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Abstract 

Modern network science is a fundamental tool for the understanding of brain organization. EEG 

recordings of brain activity can be used to reconstruct, and characterise, functional networks using a 

variety of connectivity metrics and measures of network topology. Unlike EEG source 

reconstruction techniques, scalp analysis does not allow to make inferences about interacting 

anatomical regions, yet this latter approach has not been abandoned. Although the two approaches 

use different assumptions, conclusions drawn regarding the (global) topology of the underlying 

networks should, ideally, not depend on the approach that is used. Our aim was to compare network 

measures, as defined by minimum spanning tree (MST) parameters, extracted from scalp and source 

EEG signals, using a variety of functional connectivity (FC) metrics. Eyes-closed resting-state EEG 

recordings from 109 subjects were analysed with amplitude- and phase-based FC metrics, both with 

and without correction for field spread and volume conduction/signal leakage. We found a strong 

correlation (0.849<rho<0.933) for the global mean connectivity between scalp- and source-level for 

all the FC metrics. In contrast, network topology was only weakly correlated. The strongest 

correlations (0.262<rho<0.346) were obtained for MST leaf fraction, but only for connectivity 

metrics that limit the effects of field spread and volume conduction/signal leakage. These findings 

suggest that the effects of field spread and volume conduction/leakage alter the estimated scalp 

EEG network organization, thereby limiting the interpretation of results of EEG scalp analysis. 

Finally, this study also suggests that the use of metrics that address the problem of zero lag 

correlations may give more reliable estimates of the topology of the underlying brain networks. 

 

Keywords: EEG, scalp, source, functional connectivity, network topology, Minimum Spanning 

Tree. 
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Introduction 

Modern network science is a fundamental tool for the understanding of both normal and abnormal 

brain organization (Bullmore and Sporns, 2009; Sporns et al., 2004; Stam, 2014). In this context, 

alongside other imaging techniques such as magnetoencephalography (MEG) and functional MRI 

(fMRI), electroencephalography (EEG) has been widely used to study brain networks (Stam, 2014; 

Stam and van Straaten, 2012). It is well accepted that scalp-level EEG analysis does not allow 

inferences in terms of underlying neuroanatomy (Steen et al., 2016), thus suggesting the use of 

source reconstruction techniques (Schoffelen and Gross, 2009), yet the former approach has not 

been abandoned. The main problems with scalp-level analysis of functional networks are related to 

two considerations: i) the already mentioned problem that location of EEG channels do not relate 

trivially to the location of the underlying sources; and ii) spurious estimates of functional 

connectivity can occur between the channels due to the effects of field spread (Dominguez et al., 

2007) and volume conduction (Schoffelen and Gross, 2009), where more than one channel can pick 

up the activity of an underlying source, although these effects can still be present in source-space 

(Brookes et al., 2014), where it is often referred to as signal leakage. Although scalp- and source-

level analyses use different assumptions, conclusions drawn regarding the (global) topology of the 

underlying networks should, ideally, not depend on the approach that is used.  

The aim of the present paper was to compare network measures extracted from scalp and source 

EEG signals, as defined by the minimum spanning tree (MST), and using a variety of functional 

connectivity (FC) metrics. The MST represents a network approach that provides an unbiased 

reconstruction of the core of a network (Stam et al., 2014; Tewarie et al., 2015). MST parameters 

are sensitive to alterations in network topology (Tewarie et al., 2015) and several studies have 

already implemented this approach in order to study network alteration at the scalp- (Crobe et al., 

2016; Demuru et al., 2013; Fraga González et al., 2016; Fraschini et al., 2016b, 2015, 2014; van 

Diessen et al., 2016; Vourkas et al., 2014; Yu et al., 2016) and source-level (Dubbelink et al., 2014; 

Nissen et al., 2017; Tewarie et al., 2014; van Dellen et al., 2014). Under certain conditions, the 
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MST forms the critical backbone of the original network (Van Mieghem and Magdalena, 2005; Van 

Mieghem and van Langen, 2005; Wang et al., 2008). Moreover, it addresses several methodological 

limitations (i.e. biased estimates of network topology due to differences in connection strength or 

link density) (van Wijk et al., 2010), yet still captures changes in topology of the original network 

(Tewarie et al., 2015). 

In order to assess the effect of field spread and volume conduction/leakage we included FC metrics 

that are sensitive to these effects, namely the phase locking value (PLV) (Lachaux et al., 1999) and 

the amplitude envelope correlation (AEC) (Brookes et al., 2011), and metrics that are relatively 

insensitive to these effects, namely the phase lag index (PLI) (Stam et al., 2007) and AEC after 

leakage correction (Brookes et al., 2011; Hipp et al., 2012). Subsequently, several MST parameters 

were used to characterize the global topology of the reconstructed functional networks. 

We used a freely available EEG dataset (Goldberger et al., 2000; Schalk et al., 2004) that includes 

one minute eyes-closed resting-state recordings from 109 subjects. Source-level time-series of 

neuronal activity were reconstructed for 68 ROIs (Desikan et al., 2006) by means of the weighted 

Minimum Norm Estimate (wMNE) (Fuchs et al., 1999; Hämäläinen, 1984; Hämäläinen and 

Ilmoniemi, 1994; Lin et al., 2006) and segmented into five non-overlapping epochs. MSTs were 

reconstructed for four FC metrics, both at the scalp- and source-level, and parameters that 

characterise global topology were subsequently compared between the two domains. 
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Material and methods 

 

Dataset 

A dataset created by the developers of the BCI2000 instrumentation system, consisting of 64-

channels EEG recordings from 109 subjects, was used in this study (Goldberger et al., 2000; Schalk 

et al., 2004). The dataset contains fourteen different experimental runs for each subject, comprising 

of two one-minute baseline runs (eyes-open and eyes-closed resting-state conditions). For the aim 

of the present work, we considered only the eyes-closed resting-state runs. The data are provided in 

EDF+ format and contain 64 raw EEG signals as per the international 10-10 system, sampled at 160 

Hz.  

 

EEG pre-processing 

EEGLAB (version 13_6_5b) (Delorme and Makeig, 2004) was used to re-reference and filter (with 

fir1 filter type) the EEG signals (band-pass filter between 1 and 70 Hz and 60 Hz notch filtering). 

Successively, ADJUST (version 1.1.1) (Mognon et al., 2011), a fully automatic algorithm based on 

Independent Component Analysis (ICA), was used to detect and remove artefacts from the filtered 

signals. 

 

Source reconstruction 

Source-reconstructed time-series were obtained by using Brainstorm software (version 3.4) (Tadel 

et al., 2011). First, a head model was created using a symmetric boundary element method in Open-

MEEG (version 2.3.0.1) (Gramfort et al., 2010; Kybic et al., 2005) based on the anatomy derived 

from the ICBM152 brain (Mazziotta et al., 2001). Time-series of neuronal activity were 

reconstructed using whitened and depth-weighted linear L2 minimum norm estimate (wMNE) 

(Fuchs et al., 1999; Hämäläinen, 1984; Hämäläinen and Ilmoniemi, 1994; Lin et al., 2006), with an 
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identity matrix as noise covariance. Sources were constrained to the cortex and source orientation 

was perpendicular to the cortical surface (Mosher et al., 1999). To limit the effect of differences in 

network size (van Wijk et al., 2010) between scalp- (64 channels) and source-analysis, source-

reconstructed time-series were projected onto 68 regions of interest (ROIs) as defined by the 

Desikan-Killiany atlas (Desikan et al., 2006), where time-series for voxels within a ROI were 

averaged (after flipping the sign of sources with opposite directions). 

 

Connectivity metrics 

Functional connectivity metrics that are either sensitive or insensitive to the effects of field spread 

and volume conduction/signal leakage, based on either amplitude or phase information, were used. 

In particular, we used AEC, a measure of amplitude coupling that uses linear correlations of the 

envelopes of the band-pass filtered signals (Brookes et al., 2011; Hipp et al., 2012) and AECcorrected, 

a version that uses a symmetric orthogonalisation procedure to remove zero-lag correlations 

(implemented in the time domain (Hipp et al., 2012)). Furthermore, we used the PLV (Lachaux et 

al., 1999), a measure that quantifies the consistency of phase differences (including zero-lag), and 

the PLI (Stam et al., 2007), a measure that quantifies the asymmetry of the distribution of phase 

differences between time series and that ignores zero-lag phase differences. The connectivity 

metrics were calculated for all epochs of each subject, after having band-pass filtered the scalp- or 

source-reconstructed time-series in the alpha band (8-13 Hz) and segmenting the one-minute 

recordings in five non-overlapping epochs of 12 seconds (Fraschini et al., 2016a).  

 

Functional Network Topology 

The EEG channels (scalp-level analysis) and the atlas-based ROIs (source-level analysis) were 

considered as network nodes, and the functional connections as weighted edges within the network. 

Then the MST, a sub-network that connects all nodes whilst minimizing the link weights without 

forming loops, was reconstructed. Since we are interested in the strongest connections, the 
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connection weights were inverted (1 – FC measure) before constructing the MST. The topology of 

the MST was characterised using the following parameters (Boersma et al., 2013): the leaf fraction 

(number of nodes with degree of 1 divided by the total number of nodes), the diameter (largest 

distance between any two nodes), the tree hierarchy (balance between hub overload and network 

integration) and the kappa (broadness of degree distribution). All analyses were performed using 

Matlab R2016b (The MathWorks, Inc., Natick, Massachusetts, US) and the MIT Strategic 

Engineering Matlab Tools for Network Analysis (Bounova and de Weck, 2012). 

 

Statistical analysis 

Correlations between scalp- and source-derived measures were assessed using Spearman's rank 

correlation coefficient. In order to test differences between correlations from the different 

connectivity approaches, the ones that are insensitive to zero-lag correlations in contrast to the ones 

that are sensitive, we used a percentile bootstrap approach for non-overlapping correlations 

(Wilcox, 2016), using 500 repetitions, and using the code available at 

https://github.com/GRousselet/blog/tree/master/comp2dcorr and described at 

https://garstats.wordpress.com/2017/03/01/comp2dcorr/.   
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Results 

The associations between measures extracted from scalp- and source-reconstructed networks are 

represented as scatterplot in Figure 1. The Spearman correlations between scalp- and source-level 

global average connectivity was high for all connectivity metrics, whereas correlations were low to 

moderate for the MST parameters. For the MSTs, the highest correlations were observed for leaf 

fraction for MSTs based on AECcorrected (rho = 0.346) and PLI (rho = 0.262).  

 

Figure 1. Scatterplots of scalp- and source-based measures of FC and network topology. The strength of the correlation 

is reported as rho value. Note that estimates of network topology only correlated weakly to moderately (maximum rho = 

0.346) between scalp- and source-level, even though average FC correlated strongly. 
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For all the MST parameters, MSTs based on AECcorrected and PLI showed higher correlations in 

comparison with AEC and PLV. In particular, PLV-based MST parameters showed the lowest 

correlations, with correlations strength approaching zero for all the evaluated network measures 

(maximum rho = 0.061, for MST kappa). Statistical differences, expressed using confidence 

intervals, between Spearman correlations derived from amplitude and phase based coupling 

approaches are summarized in Table1 and Table 2. For amplitude based FC metrics, the largest 

difference was observed for MST leaf fraction, whilst for the other MST parameters the differences 

were small. For phase-based FC metrics, the most marked differences were observed for MST leaf 

fraction and MST Kappa. For both the amplitude- and phase-based approaches, the MST Hierarchy 

showed only minimal differences. Figure 2 shows differences and bootstrap distributions for MST 

leaf fraction, for MSTs based on AECcorrected versus AEC (left panel) and for MSTs based on PLI 

versus PLV (right panel). 

 
AECcorrected	 AEC	 Statistics	

	
rho	 rho	 difference	 CI	

MST	leaf	fraction	 0.346	 0.151	 0.195	 [0.08	0.32]	
MST	diameter	 0.223	 0.146	 0.078	 [-0.03	0.18]	
MST	kappa	 0.254	 0.173	 0.081	 [-0.03	0.19]	
MST	hierarchy	 0.141	 0.099	 0.043	 [-0.07	0.15]	

 

Table 1. Comparison between scalp- and source-level correlations for amplitude based FC metrics. Mean difference and 

confidence intervals are reported. 

 
 
 
		 PLI	 PLV	 Statistics	
		 rho	 rho	 difference	 CI	
MST	leaf	fraction	 0.262	 0.019	 0.243	 [0.13	0.37]	
MST	diameter	 0.136	 0.019	 0.117	 [0.00	0.23]	
MST	kappa	 0.215	 0.061	 0.153	 [0.03	0.27]	
MST	hierarchy	 0.078	 -0.005	 0.082	 [-0.04	0.19]	

 
Table 2. Comparison between scalp- and source-level correlations for phase based FC metrics. Mean difference and 

confidence intervals are reported. 
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Figure 2. Differences and bootstrap distributions for MST leaf fraction, for AECcorrected versus AEC (left panel) and for 
PLI versus PLV (right panel). The difference between coefficients is marked by a thick vertical black line. The 95% 
percentile bootstrap confidence interval is illustrated by the two thin vertical black lines. 
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Discussion 
 
Although network reconstructions at the scalp- and source-level rely on different assumptions, 

conclusions drawn regarding the (global) topology of the underlying networks should, ideally, not 

depend on the approach that is used. We found that average functional connectivity correlated 

strongly between the two domains, independent of the metric that was used. In contrast, global 

MST network descriptors extracted from scalp- and source-level EEG signals correlated (at best) 

moderately. In particular, in the case of connectivity metrics that do not limit spurious connections 

that are due to field spread and volume conduction/signal leakage (PLV and uncorrected version of 

AEC), the correlations were particularly weak. Although topological parameters for MSTs based on 

AECcorrected and PLI showed only moderate correlations between scalp- and source-level, they were 

still higher than for MSTs based on PLV and uncorrected AEC for all of the estimated network 

measures. These differences (between scalp-/sensor-level correlations) were most evident for phase-

based synchronization metrics, where PLI allowed to obtain higher correlations than PLV, for two 

of the MST descriptors (leaf fraction and kappa). These findings, which show minimal consistency 

between network analysis at scalp- and source-level, still advise against the use of FC metrics that 

do not correct for spurious correlations as they tend to amplify the differences between the two 

domains (scalp- and source-level). Conversely, the use of metrics that limit spurious connectivity 

(AECcorrected and PLI) tends to reduce these differences.  

In this work, we used weighted minimum norm estimated to reconstruct the source activity. 

It should be noted that different source reconstruction methods (Baillet et al., 2001), such as 

beamforming (Hillebrand et al., 2005), may provide different results in terms of global network 

topology and the correlation between scalp- and sensor-level estimates, since beamformer 

reconstructions may provide a more robust demixing of the time-series (i.e., separating the 

contribution from different underlying sources to a single sensor) compared to the relatively smooth 

solutions that are obtained with wMNE (Hillebrand and Barnes, 2005). Since the accuracy of source 

localization may increase with the number of channels (Antiqueira et al., 2010; Lantz et al., 2003), 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 29, 2017. ; https://doi.org/10.1101/121764doi: bioRxiv preprint 

https://doi.org/10.1101/121764


one would expect the correlations between networks reconstructed at the sensor- and source-level to 

be higher for MEG than for EEG. The reduced sensitivity of MEG volume conduction may further 

aid in this respect. 

The present work suffers from some limitations. First of all, there was no ground truth in our 

study, and the interpretation of our results is based on the assumption that network estimates at the 

source-level are a better approximation of the unknown true network organization than scalp-level 

estimates. This assumption is in line with a previous study (Antiqueira et al., 2010) that have 

highlighted that scalp-level network analyses may result in erroneous inferences about the 

underlying network topology. In particular, the model study by Antiqueira and colleagues suggests 

that scalp-based network structures, especially when under-sampled at surface sites, might not agree 

with the underlying three-dimensional network. Another limitation refers to the inherently different 

mapping approaches between scalp- (channels) and source-level (ROIs) analysis, that strongly 

hinder the comparison between the two domains. Even though the number of EEG channels 

differed only slightly from the number of reconstructed ROIs (64 versus 68), it has been shown that 

differences in network size can affect estimates of network topology (van Wijk et al., 2010). The 

correlations between the scalp- and source-level estimates of network topology presented here may 

therefore be lower than those that would have been obtained in case the networks had been of equal 

size. Another consideration is that consistency for local measures (e.g. nodal centrality) may be 

lower than reported for the global network measures. Finally, the ICA-based artefact-rejection that 

we used may have distorted  the phases (Castellanos and Makarov, 2006). However, since our study 

is focused on the comparison between analyses at the scalp- and source-level, and is not intended to 

unveil the true underlying network topology, this limitation should only slightly impact on the 

reported results. Future studies should elucidate the effects of ICA artefact-rejection on subsequent 

connectivity and network analyses.  

In conclusion, the present work confirms that, although functional connectivity can be 

estimated reliably, extreme caution should be used when interpreting results derived from scalp-
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level EEG network analysis, even when unbiased approaches such as MST analysis are used. 

However, assuming that the source-based network representation is a better approximation of the 

unknown true network organization, our findings also indicate that connectivity metrics that limit 

the emergence of spurious correlations (such as the corrected AEC and PLI) may allow for more 

reliable estimates of the underlying global network organization. 
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