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ABSTRACT

Computer aided diagnosis is gradually making its way into the domain of medical research

and clinical diagnosis.With field of radiology and diagnostic imaging producing petabytes

of image data.Machine learning tools, particularly kernel based algorithms seem to be an

obvious choice to process and analyze this high dimensional and heterogeneous data.In this

chapter, after presenting a breif description about nature of medical images, image features

and basics in machine learning and kernel methods, we present the application of multiple

kernel learning algorithms for medical image analysis.
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1 Introduction

Biological systems are made up of many subsystems. These subsystems, also called organs are

very complex and house sophisticated machinery to carry out various physiological functions.

The organization of human body can be viewed as an integrated system where each specific

organ contributes in a special manner, both in terms of anatomical characteristics and phys-

iological functions. A brief description of some important sub systems is given in Table 1.
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Table 1: Some important subsystems of human body

Name Function

Visual System Performs the physiological function of vision.Image informa-

tion is focused onto the retina, transduced as neuronal signals

and transmitted to visual cortex. The visual cortex finally

decodes the received signal

Digestive System Is essential for the intake, breakdown and absorption of es-

sential nutrients, which the body uses for energy, growth and

cell repair.

Cardio Vascular System Performs the primary task of transporting the essential nutri-

ents to almost all cells of the body via its arterial network and

is also vital to replenishing the oxygen content of the blood

through the pulmonary system via lungs.

Nervous System Coordinates the activity of muscles; controls and monitors

organ functions and responses, transmits and processes data

received from other sensory organs as neuronal signals.

Brain and spinal-cord are very important subsystems of the

nervous system called “Central Nervous System” that act as

control centres for handling almost all sorts of neuronal com-

munication within the human body.

Musculoskeletal System The system gives shape, support, stability, and overall orga-

nization to the body. The system is made up bones, muscles,

cartilages, and other connective tissues. It binds tissues and

organs together and is therefore responsible for giving them

special anatomical characteristics viz. shape, density and tex-

ture etc.

All these subsystems exhibit certain anatomical characteristics and play vital role in many

physiological processes. The anatomical characteristics are manifested as shape or texture

patterns that demonstrate the integrity of the system itself and well being of individual

organs. However, the physiological functions are very complex phenomena that include

hormonal stimulation and control, information gathering and processing, internal and ex-

ternal communication, responses in the form of mechanical actions, biochemical reactions
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and electrical signals which reflect their nature and activity. Any deviation from the normal

physiology affects health, performance and overall functionality of the system thus giving

rise to a wide range of pathological conditions associated with physiological functions and

anatomical features, which are quite contrary to the corresponding normal patterns.

With a good understanding of the system of interest, capturing its anatomical and

physiological information is essential for making efficient clinical decisions encompassing a

wide range of medical complications that may arise during the lifetime of a biological being.

Medical imaging is one such non–invasive procedure that allows medical practitioners to

study the internal state of the organs from both anatomical and physiological perspectives

to obtain important clues about a medical condition without actually opening those organs

or without using any other intrusive method. Medical imaging (Digital X-Ray, MRI, CT

scan, PET scan etc.) has emerged as an important discipline and a tool to guide the diagnosis

of deformed and dysfunctional organs, such as detecting bone fractures, calcification within

organs, organ enlargement and all the way to advanced brain tumours, cardiac malfunctions

and malignant growths in other vital organs.

This tutorial is organised into 8 sections and many subsections. After presenting the

introduction in section 1, we present nature of biomedical images in section 2. Section 3 is

devoted to image descriptors, section 4 covers computer aided diagnosis. In section 5 and 6

we present basic concepts in machine learning , kernel methods and multiple kernel learning

model. Section 7 covers the application of MKL to mammographic data and in section 8 we

conclude the chapter.

2 Nature and Characterisitcs of Biomedical Images

This section covers the basic imaging modalities used in diagnostic imaging, their character-

isitcs and applications.

The aim of biomedical image analysis is to extract valuable information from medical

images so as to understand the state of a system under investigation. A number of imaging

procedures, invasive and non-invasive, active and passive, have been developed to capture

information that is essential for understanding a pathological condition (Rangayyan, 2004).

Depending upon the nature of the pathological condition and the composition, structure,
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function and location of different organs, following imaging techniques are used by modern

diagnostic imaging : -

1. Thermography : Infrared imaging is a passive, non-invasive imaging method used to

detect and locate temperature distribution as a result of some pathological condition

while analyzing physiological functions related to thermal homeostasis of the body

. Infrared thermography’s use is based on experiences, e.g. certain tumour types,

such as breast cancer are expected to be highly vascularised and therefore could be

at a slightly higher temperature compared to their neighbouring tissues (Szentkuti et

al., 2011). These temperature differences can be measured using thermal sensors for

advanced stage of breast cancer, where thermography has been proven as a potential

tool. Some pathologic conditions, especially inflammation lead to hyperthermia (areas

with higher amount of infrared emission), while degeneration, reduced muscle activity,

poor perfusion, and certain types of tumours may cause hypothermia.

2. Light Microscopy : Light microscopy provides a useful magnification of up to x1000

and plays an important role in studying cellular structures under different conditions.

However, using live cell fluorescence microscopy, dynamic cellular events can be cap-

tured in the image format and subsequently subjected to advanced image analysis.

3. Electron Microscopy : Electron microscopes provide a resolving power of the order

of x106 and can be useful in revealing the ultra structures of biological cells and tissues.

At 60 keV an electron beam with a wave length of 0.005 nm attains a resolving power

limit of up to 0.003 nm. Electron microscopes are available in two variants :

TEM (Transmission Electron Microscope) : Transmission electron microscopes are

the original form of electron microscopes that apply electron beams to illuminate the

target specimen in order to create their images. Spherical aberrations dramatically

limit the resolving power of TEMs, but the availability of new generation of aberration

correctors can be used to increase their resolution (Williams & Carter, 1996).TEMs

find application in cancer research, virology, materials science as well as pollution,

nanotechnology and semiconductor research.

SEM (Scanning Electron Microscope) : The working principle of SEM resembles TEM

in many ways. However the electron beam being used by SEM is more finely focused

to scan the specimen surface in a raster fashion. SEM operations are carried out

in different modes for detecting diverse signals emitted from the specimen. Pictures
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having a depth of field up to several mm can be obtained, which are helpful in analyzing

fibre distribution and realignment during the healing process after injuries.(Unakar et

al., 1981)

4. X-ray imaging : X-Rays are a form of electromagnetic radiations used as an imaging

modality for studying internal structures of the human body. An x-ray sensitive film or

a digital detector is placed behind the patient to capture the x-rays as they are passed

through the patient’s body. Different tissues within the body show varying absorption

levels of x-rays, e.g., dense bones absorb more radiation as compared to soft tissues

that allow more to pass through. The resulting variance, in absorption levels of the

x-rays, produces a contrast within the image to give a two dimensional representation

of target organs of the patient. X-ray radiographic applications include examination

of chest to assess lung pathology, x-ray imaging of skeletal system to examine bones,

joints, diagnose fractures and dislocation etc. Radiography of abdominal cavity is

performed to assess obstruction, free air or free fluid. Also the dental x-rays are used

to examine cavities and abscesses(WHO, n.d.).

5. Mammography : Mammography is an imaging technique used for diagnostic screen-

ing and surveillance imaging of breast cancer. Using low energy x-rays and stan-

dardized views of the breast, mammograms can be used to inspect breast tissues for

lumps, lesions and calcification. Early mammographic examinations can reveal cancer

symptoms to the radiologists which allow early treatment and hence increased survival

rates(WHO, n.d.). Some of the application areas of the mammography include : -

• Screening mammography for early detection in case of asymptomatic women.

• Diagnostic mammography for diagnosis of a suspected lesion.

• Checking recurrence of malignancy in women treated for breast cancer using

surveillance mammography.

• Applicable in tumour marking and needle localization for obtaining tissue samples

from suspicious breast masses.

6. Computed Tomography : Computed tomography (CT) utilizes x-ray photons for

image production with digital reconstruction. The data is converted into digital format

by various algorithms once it is captured by the scanner. For each image acquisition

task a slightly different angle is set; scanning the whole body in the process. A two-
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dimensional pixel, each of which carries a designation of density or attenuation, which

makes up an image element, and is represented by Hounsfield unit (HU).

Computed Tomography has been extensively performed on Brain (with or without

contrast and perfusion study). However, it is not only limited to brain but has wider

applications, including CT scan of chest (chest CT), abdominal cavity (CT abdomen)

, CT urography (kidneys, urinary tract , bladder and ureters), blood vessels (CT

angiography), colon (CT colonography) , heart (Cardiac CT) , and spinal cord (CT

myelography).

7. MRI (Magnetic Resonance Imaging) : This imaging modality in radiology uses

magnetic radiations to visualize the internal organs of the body. It offers near per-

fect 3D views of internal organs in real-time and extremely good contrast of soft

tissues, therefore making the visualization of muscles, joints, brain, spinal cord and

other anatomical structures much better (Edelman & Warach, 1993).Compilation of

sequences that are an ordered combination of radio frequencies and gradient pulses

form the basis of MRI visualizations. This type of design is used to acquire the data

image formation. MRI imaging is widely used in Brain imaging , spinal cord, MRI

of abdomen (to assess liver, spleen, kidneys etc), MRI of blood vessels, heart, joints,

muscles and bone disorders

8. Nuclear Medicine : This mode of diagnostic imaging uses a radioactive tracer to

obtain images of internal organs. A radioactive isotope is added to an organ specific

pharmaceutical to obtain images of the target organ. The tracer is basically a gamma

radiation emitter. A crystal detector sensitive to gamma rays is fitted into the camera

which can detect the distribution of the tracer as it traverses through various body

parts. The captured information is digitized to produce 2D or 3D images on a screen.

Modern day gamma cameras are shipped along with a CT as hybrid machines opening

new vistas for integrated study of nuclear medicine imaging with CT images (Mettler Jr

& Guiberteau, 2011). Unlike x-ray studies that detect anatomical alterations, the

altered physiology of different organs of the body can be examined with the help of

nuclear medicine imaging.

9. Single Photon Emission Computed Tomography (SPECT) : SPECT is a nu-

clear medicine tomographic imaging modality that uses gamma rays to provide 3D

imaging of target organs, unlike conventional nuclear medicine that produces plane 2D

images. A reconstruction algorithm is then employed to obtain 2D planar sections from
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the individual scan lines of image projections. SPECT can be used to complement any

gamma imaging study, where a true 3D representation is needed, e.g., tumour imaging,

infection (leukocyte) imaging, thyroid imaging or bone scintigraphy.

10. Positron Emission Tomography (PET) : PET is an imaging modality that is

used to monitor the physiological processes by visualizing blood flow, metabolism,

neurotransmission, and drugs labeled with radio tracers (Ollinger & Fessler, 1997).

PET offers time course monitoring of disease processes as they evolve or in response

to a specific stimulus. PET also uses the radioactive trace for physiological study of

the organs as in nuclear medicine. PET scans are commonly performed to identify

malignant tumors by measuring the rate of glucose consumption in different parts of

the body, considering the fact that malignant tumors metabolise glucose at a faster

rate than benign masses. Other applications of PET include understanding strokes

and dementia, tracking chemical neurotransmitters (such as dopamine in Parkinson’s

disease).

11. Ultrasound : This imaging modality employs sound waves of high-frequency to vi-

sualize the internal organs of the body. Ultra sound equipment consists of three im-

portant components - a monitor, processor and a transducer. The transducer emits

sound waves (echoes) at a certain frequency and the probe is gradually moved over

organs of interest, the returning echoes are captured and later on digitized to appear

as dots on the monitor. Ultrasonogrpahic images can be obtained in any plane and in

real time. Ultrasonogrpahy may be conventional real-time or doppler. Doppler uses

doppler shift phenomena for performing vascular studies to monitor blood flow and

detect blood clots inside veins. Ultrasound is performed to visualize the anatomy and

pathology of the liver and gallbladder, spleen, kidneys, lymph nodes, urinary bladder,

reproductive organs, vascular structures etc. Cardio vascular ultrasound including

ECG is performed to examine the heart and peripheral blood vessels. Ultrasound is

also performed in pregnant women to assess the foetus and other structures within the

uterus. A brief description of all imaging modalities has been covered in this section,

for further details see Rangayyan, 2004.
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3 Feature Extraction and Description

This section covers basic concepts in feature extraction and image description.The section

covers a brief introduction of various image descriptors used in image processing and com-

puter vision domains.Feature extraction is a process in image processing where informa-

tion contained in the region of interest (ROI) of an image is represented using a feature

vector(Nixon & Aguado, 2012). It is also a dimensionality reduction approach, useful when

images are of large sizes and a reduced representation is needed to quickly perform image

matching and retrieval.

Common feature extraction techniques include HOG (Histogram of Oriented Gradients),

SURF (speeded up robust features), LBP (Local Binary Patterns), wavelets, and colour his-

tograms. These are often combined to solve common problems of object detection and

recognition in computer vision, content-based image retrieval such as PACS (picture archiv-

ing and communication system) , face recognition, and texture classification (OPENCV,

n.d.).

Image Descriptors

For robust analysis of biomedical images, the challenge is to extract features from regions

of interest (ROI) that accurately describe image elements, such as intensity, texture and

shape i.e. properties that can differentiate different features within images. These features

are captured by algorithms commonly called as image descriptors (Nogueira et al., 2016),

whose output, a feature vector, describes the content of contagious part of an image. Simple

descriptors capture all pixel intensities from an ROI, however, due to high dimensionality of

the intensity vector these descriptors are computationally inefficient and lack robustness to

image distortions. Few descriptors such as SIFT, LBP, HOG etc. make use of distribution

based strategy.The descriptors based on Gabor filter banks or wavelet transforms (Soltanian-

Zadeh et al., 2004) rely on spatial frequency analysis of image regions, while as others use

invariance properties of moments with respect to geometric transformations e.g., descriptors

based on Zernike moments (Teague, 1980). A diagrammatic view of some these image

descriptors is depicted in Figure 1.
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Image Decriptors

Intensity based decriptors Shape based descriptors Texture based descriptors

Intensity Histograms Local Binary Patterns(LBP)

SIFT
(scale invariant feature 

transform)

HOG
(Histogram of Oriented 

Gradients)

Gray Level Co-occurrence 
maatrix
(GLCM)

Grey Level Run Length matrix
(GLRM)

Gabor Filter Banks

Wavelte transform

Zernike moments

Figure 1: Different types of image descriptors

Some of the important image descriptors based on the image property they are associated

with are as follows: -

Based on intensity patterns : Intensity patterns are captured as a histogram of intensity

values. The graph shows the frequency of each intensity value ranging from 0-255. For an

8-bit gray scale image having 256 different intensities, the histogram will display all values

from 0-255 showing the distribution of pixels.

Based on shape patterns : - Shape based descriptors are characteristic of patterns that are

related to image appearance or shape. Popular descriptors from this category include : -

• SIFT (Scale invariant feature transform) : SIFT transforms an image into a

feature vector collection that is invariant to image rotation, translation, scale and

robust to geometric distortions (Jurie & Schmid, 2004). SIFT algorithm works by

detecting local extrema (maxima and minima) as key points in a scale space obtained

by performing a difference of Gaussians on the input image. Once key points are
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detected, the algorithm performs a Taylor expansion of the scale space to obtain a

more accurate location of key points. Thereafter, orientation is assigned to each key

point to achieve invariance to image rotation (Lowe, 2004).

• HOG (Histogram of gradients) : HOG is an image descriptor used for detection

and recognition of objects in image processing and computer vision (Tsai, 2010). The

algorithm works on a localized image segment by counting the occurrences of gradient

orientation.HOG descriptor algorithm works as follows: -

1. Partitions each image into cells in order to compute edge orientations for pixels

within the cell.

2. Using gradient orientation, these cells are discretized into angular bins.

3. Each cell’s pixel contribution adds gradient (weighted) to its corresponding an-

gular bin.

4. Cells that exist as neighbors are grouped as spatial regions called blocks. These

blocks serve as a basis for grouping and normalization of histograms.

5. This normalized group represents the block histogram and a set of these block

histograms represent the descriptor.HOG are very powerful descriptors and have

been applied to object detection in computer vision (Dalal, 2005).

• LBP (Local binary patterns) : LBP is an image descriptor usually used for image

classification in image processing or computer vision (Ojala et al., 2002). The algorithm

works as follows :

1. An ROI is selected and divided into cells with 16x16 pixels each.

2. A comparison score of pixels being smaller or greater than the centre is represented

as an 8 bit binary string which is later converted into decimal.

3. A count of frequency of each score is then outputted as 256 dimensional feature

vector. The histogram is normalized and all histograms of the examined window

are concatenated to obtain an LBP descriptor.

• Based on texture patterns : Texture is an important image property that helps in

their characterization and recognition. Popular candidates from this category in-

clude GLCM (gray level co-occurrence matrix), GLRL (grey level run-length matrix),

waveletes,curveletes and Gabor filter banks.
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• GLCM (Grey level co-occurrence matrix) : GLCM characterises the texture of

an image and populates a matrix of how often a pair of intensity values occur in an

image. Once the matrix is defined, statistical measures such as homogeneity, entropy,

contrast, average and correlation is computed (Haralick et al., 1973). These statistical

measures have been shown to capture information of higher order from the image and

are very robust in texture classification.

• GLRL (Grey level run length matrix) : A set of consecutive, collinear picture

points having the same grey level value, constitutes a grey level run (Galloway, 1975).

Number of picture points within the run determine the length of run. For a given

image, we can compute a GLRL for runs having any given direction. The matrix

element (i, j) specifies the frequency of j run lengths within the picture, in the given

direction of points having grey level i.

• GBF (Gabor filter banks) : Gabor filter (Porat & Zeevi, 1988) is a linear bandpass

filter used in image processing for feature extraction and edge detection.Their frequency

and orientation representation corresponds to that of human visual system, and they

have been found to be particularly appropriate for texture analysis, stereo disparity

estimation and discrimination

• DWT (Discrete wavelet transform) : DWTs allow analysis of images into pro-

gressively finer octave bands. DWT’s are multi resolution analysis tools that enable

to identify invisible patterns in the raw data.Using wavelets an image (2–D) approx-

imation can be constructed that retains only desired features. There is a family of

transforms based on wavelet packets that partition the frequency content of signals

and images into progressively finer equal-width intervals.The application of wavelet

and curvelet descriptors for mammographic analysis can be found in (Eltoukhy et al.,

2010).

4 Computer Aided Diagnosis (CAD)

This section presents few application of computers and computer based analysis tools by

citing some literature in the area. It gives a bird’s eye view of the role computers and

machine intelligence can play in the area of computed based diagnostic descision making.
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The analysis of medical images over the past several decades has become an important

area for guided diagnosis and also as a tool to supplement the knowledge of healthcare

professionals in general and radiologists in particular as they evaluate the physiological and

anatomical state of a patient. Human analysis of biomedical images is usually subjective and

qualitative, hence susceptible to errors. Therefore, computers along with machine intelligence

algorithms can be used to encode the medical investigation via image analysis along with

clinical information and devise procedures that can be applied consistently and objectively

for such repetitive and routine diagnostic tasks (Doi, 2007).

CAD systems have their origin way back in 1963 when Lodwick ,(1996) published his

results on classification of pulmonary lesions on chest radiographs. But due to low compu-

tational power of computers and less advanced image processing techniques in those days,

this area did not receive much attention until early 1990’s. As computer hardware became

cheaper and sophisticated classification algorithms emerged in the domains of machine learn-

ing and artificial intelligence, the research focus on automated image analysis of biomedical

images returned.

Recently, there has been a dramatic growth in the medical imaging studies and the

discipline of radiology is witnessing a huge data explosion. The workload of radiologists

has increased tremendously because of their limited number and thus the health care costs

related to imaging are surging. In this scenario, computers become an implicit choice to

process this huge data and help radiologists to make effective diagnostic decisions.

Modern day workstations are very powerful and state of the art computer programs for

image processing do exist which can be exploited for diagnostic image analysis (Gonzalez,

2009). Computer vision techniques can be used to process biomedical images. A number of

image descriptors discussed in the section(3) can be used to derive essential features from

an ROI. These features are robust to geometrical transformation and invariant to scaling

and can be used as feature vectors as input to highly sophisticated machine intelligence

algorithms in order to distinguish normal patterns from abnormal ones.

With CAD radiologists use computer output as a second opinion while making a diag-

nostic decision. CAD has been a part of routine clinical work for detection of breast cancer

on mammograms at many screening sites and hospitals across the world. Research efforts are

underway to include more imagining modalities such as CT, MRI and PET scans as CAD

schemes and implement them as a software / package in a PACS environment, a medical
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imaging framework for economical storage and convenient access to images from multiple

modalities (Arenson, 1992).

5 Kernel Based Machine Learning

In this section we present basic concepts in machine learning such as, classification and the

notion of cost functions. Thereafter, a detailed description about kernel methods, kernel

trick and kernel matrices is given.

5.1 Basics in Machine Learning

Classification and Regression

Suppose there are n given objects ( xi ) with 1 ≤ i ≤ m ∈ Xm having labels ( yi )

with 1 ≤ i ≤ m ∈ Ym. If their labels are finite, then we may be interested in classifying

the given objects into different classes, assigning labels to unknown objects based on the

examples observed a priori. However, in case the labels are continuous values, regression

seems to be obvious choice. We can embed both of these tasks in a common framework

where the job of classification is to predict discrete labels and that of regression continuous

values (Alpaydin, 2014). The objects (xi)1≤i≤m are termed as observations, inputs or simply

as examples and the (y′is) are termed as labels, targets or outputs.The set of all input pairs

of (xi, yi)1≤i≤m is known as the training set, whereas the test set is an unknown set of

objects for which labels need to be predicted given the knowledge contained in the training

set. Now given a function f defined on a set of objects ∈ X, our main task is to generate

correspondences (xi, yi) from the values contained in set Y, so that our model is able to

generalize all possible correspondences of (xi, yi). The target for new objects in X would then

be f(x). By generalization, we mean for every x ∈ X in the vicinity of an already observed

xi, its target f(x) should also be very close to an already observed yi. This closeness in the

space of X and Y is vague if they are not vector spaces, therefore a precise similarity measure

of inputs in X and penalties for predicting false targets in Y need to be defined accordingly.A

graphical depiction of classification is shown in Figure 2.
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Figure 2: Classification example using a linear separator

Cost Function

Measuring Euclidean distance in Y while dealing with regression is usually a convenient

choice of similarity measure , but we can think of functions other than distances , provided

they allow us to express penalties in case of wrong label assignment. Such functions, usually

called the cost (C) or loss functions, account for all the penalties incurred (all costs) on all

the mistakes made while searching for possible solutions f from the training data. We can

have

C(f, (xi, yi)1≤i≤m) =
m∑
i=1

‖f(xi)− yi‖Y (1)

5.2 Similarity Measures and Features

Computing a similarity measure for objects (graphs, images , sequences, documents etc.) in

X is not trivial, except that the space X is chosen very carefully in which case defining a

similarity measure is simply to compute the Euclidean distance between the points in vector

space. Therefore, the challenge in learning is a careful choice N meaningful features Φ(xi)

( where Φ is a mapping from X to H = RN). The notion is to design features Φxi for

each xi by selecting a more natural measure of similarity in the feature space (Zaki et al.,

2014). Now selecting a feature map that is more natural or choosing a distance measure in

X are equivalently hard problems.To find the best solution, i.e., a function f over a set of all
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possible functions f : , we can devise an optimization problem, such that it minimizes (2)

C(f, (xi, yi)1≤i≤m) +R(f) (2)

where R(f) is a regularization parameter that forces f to behave smoothly with respect to

similarity measure in X.

5.3 Kernels

A kernel (Smola & Schölkopf, 1998) is defined as a measure of similarity on input X as

k : X : X→ R (3)

(x1, x2)→ k(x1, x2) (4)

i.e., a function , whenever presented with two inputs x1 and x2 returns a real number

k(x1, x2) ,a similarity score between them subject to the condition that it is symmetric for

any two objects x1 and x2, i.e.,

k(x1, x2) = k(x2, x1) (5)

In choosing a similarity measure the standard Euclidean dot product in X may not

always be relevant or our input does not belong to vector space, in such circumstances a

possibly meaningful feature set is available. We can then use this feature map as

Φ: X→ H (6)

x 7→ x : Φ(x) (7)

The bold face x is a vector representing our input in H. Φ is the feature that transforms the

non-linear embedding in the input data and allows us to choose a similarity measure from a

linear space.

k(x1, x2) : =< x1, x2 >H=< Φ(x1),Φ(x2) >H (8)

The flexibility in choosing Φ will enable us to design a number of machine learning algorithms

and similarity measures. In the next subsection, we will see that in certain settings we don’t

compute this explicit transformation (mapping via Φ) of our data, which is a convenient way

of handling features in very high dimensional space.
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5.4 Kernel Trick

The kernel trick is to show that the dot product Φ(xi)
TΦ(xi) in feature space can be replaced

by a kernel function (Shawe-Taylor & Cristianini, 2004),

k(x1, x2) =< Φ(x)T ,Φ(x) > (9)

that can be efficiently computed in the input space. Geometrically we can interpret the

input data through the definition of k,

‖x‖H = ‖Φ(x)‖H =
√
〈Φ(x),Φ(x)〉H =

√
k(x, x) (10)

gives us the length of x ∈ H. k(x1, x2) can similarly compute the cosine of angle between x1

and x2 provided they are normalized to a unit vector. Distance between two vectors can be

computed as the length of their difference,

‖x1 − x2‖2H = ‖x1‖2 + ‖x2‖2 − 2〈Φ(x1),Φ(x2)〉 = k(x1, x1) + k(x2, x2)− k(x1, x2) (11)

Now considering any such k(x1, x2) and without having to perform the mapping Φ explicitly,

we can compute all the attributes viz. lengths, distance and angles using k only. The power

of kernel methods framework lies in detecting any non-linear patterns in input data using

linear algebra and analytical geometry, this is the kernel trick.

5.5 Kernel Matrix

Biomedical images are a rich source of structural and functional information of the living

systems under study. This information can be extracted in the form of image descriptors

as described in section 3. Each dataset is transformed into a symmetric positive semi-

definite kernel matrix by means of a kernel function,that is a real valued k (x1, x2) satisfying

k (x1, x2) = k (x2, x1) for any two objects x1 and x2 and positive semi-definite i.e., to say∑n
i=1 aiajk (xi, xj) ≥ 0 for any integer n, set of objects (n = x1.....xn) and any set of real

numbers (a1.....an) (Charpiat, 2015).

Kernel functions provide a coherent representation and a mathematical framework for the

input data and represent the object features via their pairwise similarity values comprising
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the n x n kernel matrix, defined as.

K =



k (x1, x1) k (x1, x2) .. k (x1, xn)

k (x2, x1) k (x2, x2) .. k (x2, xn)

. . .. .

. . .. .

k (xn, x1) k (xn, x2) .. k (xn, xn)


(12)

Kernel methods present a modular approach to pattern analysis (Shawe-Taylor & Cristianini,

2004). An algorithmic procedure is devised together with a kernel function that performs an

inner product on the inputs in a feature space. This algorithm is more generic and can work

for any kernel and hence for any data domain. The kernel part is data specific that offers

an elegant and flexible approach to design learning systems, that can easily operate in very

high dimensional space. It is a modular framework, where modules are combined together

to obtain complex learning systems. Some examples of commonly used kernels are :

Linear kernel

Φ(x1)
TΦ(x2) = xT1 x2 = k(x1, x2) (13)

Polynomial kernel

k(x1, x2) = 〈x1, x2〉d (14)

Gaussian kernel

k(x1, x2) = exp

(
−‖x1 − x2‖

2− σ2

)
(15)

For suitable values of d and σ, the similarity measure k(x1, x2) between x1 and x2 is always

positive with is maximum at x1 = x2. All points x have same unit norm (since k(x1, x2) = 1

∀ x) suggesting that images of all points in x lie on the unit sphere in H.

6 Multiple Kernel Learning Model

This section cover the multiple kernel learning (MKL) paradigm in machine learning and

optimization of cost function using SDP (semidefinite programming).

Exploiting this modular approach to learning system design, multiple kernel learning

(MKL) is a paradigm shift from traditional single feature based learning and offers an ad-

vantage of combining multiple features of objects such as images, documents, videos etc.,
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as different kernels (Sonnenburg et al., 2006). This information can be fed as an ensemble

into an MKL learning algorithm as a combined kernel matrix for classification or regression

tasks on unknown data. The basic algebraic operations of addition, multiplication and ex-

ponentiation when performed in combining multiple kernel matrices preserves the positive

semi-definite property and enable the use of powerful kernel algebra. A new kernel can be de-

fined using k1 and k2 with their corresponding embeddings Φ1(x) and Φ2(x). This resultant

kernel is

K = k1 + k2 (16)

with the new induced embedding

Φx = [Φ1(x),Φ2(x)] (17)

Given a kernel set K = {k1, k2, ...., km}, an affine combination of m parametrized kernels

can be formed as given below: -

K =
m∑
i=1

µiki (18)

subject to the constraint that µi (weights) are positive i,e. µi ≥ 0, i = 1........m A kernel

based statistical classifier such as SVM induces a margin in feature space, separating the two

classes using a linear discriminant.In order to find this linear discriminant, an optimization

problem needs to be solved, known as a quadratic program (QP). A Quadratic programs

is a form of convex optimization problem, which are easily solvable. On the basis of this

margin, SVM algorithms are classified into hard margin, 1-norm soft margin and 2-norm

soft margin SVM. We will introduce 1-norm soft margin SVM here , for further literature

on SVM algorithms see Smola & Schölkopf, 1998.

1-Norm Soft Margin SVM

An SVM algorithm produces a linear separator in the feature space.

F : f(x) = wTΦ(x) + b (19)

where w ∈ F and b ∈ R. Given an input data set X with label set Y ,set of all correspondences

from these two sets Sn = {(x1, y1), ....., (xn, yn)} is a labeled set. A 1-norm soft margin

support vector machine selects an optimal discriminant, optimizing with respect to w&b

maximizing the margin between two classes and allowing misclassification to some degree,
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hence the name soft margin.

min
w,b,ξ

wTw + C
n∑
i=1

ξin

subject to yi[w
TΦ(xi) + b] ≥ 1− ξin

ξi ≥ 0, i = 1, ......., n

(20)

Parameter C is used for regularization maintaining a trade off between error and the deci-

sion boundary (margin), ξ is a slack variable , 0 < ξ < 1 which means that data point lies

somewhere between the margin and correct side of the hyperplane and if ξ > 1, it means

that data point is misclassified. By taking the dual of equation(2) , the weight vector can

be expressed as w =
∑n

i=1 αiΦ(xi). The values of αi , called the support values, these are

considered to be solutions for the following dual problem,

max
α

2αTe− αT diag(y) K diag(y) α

subject to0 ≤ α ≤ C, αTy = 0,
(21)

Where diag(y) is a diagonal matrix whose entries are elements in y = (y1,y2,.......,yn). An

unknown data item (xnew) can be assigned a label by computing the linear function,

f(xnew) = wTΦ(xnew) + b =
n∑
i=1

αiK(xi, xnew) + b (22)

Now depending upon the value returned by f(xnew), we can classify xnew either bearing a class

lable of +1 or −1. SVM has been successfully applied to image analysis and classification

based on intensity histograms in (Chapelle, 1999)

6.1 MKL optimization using SDP

Multiple kernel learning (MKL) is based on convex combinations of arbitrary kernels over

potentially different domains and can be solved using semidefinite programming (SDP) opti-

mization techniques. Lanckriet et al., (2004a) have shown that the classification performance

for a fixed trace of kernel matrix is bounded by a function , whose optimum is achieved in

Equation(21), a smaller value guarantees better performance and vice versa. In SVM, we use

a single kernel matrix K .We can formulate an extended version of Equation (21) by param-

eterizing K in order to learn an optimizied kernel matrix. Taking additional constraints such

as,trace and positive semi-definiteness in to consideration for Equation(19), and minimizing
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with respect to parameters µi, Equation(21) can be rewritten as :

min
µi
max
α

2αT e− αT diag(y)

(
m∑
i=1

µiki

)
diag(y) α

subject to 0 ≤ α ≤ C, αTy = 0

trace

(
m∑
i=1

µiki

)
= c

m∑
i=1

µiki ≥ 0,

(23)

Where c is a constant. Now, if we take a Lagrangian dual of the problem , it has been

show in (Lanckriet et al., 2004a) that finding optimum µi and αi reduce this Lagrangian to

a semi-definite program (SDP), a form of convex optimization problem.

min
µi,t,λ,γ≥0

t

subject to trace

(
m∑
i=1

µiki

)
m∑
i=1

µiki � 0(
Y (µ) e+ γ + λ

(e+ γ + λ)T t− 2CδT e

)
� 0

(24)

where

Y (µ) = diag(y)(
m∑
i=1

µiki) diag(y)

Semidefinite programming presents a general case of LP (linear programming), where

the linear matrix inequalities (LMI) replace the scalar inequalities of LP’s. Solution for both

LP and SDP can be obtained via interior point algorithms (Nesterov & Nemirovskii, 1994)

as both of them are instances of convex optimization problems. For the Multiple kernel

learning problem we consider weights µi ≥ 0 and Ki’s are PSD matrices. Equation(24) SDP

can be reduced to quadratically constrained quadratic program (QCQP) that can be solved
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efficiently as shown in Lanckriet et al., (2004a) :

max
α,t

2αT e− ct

subject to t ≥ 1

n
αTdiag(y)Kidiag(y)α

αTy = 0,

0 ≤ α ≤ c for i = 1.....n

(25)

The solution to our problem of classification lies in solving the above QCQP. By solving this

quadratic program we are in a position to find a combination of kernel matrices that are

adaptive, robust and flexible in handling heterogeneous sources of data. Our classification

task is achieved based on information encoded in multiple kernels and the output weights

reflect the relative contribution of each information source. MKL has been successfully

applied in the domain of bioinformatics for functional classification of genes (Lanckriet et

al., 2004b), protein classifications and inferring protein-protein interactions in yeast and is

a suitable candidate for analyzing biomedical images. (Chapelle, 1999)

7 Multiple Kernel Learning for Biomedical Image Anal-

ysis

In this section we present a framework based on openCV (Open source computer vision)

technology and ShOGUN machine learning toolbox for classifying mammograms using

HOG,SIFT and LBP descriptors.We will briefly describe these tools here before presenting

experimental steps performed on mammograms of 150 patients from MIAS (Mammographic

Image Analysis Society) database.A graphical representation of the framework that has been

implemented in python using shogun and openCV is depicted below in Figure 3.

Biomedical images alone may not serve as direct indicators of the pathological symptoms

of a patient. In fact medical image analysis done in isolation may lack a direct relationship

to any patient illness. However, the information captured by various imaging modalities can

provide important clues to radiologists and other health care professionals while evaluating

the state of a patient. As described in section 3, different types of image descriptors capture

different information, e.g, shape, texture moments and intensity, we can extract these features

from medical images, process them and use computer algorithms to predict the relationship
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between image features and patient pathology.Th output from this system along with expert

knowledge will equip health care evaluators with better diagnostic decisions and therefore a

better treatment for the patient.

Preprocess 
mammograms

OpenCV Libarary
(feature extraction and description)

LBP
descriptor

SIFT
descriptor

HOOG
descriptor

Shogun Machine Learning Toolbox

LBP
Kernel

SIFT
Kernel

HOG
Kernerl

MKL Algorithm
(1-norm soft margin using SDP)

Classification

User

cancer/ normal

Figure 3: Diagrammatic representation of biomedical image analysis using MKL

7.1 OPENCV (Open Source Computer Vision)

OpenCV is an open source machine learning and computer vision library.The OpenCV plat-

form provides a unified and efficient infrastructure for applications in the domain of pattern

analysis and computer vision. OpenCV is BSD licensed with more than 2500 optimized

software algorithms for machine learning, image processing and computer vision, which in-

cludes a comprehensive set of both classic and state-of-the-art algorithms from these do-

mains. These algorithms can be freely used for academic as well as commercial purposes

and are used to detect variety of objects, textures from images and are even able to classify
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movements in videos , follow eye movements recognize scenery, etc. from videos. OpenCV

libraries are available for all platforms viz, Windows, Linux, Mac OS and Android.With ba-

sic implementation in C++, OpenCV provides interfaces to other high level languages, such

as Java, Python and Matlab etc.We have used OpenCV libraries here to extract descriptors

from mammographic images , for detailed documentation refer(OPENCV, n.d.)

7.2 Shogun Machine Learning Toolbox

The Shogun machine learning toolbox offers plenty of algorithms and methods to solve

complex problems, such a classification, regression, dimensionality reduction and clustering

etc.The toolbox provides increased flexibility to work with data representations, algorithmic

classes and other problem solving tools like CPLEX, LPSOLVE,MOSEK etc.

Shogun is implemented in C++ and provides interfaces to many modern day high level

languages and tools , such as Java , Python, Octave , Matlab and R etc. Blending mod-

ern software architecture with state-of-the-art algorithmic implementation, shoigun platform

provides a rich library of tools and methods for solving large scale machine learning problems,

even with modest compute infrastructure.

Shogun is licensed under GPL and has been a tool of choice in the areas of large-scale

kernel based learning and bioinformatic.In this tutorial we use Shogun MKL classes for

classification of mammographic data. For further details see (Sonnenburg et al., 2010)

7.3 Case Study

This subsection describes the use of above framework for classifying mammograms. Following

a brief description of the database , we describe experimental steps performed and the results

obtained thereafter.

7.3.1 Dataset

A collection of 300 mammograms (1024x1024 in resolution) in portable gray map format

(.pgm) from MIAS (Mammographic image Analysis society) mini database is downloaded

from PEIPA project website (Pilot European Image Processing Archive). The mammograms

are then subjected to feature extraction process using OpenCV tools for SIFT,HOG, and
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LBP descriptors etc. Once the features are obtained, each feature set is divided into training

and testing set in the ratio of 70:30. Feature such as, SIFT and LBP are further processed

to obtain feature vectors.Feature vectors for each set are stacked vertically to form datasets

in shogun format.

7.3.2 Experiment

Because we have chosen kernel based learning , it is important to transform each dataset of

features into a kernel matrix. We choose Gaussian kernel with an initial width =10 for our

MKL approach, Gaussian kernels perform well with the vectorial input (Smola & Schölkopf,

1998).

Kernels for all the features, viz. SIFT,HOG and LBP are joined together using Com-

binedFeature() class of Shogun toolbox. This fused kernel along with data labels are then

passed to an instance of MKL() class. Initially, a training set is passed as input. The

algorithm is evaluated after passing the test data.The results obtained are compared with

other binary classifiers , viz. KNN,SVM and Naive Bayes, which are run individually on all

features.Table 2 shows the results of all the runs from all the classifiers.

Features KNN Naive Bayes SVM MKL

SIFT 75% 72% 77%

LBP 70% 73% 77%

HOG 75% 74% 82%

Combined Features 86%

Table 2: Show classification results of various classifiers using SIFT,HOG,LBP fea-

tures.MKL shows a marked improvement as it takes contribution of all.

To boost the learning process of MKL algorithm, k=5 fold cross validation is performed

using the input data, this yields an optimum kernel width of 3.17 with a performance boost

of 2% in our 1-norm soft margin MKL binary classifier.
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8 Discussion & Conclusion

After covering feature extraction, image description and a tutorial on kenel methods and

multiple kernel learning model(MKL) , we have a presented a framework for integrating

multiple features to enhance the prediction accuracy of a binary classifier using MKL.The

performance of the system can be furthe improved upon if the kernel machine are trained

with large amounts of input data. From Table 2, it is evident that combined features reveal

more information to the classifier as compared to feeding them individually. This experiment

is a small effort in highlighting the power of MKL paradigm for improved classification using

multiple feature sets against other classifiers that work on a single feature set.We hope this

tutorial wakes up to reader to apply the MKL framework to a larger image dataset and to

different types of biomedical images where the raw data and clinical information is available.

Modern day machine learning approaches to biomedical image analysis rely heavily on

the quality of features extracted from the medical images and their relevance to the patho-

logical symptoms under investigation. Since body subsystems possess features comprising

of shape, texture,density and signals, it is better to capture as much information as possible

from the diagnostic imaging in order to better understand the state of a patient.A mathemat-

ical framework to integrate these different information sources, such as kernel methods and

multiple kernel learning will contribute immensely in the design of CAD systems, which are

robust to image distortions. Integrating such a system in a PACS environment can revolu-

tionize the diagnostic image analysis and improve the productivity of healthcare professionals

both interms of better diagnosis and better treatment.

Although lot of research is going on in the field of biomedical image analysis, but the

challenges to develop efficient algorithms for advanced imaging modalities and to improve

the accuracy of existing ones are opening new vistas in this domain. A number of GRAND

challenges are organized in order to attract the attention of research community, both from

academia and industry or solving complex image analysis problems. Some of these chal-

lenges include, improving accuracy in digital mammography analysis for early detection of

breast cancer, automatic segmentation of PET images for delineation of tumors, diagnostic

classification of clinically significant prostrate lesions, developing algorithms which can ac-

curately identify types of cervical cancers in women and detecting tumor proliferation across

various tissues etc. Besides these, there are a number of other open research challenges in

the field that need an immediate attention of the researchers from diverse domains, such
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as biophysics, computer science, radiology, computer vision, machine learning and machine

intelligence.

ABBREVIATIONS

BSD Berkely software distribution

CAD Computer aided diagnosis

CT Computed Tomography

DWT Discrete wavelet transform

GFB Gabor filter bank

GLCM Grey level co-occurenece matrix

GLRLM Grey level run length matrix

HOG Histogram of oriented gradients

KNN K nearest neighbor

LBP Local binary patterns

LP Linear programming

MIAS Mammographic Imaging Analysis Society

MKL Multiple kernel learning

MRI Magnetic Resonance Imaging

PACS Picture archive communication system

PEIPA Pilot European Image Processing Archive

PET Positron Emission Tomography

ROI Region of interest

SDP Semi-definite programming

SEM Scanning electronic microscope

SIFT Scale invariant transform

SPECT Single photon Emission Computed Tomography

SVM Support vector machine

TEM Transmission electronic microscope
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