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Abstract: 

N-linked glycosylation of proteins has both functional and structural significance. Importantly, 

the glycan structure of a therapeutic protein influences its efficacy, pharmacokinetics, 

pharmacodynamics and immunogenicity. In this work, we developed glycosylation flux analysis 

(GFA) for predicting intracellular production and consumption rates (fluxes) of glycoforms, and 

applied this method to CHO fed-batch monoclonal antibody (mAb) production using two 

different media compositions, with and without additional manganese feeding. The GFA is based 

on a constraint-based modelling of the glycosylation network, employing a pseudo steady state 

assumption. While the glycosylation fluxes in the network are balanced at each time point, the 

GFA allows the fluxes to vary with time by way of two scaling factors: (1) an enzyme-specific 

factor that captures the temporal changes among glycosylation reactions catalyzed by the same 

enzyme, and (2) the cell specific productivity factor that accounts for the dynamic changes in the 

mAb production rate. The GFA of the CHO fed-batch cultivations showed that regardless of the 

media composition, the fluxes of galactosylation decreased with the cultivation time in 

comparison to the other glycosylation reactions. Furthermore, the GFA showed that the addition 

of Mn, a cofactor of galactosyltransferase, has the effect of increasing the galactosylation fluxes 

but only during the beginning of the cultivation period. The results thus demonstrated the power 

of the GFA in delineating the dynamic alterations of the glycosylation fluxes by local (enzyme-

specific) and global (cell specific productivity) factors. 

Keywords: N-linked glycosylation; flux analysis; CHO cells; constraint-based modeling; 

monoclonal antibody  
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1. Introduction 

The introduction of Quality by Design (QbD) and Process Analytical Technology (PAT) 

initiatives by the US Food and Drug Administration has driven a resurgence in research efforts 

and innovation in biopharmaceutical process development and manufacturing (FDA, 2004; 

Rathore, 2009). QbD and PAT prescribe continuous process improvements through well-defined 

process objectives, science-based product and process understanding, timely (online) process 

measurements, and process system design, analysis and control. In the current competitive and 

burgeoning market for therapeutic proteins and biosimilars, the biopharmaceutical industry faces 

numerous challenges in ensuring product quality, shortening time to market, improving cost 

effectiveness and creating manufacturing flexibility (Li et al., 2010). One of the most important 

quality attributes of recombinant therapeutic proteins is the structure of the asparagine-linked 

oligosaccharide sugar or N-linked glycan attached to the proteins. This glycan structure can 

influence protein folding (Aebi, 2013), secretion (Zhang and Kaufman, 2006) and stability 

(Arosio et al., 2013), and has an impact on bio-activity (Umaña et al., 1999), efficacy (Goh et al., 

2014) and immunogenicity (Harding et al., 2010). Consequently, the regulation and control of N-

linked glycosylation has received much attention from the biopharmaceutical industry.  

The N-linked glycan of a protein is processed post-translationally in the rough endoplasmic 

reticulum (ER) and Golgi cisternae. There exists a natural heterogeneity in the outcome of the 

glycosylation process. The biosynthetic pathways of N-linked glycosylation processing in the 

Golgi involve a relatively small number of enzymes, and therefore, minor alterations in the 

activities of these enzymes can cause significant changes in the resulting glycan profile (i.e. the 

distribution of the glycan structures) of a protein, sometimes with detrimental consequences 

(Aebi and Hennet, 2001). The glycan profile has been shown to depend on, among other things, 
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cell culture parameters (e.g., dissolved oxygen, pH, temperature, osmolality), culture media 

composition, and expression hosts (Hossler et al., 2009; Ivarsson et al., 2014). Yet, the 

mechanisms of these dependencies still remain unclear. Transcriptomics, proteomics and 

metabolomics analysis have been used to get a better picture of the intracellular changes in 

protein glycosylation, caused by modifications in the cell culture conditions (Sha et al., 2016). 

Furthermore, mathematical models of the glycosylation network have been created to explain the 

observed glycoform profiles and to predict the glycosylation outcome (Jimenez del Val et al., 

2011; Liu et al., 2013; St Amand et al., 2014; Umaña and Bailey, 1997) Recent modelling efforts 

have focused on linking extracellular metabolite measurements to the protein glycosylation 

process by coupling the dynamic model of the bioreactor with the intracellular model of glycan 

metabolism and glycosylation network (Jedrzejewski et al., 2014). However, these detailed 

models comprised partial differential equations and possessed a large number of unknown 

kinetic parameters, posing a challenge in model simulations and parameter estimation.  

On the opposite spectrum of modelling framework, the constraint-based modelling (CBM) uses a 

simple and parameter-free approach, requiring only the stoichiometry of the reactions to make 

predictions on the reaction fluxes. The most successful application of CBM has been in the 

modelling and analysis of intracellular metabolism. By assuming that the metabolic reaction 

network operates under steady state, the metabolic fluxes can be estimated from the 

measurements of extracellular metabolites using metabolic flux analysis (MFA) (when the 

estimation problem is over-determined) (Goudar et al., 2007) or using flux balance analysis 

(FBA) (when the estimation problem is under-determined) (Orth et al., 2010). In the FBA, one 

makes a further assumption that the cell organizes its metabolic flux distribution to optimize a 

particular objective (e.g. biomass production). While MFA and FBA have been routinely used to 
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analyze metabolic network models, they are not yet commonly used to study protein 

glycosylation. A recent constraint-based modelling of protein glycosylation adopted a 

probabilistic approach using the Markov chain theory to explore feasible fluxes that could 

explain the observed glycan distribution, thereby avoiding the need to assign a cellular objective 

as in the FBA (Spahn et al., 2015). The method was developed specifically for predicting the 

protein glycosylation outcome from enzyme knock-out(s), and has been extended to 

glycoengineering by strain optimization (Spahn et al., 2017). While these works demonstrated 

the promise of CBM for glycoengineering application, the strategy was not designed for 

predicting the (dynamical) changes in the regulation of glycosylation fluxes due to alterations in 

the cell culture conditions and parameters (e.g., media compositions, pH, etc.).  

In this work, we present a novel constraint-based modelling approach for analyzing protein 

glycosylation fluxes. The method, called Glycosylation Flux Analysis (GFA), generates 

predictions for the (intracellular) glycosylation reaction fluxes from the secretion rates of 

glycoforms. The GFA is based on the premise that the temporal variations in the intracellular 

glycosylation fluxes are the results of time-varying changes in the enzyme-specific factors (such 

as gene expression, enzyme activity and nucleotide sugar availability) and in the cell metabolism 

(especially the specific productivity). Finally, we applied the GFA to elucidate the dynamical 

changes of immunoglobulin G (IgG) glycosylation in fed-batch CHO cell cultures using two 

different media compositions (without and with manganese feed).   
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2. Materials and Methods 

2.1 Cell culture conditions 

CHO-S cells producing an IgG monoclonal antibody were cultivated in a 3 L bench scale 

bioreactor system (Sartorius Stedim, Germany). The resulting antibody bore two N-linked 

glycosylation sites at the Fc region. Cells were first expanded in shake bottles and the cell 

seeding density was set to cells/mL. A temperature shift from 36.5 °C to 33.0 °C and a 

pH shift from 7.1 to 6.9 were conducted on the fifth culture day. CO2 was used to control the pH 

and the dissolved oxygen set point was fixed to 50 % air saturation. Feeds were added on day 3, 

5, 7 and 10 and consisted of a proprietary concentrated main feed with over 30 components, a 

highly alkaline amino acid solution and a glucose solution of 400 g/L. The main feed in the first 

experiment (process A) represented a control experiment, whereas the main feed in the second 

experiment (process B) had a different amino acid composition with manganese chloride 

addition. The final concentration of MnCl in process B was set to 2.4 μmol per liter culture 

volume. 

2.2 Analytical methods for cell cultures and product quality analysis 

Cell counts and cell viability were measured with a Vi-Cell analyzer (Bechman Coulter, Brea, 

CA), and metabolites were quantified with a Nova CRT (Nova Biomedical, Waltham, MA). A 

NOVA BioProfile pHOx analyzer (Nova Biomedical, Waltham, MA) was used to determine pH, 

pO2 and pCO2. The antibody concentration was determined on a Biacore C instrument (GE 

Healthcare, Waukesha, WI). Protein glycosylation of Phytips eluates (Phytips®, PhyNexus, San 

Jose, CA, USA) was analyzed by Ultra Performance Liquid Chromatography (UPLC)-2-amino-

benzamide labelling technique. A 100 mm HILIC column was supplied by Waters Corporation, 

60.3 10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2017. ; https://doi.org/10.1101/121517doi: bioRxiv preprint 

https://doi.org/10.1101/121517
http://creativecommons.org/licenses/by/4.0/


 
7 

Milford, MA, USA. Samples at working day 3, 4, 5 and 6 were concentrated prior to analysis 

using 5 kDa MWCO vivaspins (Sartorius Stedim, Germany). 

2.3 Data Pre-processing 

The glycosylation flux analysis uses the secretion fluxes (rates) of protein glycoforms as inputs 

to make predictions on the intracellular glycosylation fluxes. For this purpose, the cell culture 

data of viable cell density (𝑋𝑣(t) [106 cells/mL]), mAb concentration (T(t) [g/L]) and glycan 

fractions (fi(t) [%]) were pre-processed to produce the required secretion fluxes. First, the 

concentration of each glycoform was computed from the temporal data of mAb titer and the 

fraction of the glycoforms as follows: 

𝑐𝐸,𝑖(𝑡𝑘) = 𝑓𝑖(𝑡𝑘)𝑇(𝑡𝑘) 𝑀𝑊𝑖⁄  (1) 

where 𝑐𝐸,𝑖(𝑡𝑘) denotes the extracellular concentration of the i-th glycoform at the k-th time point 

(k = 1, 2, …, K) and 𝑀𝑊𝑖 denotes the molecular weight of the i-th glycoform. Since the 

contribution of glycans to the molecular weight of the protein was insignificant, the protein’s 

molecular weight was used for the calculations above (MW IgG = 150 kDa). The glycoform 

concentrations were smoothened using a sigmoidal Hill-type function: 

𝑐𝐸,𝑖(𝑡𝑘) =
𝑎

(
𝑏
𝑡)

𝑛

+ 𝑑

 
(2) 

where the parameters a, b, d and n were determined by minimizing the sum of squares of the 

difference between the smoothing function and the concentration data. Finally, the time slopes of 

the glycoform concentration 𝑑𝑐𝐸,𝑖(𝑡) 𝑑𝑡⁄  were evaluated using the first-order derivative of the 

aforementioned smoothing function.  
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Meanwhile, the viable cell density data were smoothened using a logistic function, given by: 

(Goudar et al., 2005): 

𝑋𝑣(𝑡) =
𝐴

𝑒𝐵𝑡 + 𝐶𝑒−𝐷𝑡
 

(3) 

where the parameters A, B, C and D were obtained by minimizing the sum of squares of the 

difference between the logistic function above and 𝑋𝑣 data. Given 𝑑𝑐𝐸,𝑖(𝑡) 𝑑𝑡⁄  and 𝑋𝑣(𝑡) from 

the above data smoothening steps, the secretion fluxes of each glycoform 𝑣𝐸,𝑖(𝑡) were computed 

according to:  

𝑣𝐸,𝑖
𝑀 (𝑡𝑘) =

1

𝑋𝑣(𝑡𝑘)

𝑑𝑐𝐸,𝑖(𝑡)

𝑑𝑡
|

𝑡=𝑡𝑘

 
(4) 

Note that in the above derivations, we assumed a constant volume of the cell culture. For the fed-

batch experiments that we considered, such an assumption was reasonable since the cell culture 

volume varied only slightly with time (see SI Figure 1). When the volume of the cell culture 

varies strongly with time, the secretion flux calculation should take into account the volumetric 

changes, as follow: 

𝑣𝐸,𝑖
𝑀 (𝑡𝑘) =

1

𝑉(𝑡𝑘)𝑋𝑣(𝑡𝑘)

𝑑𝑐𝐸,𝑖(𝑡)𝑉(𝑡)

𝑑𝑡
|

𝑡=𝑡𝑘

 
(5) 

where V(t) is the cell culture volume at time t.  
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Figure 1 

N-linked glycosylation network for immunoglobulin G in CHO-S. The glycosylation network 

model consists of 19 measured glycoforms (excluding M9) with 25 glycosylation reactions and 

represents the smallest network that includes all measured and intermediate glycoforms. The 

glycoform M9 is not required for the determination of intracellular glycosylation fluxes. The 

color of the arrows refers to the glycosylation enzymes which catalyze the corresponding flux. 

2.4 Glycosylation Flux Analysis 

The glycosylation flux analysis (GFA) gives predictions for the intracellular fluxes of the 

glycosylation network (see Figure 1) under a pseudo steady state assumption based on a 

constraint-based modelling approach, as follow: 

𝑑𝑐𝐼,𝑖

𝑑𝑡
= ∑ 𝑆(𝑖, 𝑗)𝑣𝐼,𝑗

𝑛

𝑗=1

− 𝑣𝐸,𝑖 = 0 
(6) 
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where cI,i denotes the (internal) concentration of the i-th glycoform, 𝑣𝐼,𝑗 denotes the (internal) 

flux of the j-th glycosylation reaction, 𝑣𝐸,𝑖 denotes the (external) secretion flux of the i-th 

glycoform, and S(i,j) is the number of molecules of the i-th glycoform that is consumed (when 

S(i,j) < 0) or produced (when S(i,j) > 0) by the j-th reaction. The pseudo steady state assumption 

is reasonable as the residence time of Golgi apparatuses between 20-40 minutes (Bibila and 

Flickinger, 1991; Hirschberg and Lippincott-Schwartz, 1999), is much shorter than the time scale 

of the cell culture dynamics (on the order of days). The relationship above can be written in a 

matrix-vector format as follows: 

𝐒𝐯𝐼(𝑡) =  𝐯𝐸(𝑡) (7) 

where S denotes the stoichiometric matrix of the network, and vI(t) and vE(t) denote the vectors 

of glycosylation and secretion fluxes of the protein glycoforms, respectively. The stoichiometric 

matrix is an m by n matrix where m is the number of protein glycoforms and n is the number of 

reactions in the network. Based on Eq. (7), the values of the glycosylation fluxes at each time 

point 𝑡𝑘 can be computed directly from the secretion fluxes of the glycoforms vE(tk) when the 

stoichiometric matrix S is invertible or has a full column rank. Given that the glycosylation 

enzymes can act on multiple substrates, the number of reaction exceeds the number of structures 

in the glycosylation network (i.e. m is smaller than n). In other words, the stoichiometric matrix 

is not invertible and the calculation of the internal glycosylation fluxes is an underdetermined 

problem.  

In order to resolve the underdetermined problem above, we assume that the temporal changes in 

the glycosylation fluxes vI are the result of (i) local enzyme-specific alterations and (ii) global 
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dynamical changes in the cell metabolism. Based on this assumption, we write the time evolution 

of internal glycosylation fluxes as follow: 

𝑣𝐼,𝑗(𝑡) = 𝛼𝐽(𝑡)𝛽(𝑡)𝑣𝐼,𝑗
𝑟𝑒𝑓

 (8) 

where 𝛼𝐽(𝑡) denotes the enzyme-specific (local) factor, 𝛽(𝑡) denotes the cell specific (global) 

factor, and 𝑣𝐼,𝑗
𝑟𝑒𝑓

 denotes the reference flux value for the j-th internal flux 𝑣𝐼,𝑗. The enzyme-

specific factor 𝛼𝐽(𝑡) is shared among all reactions catalysed by the same enzyme J, while the cell 

factor 𝛽(𝑡) applies to all reactions in the glycosylation network. The factors 𝛼𝐽(𝑡) and 𝛽(𝑡) 

represent the time-dependent fold-amplification or -attenuation of the glycosylation fluxes, and 

hence their values can be normalized with respect to those at an arbitrary reference time point tref. 

Without loss of generality, in this work we used the first measurement time point as the reference 

time, and thus assigned all 𝛼𝐽(𝑡1) and 𝛽(𝑡1) to 1.  

The factors 𝛼𝐽(𝑡) capture the dynamical alterations of glycosylation fluxes through local 

(enzyme-specific) factors such as enzyme expression, activity, inhibition, and nucleotide sugar 

availability. On the other hand, the variable 𝛽(𝑡) describes the influence of the global cell 

metabolism on the glycosylation network, in particular the dynamical changes in the specific 

productivity of the cells. Therefore, we computed 𝛽(𝑡) as the ratio between the specific 

productivity (qmAb) at time t and that at time tref, as follows:  

𝛽(𝑡𝑘) =
𝑞𝑚𝐴𝑏(𝑡𝑘)

𝑞𝑚𝐴𝑏(𝑡𝑟𝑒𝑓)
=

∑ 𝑣𝐸,𝑖
𝑀 (𝑡𝑘)𝑚

𝑖=1

∑ 𝑣𝐸,𝑖
𝑀 (𝑡𝑟𝑒𝑓)𝑚

𝑖=1

 
(9) 
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Given the relationships in Eqs. (8) and (9), the calculation of the internal glycosylation fluxes 

reduces to fitting 𝛼𝐽(𝑡) and 𝑣𝐼,𝑗
𝑟𝑒𝑓

 to the secretion flux values, according to: 

min
𝛼𝐽(𝑡𝑘),𝑣

𝐼,𝑗
𝑟𝑒𝑓

 ‖𝐯𝐸
𝑀(𝑡𝑘) − 𝐒𝐯𝐼(𝑡𝑘)‖𝟐

𝟐 (10) 

The schematic of the GFA workflow is depicted in Figure 2. The number of optimization 

variables above is 𝑛𝐽(𝐾 − 1) + 𝑛, where 𝑛𝐽 is the number of enzymes in the glycosylation 

network. As long as the total number of secretion flux values is larger than or equal to the 

number of unknowns above (i.e., 𝑚𝐾 ≥ 𝑛𝐽(𝐾 − 1) + 𝑛), the GFA problem is over- or fully-

determined, respectively. In this work, the optimization in the GFA was solved in MATLAB by 

using a global optimization method called the enhanced scatter search method from the MEIGO 

toolbox (Egea et al., 2014).  

For quantifying the uncertainty in the estimated 𝛼𝐽(𝑡𝑘) and 𝑣𝐼,𝑗
𝑟𝑒𝑓

, we generated 10 synthetic 

datasets for each process, consisting of glycoform concentrations and 𝑋𝑣 values at the same 

measurement time points, by contaminating the actual data with independent and identically 

distributed noise from a Gaussian distribution. We used the residuals from the data smoothening 

step to compute the variance of the noise for each variable. Finally, for each synthetic dataset, we 

carried out the GFA in the same manner as described above. In the application of the GFA to 

CHO fed-batch cultivation below, we reported the optimized 𝛼𝐽(𝑡𝑘) and 𝑣𝐼,𝑗
𝑟𝑒𝑓

 along with the 

standard deviation evaluated using the GFA results of the synthetic datasets.  
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Figure 2 

The GFA workflow. In the data pre-processing step, measurements of viable cell density (Xv(t)), 

titer (T(t)) and the glycan fractions (fi(t)) are smoothened for the computation of the secretion 

fluxes of the glycoforms and the specific productivity of the cells 𝛽(𝑡). The GFA predicts the 

intracellular fluxes by optimizing over the values of the enzyme specific factors 𝛼𝐽(𝑡𝑘) and the 

reference flux values 𝑣𝐼,𝑗
𝑟𝑒𝑓

. 
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3. Results 

3.1 Cell culture data 

Figure 3 shows the cell culture measurements of the viable cell density, IgG concentration and 

glycoform distribution (fractions) from process A and B. The logistic function smoothing for 

Xv(t) appears as solid lines in the figure above. The cell density in process A reached a peak of 

~20×106 cells/mL on day 7, while the peak cell density of process B was higher at ~25×106 

cells/mL and occurred on day 8. While the viable cell density in process A was lower than that in 

process B, both processes had a similar final IgG concentration of ~3 g/L. The logistic function 

could describe the overall temporal variation in the viable cell density data reasonably well (SI 

Table 1). A more detailed comparison between the two process datasets is provided in SI Figure 

2. 

The time evolution of the IgG glycan distribution in both processes showed an increase of less 

processed glycan fractions toward the end of the cell culture duration, in agreement with 

previous studies using the same cell line (Aghamohseni et al., 2014; Pacis et al., 2011). While 

such a trend was observed for the entire cell culture duration in process A, this trend was 

reversed in the first half of process B. More precisely, between day 3 and 6, we observed an 

increase in the fraction of galactosylated glycan structures. This observation agreed with a 

previous study investigating the effect of manganese addition using real-time glycosylation 

monitoring (Tharmalingam et al., 2015). Manganese is a cofactor of many Golgi resident 

enzymes, including N-acetylglucosaminyltransferases I/II and galactosyltransferases 

(Hendrickson and Imperiali, 1995).  
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Figure 3 

Cell culture measurements of the viable cell density (filled symbols), IgG titer (empty symbols) 

and glycoform distribution using (A, red) the standard culture media and (B, blue) the alternative 

media with Mn addition. The solid lines show the logistic function curve fitting for the viable 

cell density (see Methods). 
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3.2 GFA of CHO Fed-batch Cultivation 

Figure 1 shows the glycosylation network used in the GFA of CHO-S cell culture. The network 

was derived from a previous publication (Villiger et al., 2016), in which undetectable and non-

intermediate glycoforms were removed (Shah et al., 2008). In the GFA, we considered the 

glycosylation flux balances around all protein glycoforms downstream of M8 (including M8), 

which corresponded to m = 19 glycoforms and n = 25 reactions (see SI Text A for the 

glycosylation network model). For K = 11 time points, the number of secretion flux values (209) 

was larger than the number of unknowns (95), and hence the GFA was over-determined. A few 

of the glycoforms in the network (M8, AM5, FAM5, FA2G1-1S1, FA2G1-2S1, FA2G2S1-2) 

were undetected, and thus we set the corresponding secretion rates to 0. Figure 4 shows the 

concentration time profiles of the glycoforms and the corresponding Hill-type smoothing curves 

for the two process conditions.  
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Figure 4  

Calculated glycoform concentrations in process A (red, solid symbols) and process B (blue, 

empty symbols). The lines show the Hill-type smoothing function. 
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Figure 5 depicts the secretion fluxes of the glycoforms (in solid lines) after the data pre-

processing. The secretion fluxes from the GFA are also drawn on the same figure, showing a 

good agreement with the smoothened flux values. As expected from the least square optimization 

in Eq. (10), the secretion fluxes of the main glycoforms with larger magnitudes, particularly 

FA2, were better reproduced by the GFA than others. While one could use a weighted least 

square optimization to obtain a better agreement with secretion fluxes of lower magnitudes, such 

a strategy would come at the cost of worse agreement for the fluxes producing the dominant 

glycan structures (results not shown).  
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Figure 5 

Fitting of glycoform secretion fluxes in GFA. The GFA gives accurate predictions of the 

secretory fluxes of glycoforms in process A (red, solid symbols) and process B (blue, empty 

symbols). The lines show the smoothened secretion fluxes in process A (red line) and process B 

(blue line). 
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Figure 6 describes the time profiles of the enzyme-specific factors 𝛼𝐽(𝑡), the cell specific 

productivity 𝛽(𝑡), and the reference fluxes 𝑣𝐼,𝑗
𝑟𝑒𝑓

 for process A and B. The cell specific 

productivity in the two processes generally increased with the cultivation time, with process A 

having a slightly higher fold-increase. The GFA predicted the enzyme-specific factor of 

galactosyltransferase GalT to decrease during much of the fed-batch cultivation period in both 

processes. The enzyme-specific factors of the other enzymes (ManI/II, GnTI/II, FucT) remained 

at an approximately constant level. A decrease in GalT activity is a frequently observed 

phenomena in industrial fed-batch processes of CHO-S culture (Gawlitzek et al., 2000), because 

of the adverse environmental conditions to which the cells are exposed (e.g., by-products, 

nutrient limitation and overfeeding, osmotic stress). As shown previously, the activity of GalT 

(and SiaT) for the cell line under investigation is much more sensitive to extracellular 

environment compared to ManI/II, GnTI/II and FucT (Villiger et al., 2016). In this regard, the 

accumulation of ammonia during the course of the cell culture (see SI Figure 2) could cause a pH 

increase in the Golgi, leading to a decrease in the GalT activity. The GFA of process A showed a 

slight increase in 𝛼𝐺𝑎𝑙𝑇(𝑡) between day 3 and 6, but such an increase was not statistically 

significant (H0: 𝛼𝐺𝑎𝑙𝑇(𝑡) = 1 has a p value larger than 0.05). Also, the drop in the GalT-specific 

factor explained the increase of FA2 and the decrease of galactosylated glycan structures towards 

the end of the two fed-batch cultivations. The flux values of reactions catalyzed by SiaT were not 

shown since these fluxes were predicted to be near zero (see SI Figure 3).  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2017. ; https://doi.org/10.1101/121517doi: bioRxiv preprint 

https://doi.org/10.1101/121517
http://creativecommons.org/licenses/by/4.0/


 
21 

 

Figure 6 

The GFA of process A and B: 𝛼𝐽(𝑡), 𝛽(𝑡) and vI
ref. The error bars correspond to the standard 

deviation in the estimated variables (see Methods). 
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3.3 Effects of manganese  

While processes A and B produced comparable glycoform distributions after day 10, the glycan 

fractions prior to this day, especially those of FA2 and the galactosylated structures, showed a 

completely different dynamic behavior. In order to elucidate the dynamic alterations in the IgG 

glycosylation caused by the change in the culture media composition and the addition of Mn, we 

computed the relative deviation in the viable cell density and in the (global) cell specific 

productivities (see Figure 7). The relative deviation between the two processes is computed as 

follows: 

𝑅𝐵/𝐴 =
𝑧𝐵 − 𝑧𝐴

0.5(𝑧𝐵 + 𝑧𝐴)
 

(11) 

where zA and zB denote the variable of interest (i.e. the viable cell density and specific 

productivities) of process A and B, respectively. Figure 8 further shows the relative deviation of 

the normalized glycosylation throughput for each enzyme J, defined as  

𝑉𝐽 =
∑ 𝛼𝐽(𝑡)𝑣𝐼,𝑗

𝑟𝑒𝑓
𝑗

∑ ∑ 𝛼𝐽(𝑡)𝑣𝐼,𝑗
𝑟𝑒𝑓

𝑗𝐽

 
(12) 

Note that the summation in the numerator above is done over all fluxes catalysed by the enzyme 

J. The normalized flux throughput of an enzyme reflects the activity of the glycosylation 

reactions carried out by a particular enzyme relative to the total activity of all glycosylation 

reactions in the network.  
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Figure 7 

Relative deviations in (A) the viable cell density and (B) the cell specific productivity between 

process A and B. A positive (negative) value indicates that the variable is larger (smaller) in 

process B than in process A. 

 

Figure 7 shows that the alternative culture media in process B led to a higher viable cell density 

but resulted in a lower specific productivity than process A. These observations suggested a 

trade-off between the cell growth and the antibody production upon changing the media 

composition. Except for fluxes catalysed by GalT, the normalized glycosylation throughputs in 

process B were roughly the same as those in process A for the entire cultivation period (see 

Figure 8). The normalized throughput of GalT showed a markedly more dynamic difference 

between the two processes. In particular, we observed a higher GalT normalized throughput in 

process B than in process A during the first half of the cell cultivation. This increase diminished 

with time and the relative deviation eventually dropped to roughly zero as with the other 
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enzymes. Again, we did not compare the glycosylation fluxes catalysed by SiaT as the flux 

values were nearly zero (~10-3 pg/cell/day). 

 

Figure 8 

Relative deviations of the normalized flux throughput for each enzyme between process A and 

B. A positive (negative) value indicates that the variable is larger (smaller) in process B than in 

process A. The error bars correspond to the standard deviation in the estimated variables (see 

Methods).  
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4. Discussion 

The combination of experimental and computational approaches, particularly using CBM, has 

brought a tremendous progress in metabolic engineering, for elucidating the regulation of 

cellular metabolism, for predicting the outcome of perturbations to the metabolic network (e.g. 

knock-outs), and for strain optimization (Bordbar et al., 2014). However, the CBM is not yet 

routinely applied to study the glycosylation network. Driven by the importance of understanding 

and controlling glycosylation of proteins, we created the glycosylation flux analysis by adapting 

the CBM approach for the glycosylation network. Based on a pseudo steady state assumption of 

the fluxes in the glycosylation network, the GFA generates dynamic glycosylation flux 

predictions using time-resolved measurements of cell culture data, particularly viable cell 

density, protein titer and glycan fractions. More specifically, the GFA captures the dynamic 

changes in the glycosylation fluxes using two pre-multiplicative factors; 𝛼𝐽(𝑡) that accounts for 

the (local) changes that occur in an enzyme-specific manner, and 𝛽(𝑡) that accounts for the 

(global) alterations in cell metabolism that affects the cell specific productivity. Besides reducing 

the degrees of freedom in the flux prediction problem (due to the small number of enzymes in 

the glycosylation network), the use of pre-multiplicative factors above leads to the delineation of 

local and global effects of the process conditions on the protein glycosylation. In contrast to the 

more detailed differential equation based analyses of the glycosylation networks (Jedrzejewski et 

al., 2014; Jimenez del Val et al., 2011; Krambeck and Betenbaugh, 2005), the GFA, like the 

MFA, represents a parameter-free approach and requires only the stoichiometric matrix 

information. However, since the GFA involves solving the inverse problem – estimating 

intracellular fluxes given dynamic cell culture data, this method cannot directly be used for 
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predicting the effects of changing process parameters or genetic alterations on 𝛼𝐽(𝑡),  𝛽(𝑡) and 

𝑣𝐼,𝑗
𝑟𝑒𝑓

 a priori. 

There exist several implications from the formulation of intracellular glycosylation flux 𝑣𝐼,𝑗 that 

depends on three variables: 𝛼𝐽(𝑡), 𝛽(𝑡) and 𝑣𝐼,𝑗
𝑟𝑒𝑓

. Starting with 𝛽(𝑡), for fixed values of 𝛼𝐽(𝑡), a 

fold-increase (-decrease) in 𝛽(𝑡) means an equal fold-increase (-decrease) among all of the 

glycosylation and secretion fluxes in the network (see SI Text B). Therefore, 𝛽(𝑡) captures the 

global change in the glycosylation network, but such a change will not affect the glycan 

distribution in the monoclonal antibody. Meanwhile, for fixed values of 𝛽(𝑡) and 𝑣𝐼,𝑗
𝑟𝑒𝑓

, a 

variation in the enzyme-specific factors 𝛼𝐽(𝑡) will lead to a reorganization of the glycosylation 

fluxes and thus changes in the glycan distribution. The reorganization of the internal fluxes is 

restricted by constraints enforced by the flux balance equation in Eq. (7) (see SI Text B). 

Because all intracellular glycosylation fluxes associated with a particular enzyme J scale equally 

by 𝛼𝐽(𝑡), the ratios among these fluxes thus remain constant with variations in 𝛼𝐽(𝑡).  Such ratios 

are given by the relative magnitudes of the corresponding 𝑣𝐼,𝑗
𝑟𝑒𝑓

 (see Figure 6). Finally, since 

𝛼𝐽(𝑡) and 𝛽(𝑡) are set to 1 at the reference time point tref, 𝑣𝐼,𝑗
𝑟𝑒𝑓

 are the predictions for the 

intracellular glycosylation fluxes at this time point, i.e. 𝑣𝐼,𝑗(𝑡𝑟𝑒𝑓) = 𝑣𝐼,𝑗
𝑟𝑒𝑓

.  

We applied the GFA to elucidate the glycosylation fluxes in two fed-batch cultivations of CHO 

cells producing IgG using different cell culture media. Our analyses showed that the temporal 

variation in the glycan distribution mainly resulted from the decrease in the galactosylation 

activity with time, relative to the other glycosylation reactions. We attributed this drop to the 

sensitivity of GalT activity to environmental changes, particularly the accumulation of ammonia 
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in the cell culture. While the time profiles of the viable cell density and the specific productivity 

of IgG were similar between the two fed-batch processes, the changes in the glyoprofiles during 

the first half of the cultivations followed markedly different dynamics. The GFA showed that 

between day 3 and 6, the addition of Mn, a co-factor of GalT (Ramakrishnan et al., 2004). in 

process B increased the normalized galactosylation throughput. However, this increase largely 

disappeared by day 10. While Mn has also been reported to be a co-factor for GnTI/II 

(Nishikawast et al., 1988), under these cultivation conditions, the normalized glucosamination 

throughput in process B was roughly equal in that in process A. This observation suggested that 

the enzyme activity of GnTI/II might not be the rate-limiting factor of the IgG glucosamination 

in the two fed-batch cultivations.  

5. Conclusion 

In this work, we adapted a constraint-based modeling approach to the analysis of protein 

glycosylation and developed the glycosylation flux analysis method. The GFA uses extracellular 

data of glycoform secretion fluxes and a (pseudo) steady state model of the glycosylation 

network to determine the intracellular glycosylation fluxes. In this regard, the GFA separates the 

influence of local enzyme-specific factors and global cell metabolism on each glycosylation flux. 

The ability to decouple the influences of local and global factors is important in elucidating the 

regulation of protein glycosylation and especially in efforts to control the outcome of the 

glycosylation process. The application of the GFA to two fed-batch cultivations of CHO cells for 

IgG production demonstrated the dynamic information that one could obtain from this analysis, 

specifically on the key glycosylation enzyme(s) that governed the resulting glycoform 

distribution. As more research efforts are invested in understanding protein glycosylation, 
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producing a treasure trove of cell culture and glycoprofiling data, a network-based analysis 

method, like the GFA, will play an enabling role in generating insights into the complex 

intracellular regulation and control of the protein glycosylation process.  
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Symbols 

α     Enzyme specific factor 

β     Specific productivity 

c     Concentration 

cE     Extracellular concentration 

f     Fraction 

K     Number of time points 

m     Number of glycoforms 

MW     Molecular weight 

n     Number of reactions 

S     Stoichiometric matrix 

T     Titer 

t     Time 

V     Volume 

vE     Secretion flux 

vI     Intracellular flux 

vref
I     Reference flux 
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Xv     Viable cell density 

Abbreviations 

CBM     Constraint-based modelling 

CHO     Chinese hamster ovarian 

ER     Endoplasmic reticulum 

FBA     Flux balance analysis 

GFA     Glycosylation flux analysis 

IgG     Immunoglobulin G 

MFA     Metabolic flux analysis 

PAT     Process analytical technology 

QbD     Quality by design 

UPLC     Ultra performance liquid chromatography 

Glycosylation nomenclature 

Man     Mannosidase 

GnT     N-Acetylglucosaminyltransferase 

FucT     Fucosyltransferase 
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GalT     Galactosyltransferase 

SiaT     Sialyltransferase 

M9      Man9GlcNAc2 

M8     Man8GlcNAc2 

M7     Man7GlcNAc2 

M6     Man6GlcNAc2 

M5     Man5GlcNAc2 

A1     GlcNAcMan3GlcNAc2 

A2     GlcNAc2Man3GlcNAc2 

FA1     GlcNAcMan3GlcNAc2Fuc 

FA2     GlcNAc2Man3GlcNAc2Fuc 

FA1G1     GalGlcNAcMan3GlcNAc2Fuc 

FA2G1-1     α(1-6)GalGlcNAc2Man3GlcNAc2Fuc 

FA2G1-2     α(1-3)GalGlcNAc2Man3GlcNAc2Fuc 

FA2G2     Gal2GlcNAc2Man3GlcNAc2Fuc 

FA2G2S1-1    α(1-6)SiaGal2GlcNAc2Man3GlcNAc2Fuc 

FA2G2S1-2    α(1-3)SiaGal2GlcNAc2Man3GlcNAc2Fuc 
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