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Abstract 

We present HiGlass, an open source visualization tool built on web technologies that provides a 

rich interface for rapid, multiplex, and multiscale navigation of 2D genomic maps alongside 1D 

genomic tracks, allowing users to combine various data types, synchronize multiple visualization 

modalities, and share fully customizable views with others. We demonstrate its utility in 

exploring different experimental conditions, comparing the results of analyses, and creating 

interactive snapshots to share with collaborators and the broader public. HiGlass is accessible 

online at http://higlass.io and is also available as a containerized application that can be run on 

any platform. 

 

 

Background 

The development of chromosome capture assays measuring the spatial contacts between two 

or more regions of the genome is essential for elucidating how the structure and dynamics of 

the genome affect gene regulation and cellular function [1,2]. Genome-wide maps of 

chromosomal interactions obtained by techniques such as Hi-C have revealed features of 

genome organization such as compartmentalization, i.e. spatial segregation of active and 

inactive regions of the genome, topologically associating domains (TADs), and associated 

peaks of contact frequency (often referred to as loops) [1,3–5]. Hi-C maps have helped 
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implicate changes in genome organization in a variety of disorders, including acute 

lymphoblastic leukemia [6], colorectal cancer [7], and limb development disorders [8]. More 

fundamentally, they provide insights into the mechanisms by which genome conformation 

structures arise, are maintained, and change over time [9–11]. Major efforts like the 4D 

Nucleome Network and the ENCODE project are generating such data at large scale across 

different cell lines and conditions with the aim of understanding the mechanisms that govern 

processes such as gene regulation and DNA replication as well as to cross-validate the results 

from different experimental assays [12,13]. 

 

Despite the large amounts of generated Hi-C data, major challenges remain in (i) identifying 

known features unambiguously [14]; (ii) discovering new features; (iii) establishing relationships 

between Hi-C features and known (epi)genetic profiles; (iv) establishing the effects of various 

genetic, biochemical and physical perturbations on chromatin organization, assessing 

meaningful differences between cell types [15], and changes across the cell cycle and along 

differentiation pathways [16]. These challenges necessitate the development of methods to 

visually explore, compare and share not only the raw data, but also related datasets and derived 

analysis results. An effective visualization platform needs to meet the following criteria: (1) 

Provide researchers with the means to explore their data and look for patterns that may help to 

interpret the results of experiments and generate hypotheses. (2) Enable efficient comparison 

by juxtaposition or other means of different samples or conditions and integration of both similar 

and heterogeneous data types. (3) Allow researchers to overlay computationally derived 

annotations to visually validate analytical  results as well as to compare the outputs of different 

data processing pipelines. (4) Enable sharing of results with collaborators and the public. And 

crucially, an effective platform does this all in a fast, intuitive, and accessible manner. 
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To obtain genome conformation capture maps, raw Hi-C sequencing data are processed to 

identify proximity ligation events representing captured contacts between genomic loci, which 

are then binned to form contact matrices [17–19]; see Lajoie et al. [20] and Ay & Noble [21] for 

reviews of Hi-C data processing. The discovery and elucidation of genome organizational 

principles and mechanisms, however, also requires sophisticated visual tools for exploring 

features relevant at scales ranging from tens to millions of base pairs [18,22,23]. Given the 

multiscale features of genome organization, it is crucial that such visualization tools support 

comparison across multiple scales and conditions as well as integration with additional genomic 

and epigenomic data. Existing tools provide different ways of displaying contact frequencies, 

such as rectangular heatmaps, triangular heatmaps, arc plots, or circular plots, and different 

degrees of interactivity ranging from static plotting to interactive zooming and panning, as well 

as different degrees of integration with other genomic data types [18,24–29]. While tools such 

as Juicebox [18] and Genome Contact Map Explorer [30] provide synchronized exploration of 

multiple contact maps, they lack an interface for dynamically arranging the views of several Hi-C 

datasets, and customizing the levels of synchronization between loci, zoom levels, and 

samples. Furthermore, none provide an interface for continuous panning and zooming of the 

sort popularized by web based geographical and road maps. 

 

To address these shortcomings, we created HiGlass, an open source, web-based application 

designed to support multiscale contact map and genomic data track visualization across 

multiple resolutions, loci, and conditions (http://higlass.io, Supplementary Methods). HiGlass 

was built with an emphasis on usability. It provides an interface for continuous panning and 

zooming across genome-wide data. To facilitate comparison and exploration, HiGlass 

introduces the concept of composable linked views for genomic data visualization (Fig. 1). Each 

view in HiGlass is a collection of 1D and 2D tracks sharing common genomic axes. Views can 

be filled with data tracks, resized, arranged spatially, and linked to synchronize their axes by 
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location or zoom level. This approach enables users to interactively compose the layout, 

content, and synchronization of locus, zoom-level, and other properties across multiple views 

(Fig. 1). By creating, sizing, arranging, and linking individual views, users can create custom 

compositions ranging from the juxtaposition of two or more heatmaps to sophisticated  

 

Figure 1 | Schematics of different ways that views can be linked. Multiple views of the same (b) or different datasets 

(a,b,c) can be composed and linked to facilitate data exploration and comparison. Two independent views of different 

samples provide free and independent exploration of each sample (a). Linking by zoom and location enforces the 

same scale and location in both samples (b). Zoom linking maintains the same scale while allowing free independent 

manipulation of the location (d). By linking location and leaving zooming free, one set of views can show an overview 

of a high resolution region (c). Displaying the extent of one view in another is referred to as a viewport projection in 

this manuscript and shows where a detail view is located in an overview (c,d). The process of linking views is 

illustrated in Figure 6. 
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arrangements of views containing matrices, tracks, and viewport projections mapping the 

extents of one view inside another (Fig. 1, 2, Supp. Fig. 1). We demonstrate how HiGlass has 

been used to detect and analyze novel features in Hi-C data, and to visualize, validate, and 

compare tools for detection of known features. 

 

Multiple views within the same browser window, with synchronized panning and zooming, allow 

fast comparison of Hi-C maps for different samples/conditions. Views can, in the simplest case, 

be arranged to show the same location at the same zoom level across multiple samples (Fig. 4 

and Fig. 5). In other cases, the investigator may wish to view multiple loci within the same 

sample (Fig. 1b and Supp. Fig. 4). More complex arrangements can pair views with differential 

zoom levels in a context-detail arrangement (Fig. 2 and Fig. 3) [31]. View compositions serve to 

display data at multiple scales, to corroborate observations with other types of evidence and to 

facilitate comparisons between experiments. As a web-based tool, HiGlass also supports 

storing and sharing of view compositions with other investigators and the public via hyperlinks. 

The tool can be used to access selected public datasets at http://higlass.io or it may be run 

locally and populated with private data using a provided Docker container. It can also be 

embedded within other applications to provide a component for displaying Hi-C or other 

genomic data [32].  
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Figure 2 | A view composition highlighting the results from Schwarzer et al. with data from WT (left), and mutant 

(ΔNipbl, right) samples [33]. The top two views are linked to each other by zoom and location such that they always 

display the same region at the same resolution. Comparing the control (left) and mutant (right) condition at this zoom 

level reveals the bleaching of TADs in the gene-poor region in the lower right hand part of the maps. The bottom two 

views, also linked to each other by zoom and location, show a zoomed in perspective where a more fragmented 

compartmentalization of the ΔNipbl mutant (right) as compared to WT (left) can be seen. The black rectangles in the 

top views, which are referred to as viewport projections in HiGlass, show the positions and extent of the bottom views 

(Supp. Fig. 2). The white lines in the bottom left panel are a result of bins filtered during matrix balancing. An 

interactive version of this figure is available at http://higlass.io/app/?config=Tf2-ublRTey9hiBKMlgzwg. 
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Results 

Exploring and comparing different experimental conditions 

To illustrate the utility of composable linked views in exploring different experimental conditions, 

we used HiGlass to highlight key results of a recent study showing the effect of induced deletion 

of the cohesin loading factor Nibpl on chromosome organization in adult mouse hepatocytes 

[34]. We obtained Hi-C contact data and binned it at multiple resolutions starting at 1 kb for wild 

type (WT) and ΔNipbl primary hepatocytes (Supp. Methods). We loaded both samples as 

separate views (Fig. 2, top) and linked them via location and zoom level. With the two linked 

views, we could navigate to regions clearly showing the disappearance of features in the ΔNipbl 

condition. We also added views of genomic positions and locations of individual genes that 

move in sync with Hi-C maps, allowing to examine how changes in Hi-C in different genic 

contexts. For example, in the gene-poor region from chr14:80 Mb to chr14:100 Mb of mm9, we 

observe a robust loss of near-diagonal contact enrichment patterns. We identify the contact 

patterns that disappeared as TADs in a strict sense because they do not show the long range 

associative “checkerboard” pattern of A/B compartmentalization, a feature that remains intact in 

the ΔNipbl condition [35]. In contrast, in the relatively gene-rich region upstream of chr14:80 Mb, 

we see an enhancement of the checkered pattern and the emergence of a finer division of A/B 

regions in the ΔNipbl condition. To explore this region more closely, we created two additional 

linked views for WT and ΔNipbl and navigated to the region between chr14:50 Mb and chr14:70 

Mb (Fig. 2, bottom). Adding H3K4me3 and H3K27ac ChIP-seq signal tracks revealed that these 

marks, while similar between conditions, correlate more strongly with the compartmentalization 

pattern in ΔNipbl. Finally, we used a viewport projection to mark the position of the bottom views 

relative to the top, resulting in the complete view composition shown in Fig. 2. This interactive 
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visual recapitulation of key results from Schwarzer et al illustrates how synchronized navigation 

across loci and resolutions by linking views between multiple conditions facilitates the 

exploration of the complex effects of global perturbations on chromosome organization at 

multiple scales. 

Figure 3 | A view composition containing two views linked by location and zoom (top) and an independent (unlinked) 

zoomed out overview (bottom) (Supp. Fig. 3). The two views on top show data from chromosome 14 (mm9) in the 

wild type and ΔNipbl conditions, respectively. The bottom view shows data from the mutant condition as well as a 

projection of the viewport visible in the top views. The patch visible in the ΔNipbl condition (top left) is notably absent 

from the control (right). The gene annotations, RNAseq, H3K27me and H3K4me3 tracks show the presence and 

transcription of the Dock5 and Mycbp2 genes on the - strand as well as the presence and transcription of the Gnrh1 

and Cln5 genes on the + strand. An interactive version of this figure is available at 

http://higlass.io/app/?config=Q5LdNchQRLSZ_0yKsTEoiw. 
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Using the same view composition we noticed the appearance of a new feature, small dark 

patches (“blotches”) away from the diagonal in the ΔNipbl condition. To investigate these 

patches we created a new composition containing an overview and two zoom- and location-

linked detail views (Fig. 3). By using the overview to find patches and comparing them using the 

detail views, we established that they are more enriched in the mutant condition than in the wild 

type, that they represent strengthened interactions between pairs of short active regions (type A 

compartment) and that they tend to be aligned with annotations of long multi-exonic genes. 

Including RNA-seq and ChIP-seq tracks let us see that the genes which align with these 

patches are virtually always transcriptionally active. These observations are reminiscent of a 

recent ultra high resolution Hi-C study in mouse ES and neural cells, where the long-range 

contact enrichment between pairs of expressed genes was found to correlate with both 

expression level and the number of exons, and agrees with similar strengthened patterns 

observed after degradation of cohesin in a human cell line [36,37].  Not only do composable 

linked views provide convincing support that the absence of cohesin loading leads to 

strengthening of global genome compartmentalization, but they also hint that, at finer scales, 

long range and inter-chromosomal contact enrichment and its response to cohesin loss are 

influenced by transcriptional parameters such as expression output and splicing activity.  

Comparing the results of feature callers 

Analysis of genomic data usually involves identification and annotation of various “features” that 

range from calling sequence variants to detecting complex patterns of interactions in Hi-C maps. 

Often, the first step in characterizing the quality of a caller is a visual inspection to verify that the 

regions it annotates match the expectations of the human analysts. In the case of ChIP-seq 

data, for example, peak callers identify regions where proteins bind [38] and an analyst would 

verify that the regions contain an elevated number of read counts relative to the surrounding 
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regions. In Hi-C data, topologically associated domain (TAD) callers identify regions of 

increased contact frequency in contiguous loci (e.g. along the diagonal in a Hi-C map) [3,4]. In 

contrast to 1D peak callers, TAD callers demarcate square regions of interest in a Hi-C map. 

This makes comparison more complicated as the results often need to be placed next to each 

other, rather than simply stacked on top of each other. Results from multiple callers run on 

multiple replicates further complicate the task of comparison. 

 

To address the first issue of comparing feature calls on 2D maps, we obtained data for the 

comparison of seven algorithms that identify TADs from Forcato et al and created a view 

composition consisting of eight different views (Fig. 4) [14].  Seven views show called TADs 

overlayed on top of the same Hi-C map, with the eighth map showing map unobstructed by 

markers of called TADs. All views were then synchronized by zoom and location. By ensuring 

that each view always showed the same genomic region, we can compare the results at the 

same scale and location. Clearly visible in this comparison is the lack of consensus between the 

different available TAD callers. Few regions are consistently called by more than one caller. The 

lack of consensus is also evidenced by the variation in the size of the called TADs. While this 

variation in size is demonstrated empirically by Forcato et al., seeing the calls overlaid on the 

raw data can reveal that some are not only on the same scale as the larger compartment 

features, but also overlap with compartmental transitions (Supp. Fig. 5). Downstream analysis 

based on such TAD calls should therefore consider whether phenomena attributed to TADs can 

also be attributed to other features of Hi-C.  
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Figure 4 | Eight views linked by location and zoom (Supp. Fig. 5). Each view shows the calls made by a single TAD 

caller overlaid on the matrix on which they were called. There is little consistency between the results of the different 

callers and large variation in the size of the TADs. The last view (bottom right) shows a matrix with no overlay. An 

interactive version of this figure is available at http://higlass.io/app/?config=IPCHmdOQR4CDY2sqj5VJHQ. 

 

In addition to the differences between TAD calls among different callers, there are differences in 

the calls produced by a single TAD caller on different replicates. Such differences may be 

attributable to variations in signal-to-noise (e.g. quality and depths of different sequencing runs 

and differences in library complexity between replicates). Furthermore, by looking at the results 

of 7 different TAD callers among 10 experiments we can see that consistency within a caller 

does not imply consistency between callers. Such views also reveal more subtle differences. 

Some callers, for example, partition nearly all of the genome into a contiguous sequence of 

“TADs” (HiCseg [39], insulationScore [40] and TADbit [41]), while others (Arrowhead [5], 
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TADTree [42], domainCaller [3] and Armatus [43]) call discontinuous intervals, and some 

methods allow for overlap and/or nesting [14]. Such differences raise meaningful questions 

about what data patterns are used to define TADs in different studies, how robustly different 

algorithms can capture any given pattern type, and how the findings from one study can be 

translated to those of another. These issues are further underlined by recent experimental 

perturbations of chromatin architectural factors, such as the Nipbl deletion study above, which 

reveal that segmental annotations based solely on local contact enrichment cannot all be 

attributed to the same organizational process inside the nucleus and that standard Hi-C maps 

reflect an interplay of distinct dynamic processes averaged over a cell population. 
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Figure 5 | The seven views shown here show tracks in a horizontal configuration at the same location and zoom level 

(Supp. Fig. 6). Each view shows the output of a particular TAD caller (TADBit, HiCseg, Insulation Score, Arrowhead, 

TADtree, Domain Caller, and Armatus, from left to right, top to bottom). Each of the bottom tracks shows the output 

for a single replicate. The matrix on top contains data from a combination of all replicates. An interactive version of 

this figure is available at http://higlass.io/app/?config=JALHH-HzQGeJCaJaU9EwTA. The caller names and replicate 

labels were added for clarity.  

Creating interactive snapshots of genome-wide data 

In addition to exploration and interpretation, visualization is an essential tool for the 

communication of scientific findings. With the increasing use of high-throughput sequencing and 
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genome-wide assays, screenshots of genome browsers have become common in 

computational genomics. Such figures convey the relationship between one (in the case of 

conventional genomic data) or two (in the case of chromosome conformation data) loci and 

some measure such as read coverage or fold change in coverage. In publications, the extents 

of these plots are limited by the space and resolution available on the printed page. This 

compels authors to show one or two loci that most clearly demonstrate the effect they are 

describing. The original data is archived in repositories such as the Gene Expression Omnibus 

(GEO). A user who wishes to explore additional examples or view the data using a different 

visual representation requires a non-trivial human effort to a) locate the data in the appropriate 

repository b) establish which files correspond to which figures and c) prepare, convert and load 

the data into a genome browser or viewer. This arrangement hinders communication, 

reproducibility and further analysis by dissociating the raw genome-wide data from the 

publication describing it. 

 

With HiGlass, authors can produce links to interactive figures that can be shared with 

collaborators or the public. These links point to HiGlass view compositions that can show all of 

the genome-wide data used to produce a figure. These compositions are centered on one or 

more loci but can be navigated to other locations. Generating a link to a view composition stores 

all of the information necessary to reproduce it, including the data sources, track types, and 

synchronization links on the hosting server. This “view configuration” can also be stored as a file 

that can be shared with collaborators. Similar functionality was pioneered by the UCSC Genome 

Browser [44], where users could create “Track Hubs” hosting their own data and then share 

session links to genome browser views incorporating their data. Similarly, HiGlass users can run 

their own server locally and share links pointing to local data as well as data hosted on remote 

servers. 
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In contrast to most existing tools, HiGlass stores a declarative JSON representation of the 

current view configuration into its local database rather than the browser URL, which has a 

limited character length. HiGlass generates a link referencing the view configuration when the 

user selects to share their view composition. Without the need to encode every aspect of the 

visualization in the space-constrained URL, we can include more metadata about the how the 

tracks are styled and linked, the data sources and the synchronization options. This JSON state 

representation can either be saved locally or stored in HiGlass’s database and shared as a link 

to an interactive figure (Figures 2,3,4,5). By capturing the current composition and storing its 

complete state on the server, we create the opportunity to integrate HiGlass with tools for 

documenting and exploring the provenance of the composition to better understand the steps 

that the analyst took to reach their conclusions [45]. 

Feature overview and comparison with other viewers 

The major strengths of HiGlass are smooth navigation, multi-view comparison, comprehensive 

selection of track types, and containerized deployment. Of the existing browsers, only HiGlass 

and Genome Contact Map Explorer (GCME) provide a continuous interface for panning and 

zooming across loci and resolutions. Other tools, such as Juicebox, Juicebox.js [46], the 

Washington University Epigenome Browser (WUEB) and the 3D Genome Browser show data at 

fixed discrete zoom levels. To compare data, Juicebox, Juicebox.js, GCME and HiGlass offer 

the opportunity to place heatmaps side by side and navigate multiple Hi-C maps simultaneously. 

Of these, only HiGlass lets users select which heatmaps to synchronize or whether to 

synchronize by location, zoom, or both. This is critical for the creation of task-specific view 

compositions, for example to support overview and detail or multiple comparisons. Furthermore, 

no other tools let users establish connections between views (viewport projections) so as to 

display the location of one view within another (Fig. 2, Fig. 3).  
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The separation of data retrieval and rendering in HiGlass makes it easy to create new track 

types. HiGlass already supports horizontal triangular heatmaps (Fig. 5), vertical triangular 

heatmaps and 2D heatmaps (Fig. 2,3,4) for viewing Hi-C data as well as tracks for showing 2D 

annotations (Fig. 4 and Fig. 5). This is in contrast to other viewers such as Juicebox, Juicebox.js 

and GCME which display only 2D heatmaps or WUEB and the 3D Genome Browser which only 

display horizontal triangular heatmaps. Heatmaps in HiGlass are highly configurable. Color 

scales can be synchronized and tuned, and can be adjusted to display both linearly and 

logarithmically scaled data, an option also present only in GCME. Such features are crucial 

because the dynamic range of intra-chromosomal contact frequency spans several orders of 

magnitude. Genomic signal tracks can be displayed using lines, bars or points. Other track 

types such as gene annotations, rotated 2D annotations (Fig. 5) and generic 1D annotations are 

also directly supported. HiGlass supports selectable synchronized scaling between values in 

different tracks as well as the ability to fix heatmap color scales to a defined data range. It 

supports SVG export as well as JSON view configuration and link export for sharing (see 

Results section “Creating interactive snapshots of genome-wide data“).  

 

For deployment, we provide a Docker container for HiGlass which can be run locally and 

populated with private or shared data (Fig. 6). This makes it possible for individuals to view local 

files or for laboratories to create instances shared within an internal network. Such instances 

can be used to isolate both data and shared interactive figures from the public. Laboratories can 

also set up public instances to share data and figures outside of the local network. The ability to 

set up public and private instances is also available for the Washington University Epigenome 

Browser but absent from other tools. Because Juicebox and Juicebox.js can load remote files, 

similar functionality can be approximated by controlling data access at its point of storage. 

Without a database, however, it is difficult to obtain lists of available track and their associated 
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visual encodings from within the viewer itself. HiGlass makes it possible to not only collect sets 

of tracks locally but can connect to and obtain tracks from any number of different remote 

instances, such as the one at http://higlass.io.  

Conclusions 

Using HiGlass to create the linked views shown in Figures 2 and 3 enabled us to interactively 

explore the data generated by Schwarzer et al. across different conditions, zoom levels and loci 

[47]. This gave us not only a clearer understanding of the results but also the ability to see them 

in a genic context, but also allowed us to find unexpected patterns, relate them to histone 

patterns and gene expression, and rapidly gather observations to be used in generating new 

hypotheses. We used a different composition of views to show and compare the results of 

seven different TAD callers in a single window [14]. This let us compare the variation among 

different TAD callers, and of the same caller, across different replicates (Fig. 5), as well as with 

the original data that the calls were generated from (Fig. 4). These figures highlighted the 

inconsistency in the results between separate TAD callers, further emphasizing the algorithmic 

challenges and underscoring the need for visual inspection of these results. Finally, we provide 

links to fully navigable, interactive versions of each of these figures. This gives readers the 

freedom to explore the full extent of the data outside of the confines of the printed page.  

 

The multiscale nature of Hi-C data demands visualization at a wide range of zoom levels. Its 

size necessitates piecewise loading of small chunks of data. While genome browsers pioneered 

multiscale, genome-wide views of 1D data and other tools extended the notion to Hi-C data, the 

methods of comparison have largely been limited to either a simple vertical tiling of horizontal 

data tracks or a splitting of Hi-C contact maps along the diagonal. With HiGlass, we have 

generalized the approach to comparison and extended it beyond simple stacking or two-way 
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splits. We have introduced operations for linking views by location and/or zoom level and for 

projecting viewports across views. The tool that we have developed, while originally designed 

for Hi-C data, is a data-agnostic multi-dimensional viewer. Our public demo (http://higlass.io) 

demonstrates how HiGlass can be used as a standalone viewer to display 1D genomic data [48] 

while simultaneously providing the same view composition operations for comparison across 

loci and resolutions. 

 

Having effective tools for comparing genomic data highlights the challenge of organizing such 

data so that it can be easily found and displayed. Projects such as ENCODE and 4D Nucleome 

are generating Hi-C data, annotating it with metadata and making it available to the broader 

public. Efforts like UCSC Genome Browser’s track hubs paved the way for remote genomic data 

hosting, integration, and visualization. However, there is a need to make it easier for 

researchers to find and integrate the data that helps answer their biological questions. Future 

goals in that direction include adding extended metadata to HiGlass data servers and 

implementing standardized APIs to identify, describe, and query genomic data sets. With more 

available data, we can take advantage of HiGlass’s extensible architecture to create new ways 

of exploring, comparing, and interpreting multi-scale experimental results. 

Methods 

HiGlass is designed as a client-server application (Figure 6). The client-side user interface is 

written in JavaScript while the server is written in Python. The client is responsible for arranging 

tracks and views and requesting data from the server. The server loads data from files in small 

chunks called “tiles” and sends them back to the client upon request.  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2018. ; https://doi.org/10.1101/121889doi: bioRxiv preprint 

https://doi.org/10.1101/121889
http://creativecommons.org/licenses/by/4.0/


 
20 

Data are organized according to zoom level using an aggregation or downsampling 

function 

 

We maintain data at different pre-computed resolutions and when the user zooms in, HiGlass 

displays higher resolution data. This approach is also employed by web-based map 

visualization tools such as Google Maps and Open Street Maps. The UCSC Genome Browser 

and the Integrative Genome Viewer pioneered this approach for genomic data [49,50]. For 

contact matrices which are generated by binning lists of contacts, creating lower resolution 

matrices simply requires binning with a larger bin size. The bin sizes used by HiGlass are 

typically multiples of the powers of 2, starting from the highest resolution data (e.g. for 1K data, 

bin sizes would be 1K, 2K, 4K, …, 16.384M) but can also be set to arbitrary multiples of the 

highest resolution. The lower zoom level corresponds to the minimum bin size which can fit 1 / 

256th of the width of the matrix. Lower-resolution matrices of counts can also be created by 

downsampling or “aggregating” higher resolution matrices. In this operation, adjacent pairs of 

higher resolution bins are merged by summing their values. 

 

For quantitative 1D data, such as RNA-seq or ChIP-seq, the same aggregation procedure can 

be applied to the 1D array of base-pair resolution values. Adjacent bins are merged by summing 

their values. In so doing, we maintain a separate array of counts for the number of missing 

values encountered. This allows us to compute average values when displaying lower resolution 

data. 

 

For categorical data, downsampling requires discarding values. Values to be discarded are 

chosen according to an “importance value”. This importance value can be either user-defined or 

set randomly. A more intelligent importance value can consider a relevant property of the data 

when deciding which should be visible at lower resolution. For example, for gene annotation 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2018. ; https://doi.org/10.1101/121889doi: bioRxiv preprint 

https://doi.org/10.1101/121889
http://creativecommons.org/licenses/by/4.0/


 
21 

tracks, we use a custom importance value based on the number of citations referencing a 

particular gene. Genes which are well studied and referenced often in the literature, such as 

TP53 and TNF remain visible as the user zooms out. More obscure genes appear only when 

there is enough space. For 2D annotations, we use the size of the annotation as an importance 

value so that larger annotations are visible when zoomed out and smaller annotations only 

appear at high resolution. 

 

Tiles break down large datasets into manageable chunks that can be sent from the server 

to the client 

 

A tile, in the context of HiGlass, is the data available for a given location and zoom level. This is 

analogous to the tiles used by online maps to show the portion of the map that is visible in the 

current viewport (Supp. Fig. 7). In the case of Hi-C data, which can be represented as a matrix 

for any given resolution, a tile consists of a 256 x 256 slice of the matrix.  

 

Zoom levels correspond to the different levels of resolution. The highest zoom level, zmax, 

corresponds to the highest resolution data. Each lower zoom level (z-1), corresponds to data at 

half the resolution of the previous level (r / 2). The data at zoom level 0 must be at a resolution 

low enough such that the whole genome can be fit into one 256 x 256 tile. This yields an 

expression for calculating the maximum zoom level for data with a starting (highest) resolution 

of r0 and a genome size of g: 

zmax = ⌊log 2 (g / (256 * r0)) ⌋ 

For quantitative 1D genomic data, such as RNA-seq or ChIP-seq or any other coverage-based 

measure, a tile consists of the data from a 1024 base pair region of genome. The concepts 
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behind the resolution and zoom levels are the same as for 2D data except that instead of a tile 

corresponding to a square of the matrix at a resolution, it corresponds to a segment of the 

genome at a given resolution. For qualitative data, the server returns all entries which intersect 

the length or area of the tile. 

 

In both 1D and 2D data, the lowest resolution is shown at zoom level 0. Given a zoom level, z, 

the tile visible at genome location lg can be calculated by considering the width of a tile: tw = r0 * 

2z 

 

tp = lg / tw 

 

Genomes, being composed of chromosomes, don’t have absolute positions. To get around this, 

we impose a chromosome ordering for every dataset that is viewable in HiGlass. This must be 

specified when the data are preprocessed.  

 

HiGlass stores multi-scale datasets 

 

Due to the limitations of the visible display, there is a fixed amount of data that can be shown in 

any given area. For a window that is 1024 x 1024 pixels in size, the maximum resolution that the 

human genome can be shown at is approximately 3 million base pairs / pixels. Fetching all the 

data from the server is wasteful and unnecessary. We therefore use file formats that store Hi-C 

and genomic data at multiple resolutions. For Hi-C data, we use the cooler 

(http://github.com/mirnylab/cooler) format and for genomic data we support the widely used 

bigWig format [50]. Both support the basic query format of resolution / location. When creating 

multi-resolution cooler files, we create resolutions that are multiples of the powers of 2 in order 

to create a smooth transition as the user zooms in and out of the data. While this does 
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increased the size of the data (Supp. Table 2), multiple resolutions are necessary to limit the 

amount of data that needs to be retrieved from the server when viewing large portions of the 

contact map.   

 

The HiGlass server fetches data from files and returns it to the client on demand 

 

The HiGlass server is the interface between the client and the data (Figure 6, Supp. Methods). It 

receives requests for data (tiles) from the client, opens the data files, and returns only the data 

requested. This minimizes the amount of data that needs to be sent across the network and in 

turn lowers the time required to load the data for a given location. Of the 2,333,420 tile requests 

to our public server at http://higlass.io since February 2017, 2,251,251 (> 96.6%) were fetched 

with a latency of less 0.5 seconds, a limit beyond which the rates of “observation, generalization 

and hypothesis significantly decreased” in a controlled user study [51]. 

 

The server also maintains a registry of available data files. The client can request a list of 

available files to provide the user with an overview of data that is available for display. To view 

data in HiGlass, it first needs to be loaded into the server. Loading the data is done through 

either a network request or a command line utility.  
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Figure 6 | A schematic of the data flow and user interface of HiGlass. Starting from the bottom-left, single resolution 

formats used for genomics data are converted to their multi-resolution counterparts. Files in the bigWig format, which 

is a native multi-resolution format, are directly converted to the hitile format compatible with HiGlass. The multi-

resolution files are then loaded into the HiGlass server using a command line tool. The HiGlass client (top half) 

communicates with the server by issuing ‘tile requests’ for the data that is currently visible in the user’s browser. The 

server responds with raw data which the client renders into vertical, horizontal and 2D tracks. Within the client, users 

can zoom and pan around the data or select views with which to synchronize the location, zoom level or both. View 

synchronization is initiated from one view and tied to another. 
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The source code for HiGlass can be found in four complementary repositories 
 
https://github.com/hms-dbmi/higlass - The client side Javascript viewer component 
https://github.com/hms-dbmi/higlass-website - A scaffold web site that incorporates the viewer 
https://github.com/hms-dbmi/higlass-server - The server we created for serving multi-resolution 
data 
https://github.com/hms-dbmi/higlass-docker - A ready-to-deploy Docker container with 
installations of the previous three components 
 
Hi-C matrices need to be stored in the cooler format (https://github.com/mirnylab/cooler/) 
 
Comprehensive documentation for HiGlass can be found at http://docs.higlass.io 
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