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Abstract4

We present a model-based method for inferring full-brain neural activity at millimeter-5

scale spatial resolutions and millisecond-scale temporal resolutions using standard human6

intracranial recordings. Our approach makes the simplifying assumptions that different7

people’s brains exhibit similar correlational structure, and that activity and correlation pat-8

terns vary smoothly over space. One can then ask, for an arbitrary individual’s brain: given9

recordings from a limited set of locations in that individual’s brain, along with the observed10

spatial correlations learned from other people’s recordings, howmuch can be inferred about11

ongoing activity at other locations throughout that individual’s brain? We show that our12

approach generalizes across people and tasks, thereby providing a person- and task-general13

means of inferring high spatiotemporal resolution full-brain neural dynamics from standard14

low-density intracranial recordings.15

16

Keywords: Electrocorticography (ECoG), intracranial electroencephalography (iEEG), local field17

potential (LFP), epilepsy, maximum likelihood estimation, Gaussian process regression18

Introduction19

Modern human brain recording techniques are fraught with compromise (Sejnowski et al.20

2014). Commonly used approaches include functional magnetic resonance imaging (fMRI),21

scalp electroencephalography (EEG), and magnetoencephalography (MEG). For each of these22

techniques, neuroscientists and electrophysiologists must choose to optimize spatial resolution23

at the cost of temporal resolution (e.g., as in fMRI) or temporal resolution at the cost of spatial24
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resolution (e.g., as in EEG and MEG). A less widely used approach (due to requiring work25

with neurosurgical patients) is to record from electrodes implanted directly onto the cortical26

surface (electrocorticography; ECoG) or into deep brain structures (intracranial EEG; iEEG).27

However, these intracranial approaches also require compromise: the high spatiotemporal28

resolution of intracranial recordings comes at the cost of substantially reduced brain coverage,29

since safety considerations limit the number of electrodes one may implant in a given patient’s30

brain. Further, the locations of implanted electrodes are determined by clinical, rather than31

research, needs.32

An increasingly popular approach is to improve the effective spatial resolution of MEG or33

scalp EEG data by using a geometric approach called beamforming to solve the biomagnetic or34

bioelectrical inverse problem (Sarvas 1987). This approach entails using detailed brain conduc-35

tance models (often informed by high spatial resolution anatomical MRI images) along with36

the known sensor placements (localized precisely in 3D space) to reconstruct brain signals orig-37

inating from theoretical point sources deep in the brain (and far from the sensors). Traditional38

beamforming approaches must overcome two obstacles. First, the inverse problem beamform-39

ing seeks to solve has infinitely many solutions. Researchers have made progress towards40

constraining the solution space by assuming that signal-generating sources are localized on a41

regularly spaced grid spanning the brain and that individual sources are small relative to their42

distances to the sensors (Baillet et al. 2001; Hillebrand et al. 2005; Snyder 1991). The second,43

and in some ways much more serious, obstacle is that the magnetic fields produced by external44

(noise) sources are substantially stronger than those produced by the neuronal changes being45

sought (i.e., at deep structures, as measured by sensors at the scalp). This means that obtaining46

adequate signal quality often requires averaging the measured responses over tens to hundreds47

of responses or trials (e.g., see review by Hillebrand et al. 2005).48

Another approach to obtaining high spatiotemporal resolution neural data has been to col-49
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lect fMRI and EEG data simultaneously. Simultaneous fMRI-EEG has the potential to balance50

the high spatial resolution of fMRI with the high temporal resolution of scalp EEG, thereby,51

in theory, providing the best of both worlds. In practice, however, the signal quality of both52

recordings suffers substantially when the two techniques are applied simultaneously (e.g., see53

review by Huster et al. 2012). In addition, the experimental designs that are ideally suited to54

each technique individually are somewhat at odds. For example, fMRI experiments often lock55

stimulus presentation events to the regularly spaced image acquisition time (TR), which max-56

imizes the number of post-stimulus samples. By contrast, EEG experiments typically employ57

jittered stimulus presentation times to maximize the experimentalist’s ability to distinguish58

electrical brain activity from external noise sources such as from 60 Hz alternating current59

power sources.60

The current “gold standard” for precisely localizing signals and sampling at high temporal61

resolution is to take (ECoG or iEEG) recordings from implanted electrodes (but from a limited62

set of locations in any given brain). This begs the following question: what can we infer about63

the activity exhibited by the rest of a person’s brain, given what we learn from the limited64

intracranial recordings we have from their brain and additional recordings taken from other65

people’s brains? Here we develop an approach, which we call SuperEEG1, based on Gaussian66

process regression (Rasmussen 2006). SuperEEG entails using data from multiple people to67

estimate activity patterns at arbitrary locations in each person’s brain (i.e., independent of their68

electrode placements). We test our SuperEEG approach using two large datasets of intracranial69

recordings (Ezzyat et al. 2017, 2018; Horak et al. 2017; Kragel et al. 2017; Kucewicz et al. 2017,70

2018; Lin et al. 2017; Manning et al. 2011, 2012; Sederberg et al. 2003, 2007a,b; Solomon et al.71

2018; Weidemann et al. 2019). We show that the SuperEEG algorithm recovers signals well72

1The term “SuperEEG” was coined by Robert J. Sawyer in his popular science fiction novel The Terminal Experi-
ment (Sawyer 1995). SuperEEG is a fictional technology that measures ongoing neural activity throughout the entire
living human brain at arbitrarily high spatiotemporal resolution.
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from electrodes that were held out of the training dataset. We also examine the factors that73

influence how accurately activity may be estimated (recovered), which may have implications74

for electrode design and placement in neurosurgical applications.75

Approach76

The SuperEEG approach to inferring high temporal resolution full-brain activity patterns is77

outlined and summarized in Figure 1. We describe (in this section) and evaluate (in Results) our78

approach using two large previously collected datasets comprising multi-session intracranial79

recordings. Dataset 1 comprisesmulti-session recordings taken from 6876 electrodes implanted80

in the brains of 88 epilepsy patients (Manning et al. 2011, 2012; Sederberg et al. 2003, 2007a,b).81

Each recording session lasted from 0.2–3 h (total recording time: 0.3–14.2 h; Fig. S6E). During82

each recording session, the patients participated in a free recall list learning task,which lasted for83

up to approximately 1 h. In addition, the recordings included “buffer” time (the length varied84

by patient) before and after each experimental session, during which the patients went about85

their regular hospital activities (confined to their hospital room, and primarily in bed). These86

additional activities included interactions with medical staff and family, watching television,87

reading, and other similar activities. For the purposes of the Dataset 1 analyses presented here,88

we aggregated all data across each recording session, including recordings taken during the89

main experimental task as well as during non-experimental time. We used Dataset 1 to develop90

our main SuperEEG approach, and to examine the extent to which SuperEEG might be able91

to generate task-general predictions. Dataset 2 comprised multi-session recordings from 1486092

electrodes implanted in the brains of 131 epilepsy patients (Ezzyat et al. 2017, 2018; Horak93

et al. 2017; Kragel et al. 2017; Kucewicz et al. 2017, 2018; Lin et al. 2017; Solomon et al. 2018;94

Weidemann et al. 2019). Each recording session lasted from 0.4–2.2 h (total recording time:95

0.4–6.6 h; Fig. S6K). Whereas Dataset 1 included recordings taken as the patients participated96
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Figure 1: Methods overview. A. Electrode locations. Each dot reflects the location of a single
electrode implanted in the brain of a Dataset 1 patient. A held-out recording location from
one patient is indicated in red, and the patient’s remaining electrodes are indicated in black.
The electrodes from the remaining patients are colored by k-means cluster (computed using the
full-brain correlationmodel shown in Panel D).B. Radial basis function kernel. Each electrode
contributed by the patient (black) weights on the full set of locations under consideration (all
dots in Panel A, defined as R in the text). The weights fall off with positional distance (in
MNI152 space) according to an RBF. C. Per-patient correlation matrices. After computing
the pairwise correlations between the recordings from each patient’s electrodes, we use RBF-
weighted averages to estimate correlations between all locations in R. We obtain an estimated
full-brain correlation matrix using each patient’s data. D. Merged correlation model. We
combine the per-patient correlation matrices (Panel C) to obtain a single full-brain correlation
model that captures information contributed by every patient. Here we have sorted the rows
and columns to reflect k-means clustering labels (using k=7; Yeo et al. 2011), whereby we
grouped locations based on their correlations with the rest of the brain (i.e., rows of the matrix
displayed in the panel). The boundaries denote the cluster groups. The rows and columns of
Panel C have been sorted using the Panel D-derived cluster labels. E. Reconstructing activity
throughout the brain. Given the observed recordings from the given patient (shown in black;
held-out recording is shown in blue), along with a full-brain correlation model (Panel D), we
use Equation 12 to reconstruct the most probable activity at the held-out location (red).

in a variety of activities, Dataset 2 included recordings taken as each patient performed each of97

two specific experimental memory tasks: a randomword list free recall task (Experiment 1) and98

a categorizedword list free recall task (Experiment 2). We used Dataset 2 to further examine the99

ability of SuperEEG to generalize its predictions within versus across tasks. Figure S6 provides100

additional information about both datasets.101

We first applied fourth order Butterworth notch filters to remove 60 Hz (± 0.5 Hz) line102

noise from every recording (from every electrode). Next, we downsampled the recordings103
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(regardless of the original samplerate) to 250 Hz. This downsampling step served to both104

normalize for differences in sampling rates across patients and to ease the computational burden105

of our subsequent analyses. We then excluded any electrodes that showed putative epileptiform106

activity. Specifically, we excluded from further analysis any electrode that exhibited amaximum107

kurtosis of 10 or greater across all of that patient’s recording sessions. We also excluded any108

patients with fewer than 2 electrodes that passed this criteria, as the SuperEEG algorithm109

requires measuring correlations between 2 or more electrodes from each patient. For Dataset110

1, this yielded clean recordings from 4168 electrodes implanted throughout the brains of 67111

patients (Fig. 1A, colored dots); for Dataset 2, this yielded clean recordings from 5023 electrodes112

implanted in 78 patients. Each individual patient contributed electrodes from a limited set113

of brain locations, which we localized in a common space (MNI152; Grabner et al. 2006); an114

example Dataset 1 patient’s 54 electrodes that survived the kurtosis thresholding procedure are115

highlighted in black and red (Fig. 1A).116

The recording from a given electrode is maximally informative about the activity of the

neural tissue immediately surrounding its recording surface. However, brain regions that are

distant from the recording surface of the electrode also contribute to the recording, albeit (ceteris

paribus) to a much lesser extent. One mechanism underlying these contributions is volume

conduction. The precise rate of falloff due to volume conduction (i.e., howmuch a small volume

of brain tissue at location x contributes to the recording from an electrode at location η) depends

on the size of the recording surface, the electrode’s impedance, and the conductance profile of

the volume of brain between x and η. As an approximation of this intuition, we place aGaussian

radial basis function (RBF) at the location η of each electrode’s recording surface (Fig. 1B). We

use the values of the RBF at any brain location x as a rough estimate of how much structures
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around x contributed to the recording from location η:

rbf(x |η, λ) � exp
{
−
||x − η| |2

λ

}
, (1)

where the width variable λ is a parameter of the algorithm (which may in principle be set117

according to location-specific tissue conductance profiles) that governs the level of spatial118

smoothing. In choosing λ for the analyses presented here, we sought to maximize spatial119

resolution (which implies a small value of λ) while also maximizing the algorithm’s ability120

to generalize to any location throughout the brain, including those without dense electrode121

coverage (which implies a large value of λ). Here we set λ � 20, guided in part by our prior122

related work (Manning et al. 2014, 2018), and in part by examining the brain coverage with123

non-zero weights achieved by placing RBFs at each electrode location in Dataset 1 and taking124

the sum (across all electrodes) at each voxel in a 4 mm3 MNI brain. (We then held λ fixed for125

our analyses of Dataset 2.) We note that this value could in theory be further optimized, e.g.,126

using cross validation or a formal model (e.g., Manning et al. 2018).127

A second mechanism whereby a given region x can contribute to the recording at η is128

through (direct or indirect) anatomical connections between structures near x and η. Although129

anatomical and functional correlations can differ markedly (e.g., Adachi et al. 2012; Goñi et al.130

2014; Honey et al. 2009), we use temporal correlations in the data to estimate these anatomical131

connections (Becker et al. 2018). Let R be the set of locations at which we wish to estimate local132

field potentials, and let Rs ⊆ R be set of locations at whichwe observe local field potentials from133

patient s (excluding the electrodes that did not pass the kurtosis test described above). In the134

analyses belowwe define R � ∪S
s�1Rs . We can calculate the expected inter-electrode correlation135

matrix for patient s, where Cs ,k(i , j) is the correlation between the time series of voltages for136

electrodes i and j from subject s during session k, using:137
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Cs � r

(
1
n

(
n∑

k�1

z(Cs ,k)
))
, where (2)

z(r) �
log(1 + r) − log(1 − r)

2
is the Fisher z−transformation and (3)

z−1(z) � r(z) �
exp(2z) − 1
exp(2z) + 1

is its inverse. (4)

Next, we use Equation 1 to construct a number of to-be-estimated locations by number of138

patient electrode locations weight matrix, Ws . Specifically, Ws approximates how informative139

the recordings at each location in Rs are in reconstructing activity at each location in R, where140

the contributions fall off with an RBF according to the distances between the corresponding141

locations:142

Ws(i , j) � rbf(i | j, λ). (5)

Given this weightmatrix, Ws , and the observed inter-electrode correlationmatrix for patient143

s, Cs , we can estimate the correlation matrix for all locations in R (Ĉs ; Fig. 1C) using:144

N̂s(x , y) �
|Rs |∑
i�1

i−1∑
j�1

W(x , i) ·W(y , j) · z(Cs(i , j)) (6)

D̂s(x , y) �
|Rs |∑
i�1

i−1∑
j�1

W(x , i) ·W(y , j). (7)

Ĉs � r
(

N̂s

D̂s

)
. (8)

After estimating the numerator (N̂s) and denominator (D̂s) placeholders for each Ĉs , we ag-

gregate these estimates across the S patients to obtain a single expected full-brain correlation

matrix (K̂; Fig. 1D):

K̂ � r

(∑S
s�1 N̂s∑S
s�1 D̂s

)
. (9)
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Intuitively, the numerators capture the general structures of the patient-specific estimates of full-145

brain correlations, and the denominators account for which locations were near the implanted146

electrodes in each patient. To obtain K̂, we compute a weighted average across the estimated147

patient-specific full-brain correlation matrices, where patients with observed electrodes near a148

particular set of locations in K̂ contribute more to the estimate.149

Having used the multi-patient data to estimate a full-brain correlation matrix at the set150

of locations in R that we wish to know about, we next use K̂ to estimate activity patterns151

everywhere in R, given observations at only a subset of locations in R (Fig. 1E).152

Let αs be the set of indices of patient s’s electrode locations in R (i.e., the locations in Rs),153

and let βs be the set of indices of all other locations in R. In other words, βs reflects the locations154

in R where we did not observe a recording for patient s (these are the recording locations we155

will want to fill in using SuperEEG). We can sub-divide K̂ as follows:156

K̂βs ,αs � K̂(βs , αs), and (10)

K̂αs ,αs � K̂(αs , αs). (11)

Here K̂βs ,αs represents the correlations between the “unknown” activity at the locations indexed157

by βs and the observed activity at the locations indexed by αs , and K̂αs ,αs represents the158

correlations between the observed recordings (at the locations indexed by αs).159

Let Ys ,k ,αs be the number-of-timepoints (T) by |αs | matrix of (observed) voltages from the160

electrodes in αs during session k from patient s. Then we can estimate the voltage from patient161

s’s k th session at the locations in βs as follows (Rasmussen 2006):162

Ŷs ,k ,βs � ((K̂βs ,αs · K̂−1
αs ,αs
) · YT

s ,k ,αs
)T. (12)

This equation is the foundation of the SuperEEG algorithm. Whereas we observe recordings163
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only at the locations indexed by αs , Equation 12 allows us to estimate the recordings at all loca-164

tions indexed by βs , which we can define a priori to include any locations we wish, throughout165

the brain. This yields estimates of the time-varying voltages at every location in R, provided that166

we define R in advance to include the union of all of the locations in Rs and all of the locations167

at which we wish to estimate recordings (i.e., a timeseries of voltages).168

We designed our approach to be agnostic to electrode impedances, as electrodes that do not169

exist do not have impedances. Therefore our algorithm recovers voltages in standard deviation170

(z-scored) units rather than attempting to recover absolute voltages. (This property reflects the171

fact that K̂βs ,αs and K̂αs ,αs are correlation matrices rather than covariance matrices.) Also, we172

note that Equation 12 requires computing a T by T matrix, which can become computationally173

expensive when T is very large (e.g., for the Dataset 1 patient with the longest recording time,174

T � 12, 786, 750; also see Fig. S6, Panels E and K). However, because Equation 12 is time175

invariant, we may compute Ys ,k ,βs in a piecewise manner by filling in Ys ,k ,βs one row at a time176

(using the corresponding samples from Ys ,k ,αs ).177

The SuperEEG algorithm described above and in Figure 1 allows us to estimate, up to a178

constant scaling factor, local field potentials (LFPs) for each patient at all arbitrarily chosen179

locations in the set R, even if we did not record that patient’s brain at all of those locations. We next180

turn to an evaluation of the accuracy of those estimates.181

Results182

We used a cross-validation approach to test the accuracy with which the SuperEEG algorithm183

reconstructs activity throughout the brain. For each patient in turn, we estimated full-brain184

correlation matrices (Eqn. 9) using data from all of the other patients. This step ensured that the185

datawewere reconstructing could not also be used to estimate the between-location correlations186

that drove the reconstructions via Equation 12 (otherwise the analysis would be circular). For187
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that held-out patient, we held out each electrode in turn. We used Equation 12 to reconstruct188

activity at the held-out electrode location, using the correlation matrix learned from all other189

patients’ data as K̂, and using activity recorded from the other electrodes from the held-out190

patient as Ys ,k ,αs . (For analyses examining the stability of our estimates of K̂ across time191

and patients, see Figs. S7 and S8, respectively). We then asked: how closely did each of the192

SuperEEG-estimated recordings at those electrodes match the observed recordings from those193

electrodes (i.e., how closely did the estimated Ŷs ,k ,βs match the observed Ys ,k ,βs )?194

We used this general approach to quantify the algorithm’s performance across the full195

dataset. For each held-out electrode, from each held-out patient in turn, we computed the196

average correlation (across recording sessions) between the SuperEEG-reconstructed voltage197

traces and the observed voltage traces from that electrode. For this analysis we set R to be the198

union of all electrode locations across all patients. This yielded a single correlation coefficient199

for each electrode location in R, reflecting howwell the SuperEEG algorithmwas able to recover200

the recording at that location by incorporating data across patients (black histogram in Fig. 2A,201

map in Fig. 2C). The observed distribution of correlations was centered well above zero (mean:202

r � 0.51; t-test comparing mean of distribution of z-transformed average patient correlation203

coefficients to 0: t(66) � 23.55, p < 10−10), indicating that the SuperEEG algorithm recovers204

held-out activity patterns substantially better than random guessing.205

Next, we compared the quality of these across-participant reconstructions (i.e., computed206

using a correlation model learned from other patients’ data) to reconstructions generated using207

a correlation model trained using the in-patient’s data. In other words, for this within-patient208

benchmark analysis we estimated Ĉs (Eqn. 8) for each patient in turn, using recordings from all209

of that patient’s electrodes except at the location we were reconstructing. These within-patient210

reconstructions serve as an estimate of how well data from all of the other electrodes from that211

single patient may be used to estimate held-out data from the same patient. This allows us to212
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ask how much information about the activity at a given electrode might be inferred through213

(a) volume conductance or other sources of “leakage” from activity patterns measured from214

the patient’s other electrodes and (b) across-electrode correlations learned from that single215

patient. As shown in Figure 2A (gray histogram), the distribution of within-patient correlations216

was centered well above zero (mean: r � 0.32; t-test comparing mean of distribution of z-217

transformed average patient correlation coefficients to 0: t(66) � 15.16, p < 10−10). However, the218

across-patient correlations were substantially higher (t-test comparing average z-transformed219

within versus across patient electrode correlations: t(66) � 9.17, p < 10−10). This is an especially220

conservative test, given that the across-patient SuperEEG reconstructions exclude (from the221

correlation matrix estimates) all data from the patient whose data is being reconstructed. We222

repeated each of these analyses on a second independent dataset and found similar results223

(Fig. 2B, D; within versus across reconstruction accuracy: t(77) � 11.25, p < 10−10). We also224

replicated this result separately for each of the two experiments from Dataset 2 (Fig. S3). This225

overall finding, that reconstructions of held-out data using correlation models learned from226

other patient’s data yield higher reconstruction accuracy than correlation models learned from227

the patient whose data is being reconstructed, has two important implications. First, it implies228

that distant electrodes provide additional predictive power to the data reconstructions beyond229

the information contained solely in nearby electrodes. This follows from the fact that each230

patient’s grid, strip, and depth electrodes are implanted in a unique set of locations, so for any231

given electrode the closest electrodes in the full dataset tend to come from the same patient.232

Second, it implies that the spatial correlations learned using the SuperEEG algorithm are, to233

some extent, similar across people.234

The recordings we analyzed from Dataset 1 comprised data collected as the patients per-235

formed a variety of (largely idiosyncratic) tasks throughout each day’s recording session. That236

we observed reliable reconstructions across patients suggests that the spatial correlations de-237
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Figure 2: Reconstruction accuracy across all electrodes in two ECoG datasets. A. Distribu-
tions of correlations between observed versus reconstructed activity by electrode, forDataset
1. The across-patient distribution (black) reflects reconstruction accuracy (correlation) using a
correlation model learned from all but one patient’s data, and then applied to that held-out
patient’s data. The within-patient distribution (gray) reflects performance using a correlation
model learned from the same patient who contributed the to-be-reconstructed electrode. B.
Distributions of correlations for Dataset 2. This panel is in the same format as Panel A, but
reflects results obtained from Dataset 2. The histograms aggregate data across both Dataset 2
experiments; for results broken down by experiment see Figures S2 and S3. C.–D. Reconstruc-
tion accuracy by location. The colors denote the average across-session correlations, using the
across-patient correlation model, between the observed and reconstructed activity at the given
electrode location projected to the cortical surface (Combrisson et al. 2019). Panel C displays
the map for Dataset 1 and Panel D displays the map for Dataset 2.
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rived from the SuperEEG algorithm are, to some extent, similar across tasks. We tested this238

finding more directly using Dataset 2. In Dataset 2, the recordings were limited to times when239

each patient was participating in one of two experiments. Experiment 1 is a random-word240

list free recall task; Experiment 2 is a categorized list free recall task (24 patients participated241

in both). We wondered whether a correlation model learned from data from one experiment242

might yield good predictions of data from the other experiment. Further, we wondered about243

the extent to which it might be beneficial or harmful to combine data across tasks.244

To test the task-specificity of the SuperEEG-derived correlation models, we restricted the245

dataset to the 24 patients that participated in both experiments and repeated the above within-246

and across-patient cross validation procedures separately for Experiment 1 and Experiment 2247

data from Dataset 2. We then compared the reconstruction accuracies for held-out electrodes,248

for models trained within versus across the two experiments, or combining across both exper-249

iments (Fig. S1). In every case we found that across-patient models trained using data from250

all other patients out-performed within-patient models trained on data only from the subject251

contributing the given electrode (ts(23) > 6.50, ps< 10−5). All reconstruction accuracies also re-252

liably exceeded chance performance (ts(23) > 8.00, ps< 10−8). Average reconstruction accuracy253

was highest for the across-patientmodels limited to data from the same experiment (mean accu-254

racy: r � 0.68); next-highest for the models that combined data across both experiments (mean255

accuracy: r � 0.61); and lowest for models trained across tasks (mean accuracy: r � 0.47). This256

pattern of results also held for each of the Dataset 2 experiments individually (Fig. S2). Taken257

together, these results indicate that there are reliable commonalities in the spatial correlations258

of full-brain activity across tasks, but that there are also reliable differences in these spatial259

correlations across tasks. Whereas reconstruction accuracy benefits from incorporating data260

from other patients, reconstruction accuracy is highest when constrained to within-task data,261

or data that includes a variety of tasks (e.g., Dataset 1, or combining across the two Dataset 2262
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Figure 3: Electrode sampling density by location. A. Electrode sampling density by voxel
location in Dataset 1. Each voxel is colored by the proportion of total electrodes in the dataset
that are locatedwithin 20MNI units of the given voxel. B. Electrode sampling density by voxel
location in Dataset 2. This panel displays the sampling density map for Dataset 2, in the same
format as Panel A. C. Correspondence in sampling density by voxel location across Datasets
1 and 2. The two-dimensional histogram displays the per-voxel sampling densities in the two
Datasets, and the one-dimensional histograms display the proportions of voxels in each dataset
with the given density value. The correlation reported in the panel is across voxels in the 4mm3

MNI152 brain.

experiments).263

Although both datasets we examined provide good full-brain coverage (when considering264

data from every patient), electrodes were not sampled uniformly throughout the brain. For265

example, in our patient population, electrodes are more likely to be implanted in regions like266

the medial temporal lobe (MTL), and are rarely implanted in occipital cortex (Fig. 3A, B).267

Separately for each dataset, for each voxel in the 4 mm3 voxel MNI152 brain, we computed268

the proportion of electrodes in the dataset that were contained within a 20 MNI unit radius269

sphere centered on that voxel. We defined the density at that location as this proportion.270

Across Datasets 1 and 2, the electrode placement densities were similar (correlation by voxel:271

r � 0.6, p < 10−10). Wewonderedwhether regionswith good coveragemight be associatedwith272

better reconstruction accuracy. For example, Figures 2C and D indicate that some electrodes273

in the MTL (which tends to be relatively densely sampled) have relatively high reconstruction274
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accuracy, and occipital electrodes (which tends to be relatively sparsely sampled) tend to have275

relatively low reconstruction accuracy. To test whether this held more generally across the276

entire brain, for each dataset we computed the electrode placement density for each electrode277

from each patient (using the proportion of other patients’ electrodes within 20 MNI units of the278

given electrode). We then correlated these density valueswith the across-patient reconstruction279

accuracies for each electrode. We found no reliable correlation between reconstruction accuracy280

and density for Dataset 1 (r � 0.05, p � 0.70) and a reliable negative correlation for Dataset281

2 (r � −0.21, p � 0.05). This suggests that the reconstruction accuracies we observed are not282

driven solely by sampling density, but rather may also reflect higher order properties of neural283

dynamics such as functional correlations between distant voxels (Betzel et al. 2017).284

Prior work in humans and animals has shown that the spatial profile of the local field285

potential differs by frequency band (e.g., with respect to volume conductance properties and286

contribution to the local field potential; Buzsaki et al. 2012; Crone et al. 2011; Fries et al. 2007).287

For example, lower frequency components of the local field potential tend to have higher288

power and extend further in space than high-frequency components (e.g., Manning et al.289

2009; Miller et al. 2007). We wondered whether the reconstructions we observed might be290

differently weighting or considering the contributions of activity at different frequency bands.291

We therefore examined a range of frequency bands (δ: 2–4 Hz; θ: 4–8 Hz; α: 8–12 Hz; β: 12–30292

Hz; γL: 30–60 Hz; and γH : 60–100 Hz), along with a measure of broadband (BB) power. We293

used second-order Butterworth bandpass filters to compute the activity patterns within each294

narrow frequency band. We defined broadband power as the mean height of a linear robust295

regression fit in log-log space to the order 4 Morelet wavelet-computed power spectrum at296

50 log-spaced frequencies from from 2–100 Hz (Manning et al. 2009). We then repeated our297

within-subject and across-subject cross-validated reconstruction accuracy tests (analogous to298

Fig. 2) separately for each frequency band (Fig. 4). (We also carried out a similar analysis on the299
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Hilbert transform-computed spectral power within each narrow band; see Fig. S4.) Across both300

datasets, we found that our approach is best at reconstructing patterns of broadband activity301

(right-most bars in Figs. 4A and D), a correlate of population firing rate (Manning et al. 2009).302

We also achieved good reconstruction accuracywithin each narrow frequency band (Figs. 4 and303

S4). Activity at lower frequencies (δ, θ, α, and β) tended to be reconstructed better than high-304

frequency patterns (γL and γH), with reconstruction accuracy peaking in the θ band. Overall,305

these results indicate that our approach is able to accurately recover information within the306

2–100 Hz range.307

A basic assumption of our approach (and of most prior ECoGwork) is that electrode record-308

ings are most informative about the neural activity near the recording surface of the electrode.309

But if we consider that activity patterns throughout the brain are meaningfully correlated, are310

there particular implantation locations that, if recorded from a given patient’s brain, yield es-311

pecially high reconstruction accuracies throughout the rest of their brain? For example, one312

might hypothesize that brain structures that are heavily interconnected with many other struc-313

tures could be more informative about full-brain activity patterns than comparatively isolated314

structures. To test this hypothesis, we computed the average reconstruction accuracy across all315

of each patient’s electrodes (using our across-patients cross validation test; black histograms316

in Fig. 2A and B). We first labeled each patient’s electrodes, in each dataset, with the average317

reconstruction accuracy for that patient. In other words, we assigned every electrode from318

each patient the same value, reflecting how well the activity patterns for that patient were319

reconstructed. Next, for each voxel in the 4 mm3 MNI brain, we computed the average value320

across any electrode (from any patient) that came within 20 MNI units of that voxel’s center.321

This yielded an information score for each voxel, reflecting the (weighted) average reconstruc-322

tion accuracy across any patients with electrodes near each voxel, where the averages were323

weighted to reflect patients who had more electrodes implanted near that location. We created324
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Figure 4: Reconstruction accuracy across all electrodes in two ECoG datasets for each fre-
quency band. A. Distributions of correlations between observed versus reconstructed ac-
tivity by electrode for each frequency band in Dataset 1. Each color denotes a different
frequency band. Within each color group, the darker dots and bar on the left display the
distribution (and mean) across-patient reconstruction accuracies (analogous to the black his-
tograms in Fig. 2). The lighter dots and bar on the right display the distribution (and mean)
within-patient reconstruction accuracies (analogous to the gray histograms in Fig. 2). Each
dot indicates the reconstruction accuracy for one electrode in the dataset. To facilitate visual
comparison with the frequency-specific results, the leftmost bars (gray) re-plot the histograms
in Figure 2A. B. Statistical summary of across-patient reconstruction accuracy by electrode
for each frequency band in Dataset 1. In the upper triangles of each map, warmer colors
(positive t-values) indicate that the reconstruction accuracy for the frequency band in the given
row was greater (via a two-tailed paired-sample t-test) than for the frequency band in the
given column. Cooler colors (negative t-values) indicate that reconstruction accuracy for the
frequency band in the given row was lower than for the frequency band in the given column.
The lower triangles of eachmap denote the corresponding p-values for the t-tests. The diagonal
entries display the average reconstruction accuracy within each frequency band. C. Statistical
summary of within-patient reconstruction accuracy by electrode for each frequency band in
Dataset 1. This panel displays the within-patient statistical summary, in the same format as
Panel B. D. Distributions of correlations between observed versus reconstructed activity by
electrode, for each frequency band in Dataset 2. This panel displays reconstruction accuracy
distributions for each frequency band for Dataset 2. E.–F. Statistical summaries of across-
patient and within-patient reconstruction accuracy by electrode for each frequency band in
Dataset 2. These panels are in the same as Panels B and C, but display results from Dataset 2.
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a single map of these information scores for each dataset, highlighting regions that are espe-325

cially informative about activity in other brain areas (Figs. 5A and B). Despite task and patient326

differences across the two datasets, we nonetheless found that the information score maps from327

both datasets were correlated (voxelwise correlation between information scores across the two328

datasets: r � 0.18, p < 10−10). Our finding that there were some commonalities between the329

two datasets’ information score maps lends support to the notion that different brain areas330

are (reliably) differently informative about full-brain activity patterns. We also examined the331

intersection between the top 10% most informative voxels across the two datasets (gray areas332

in Fig. 5C, networks shown in Fig. 6A, top row). Supporting the notion that structures that333

are highly interconnected with the rest of the brain are most informative about full-brain activ-334

ity patterns, the intersecting set of voxels with the highest information scores included major335

portions of the dorsal attention network (e.g., inferior parietal lobule, precuneus, inferior tem-336

poral gyrus, thalamus, and striatum) as well as some portions of the default mode network337

(e.g., angular gyrus) that are highly interconnected with a large proportion of the brain’s gray338

matter (e.g., Tomasi and Volkow 2011).339

We also wondered whether the map of information scores might vary as a function of the340

spectral components of the activity patterns under consideration. We computed analogous341

maps of information scores for each individual frequency band. Across Datasets 1 and 2342

(with the exception of α-band activity), we observed reliable positive correlations between343

the voxelwise maps of information scores (δ: r � 0.09, p < 10−57; θ: r � 0.24, p < 10−60; α:344

r � −0.03, p < 0.001; β: r � 0.02, p � 0.0011; γL: r � 0.1, p < 10−67; γH : r � 0.03, p < 10−7;345

broadband: r � 0.21, p < 10−297).346

To gain additional insight into which regions were most informative about full-brain ac-347

tivity patterns at different frequency bands, we next computed (for each frequency band) the348

intersection of the top 10% highest information scores across the maps for Datasets 1 and 2349
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Figure 5: Most informative recording locations. A. Dataset 1 information scores by voxel.
The voxel colors reflect the weighted average reconstruction accuracy across all electrodes from
any patients with at least one electrode within 20 MNI units of the given voxel. B. Dataset 2
information scores by voxel. This panel is in the same format as Panel A.C. Intersection. Gray
areas indicate the intersections between the top 10% most informative voxels in each map and
projected onto the cortical surface (Combrisson et al. 2019). D. Correspondence in information
scores by voxel across Datasets 1 and 2. The correlation reported in the Panel is between the
per-voxel information scores across Datasets 1 and 2.
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(analogous to our approach in Fig. 5C). This yielded a single map of the (reliably) most infor-350

mative locations, for each frequency band we examined. We then carried out post hoc analyses351

on each of these maps to characterize the underlying structural and functional properties of352

each set of regions we identified as being particularly informative about one or more types of353

neural pattern (Figs. 6 and S5).354

A growing body of neuroscientific research is concerned with characterizing the parcella-355

tions of anatomical and functional brain networks (for review see Arslan et al. 2018; Zalesky356

et al. 2010). The dominant approaches entail obtaining a full-brain connectivity matrix using357

either diffusion tensor imaging to identify the brain’s network of white matter connections,358

or functional connectivity (typically applied to resting state data) to correlate the patterns of359

activity exhibited by different brain structures. One can then apply graph theoretic approaches360

to assign each brain structure (typically a single fMRI voxel) to one ormore networks (for review361

see Bullmore and Sporns 2009). The result is a set of distinct (or partially overlapping) brain362

“networks” that may be further examined to elucidate their potential functional role. We over-363

laid a well-cited seven-network parcellation map identified by Yeo et al. (2011) onto the maps of364

brain locations that were most informative about each type of neural pattern. For each of these365

information maps, we computed the proportion of voxels in the most informative brain regions366

that belonged to each of the seven networks identified by Yeo et al. (2011); Figure 6D. We found367

that the regions we identified as being most informative about different neural patterns varied368

markedly with respect to which functional networks they belonged to (Fig. 6A, B).369

The variability we observed in the frequency-specific information score maps is consistent370

with the notion that there is no “universal” brain region that reflects all types of activity pat-371

terns throughout the rest of the brain. Rather, each region’s activity patterns appear to be372

characterized by different spectral profiles, and the ability to infer full-brain activity patterns373

at a particular frequency band depends on the structural and functional connectome specific374
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Figure 6: Most informative recording locations by frequency band. A. Intersections between
information score maps by frequency band. The regions indicated in each row depict the
intersectionbetween the top 10%most informative locations acrossDatasets 1 and2. B.Network
memberships of themost informative brain regions. The pie charts display the proportions of
voxels in each region that belong to the sevennetworks identifiedbyYeo et al. (2011). The relative
sizes of the charts for each frequency band reflect the average across-subject reconstruction
accuracies (Figs. 4A, D). The voxels in Panel A are colored according to the same network
memberships. C. Neurosynth terms associated with the most informative brain regions, by
frequency band. The lists in each row display the top five neurosynth terms (Rubin et al. 2017)
decoded for each region. D. Network parcellation map and legend. The parcellation defined
by Yeo et al. (2011) is displayed on the inflated brain maps. The colors and network labels serve
as a legend for Panels A and B. E. Combined map of the most informative brain regions. The
map displays the union of the most informative maps in Panel A, colored by frequency band.
The labels also serve as a legend for Panel C.
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to that frequency band (Fig. 6E). We wondered how the maps we found might fit in with prior375

work. To this end, in addition to examining the anatomical profiles of each map, we used Neu-376

rosynth (Rubin et al. 2017) to identify (using meta analyses of the neuroimaging literature) the377

top five most common terms associated with each frequency-specific map (Fig. 6C). We found378

that δ patterns across the brainwere best predicted by regions of ventromedial prefrontal cortex,379

striatum, and thalamus (yellow). These regions are also implicated in modulating δ oscillations380

during sleep, and are heavily interconnected with cortex (e.g., Amzica and Steriade 1998). The381

brain areas most informative about full-brain θ patterns were occipital and parietal regions382

associated with visual processing and visual attention (light green). Prior work has implicated383

θ oscillations in these areas in periodic sampling of visual attention (e.g., Busch and VanRullen384

2010). We found that full-brain α patterns were best predicted by motor areas (dark green),385

which also exhibit α band changes during voluntary movements (e.g., Jurkiewicz et al. 2006).386

Striatum and thalamus (teal) were most informative about full-brain β patterns. Prior work has387

implicated striatal β activity in sensory andmotor processing (Feingold et al. 2015) and thalamic388

β activity has been implicated in modulating widespread β patterns across neocortex (Sherman389

et al. 2016). Somatosensory areas (dark blue) were most informative about full-brain γL pat-390

terns. Prior work has implicated somatosensory γL in somatosensory processing and motor391

planning (Ihara et al. 2003). Occipital cortex (purple) was most informative about full-brain392

γH patterns. Occipital γH has also been linked with visual processing and reading (Wu et al.393

2011) and the transmission of visual representations from low-order to higher-order visual394

areas (Matsumoto et al. 2013). Full-brain broadband patterns were best predicted by inferior395

parietal cortex precuneus (maroon). Functional neuroimaging BOLD responses (Simony et al.396

2016) and broadband ECoG patterns (Honey et al. 2012) in these default-mode hubs have been397

implicated in processing context-dependent representations that unfold over long timescales.398

Taken together, the frequency-specific informationmaps suggest a potential new interpreta-399
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tion of many of the above previously reported findings. Prior work has largely treated region-400

specific narrowband and broadband activity as an indicator that activity at those frequency401

ranges reflects that the given region is representing or supporting a particular function. Our402

work suggests an alternative interpretation that when we observe a particular neural pattern in403

a particular brain region, it may instead reflect how that region is transmitting information to404

the rest of the brain via signalling at the given frequency range.405

Discussion406

Are our brain’s networks static or dynamic? And to what extent are the network properties of407

our brains stable across people and tasks? One body of work suggests that our brain’s functional408

networks are dynamic (e.g., Manning et al. 2018; Owen et al. 2019), person-specific (e.g., Finn409

et al. 2015), and task-specific (e.g., Turk-Browne2013). In contrast, although thegross anatomical410

structure of our brains changes meaningfully over the course of years as our brains develop, on411

the timescales of typical neuroimaging experiments (i.e., hours todays) our anatomical networks412

are largely stable (e.g., Casey et al. 2000). Further, many aspects of brain anatomy, including413

white matter structure, are largely preserved across people (e.g., Jahanshad et al. 2013; Mori414

et al. 2008; Talairach and Tournoux 1988). There are several possible means of reconciling this415

apparent inconsistency between dynamic person- and task-specific functional networks versus416

stable anatomical networks. For example, relatively small magnitude anatomical differences417

across people may be reflected in reliable functional connectivity differences. Along these418

lines, one recent study found that diffusion tensor imaging (DTI) structural data is similar419

across people, but may be used to predict person-specific resting state functional connectivity420

data (Becker et al. 2018). Similarly, otherwork indicates that task-specific functional connectivity421

may be predicted by resting state functional connectivity data (Cole et al. 2016; Tavor et al. 2016).422

Another (potentially complementary) possibility is that our functional networks are constrained423
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by anatomy, but nevertheless exhibit (potentially rapid) task-dependent changes (e.g., Sporns424

and Betzel 2016).425

Here we have taken a model-based approach to studying whether high spatiotemporal426

resolution activity patterns throughout the human brain may be explained by a static connec-427

tome model that is shared across people and tasks. Specifically, we trained a model to take428

in recordings from a subset of brain locations, and then predicted activity patterns during the429

same interval, but at other locations that were held out from the model. Our model, based on430

Gaussian process regression, was built on three general hypotheses about the nature of the431

correlational structure of neural activity (each of which we tested). First, we hypothesized that432

functional correlations are stable over time and across tasks. We found that, although aspects of433

the patients’ functional correlations were stable across tasks, we achieved better reconstruction434

accuracy when we trained the model on within-task data. This suggests that our general ap-435

proach could be extended to better model across-task changes, e.g., following Cole et al. (2016);436

Tavor et al. (2016); and others. Second, we hypothesized that some of the correlational structure437

of people’s brain activity is similar across individuals. Consistent with this hypothesis, our438

model explained each patient’s data best when trained using data from other patients– even439

when compared models trained within-patient. Third, we resolved ambiguities in the data by440

hypothesizing that neural activity from nearby sources tends to be similar, all else being equal.441

This hypothesis was supported through our finding that all of the models we trained that442

incorporated this spatial smoothness assumption predicted held-out data well above chance.443

One potential limitation of our approach is that it does not provide a natural means of444

estimating the precise timing of single-neuron action potentials. Prior work has shown that445

gamma band and broadband activity in the LFP may be used to estimate the firing rates of446

neurons that underly the population contributing to the LFP (Crone et al. 2011; Jacobs et al.447

2010; Manning et al. 2009; Miller et al. 2008). Because SuperEEG reconstructs LFPs throughout448
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the brain, one could in principle use broadband power in the reconstructed signals to estimate449

the corresponding firing rates (though not the timings of individual action potentials). We450

found that we were able to reconstruct full-brain patterns of broadband power well (Fig. 4).451

A second potential limitation of our approach is that it relies on ECoG data from epilepsy452

patients. Recent work comparing functional correlations in epilepsy patients (measured using453

ECoG) and healthy individuals (measured using fMRI) suggests that there are gross similarities454

between these populations (e.g., Kucyi et al. 2018; Reddy et al. 2018). Nevertheless, because all of455

the patients we examined have drug-resistant epilepsy, it remains uncertain how generally the456

findings reported here might apply more broadly to the population at large (e.g., non-clinical457

populations).458

Beyond providing a means of estimating ongoing activity throughout the brain using459

already-implanted electrodes, our work also has implications how to optimize electrode place-460

ments in neurosurgical evaluations. Electrodes are typically implanted to maximize coverage461

of suspected epileptogenic tissue. However, our findings suggest that this approach might be462

improved upon. Specifically, one could leverage not only the non-invasive recordings taken463

during an initial monitoring period (as is currently done routinely), but also recordings col-464

lected from other patients. We could then ask: given what we learn from other patients’ data465

(and potentially from the scalp EEG recordings of this new patient), where should we place a466

fixed number of electrodes to maximize our ability to map seizure foci? As shown in Figures 5,467

6, and S5, recordings from different regions varywith respect to how informative they are about468

different narrowband and broadband full-brain activity patterns.469

By providing ameans of reconstructing full-brain activity patterns, the SuperEEG approach470

mapsECoGrecordings fromdifferentpatients into a commonneural space, despite thatdifferent471

patients’ electrodes were implanted in different locations. This feature of our approach enables472

across-patient ECoG studies, analogous to across-subject fMRI studies (e.g., Haxby et al. 2001,473
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2011; Norman et al. 2006). Whereas the focus of this manuscript is to specifically evaluate474

which aspects of neural activity patterns SuperEEG recovers well (or poorly), in parallel work475

we are training across-patient classifiers by leveraging the common neural spaces obtained by476

applying SuperEEG to multi-patient ECoG data. For example, we have shown that SuperEEG-477

derived activity patterns may be used to accurately predict psychiatric conditions such as478

depression (Scangos et al. 2020). Analogous approaches could in principle be used to develop479

improved brain-computer interfaces and/or to carry out other analyses that would benefit from480

high spatiotemporal resolution full-brain data in individuals, projected into a common ECoG481

space across people.482

Concluding remarks483

Over the past several decades, neuroscientists have begun to leverage the strikingly profound484

mathematical structure underlying the brain’s complexity to infer how our brains carry out485

computations to support our thoughts, actions, and physiological processes. Whereas tradi-486

tional beamforming techniques rely on geometric source-localization of signals measured at the487

scalp, here we propose an alternative approach that leverages the rich correlational structure488

of two large datasets of human intracranial recordings. In doing so, we are one step closer to489

observing, and perhaps someday understanding, the full spatiotemporal structure of human490

neural activity.491

Code availability492

We have published an open-source toolbox implementing the SuperEEG algorithm. It may be493

downloaded here. Additionally, we have provided code for all analyses and figures reported in494

the current manuscript, available here.495
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Data availability496

The datasets analyzed in this study were generously shared by Michael J. Kahana. A portion of497

Dataset 1 may be downloaded here. Dataset 2 may be downloaded here.498
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