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There is a long-standing experimental observation that the melting of topologically
constrained DNA, such as circular-closed plasmids, is less abrupt than that of linear
molecules. This finding points to an important role of topology in the physics of DNA
denaturation, which is however poorly understood. Here, we shed light on this issue
by combining large-scale Brownian Dynamics simulations with an analytically solvable
phenomenological Landau mean field theory. We find that the competition between
melting and supercoiling leads to phase coexistence of denatured and intact phases
at the single molecule level. This coexistence occurs in a wide temperature range,
thereby accounting for the broadening of the transition. Finally, our simulations show
an intriguing topology-dependent scaling law governing the growth of denaturation
bubbles in supercoiled plasmids, which can be understood within the proposed mean
field theory.

One of the most fascinating aspects of DNA is that its bi-
ological function is intimately linked to its local topology [1].
For instance, DNA looping [2, 3] and supercoiling [1, 4, 5]
are well-known regulators of gene expression, and a vari-
ety of proteins, such as Polymerases, Gyrases and Topoi-
somerases, can a↵ect genomic function by acting on DNA
topology [1, 2].
Fundamental biological processes such as DNA transcrip-

tion and replication are associated with local opening of the
double helix, a phenomenon that can be triggered in vitro by
varying temperature, pH or salt concentration [6]. The melt-
ing transition of DNA from one double-stranded (ds) helix
to two single-stranded (ss) coils has been intensively studied
in the past by means of buoyant densities experiments [7],
hyperchromicity spectra [8], AFM measurements [9], single-
molecule experiments [10] and fluorescence microscopy [11].
In particular, experiments [6, 7] and theories [12, 13] have

shown that the “helix-coil” transition in linear or nicked
DNA molecules, which do not conserve the total linking
number between the two strands, is abrupt and bears the
signature of a first-order-like transition. On the other hand,
the same transition is much smoother for DNA segments
whose linking number is topologically preserved, such as cir-
cular, covalently-closed ones [7, 14].
Understanding the physical principles underlying DNA

melting in topologically constrained (tc) DNA is important
since this is the relevant scenario in vivo. For instance,
bacterial DNA is circular, while in eukaryotes DNA wraps
around histones [2], and specialised proteins are able to in-
hibit the di↵usion of torsional stress [15].
Intriguingly, and in stark contrast with the behaviour of

linear, or topologically free (tf), DNA, the width of the melt-
ing transition of tcDNA is relatively insensitive to the precise
nucleotide sequence [14] thereby suggesting that a universal
physical mechanism, rather than biochemical details, may
underlie the aforementioned broadening. While biophysi-
cal theories of tcDNA melting do exist, they do not reach
a consensus as to whether the transition should weaken or
disappear altogether [16–20]; more importantly, the physics
underlying the broadening of the transition remains unclear.

Here we shed new light on this issue by employing a
combination of complementary methods. First, we per-
form large-scale coarse-grained Brownian Dynamics (BD)
simulations of 1000 base-pairs (bp) long topologically free
and constrained double-stranded DNA molecules undergo-
ing melting [21]. These unprecedentedly large-scale simu-
lations at single bp resolution predict topology-dependent
melting curves in quantitative agreement with experiments.
Second, we propose and study a phenomenological Landau
mean field theory which couples a critical “denaturation”
field (�) with a non-critical “supercoiling” one (�). This
approach captures the interplay between local DNA melting
and topological constraints, and predicts the emergence of
phase coexistence within a wide temperature range, in line
with our simulations. This provides a generic mechanism to
explain the observed experimental broadening of the melting
transition in tcDNA. We also derive dynamical equations for
the fields � and � and discuss the topology-dependent ex-
ponents describing the coarsening of denaturation bubbles
during DNA melting.
Melting Curves and Phase Diagram – We first investi-

gate the melting behaviour of DNA by means of BD simula-
tions of the model proposed in [21]. The dsDNA is made up
by two single-stranded chains of “patchy-beads” connected
by permanent FENE bonds. Every patch-bead complex
represents one nucleotide and complementary strands are
paired by bonds connecting patches. We model these bonds
as breakable harmonic springs, which mimic hydrogen (H)
bonds between nucleotides (see SM for further details). For
simplicity, we consider a homopolynucleotide (no sequence
dependence) [14].
As anticipated, the double-helical structure can be opened

up in vitro either by increasing the temperature (T ), or by
increasing pH or salt concentration: both methods e↵ec-
tively reduce the strength of the H bonds, ✏HB, in between
nucleotides. The simulations reported in this Letter emu-
late the latter route: starting from an equilibrated dsDNA
molecule, we perform a sudden quench of ✏HB, and record
the time evolution of the system until a new steady state is
reached (see SM Fig. S2).
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Figure 1. Melting curves. (A) shows the melting curves
(fraction of denatured bp, h#i) for nicked and intact polyoma
DNA as a function of T � Tc (data from [7]). (B) shows the
melting curves obtained in the present work via BD simulations
of tf and tcDNA molecules, with length 1000 bp and di↵er-
ent levels of supercoiling, as a function of the (shifted) e↵ective
hydrogen-bond strength ✏HB � ✏HB,c (averaged over 5 replicas
and 106 BD timesteps). In both experiments (A) and simula-
tions (B), the transition appears smoother for tcDNA and the
relative broadening �t|tc / �t|tf ⇠ 3 is in quantitative agree-
ment. The critical bond energies for which half of the base-pairs
melt are ✏HB,c/kBT = 1.35 for linear DNA and 0.309, 0.238, 0.168
for �0 = �0.06, 0 and 0.06, respectively. From these values one
can readily notice that the critical bond energy decreases (lin-
early) with supercoiling. (C)-(F) show snapshots of typical con-
figurations for ✏HB = 0.3 kBT for tf (linear) and tcDNA with
�0 = 0.06, 0,�0.06, respectively. Stably denatured bubbles lo-
calise at regions of high curvature (tips of plectonemes [22], high-
lighted by circles). In (C) the linear DNA molecule is in a fully
denatured state.

An observable that directly compares with experiments is
the fraction of denatured base-pairs (bp), #. The plot of
the equilibrium value h#i as a function of temperature or
bond strength can be identified with the melting curve for
DNA. Typical profiles obtained from experiments [7] and BD
simulations performed in this work, are shown in Fig. 1(A-
B): the qualitative agreement is remarkable.
The sharpness of the melting transition can be quantified

in terms of the maximum value attained by the di↵erential
melting curve as �t = |dh#i/dt|�1, where t can either be
temperature, T , or e↵ective hydrogen bond strength, ✏HB,
depending on the denaturation protocol. Quantitatively,
Figures 1(A)-(B) show that experiments and simulations
agree in predicting melting curves for tcDNA about three
times broader than for tfDNA, i.e. �t|tc / �t|tf ' 3.
From these observations, it is clear that the melting be-

haviour of DNA is a↵ected by global topology. On the other
hand, melting occurs through local opening of the double-
helical structure. The challenge faced by a theory aiming
to understand the “helix-coil” transition in tcDNA is there-
fore to capture local e↵ects due to the global topological
invariance. To this end, it is useful to define an e↵ective lo-
cal supercoiling field �(x, t) ⌘ (Lk(x, t)� Lk0) /Lk0, where
Lk0 is the linking number between the two strands in the
relaxed B-form state, i.e. 1 every 10.4 bp, and Lk(x, t) is

the e↵ective linking number at position x and time t. For a
circular closed molecule of length L

1

L

Z
L

0

�(x, t)dx = �0 8t , (1)

where �0 is the initial supercoiling deficit, which can be
introduced and locked into the chain by, for instance, the
action of topological enzymes [2]. On the contrary, cir-
cular nicked or linear (tf) dsDNA molecules need not sat-
isfy Eq. (1), since any deviation from the relaxed super-
coiling state can be expelled through the chain ends or the
nick. In light of this, it is clear that subjecting a tcDNA
to denaturation-promoting factors causes a competition be-
tween entropy and torsional stress: the former associated
with the denatured coiled regions [12, 13], the latter arising
in the intact helical segments [17].
Motivated by these observations, we propose the follow-

ing phenomenological mean field theory for the melting of
tf and tcDNA. We consider a denaturation field, �(x, t), de-
scribing the state of base-pair x at time t (e.g., taking the
value 0 if intact or > 0 if denatured), coupled to a conserved
field, �(x, t), tracking the local supercoiling. A Landau free
energy can be constructed by noticing that: (i) the denatu-
ration field � should undergo a first-order phase transition
when decoupled from � [12], (ii) the elastic response to the
torsional stress should be associated with even powers of
� [18] [23], and (iii) the coupling between � and � should be
such that there should be an intact dsDNA phase at su�-
ciently low T , i.e. � = 0 for any �0 at T < T

c

.
Based on these considerations we can write an e↵ective

free energy density as:

�f(�,�) =

✓
b

2

4c
+ 1� a(T )

◆
�

2 + b�

3 + c�

4+

+ a

�

�

2 + b

�

�

4 + ���

2
. (2)

In Eq. (2), the first term is written so that the parame-
ter a(T ) ⇠ T/T

c

, b < 0 and we keep the quartic term in
� to ensure there is a local minimum around � = �1 (or
Lk(x, t) = 0) when � = �0, corresponding to the fully de-
natured state (see SM). Finally, the coupling term ���

2

models the interplay between supercoiling and local melt-
ing; it can be turned o↵ by simply setting � = 0 to approx-
imate tfDNA (in this framework the torsional stress can be
expelled infinitely fast). We also highlight that by setting
� = 0, Eq. (2) predicts a first-order melting transition.
The free energy density in Eq. (2) displays a minimum at

� = 0 = �ds (helical state), and can develop a competing one
at � = �ss > 1 (coiled state) which in general depends on �,
� and a (see SM). The free energy density of the two becomes
equal at the critical temperature a = a

c

, which reduces to
a

c

(�) = 1 + ��, by fixing c = �b/2 (see SM). This relation
states that more negatively supercoiled molecules denature
at lower temperatures, as in experiments [24], whereas for
tfDNA (� = 0) the critical temperature is independent on
supercoiling.
To obtain the phase diagram of the system in the space

(a,�0) we focus on dsDNA molecules with fixed, and ini-
tially uniform, value of supercoiling �0, at fixed temperature
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Figure 2. Phase Diagram. The thick solid line represents the
hidden first order transition line �c(a). The line-shadowed area
highlights the region of absolute instability of the uniform phase;
the spinodal region is coloured in grey. Binodal lines are denoted
as �� and �+. Cross-shadowed area highlights the region of co-
existence of two denatured (ss) phases. Filled symbols denote the
values obtained from numerical integration of Eq. (7), with ini-
tial �0 as indicated by the empty squares. Snapshots of ssDNA,
dsDNA and ds-ss DNA coexistence observed in BD simulations
are also shown.

a. For such conditions, the system attains its free-energy
minimising state for a value of � = �0(�,�0, a) [25]. The
uniform solution (�0,�0) is linearly unstable if it lies within
the spinodal region (in Fig. 2 shaded in grey), i.e. where
@

2
f(�0,�)/@�2  0 [26]. In Figure 2 we fix for concreteness

b = �4, a
�

= 1, b
�

= 1/2, � = 2 (di↵erent parameter choices
lead to similar diagrams provided b remains negative [27]).
A system with unstable uniform solution separates into

two phases with low (��) and high (�+) supercoiling levels,
as this lowers the overall free energy. The values of ��(a)
and �+(a) are the coexistence curves, or binodals, which
are found by imposing that both chemical potential µ(s) ⌘
@f(�0,�)/@�|

s

and pressure ⇧(s) = f(�0, s) � µ(s)s must
be equal in the two phases [25]. This translates into solving
a system of two equations with two unknowns,

µ(��) = µ(�+) (3)

⇧(��) = ⇧(�+). (4)

By noticing that �0 needs to satisfy Eq. (1) for tcDNA, it is
straightforward to find the fractions of the system in the high
and low supercoiling phases as f+ = (�0 � ��)/(�+ � ��)
and f� = (�+ � �0)/(�+ � ��), respectively.
The phase diagram in the (a,�0) space is reported in

Figure 2, where we show that the coexistence lines ��(a)
and �+(a) wrap around the critical first-order transition line
�

c

(a) = (a�1)/� which therefore becomes “hidden” [25]. In
light of this we argue that the smoother transition observed
for tcDNA [7, 14] can be understood as a consequence of the
emergence of a coexistence region in the phase space which
blurs the underlying first-order transition. This argument

also explains the “early melting” of closed circular DNA [7],
which can be understood as the entry into the coexistence
region from low temperatures.

Intriguingly, our phase diagram includes a region (cross-
shadowed in Fig. 2) where the system displays stable coexis-
tence of two open phases (i.e. � = �ss in both sub-systems)
with supercoiling levels �̃� and �̃+.
Dynamical Scaling – The dynamics of the non-conserved

order parameter, �, and the conserved one, �, can be found
following the Glauber and Cahn-Hilliard prescriptions, re-
spectively. Consequently, the system can be described by
the following “model C” equations [26]

@�(x, t)

@t

= ��
�

�H(�,�)

��

@�(x, t)

@t

= �
�

r2 �H(�,�)

��

(5)

where �
�,�

are relaxation constants,

H(�,�) =

Z ⇣
f(�,�) + �

�

(r�)2 + �

�

(r�)2
⌘
dx , (6)

and �

�,�

determine the e↵ective surface tension of bubbles
and supercoiling domains, respectively. From Eqs. (2) and
(5) one can write

@�(x, t)

@t

=

= ��
�


2

✓
b

2

4c
+ 1� a

◆
�+ 3b�2 + 4c�3 + 2��� � �

�

r2
�

�

@�(x, t)

@t

= �
�

r2
⇥
2a

�

� + 4b
�

�

3 + ��

2 � �

�

r2
�

⇤
. (7)

We numerically solve this set of partial di↵erential equations
(PDE) on a 1D lattice of size L for fixed a and �0 (see SM for
details) and compare the evolution of denaturation bubbles
with the one observed in BD simulations. Note this set of
equations disregards thermal noise, hence it is in practice a
mean field theory.
In Figure 3 we show “kymographs” from BD simulations,

capturing the state of each base-pair (either intact or dena-
tured) against time for tf and tcDNA. As one can notice, af-
ter the energy quench at t = 0, the linear (tfDNA) molecule
starts to denature from the ends and eventually fully melts.
On the other hand, in the closed circular (tcDNA) molecule,
bubbles pop up randomly over the whole contour length,
and the steady state entails a stable fraction, 0 < # < 1, of
denatured bp (see also SM, Fig. S2).
We observe a similar behaviour when the fields � and �

are evolved via Eqs. (7), starting from a single small bubble
at temperature a within the coexistence region (see Fig. 3D
and SM). While the bubble grows, the supercoiling field is
forced outside the denatured regions and accumulates in the
ds segments. The increasing positive supercoiling in the he-
lical domains slows down and finally arrests denaturation,
resulting in phase coexistence in steady state, between a de-
natured phase with � = �� and � = �ss > 1, and an intact
phase with � = �+ and � = �ds = 0.
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Figure 3. Kymographs. (A-B) report results from BD sim-
ulations. At time t = 0, the H bond strength is quenched to
✏HB = 0.3kBT and the local state of the chain (red for denatured
and white for intact) is recorded as a “kymograph”. (A) and
(B) show the case of a tf and tcDNA (�0 = 0), respectively. (C)
shows the kymograph of the system during integration of Eqs. (7)
starting from a small bubble (see SM). Insets show instantaneous
profiles of denaturation field (red) and supercoiling field (blue).

The growth, or coarsening, of a denaturation bubble, l,
can be quantified within our mean field theory and BD sim-
ulations: in the former case by numerical integration of
Eq. (7), in the latter by measuring the size of the largest
bubble over time and averaging over independent realisa-
tions. As shown in Fig. 4(A-C) we find that in both mean
field and BD simulations,

l(t) ⇠
(
t

1 for topologically free DNA,

t

1/2 for topologically constrained DNA.
(8)

In other words, we find that the exponent ↵ governing the
local growth of a denaturation bubble depends on the global

topology of the molecule.
We propose the following argument to explain the values

of ↵. For tfDNA (e.g., nicked or linear), we can assume
that the supercoiling field relaxes quickly, and gets expelled
outside, without a↵ecting the dynamics of the denaturation
field. In this case, the free energy can be approximated as
f ' (✏HB � T�S)l, so that there is a constant increase in
entropy per each denatured bp when T > T

c

= ✏HB/�S.
This implies that [26]  dl/dt ' df/dl ⇠ const, with  an
e↵ective constant friction; as a result we obtain l(t) ⇠ t.

On the other hand, the value of ↵ = 1/2 observed for
tcDNA (e.g., circular non-nicked plasmids) can be under-
stood by quantifying the slowing down of denaturation due
to the accumulation of a “wave” of supercoiling, raked up
on either side of the growing bubble. We argue that the

flux of � through a base pair at the bubble/helix interface
is J

�

⇠ �ssdl/dt. At the same time, the flux of � can be
obtained by noticing that the “wave” can be approximated
by a triangle with constant height h = �+ � �0 and base
b ⇠ l(t) (see SM Fig. S10 and Fig. 3(C)). This is because
the total supercoiling enclosed by the wave must be propor-
tional to the one expelled from within the denatured bub-
ble, which is ⇠ |�� � �0| l(t). One can therefore write that
J

�

= ��
�

@

x

� ' �
�

h/l, for the supercoiling flux in, say,
the forward direction. At equilibrium, the two fluxes must
balance, i.e. J

�

⇠ J

�

, and therefore �ssdl/dt ⇠ �
�

h/l, or
l(t) ⇠ t

1/2. Finally, we highlight that this argument depends
on the slowing down over time of 1D supercoiling fluxes,
hence is qualitatively distinct from the reason why ↵ = 1/2
in dimensions d � 2 in (non-conserved) model A [26].
Linking within Denaturation Bubbles – As a final result,

we perform BD simulations to characterise the topology of a
denaturation bubble through the linking number that can be
stored inside it (Fig. 4(D)). An idealised bubble is identified
by Lk = 0 (and � = �1) [17], whereas our BD simulations
show that a denatured region of fixed size l (imposed by
selectively breaking only l consecutive bonds along an intact
dsDNA molecule) has a non-zero linking number Lk

d

(see
Fig. 4(D)) [28].
We found that for small l, Lk

d

displays a remarkable sig-
nature of global topology (through the value of �0); instead,
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Figure 4. Dynamical Scaling. (A-B) show results from BD
simulations. The size of the largest denatured bubble hli (aver-
aged over 5 replicas) is plotted against time from the moment of
the quench. (A) shows tcDNA while (B) refers to tfDNA. (C)
shows the size of a single growing bubble, l, within our mean
field model, Eqs. (7). PDE and BD simulations show similar
behaviours, which suggest a universal dynamical scaling with
topology-dependent exponent (↵ = 1 for � = 0 and ↵ = 1/2
for � > 0). (D) shows the linking number, Lkd, stored inside a
denatured bubble of fixed size l computed from BD simulations
(see text and SM for details).
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the scaling behaviour at large l appears to follow Lk

d

⇠ l

1.25

irrespectively of �0, until it reaches Lk0. The finding that a
denaturation bubble displays a non-trivial and l-dependent
linking number suggests that idealised (Lk

d

= 0) bubbles
may not always be reflecting realistic behaviour. Further,
it may be of relevance for processes such as DNA replica-
tion, as it suggests that supercoiling or torsional stress may
be able to di↵use past branching points such as replication
forks [29].
Conclusions – In summary, we have studied the melting

behaviour of topologically constrained DNA through a com-
bination of large-scale BD simulations and mean field theory.
A key result is that the phase diagram for tcDNA melt-
ing generally involves a phase coexistence region between a
denatured and an intact phases, pre-empting a first-order
denaturation transition as in tfDNA. This finding provides
a theoretical framework to explain the long-standing experi-
mental observation that the denaturation transition in circu-
lar, and not nicked, supercoiled plasmids is seemingly less co-
operative (smoother) than for linear, or nicked, DNA [7, 14].
We have further studied, for the first time, the coarsen-

ing dynamics of denaturation bubbles in tcDNA, and found
a remarkable agreement between BD simulations and mean
field theory, both reproducing similar topology-dependent
scaling exponents that can be understood within our the-
oretical model. It would be of interest to investigate such
dynamics experimentally in the future.
DMa and DMi acknowledge ERC for funding (Consolida-

tor Grant THREEDCELLPHYSICS, Ref. 648050). YAGF
acknowledges support form CONACyT PhD grant 384582.
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