fMRI with the high temporal resolution of scalp EEG, thereby,
2 in theory, providing the best of both worlds. In practice, however, the signal quality of both
ss recordings suffers substantially when the two techniques are applied simultaneously (e.g., see
s« review by |Huster et al.|2012). In addition, the experimental designs that are ideally suited to
ss each technique individually are somewhat at odds. For example, fMRI experiments often lock
ss stimulus presentation events to the regularly spaced image acquisition time (TR), which max-
s7 imizes the number of post-stimulus samples. By contrast, EEG experiments typically employ
ss jittered stimulus presentation times to maximize the experimentalist’s ability to distinguish
so electrical brain activity from external noise sources such as from 60 Hz alternating current
0 pOwer sources.

61 The current “gold standard” for precisely localizing signals and sampling at high temporal
2 resolution is to take (ECoG or iEEG) recordings from implanted electrodes (but from a limited
s set of locations in any given brain). This begs the following question: what can we infer about
s« the activity exhibited by the rest of a person’s brain, given what we learn from the limited
es intracranial recordings we have from their brain and additional recordings taken from other
s people’s brains? Here we develop an approach, which we call SuperEEGT}, based on Gaussian
&7 process regression (Rasmussen/2006). SuperEEG entails using data from multiple people to
e estimate activity patterns at arbitrary locations in each person’s brain (i.e., independent of their
o electrode placements). We test our SuperEEG approach using two large datasets of intracranial
70 recordings (Ezzyat et al. 2017, 2018; Horak et al.|2017; Kragel et al.|2017; Kucewicz et al. 2017,
71 [2018; Lin et al. 2017; Manning et al. 2011, 2012; Sederberg et al.| 2003} |2007a,b; Solomon et al.

72 2018; [Weidemann et al.[2019). We show that the SuperEEG algorithm recovers signals well

1The term “SuperEEG” was coined by Robert J. Sawyer in his popular science fiction novel The Terminal Experi-
ment (Sawyer|1995). SuperEEG is a fictional technology that measures ongoing neural activity throughout the entire
living human brain at arbitrarily high spatiotemporal resolution.
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73 from electrodes that were held out of the training dataset. We also examine the factors that
74 influence how accurately activity may be estimated (recovered), which may have implications

75 for electrode design and placement in neurosurgical applications.
x Approach

77 The SuperEEG approach to inferring high temporal resolution full-brain activity patterns is
76 outlined and summarized in Figure(l} We describe (in this section) and evaluate (in Results) our
7o approach using two large previously collected datasets comprising multi-session intracranial
so recordings. Dataset 1 comprises multi-session recordings taken from 6876 electrodes implanted
st in the brains of 88 epilepsy patients (Manning et al.|2011, 2012; Sederberg et al. 2003, 2007a,b).
sz Each recording session lasted from 0.2-3 h (total recording time: 0.3-14.2 h; Fig. S6E). During
ss eachrecording session, the patients participated in a free recall list learning task, which lasted for
s« up to approximately 1 h. In addition, the recordings included “buffer” time (the length varied
ss by patient) before and after each experimental session, during which the patients went about
ss their regular hospital activities (confined to their hospital room, and primarily in bed). These
&7 additional activities included interactions with medical staff and family, watching television,
ss reading, and other similar activities. For the purposes of the Dataset 1 analyses presented here,
so we aggregated all data across each recording session, including recordings taken during the
o main experimental task as well as during non-experimental time. We used Dataset 1 to develop
ot our main SuperEEG approach, and to examine the extent to which SuperEEG might be able
e to generate task-general predictions. Dataset 2 comprised multi-session recordings from 14860
e electrodes implanted in the brains of 131 epilepsy patients (Ezzyat et al. 2017, 2018; [Horak
w et al.[2017} [Kragel et al.[2017; Kucewicz et al. 2017, |2018; |Lin et al. 2017; Solomon et al. 2018;
s \Weidemann et al|2019). Each recording session lasted from 0.4-2.2 h (total recording time:

s 0.4-6.6 h; Fig. S6K). Whereas Dataset 1 included recordings taken as the patients participated
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Figure 1: Methods overview. A. Electrode locations. Each dot reflects the location of a single
electrode implanted in the brain of a Dataset 1 patient. A held-out recording location from
one patient is indicated in red, and the patient’s remaining electrodes are indicated in black.
The electrodes from the remaining patients are colored by k-means cluster (computed using the
full-brain correlation model shown in Panel D). B. Radial basis function kernel. Each electrode
contributed by the patient (black) weights on the full set of locations under consideration (all
dots in Panel A, defined as R in the text). The weights fall off with positional distance (in
MNI152 space) according to an RBF. C. Per-patient correlation matrices. After computing
the pairwise correlations between the recordings from each patient’s electrodes, we use RBF-
weighted averages to estimate correlations between all locations in R. We obtain an estimated
full-brain correlation matrix using each patient’s data. D. Merged correlation model. We
combine the per-patient correlation matrices (Panel C) to obtain a single full-brain correlation
model that captures information contributed by every patient. Here we have sorted the rows
and columns to reflect k-means clustering labels (using k=7; Yeo et al|2011), whereby we
grouped locations based on their correlations with the rest of the brain (i.e., rows of the matrix
displayed in the panel). The boundaries denote the cluster groups. The rows and columns of
Panel C have been sorted using the Panel D-derived cluster labels. E. Reconstructing activity
throughout the brain. Given the observed recordings from the given patient (shown in black;
held-out recording is shown in blue), along with a full-brain correlation model (Panel D), we
use Equationto reconstruct the most probable activity at the held-out location (red).

o7 in a variety of activities, Dataset 2 included recordings taken as each patient performed each of
e two specific experimental memory tasks: a random word list free recall task (Experiment 1) and
% acategorized word list free recall task (Experiment 2). We used Dataset 2 to further examine the
10 ability of SuperEEG to generalize its predictions within versus across tasks. Figure S6 provides
101 additional information about both datasets.

102 We first applied fourth order Butterworth notch filters to remove 60 Hz (+ 0.5 Hz) line

13 noise from every recording (from every electrode). Next, we downsampled the recordings
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14 (regardless of the original samplerate) to 250 Hz. This downsampling step served to both
15 normalize for differences in sampling rates across patients and to ease the computational burden
106 of our subsequent analyses. We then excluded any electrodes that showed putative epileptiform
17 activity. Specifically, we excluded from further analysis any electrode that exhibited a maximum
18 kurtosis of 10 or greater across all of that patient’s recording sessions. We also excluded any
109 patients with fewer than 2 electrodes that passed this criteria, as the SuperEEG algorithm
1o requires measuring correlations between 2 or more electrodes from each patient. For Dataset
111, this yielded clean recordings from 4168 electrodes implanted throughout the brains of 67
12 patients (Fig.[TJA, colored dots); for Dataset 2, this yielded clean recordings from 5023 electrodes
1z implanted in 78 patients. Each individual patient contributed electrodes from a limited set
14 of brain locations, which we localized in a common space (MNI152; (Grabner et al. 2006); an
115 example Dataset 1 patient’s 54 electrodes that survived the kurtosis thresholding procedure are
16 highlighted in black and red (Fig.[TA).

The recording from a given electrode is maximally informative about the activity of the
neural tissue immediately surrounding its recording surface. However, brain regions that are
distant from the recording surface of the electrode also contribute to the recording, albeit (ceteris
paribus) to a much lesser extent. One mechanism underlying these contributions is volume
conduction. The precise rate of falloff due to volume conduction (i.e., how much a small volume
of brain tissue at location x contributes to the recording from an electrode at location 1) depends
on the size of the recording surface, the electrode’s impedance, and the conductance profile of
the volume of brain between x and 7. As an approximation of this intuition, we place a Gaussian
radial basis function (RBF) at the location 1 of each electrode’s recording surface (Fig. [IB). We

use the values of the RBF at any brain location x as a rough estimate of how much structures
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around x contributed to the recording from location n:

||x—77||2}

- M

rbf(x|n, A) = exp {—

17 where the width variable A is a parameter of the algorithm (which may in principle be set
ns according to location-specific tissue conductance profiles) that governs the level of spatial
119 smoothing. In choosing A for the analyses presented here, we sought to maximize spatial
120 resolution (which implies a small value of A) while also maximizing the algorithm’s ability
121 to generalize to any location throughout the brain, including those without dense electrode
122 coverage (which implies a large value of A). Here we set A = 20, guided in part by our prior
123 related work (Manning et al. 2014, 2018), and in part by examining the brain coverage with
124 non-zero weights achieved by placing RBFs at each electrode location in Dataset 1 and taking
125 the sum (across all electrodes) at each voxel in a 4 mm?® MNI brain. (We then held A fixed for
126 our analyses of Dataset 2.) We note that this value could in theory be further optimized, e.g.,
127 using cross validation or a formal model (e.g., Manning et al.|2018).

128 A second mechanism whereby a given region x can contribute to the recording at 7 is
120 through (direct or indirect) anatomical connections between structures near x and 1. Although
130 anatomical and functional correlations can differ markedly (e.g.,|/Adachi et al.2012;|Goni et al.
131 |2014; Honey et al.2009), we use temporal correlations in the data to estimate these anatomical
12 connections (Becker et al.[2018). Let R be the set of locations at which we wish to estimate local
1z field potentials, and let Rs C R be set of locations at which we observe local field potentials from
134 patient s (excluding the electrodes that did not pass the kurtosis test described above). In the
15 analyses below we define R = UleRs. We can calculate the expected inter-electrode correlation
136 matrix for patient s, where C; x(i, j) is the correlation between the time series of voltages for

17 electrodes i and j from subject s during session k, using;:
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Cs=r (% (Z Z(Cs/k))) , where (2)

k=1
log(1 +r) —log(1 -
z(r) = og(l+1) > og(1-1) is the Fisher z—transformation and 3)
-1 exp(zz) -1 sy s
= = . 4
7z (z) =1(z2) oxp(22) + 1 is its inverse 4)

133 Next, we use Equation [I| to construct a number of to-be-estimated locations by number of
139 patient electrode locations weight matrix, W;. Specifically, W, approximates how informative
140 the recordings at each location in R; are in reconstructing activity at each location in R, where
141 the contributions fall off with an RBF according to the distances between the corresponding

142 locations:

143 Given this weight matrix, W;, and the observed inter-electrode correlation matrix for patient

s s, Cs, we can estimate the correlation matrix for all locations in R (C s; Fig. ) using:

[Rs| i-1
Ni(x,y) = > > Wix,i)- Wy, j) - 2(Cs(i, /) (6)
i=1 j=1
[Rs] i-1
Ds(xr y) = W(x/ Z) : W(y/ ]) (7)
i=1 j=1
. N
CS =T (D_s) . (8)

After estimating the numerator (N,) and denominator (D) placeholders for each C,, we ag-

gregate these estimates across the S patients to obtain a single expected full-brain correlation

matrix (K; Fig. ):

: ©)



https://doi.org/10.1101/121020
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/121020; this version posted March 14, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1s  Intuitively, the numerators capture the general structures of the patient-specific estimates of full-
14 brain correlations, and the denominators account for which locations were near the implanted
w7 electrodes in each patient. To obtain K, we compute a weighted average across the estimated
s patient-specific full-brain correlation matrices, where patients with observed electrodes near a
s particular set of locations in K contribute more to the estimate.

150 Having used the multi-patient data to estimate a full-brain correlation matrix at the set
151 of locations in R that we wish to know about, we next use K to estimate activity patterns
152 everywhere in R, given observations at only a subset of locations in R (Fig. ).

153 Let s be the set of indices of patient s’s electrode locations in R (i.e., the locations in Rjy),
14 and let B be the set of indices of all other locations in R. In other words, fs reflects the locations
155 in R where we did not observe a recording for patient s (these are the recording locations we

156 will want to fill in using SuperEEG). We can sub-divide K as follows:

Kﬁs,as = K(ﬁs,as), and (10)
Kas,as = K(as, as). (11)
157 Here K ps,as Tepresents the correlations between the “unknown” activity at the locations indexed
s by Bs and the observed activity at the locations indexed by a;, and K, ., represents the
159 correlations between the observed recordings (at the locations indexed by ).
160 Let Y; ko, be the number-of-timepoints (T) by |as| matrix of (observed) voltages from the

161 electrodes in as during session k from patient s. Then we can estimate the voltage from patient

62 s’s k" session at the locations in Bs as follows (Rasmussen2006):

kg = (Kpoa, Kol o) Yo )T (12)
s This equation is the foundation of the SuperEEG algorithm. Whereas we observe recordings

9
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164 only at the locations indexed by as, Equation[12]allows us to estimate the recordings at all loca-
1es tions indexed by B, which we can define a priori to include any locations we wish, throughout
165 the brain. This yields estimates of the time-varying voltages at every location in R, provided that
7 we define R in advance to include the union of all of the locations in R, and all of the locations
s at which we wish to estimate recordings (i.e., a timeseries of voltages).

169 We designed our approach to be agnostic to electrode impedances, as electrodes that do not
170 exist do not have impedances. Therefore our algorithm recovers voltages in standard deviation
171 (z-scored) units rather than attempting to recover absolute voltages. (This property reflects the
w2 fact that Kg, o, and Ky, 4, are correlation matrices rather than covariance matrices.) Also, we
173 note that Equationrequires computing a T by T matrix, which can become computationally
174 expensive when T is very large (e.g., for the Dataset 1 patient with the longest recording time,
w7s T = 12,786,750; also see Fig. S6, Panels E and K). However, because Equation is time
17 invariant, we may compute Y x g, in a piecewise manner by filling in Y x g, one row at a time
177 (using the corresponding samples from Y k o).

178 The SuperEEG algorithm described above and in Figure [1] allows us to estimate, up to a
179 constant scaling factor, local field potentials (LFPs) for each patient at all arbitrarily chosen
w0 locations in the set R, even if we did not record that patient’s brain at all of those locations. We next

181 turn to an evaluation of the accuracy of those estimates.
182 ReSUItS

183 We used a cross-validation approach to test the accuracy with which the SuperEEG algorithm
184 reconstructs activity throughout the brain. For each patient in turn, we estimated full-brain
15 correlation matrices (Eqn. EI) using data from all of the other patients. This step ensured that the
186 data we were reconstructing could not also be used to estimate the between-location correlations

17 that drove the reconstructions via Equation [12] (otherwise the analysis would be circular). For

10
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s that held-out patient, we held out each electrode in turn. We used Equation [12| to reconstruct
1o activity at the held-out electrode location, using the correlation matrix learned from all other
10 patients’ data as K, and using activity recorded from the other electrodes from the held-out
11 patient as Ysq.. (For analyses examining the stability of our estimates of K across time
12 and patients, see Figs. 57 and S8, respectively). We then asked: how closely did each of the
113 SuperEEG-estimated recordings at those electrodes match the observed recordings from those
194 electrodes (i.e., how closely did the estimated Y/S,k,ﬁs match the observed Y x g,)?

195 We used this general approach to quantify the algorithm’s performance across the full
16 dataset. For each held-out electrode, from each held-out patient in turn, we computed the
17 average correlation (across recording sessions) between the SuperEEG-reconstructed voltage
15 traces and the observed voltage traces from that electrode. For this analysis we set R to be the
199 union of all electrode locations across all patients. This yielded a single correlation coefficient
200 for each electrode location in R, reflecting how well the SuperEEG algorithm was able to recover
201 the recording at that location by incorporating data across patients (black histogram in Fig. 2JA,
22 map in Fig.2[C). The observed distribution of correlations was centered well above zero (mean:
23 17 = 0.51; t-test comparing mean of distribution of z-transformed average patient correlation
200 coefficients to 0: +(66) = 23.55,p < 107'Y), indicating that the SuperEEG algorithm recovers
20s held-out activity patterns substantially better than random guessing.

206 Next, we compared the quality of these across-participant reconstructions (i.e., computed
207 using a correlation model learned from other patients” data) to reconstructions generated using
208 a correlation model trained using the in-patient’s data. In other words, for this within-patient
200 benchmark analysis we estimated C; (Eqn.[8) for each patient in turn, using recordings from all
210 of that patient’s electrodes except at the location we were reconstructing. These within-patient
211 reconstructions serve as an estimate of how well data from all of the other electrodes from that

212 single patient may be used to estimate held-out data from the same patient. This allows us to

11
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213 ask how much information about the activity at a given electrode might be inferred through
214 (a) volume conductance or other sources of “leakage” from activity patterns measured from
215 the patient’s other electrodes and (b) across-electrode correlations learned from that single
21 patient. As shown in Figure[2A (gray histogram), the distribution of within-patient correlations
217 was centered well above zero (mean: r = 0.32; t-test comparing mean of distribution of z-
215 transformed average patient correlation coefficients to 0: +(66) = 15.16, p < 10~'°). However, the
219 across-patient correlations were substantially higher (t-test comparing average z-transformed
20 within versus across patient electrode correlations: #(66) = 9.17, p < 10719). This is an especially
221 conservative test, given that the across-patient SuperEEG reconstructions exclude (from the
22 correlation matrix estimates) all data from the patient whose data is being reconstructed. We
223 repeated each of these analyses on a second independent dataset and found similar results
224 (Fig. , D; within versus across reconstruction accuracy: #(77) = 11.25,p < 10719). We also
22s replicated this result separately for each of the two experiments from Dataset 2 (Fig. S3). This
226 overall finding, that reconstructions of held-out data using correlation models learned from
227 other patient’s data yield higher reconstruction accuracy than correlation models learned from
22 the patient whose data is being reconstructed, has two important implications. First, it implies
22 that distant electrodes provide additional predictive power to the data reconstructions beyond
20 the information contained solely in nearby electrodes. This follows from the fact that each
21 patient’s grid, strip, and depth electrodes are implanted in a unique set of locations, so for any
22 given electrode the closest electrodes in the full dataset tend to come from the same patient.
23 Second, it implies that the spatial correlations learned using the SuperEEG algorithm are, to
24 some extent, similar across people.

235 The recordings we analyzed from Dataset 1 comprised data collected as the patients per-
26 formed a variety of (largely idiosyncratic) tasks throughout each day’s recording session. That

27 'we observed reliable reconstructions across patients suggests that the spatial correlations de-

12
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Figure 2: Reconstruction accuracy across all electrodes in two ECoG datasets. A. Distribu-
tions of correlations between observed versus reconstructed activity by electrode, for Dataset
1. The across-patient distribution (black) reflects reconstruction accuracy (correlation) using a
correlation model learned from all but one patient’s data, and then applied to that held-out
patient’s data. The within-patient distribution (gray) reflects performance using a correlation
model learned from the same patient who contributed the to-be-reconstructed electrode. B.
Distributions of correlations for Dataset 2. This panel is in the same format as Panel A, but
reflects results obtained from Dataset 2. The histograms aggregate data across both Dataset 2
experiments; for results broken down by experiment see Figures S2 and S3. C.—D. Reconstruc-
tion accuracy by location. The colors denote the average across-session correlations, using the
across-patient correlation model, between the observed and reconstructed activity at the given
electrode location projected to the cortical surface (Combrisson et al|2019). Panel C displays
the map for Dataset 1 and Panel D displays the map for Dataset 2.
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28 rived from the SuperEEG algorithm are, to some extent, similar across tasks. We tested this
e finding more directly using Dataset 2. In Dataset 2, the recordings were limited to times when
20 each patient was participating in one of two experiments. Experiment 1 is a random-word
s list free recall task; Experiment 2 is a categorized list free recall task (24 patients participated
22 in both). We wondered whether a correlation model learned from data from one experiment
23 might yield good predictions of data from the other experiment. Further, we wondered about
24 the extent to which it might be beneficial or harmful to combine data across tasks.

245 To test the task-specificity of the SuperEEG-derived correlation models, we restricted the
26 dataset to the 24 patients that participated in both experiments and repeated the above within-
27 and across-patient cross validation procedures separately for Experiment 1 and Experiment 2
2 data from Dataset 2. We then compared the reconstruction accuracies for held-out electrodes,
29 for models trained within versus across the two experiments, or combining across both exper-
20 iments (Fig. S1). In every case we found that across-patient models trained using data from
251 all other patients out-performed within-patient models trained on data only from the subject
22 contributing the given electrode (ts(23) > 6.50, ps< 107°). All reconstruction accuracies also re-
25 liably exceeded chance performance (ts(23) > 8.00, ps< 107%). Average reconstruction accuracy
24« was highest for the across-patient models limited to data from the same experiment (mean accu-
s racy: r = 0.68); next-highest for the models that combined data across both experiments (mean
26 accuracy: r = 0.61); and lowest for models trained across tasks (mean accuracy: r = 0.47). This
257 pattern of results also held for each of the Dataset 2 experiments individually (Fig. S2). Taken
s together, these results indicate that there are reliable commonalities in the spatial correlations
s of full-brain activity across tasks, but that there are also reliable differences in these spatial
20 correlations across tasks. Whereas reconstruction accuracy benefits from incorporating data
21 from other patients, reconstruction accuracy is highest when constrained to within-task data,

22 or data that includes a variety of tasks (e.g., Dataset 1, or combining across the two Dataset 2
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Figure 3: Electrode sampling density by location. A. Electrode sampling density by voxel
location in Dataset 1. Each voxel is colored by the proportion of total electrodes in the dataset
that are located within 20 MINI units of the given voxel. B. Electrode sampling density by voxel
location in Dataset 2. This panel displays the sampling density map for Dataset 2, in the same
format as Panel A. C. Correspondence in sampling density by voxel location across Datasets
1 and 2. The two-dimensional histogram displays the per-voxel sampling densities in the two
Datasets, and the one-dimensional histograms display the proportions of voxels in each dataset

with the given density value. The correlation reported in the panel is across voxels in the 4 mm?
MNI152 brain.

263 experiments).

264 Although both datasets we examined provide good full-brain coverage (when considering
s data from every patient), electrodes were not sampled uniformly throughout the brain. For
26 example, in our patient population, electrodes are more likely to be implanted in regions like
27 the medial temporal lobe (MTL), and are rarely implanted in occipital cortex (Fig. BA, B).
268 Separately for each dataset, for each voxel in the 4 mm?® voxel MNI152 brain, we computed
260 the proportion of electrodes in the dataset that were contained within a 20 MNI unit radius
20 sphere centered on that voxel. We defined the density at that location as this proportion.
271 Across Datasets 1 and 2, the electrode placement densities were similar (correlation by voxel:
o2 1 =0.6,p < 1071%). We wondered whether regions with good coverage might be associated with
273 better reconstruction accuracy. For example, Figures 2C and D indicate that some electrodes

27+ in the MTL (which tends to be relatively densely sampled) have relatively high reconstruction
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275 accuracy, and occipital electrodes (which tends to be relatively sparsely sampled) tend to have
27e  relatively low reconstruction accuracy. To test whether this held more generally across the
277 entire brain, for each dataset we computed the electrode placement density for each electrode
27e  from each patient (using the proportion of other patients” electrodes within 20 MNI units of the
27 given electrode). We then correlated these density values with the across-patient reconstruction
20 accuracies for each electrode. We found no reliable correlation between reconstruction accuracy
21 and density for Dataset 1 (r = 0.05,p = 0.70) and a reliable negative correlation for Dataset
222 2 (r = —0.21,p = 0.05). This suggests that the reconstruction accuracies we observed are not
23 driven solely by sampling density, but rather may also reflect higher order properties of neural
2« dynamics such as functional correlations between distant voxels (Betzel et al.|2017).

285 Prior work in humans and animals has shown that the spatial profile of the local field
26 potential differs by frequency band (e.g., with respect to volume conductance properties and
27 contribution to the local field potential; Buzsaki et al.[2012; Crone et al.|2011; [Fries et al.[2007).
s For example, lower frequency components of the local field potential tend to have higher
s power and extend further in space than high-frequency components (e.g., Manning et al.
200 2009; Miller et al.|2007). We wondered whether the reconstructions we observed might be
201 differently weighting or considering the contributions of activity at different frequency bands.
22 We therefore examined a range of frequency bands (6: 2—4 Hz; 0: 4-8 Hz; a: 8-12 Hz; p: 12-30
23 Hz; yr: 30-60 Hz; and yy: 60-100 Hz), along with a measure of broadband (BB) power. We
24« used second-order Butterworth bandpass filters to compute the activity patterns within each
255 narrow frequency band. We defined broadband power as the mean height of a linear robust
206 regression fit in log-log space to the order 4 Morelet wavelet-computed power spectrum at
27 50 log-spaced frequencies from from 2-100 Hz (Manning et al.[2009). We then repeated our
2s  within-subject and across-subject cross-validated reconstruction accuracy tests (analogous to

200 Fig.[2) separately for each frequency band (Fig.[). (We also carried out a similar analysis on the
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s0 Hilbert transform-computed spectral power within each narrow band; see Fig. S4.) Across both
201 datasets, we found that our approach is best at reconstructing patterns of broadband activity
sz (right-most bars in Figs. A and D), a correlate of population firing rate (Manning et al.|2009).
s We also achieved good reconstruction accuracy within each narrow frequency band (Figs.[#and
s S4). Activity at lower frequencies (6, 0, a, and ) tended to be reconstructed better than high-
w05 frequency patterns (yr and yy), with reconstruction accuracy peaking in the 6 band. Overall,
w6 these results indicate that our approach is able to accurately recover information within the
s7  2-100 Hz range.

308 A basic assumption of our approach (and of most prior ECoG work) is that electrode record-
ws ings are most informative about the neural activity near the recording surface of the electrode.
sio - But if we consider that activity patterns throughout the brain are meaningfully correlated, are
si  there particular implantation locations that, if recorded from a given patient’s brain, yield es-
sz pecially high reconstruction accuracies throughout the rest of their brain? For example, one
s13 might hypothesize that brain structures that are heavily interconnected with many other struc-
a1+ tures could be more informative about full-brain activity patterns than comparatively isolated
s1s  structures. To test this hypothesis, we computed the average reconstruction accuracy across all
ste  of each patient’s electrodes (using our across-patients cross validation test; black histograms
si7  in Fig. and B). We first labeled each patient’s electrodes, in each dataset, with the average
s1s  reconstruction accuracy for that patient. In other words, we assigned every electrode from
s1s each patient the same value, reflecting how well the activity patterns for that patient were
20 reconstructed. Next, for each voxel in the 4 mm3 MNI brain, we computed the average value
221 across any electrode (from any patient) that came within 20 MNI units of that voxel’s center.
sz This yielded an information score for each voxel, reflecting the (weighted) average reconstruc-
23 tion accuracy across any patients with electrodes near each voxel, where the averages were

24 weighted to reflect patients who had more electrodes implanted near that location. We created
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Figure 4: Reconstruction accuracy across all electrodes in two ECoG datasets for each fre-
quency band. A. Distributions of correlations between observed versus reconstructed ac-
tivity by electrode for each frequency band in Dataset 1. Each color denotes a different
frequency band. Within each color group, the darker dots and bar on the left display the
distribution (and mean) across-patient reconstruction accuracies (analogous to the black his-
tograms in Fig. [2). The lighter dots and bar on the right display the distribution (and mean)
within-patient reconstruction accuracies (analogous to the gray histograms in Fig. ). Each
dot indicates the reconstruction accuracy for one electrode in the dataset. To facilitate visual
comparison with the frequency-specific results, the leftmost bars (gray) re-plot the histograms
in Figure JJA. B. Statistical summary of across-patient reconstruction accuracy by electrode
for each frequency band in Dataset 1. In the upper triangles of each map, warmer colors
(positive t-values) indicate that the reconstruction accuracy for the frequency band in the given
row was greater (via a two-tailed paired-sample t-test) than for the frequency band in the
given column. Cooler colors (negative t-values) indicate that reconstruction accuracy for the
frequency band in the given row was lower than for the frequency band in the given column.
The lower triangles of each map denote the corresponding p-values for the t-tests. The diagonal
entries display the average reconstruction accuracy within each frequency band. C. Statistical
summary of within-patient reconstruction accuracy by electrode for each frequency band in
Dataset 1. This panel displays the within-patient statistical summary, in the same format as
Panel B. D. Distributions of correlations between observed versus reconstructed activity by
electrode, for each frequency band in Dataset 2. This panel displays reconstruction accuracy
distributions for each frequency band for Dataset 2. E.-F. Statistical summaries of across-
patient and within-patient reconstruction accuracy by electrode for each frequency band in
Dataset 2. These panels are in the same as Panels B and C, but display results from Dataset 2.
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225 a single map of these information scores for each dataset, highlighting regions that are espe-
w6 cially informative about activity in other brain areas (Figs. and B). Despite task and patient
sz differences across the two datasets, we nonetheless found that the information score maps from
a3 both datasets were correlated (voxelwise correlation between information scores across the two
2o datasets: r = 0.18,p < 107%). Our finding that there were some commonalities between the
w0 two datasets” information score maps lends support to the notion that different brain areas
ss - are (reliably) differently informative about full-brain activity patterns. We also examined the
sz intersection between the top 10% most informative voxels across the two datasets (gray areas
s in Fig. [B[C, networks shown in Fig. [fA, top row). Supporting the notion that structures that
a4 are highly interconnected with the rest of the brain are most informative about full-brain activ-
ws ity patterns, the intersecting set of voxels with the highest information scores included major
se portions of the dorsal attention network (e.g., inferior parietal lobule, precuneus, inferior tem-
s7  poral gyrus, thalamus, and striatum) as well as some portions of the default mode network
ss  (e.g., angular gyrus) that are highly interconnected with a large proportion of the brain’s gray
s matter (e.g.,[Iomasi and Volkow|2011).

340 We also wondered whether the map of information scores might vary as a function of the
a1 spectral components of the activity patterns under consideration. We computed analogous
a2 maps of information scores for each individual frequency band. Across Datasets 1 and 2
us  (with the exception of a-band activity), we observed reliable positive correlations between
s the voxelwise maps of information scores (6: r = 0.09,p < 10™7; 0: r = 0.24,p < 107%; a
as = -0.03,p <0.001; B: r =0.02,p = 0.0011; yr: r =0.1,p < 107¢7; yu: r =0.03,p < 1077;
us broadband: r = 0.21,p < 1072%7).

347 To gain additional insight into which regions were most informative about full-brain ac-
us  tivity patterns at different frequency bands, we next computed (for each frequency band) the

s intersection of the top 10% highest information scores across the maps for Datasets 1 and 2
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Figure 5: Most informative recording locations. A. Dataset 1 information scores by voxel.
The voxel colors reflect the weighted average reconstruction accuracy across all electrodes from
any patients with at least one electrode within 20 MNI units of the given voxel. B. Dataset 2
information scores by voxel. This panel is in the same format as Panel A. C. Intersection. Gray
areas indicate the intersections between the top 10% most informative voxels in each map and
projected onto the cortical surface (Combrisson et al.2019). D. Correspondence in information
scores by voxel across Datasets 1 and 2. The correlation reported in the Panel is between the
per-voxel information scores across Datasets 1 and 2.
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s (analogous to our approach in Fig. [5IC). This yielded a single map of the (reliably) most infor-
st mative locations, for each frequency band we examined. We then carried out post hoc analyses
sz on each of these maps to characterize the underlying structural and functional properties of
sss each set of regions we identified as being particularly informative about one or more types of
s« neural pattern (Figs. [fland S5).

355 A growing body of neuroscientific research is concerned with characterizing the parcella-
sss  tions of anatomical and functional brain networks (for review see Arslan et al.|2018; Zalesky
ss7 et al.2010). The dominant approaches entail obtaining a full-brain connectivity matrix using
ss  either diffusion tensor imaging to identify the brain’s network of white matter connections,
sse  or functional connectivity (typically applied to resting state data) to correlate the patterns of
w0 activity exhibited by different brain structures. One can then apply graph theoretic approaches
s to assign each brain structure (typically a single fMRI voxel) to one or more networks (for review
sz see |Bullmore and Sporns 2009). The result is a set of distinct (or partially overlapping) brain
ss  “networks” that may be further examined to elucidate their potential functional role. We over-
ss4 laid a well-cited seven-network parcellation map identified by Yeo et al. (2011) onto the maps of
ses brain locations that were most informative about each type of neural pattern. For each of these
w6 information maps, we computed the proportion of voxels in the most informative brain regions
s7  that belonged to each of the seven networks identified by Yeo et al.|(2011); Figure E]D We found
ss that the regions we identified as being most informative about different neural patterns varied
% markedly with respect to which functional networks they belonged to (Fig.[6A, B).

870 The variability we observed in the frequency-specific information score maps is consistent
s71 with the notion that there is no “universal” brain region that reflects all types of activity pat-
sz terns throughout the rest of the brain. Rather, each region’s activity patterns appear to be
ss characterized by different spectral profiles, and the ability to infer full-brain activity patterns

a4 at a particular frequency band depends on the structural and functional connectome specific
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Figure 6: Most informative recording locations by frequency band. A. Intersections between
information score maps by frequency band. The regions indicated in each row depict the
intersection between the top 10% most informative locations across Datasets 1 and 2. B. Network
memberships of the most informative brain regions. The pie charts display the proportions of
voxels in each region thatbelong to the seven networks identified by|Yeo etal [(2011). The relative
sizes of the charts for each frequency band reflect the average across-subject reconstruction
accuracies (Figs. E|A, D). The voxels in Panel A are colored according to the same network
memberships. C. Neurosynth terms associated with the most informative brain regions, by
frequency band. The lists in each row display the top five neurosynth terms (Rubin et al.|2017)
decoded for each region. D. Network parcellation map and legend. The parcellation defined
by Yeo et al.|(2011) is displayed on the inflated brain maps. The colors and network labels serve
as a legend for Panels A and B. E. Combined map of the most informative brain regions. The
map displays the union of the most informative maps in Panel A, colored by frequency band.
The labels also serve as a legend for Panel C.
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w5 to that frequency band (Fig.[6E). We wondered how the maps we found might fit in with prior
a7s ' work. To this end, in addition to examining the anatomical profiles of each map, we used Neu-
a7 rosynth (Rubin et al.[2017) to identify (using meta analyses of the neuroimaging literature) the
a8 top five most common terms associated with each frequency-specific map (Fig. [6IC). We found
so  that 0 patterns across the brain were best predicted by regions of ventromedial prefrontal cortex,
ss0  striatum, and thalamus (yellow). These regions are also implicated in modulating 6 oscillations
st during sleep, and are heavily interconnected with cortex (e.g.,|/Amzica and Steriade|1998). The
sz brain areas most informative about full-brain O patterns were occipital and parietal regions
ss  associated with visual processing and visual attention (light green). Prior work has implicated
se4 0 oscillations in these areas in periodic sampling of visual attention (e.g., Busch and VanRullen
ses 2010). We found that full-brain a patterns were best predicted by motor areas (dark green),
ss  which also exhibit a band changes during voluntary movements (e.g., Jurkiewicz et al.2006).
se7  Striatum and thalamus (teal) were most informative about full-brain  patterns. Prior work has
sss implicated striatal § activity in sensory and motor processing (Feingold et al.2015) and thalamic
se f activity has been implicated in modulating widespread f patterns across neocortex (Sherman
w0 et al.|2016). Somatosensory areas (dark blue) were most informative about full-brain y;, pat-
ssr terns. Prior work has implicated somatosensory y; in somatosensory processing and motor
sz planning (Ihara et al.[2003). Occipital cortex (purple) was most informative about full-brain
s vy patterns. Occipital Yy has also been linked with visual processing and reading (Wu et al.
s« 2011) and the transmission of visual representations from low-order to higher-order visual
ses areas (Matsumoto et al.2013). Full-brain broadband patterns were best predicted by inferior
w6 parietal cortex precuneus (maroon). Functional neuroimaging BOLD responses (Simony et al.
s7 2016) and broadband ECoG patterns (Honey et al.[2012) in these default-mode hubs have been
ws implicated in processing context-dependent representations that unfold over long timescales.

399 Taken together, the frequency-specific information maps suggest a potential new interpreta-

23


https://doi.org/10.1101/121020
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/121020; this version posted March 14, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

w0 tion of many of the above previously reported findings. Prior work has largely treated region-
401 specific narrowband and broadband activity as an indicator that activity at those frequency
w2 ranges reflects that the given region is representing or supporting a particular function. Our
w3 work suggests an alternative interpretation that when we observe a particular neural pattern in
w4 a particular brain region, it may instead reflect how that region is transmitting information to

a5 the rest of the brain via signalling at the given frequency range.

w06 Discussion

w07 Are our brain’s networks static or dynamic? And to what extent are the network properties of
w8 our brains stable across people and tasks? One body of work suggests that our brain’s functional
ws  networks are dynamic (e.g., Manning et al.[2018;|Owen et al.|2019), person-specific (e.g., [Finn
so  etal.2015), and task-specific (e.g., Turk-Browne[2013). In contrast, although the gross anatomical
a1 structure of our brains changes meaningfully over the course of years as our brains develop, on
sz thetimescales of typical neuroimaging experiments (i.e., hours to days) our anatomical networks
»s are largely stable (e.g., Casey et al.|2000). Further, many aspects of brain anatomy, including
sa - white matter structure, are largely preserved across people (e.g., [Jahanshad et al.|2013; Mori
«s et al.[2008; [Talairach and Tournoux|1988). There are several possible means of reconciling this
ss apparent inconsistency between dynamic person- and task-specific functional networks versus
»7 stable anatomical networks. For example, relatively small magnitude anatomical differences
ss across people may be reflected in reliable functional connectivity differences. Along these
s9 lines, one recent study found that diffusion tensor imaging (DTI) structural data is similar
20 across people, but may be used to predict person-specific resting state functional connectivity
21 data (Becker et al.[2018). Similarly, other work indicates that task-specific functional connectivity
22 may be predicted by resting state functional connectivity data (Cole et al.|2016; Tavor et al.|2016).

223 Another (potentially complementary) possibility is that our functional networks are constrained
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24 by anatomy, but nevertheless exhibit (potentially rapid) task-dependent changes (e.g., Sporns
a5 and Betzel |[2016).

426 Here we have taken a model-based approach to studying whether high spatiotemporal
27 resolution activity patterns throughout the human brain may be explained by a static connec-
228 tome model that is shared across people and tasks. Specifically, we trained a model to take
28 in recordings from a subset of brain locations, and then predicted activity patterns during the
a0 same interval, but at other locations that were held out from the model. Our model, based on
s Gaussian process regression, was built on three general hypotheses about the nature of the
w2 correlational structure of neural activity (each of which we tested). First, we hypothesized that
w3 functional correlations are stable over time and across tasks. We found that, although aspects of
w4 the patients” functional correlations were stable across tasks, we achieved better reconstruction
w5 accuracy when we trained the model on within-task data. This suggests that our general ap-
ss proach could be extended to better model across-task changes, e.g., following|Cole et al. (2016);
s Tavor et al[(2016); and others. Second, we hypothesized that some of the correlational structure
s of people’s brain activity is similar across individuals. Consistent with this hypothesis, our
se  model explained each patient’s data best when trained using data from other patients— even
a0  when compared models trained within-patient. Third, we resolved ambiguities in the data by
w1 hypothesizing that neural activity from nearby sources tends to be similar, all else being equal.
sz This hypothesis was supported through our finding that all of the models we trained that
w3 incorporated this spatial smoothness assumption predicted held-out data well above chance.
444 One potential limitation of our approach is that it does not provide a natural means of
ws estimating the precise timing of single-neuron action potentials. Prior work has shown that
us gamma band and broadband activity in the LFP may be used to estimate the firing rates of
a7 neurons that underly the population contributing to the LFP (Crone et al.|2011; Jacobs et al.

xs 2010; Manning et al[2009; Miller et al.|2008). Because SuperEEG reconstructs LFPs throughout
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us the brain, one could in principle use broadband power in the reconstructed signals to estimate
s0 the corresponding firing rates (though not the timings of individual action potentials). We
s found that we were able to reconstruct full-brain patterns of broadband power well (Fig. [4).

452 A second potential limitation of our approach is that it relies on ECoG data from epilepsy
3 patients. Recent work comparing functional correlations in epilepsy patients (measured using
ss4  ECoG) and healthy individuals (measured using fMRI) suggests that there are gross similarities
s between these populations (e.g., Kucyi et al.2018; Reddy et al.2018). Nevertheless, because all of
s the patients we examined have drug-resistant epilepsy, it remains uncertain how generally the
ss7  findings reported here might apply more broadly to the population at large (e.g., non-clinical
ss  populations).

459 Beyond providing a means of estimating ongoing activity throughout the brain using
w0 already-implanted electrodes, our work also has implications how to optimize electrode place-
41 ments in neurosurgical evaluations. Electrodes are typically implanted to maximize coverage
w2 of suspected epileptogenic tissue. However, our findings suggest that this approach might be
43 improved upon. Specifically, one could leverage not only the non-invasive recordings taken
s4 during an initial monitoring period (as is currently done routinely), but also recordings col-
ss lected from other patients. We could then ask: given what we learn from other patients’ data
w6 (and potentially from the scalp EEG recordings of this new patient), where should we place a
a7 fixed number of electrodes to maximize our ability to map seizure foci? As shown in Figures
ws |6} and S5, recordings from different regions vary with respect to how informative they are about
w9 different narrowband and broadband full-brain activity patterns.

470 By providing a means of reconstructing full-brain activity patterns, the SuperEEG approach
s maps ECoGrecordings from different patients into a common neural space, despite that different
a2 patients’ electrodes were implanted in different locations. This feature of our approach enables

a3 across-patient ECoG studies, analogous to across-subject fMRI studies (e.g., Haxby et al.[2001)}
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s+ 2011; Norman et al.|2006). Whereas the focus of this manuscript is to specifically evaluate
srs which aspects of neural activity patterns SuperEEG recovers well (or poorly), in parallel work
a76  We are training across-patient classifiers by leveraging the common neural spaces obtained by
a7 applying SuperEEG to multi-patient ECoG data. For example, we have shown that SuperEEG-
a8 derived activity patterns may be used to accurately predict psychiatric conditions such as
s7s  depression (Scangos et al.2020). Analogous approaches could in principle be used to develop
40 improved brain-computer interfaces and/or to carry out other analyses that would benefit from
1 high spatiotemporal resolution full-brain data in individuals, projected into a common ECoG

2 Space across people.
« Concluding remarks

ss4  Over the past several decades, neuroscientists have begun to leverage the strikingly profound
s mathematical structure underlying the brain’s complexity to infer how our brains carry out
w6 computations to support our thoughts, actions, and physiological processes. Whereas tradi-
47 tional beamforming techniques rely on geometric source-localization of signals measured at the
w8 scalp, here we propose an alternative approach that leverages the rich correlational structure
se  of two large datasets of human intracranial recordings. In doing so, we are one step closer to
40 oObserving, and perhaps someday understanding, the full spatiotemporal structure of human

s1  neural activity.
« Code availability

s We have published an open-source toolbox implementing the SuperEEG algorithm. It may be
s4 downloaded here. Additionally, we have provided code for all analyses and figures reported in

a5 the current manuscript, available here.
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« Data availability

s7  The datasets analyzed in this study were generously shared by Michael J. Kahana. A portion of

ws Dataset 1 may be downloaded here. Dataset 2 may be downloaded here.
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