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ABSTRACT 
Proteome balance is safeguarded by the proteostasis network (PN), an intricately regulated 

network of conserved processes that have evolved to maintain native function of the diverse 

ensemble of protein species, ensuring cellular and organismal health. Proteostasis 

imbalances and collapse are increasingly implicated in a spectrum of human diseases, from 

neurodegeneration to cancer. The pattern and extent of PN disease alterations however 

have not been assessed in a systematic and quantitative way at a systems level. Zooming in 

on the chaperome as a central PN component we turned to a curated functional ontology of 

the human chaperome that we connect in a high-confidence physical protein-protein 

interactome network. Challenged by the lack of a systems-level understanding of 

proteostasis alterations in the heterogeneous spectrum of human cancers, we assessed 

gene expression across more than 10,000 human patient biopsies covering 22 solid cancers 

and found the chaperome consistently highly upregulated. Increased levels of several 

chaperones such as HSP90 have previously been associated with poor prognosis in 

cancers. We used a customized Meta-PCA dimension reduction approach to condense the 

complexity of cancer transcriptomics datasets into an atlas of quantitative topographic maps.  

We confirm consist upregulation of the HSP90 family and also highlight HSP60s, Prefoldins, 

HSP100s, and mitochondria-specific chaperones as pan-cancer enriched. Our analysis also 

reveals a surprisingly consistent downregulation of small heat shock proteins (sHSPs). 

Strikingly, this analysis also highlights similarities between stem cell and cancer 

proteostasis, and diametrically opposed chaperome deregulation between cancers and 

neurodegenerative diseases. We developed a web-based Proteostasis Profiler tool (Pro2) 

enabling analysis and intuitive visual exploration of proteostasis disease alterations using 

gene expression data. Our study showcases a comprehensive profiling of chaperome 

network shifts in human cancers and sets the stage for a systematic global analysis of PN 

alterations across the human diseasome towards novel hypotheses for therapeutic network 

re-adjustment in proteostasis disorders. 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2017. ; https://doi.org/10.1101/122044doi: bioRxiv preprint 

https://doi.org/10.1101/122044
http://creativecommons.org/licenses/by/4.0/


 

3 

INTRODUCTION 
Eukaryotic proteomes comprise a complex repertoire of diverse protein species that are 

organized in a modular interactome network in order to execute native function in support of 

proteostasis and a healthy cellular phenotype. Proteome balance is safeguarded by the 

proteostasis network (PN), an intricately regulated network of conserved processes that 

have evolved to safeguard the healthy folded proteome (Balch et al. 2008). Cellular 

proteostasis capacity is limited within the constraints of each cell’s proteostasis boundary 

(Powers et al. 2009). Proteostasis deficiency and collapse are implicated in a broad 

spectrum of protein conformational diseases with loss of native function or gain of toxic 

function, ranging from metabolic and neurodegenerative diseases to cancer (Hutt et al. 

2009, Brehme et al. 2014). Increasing awareness of the fundamental role of the PN in 

cellular health, its relevance in disease and potential as a therapeutic target of proteostasis 

regulator drugs call for a systems-level assessment of PN deregulation throughout the 

human diseasome, towards improved understanding of diseases of proteostasis deficiency 

and rationalized network-informed approaches to therapeutic proteostasis re-adjustment. 

 The folding functional arm, or the human chaperome, is highly conserved and of 

central importance in the PN, responsible for maintaining the native folded proteome. Cancer 

cells are constantly challenged by the need to accommodate large amounts of proteotoxic 

stress in consequence of increased translational flux and proliferation. This chronic 

challenge ultimately drives cancer cells into a dependency on quality control and stress 

response mechanisms, a phenomenon previously described as non-oncogene addiction (Dai 

et al. 2007, Solimini et al. 2007). Several individual chaperones and heat shock proteins 

such as HSP90 have consistently been found upregulated in cancer (Whitesell and Lindquist 

2005). However, the profile and extent of chaperome differential expression has not been 

assessed systematically across the human cancer landscape. Zooming in on the 

chaperome, which acts to maintain the cellular folding environment in support of the natively 

folded healthy human proteome, we turned to a recently curated comprehensive functional 

ontology of the human chaperome (Brehme et al. 2014). Challenged by the genetic 

heterogeneity, collective prevalence and medical need of the wide spectrum of human 

cancers as well as the lack of a systems-level understanding of proteostasis alterations 

during carcinogenic transformation, we showcase an integrated analytical pipeline and toolkit 

for the quantitative profiling of chaperome changes across the human cancer landscape 

(Figure 1). We utilized an expert-curated functionally annotated chaperome ontology 

comprising the ensemble of 332 human chaperone, co-chaperone and heat shock protein 

genes (Brehme et al. 2014) (Figure 1A). In order to apply our analytical workflow on a recent 

and comprehensive cancer gene expression dataset with clinical relevance, we turned to 

The Cancer Genome Atlas (TCGA) compendium (Weinstein et al. 2013). We start with a 
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customized genomic analysis pipeline in order to map chaperome functional family gene 

expression changes across TCGA solid cancers compared to matching normal tissue 

(Figure 1B). The resulting top-level view on cancer chaperome deregulation reveals a broad 

chaperome upregulation throughout the majority of cancers. This consistent and high overall 

chaperome upregulation prompted us to zoom in on functional sub-families. This analysis 

surfaces clusters of chaperome functional family up- and downregulation signatures that 

enable further stratification of cancer groups. In summary, our analysis of the 10 major 

chaperome functional families reveals pronounced tissue differences of cancer chaperome 

deregulation. The preferential upregulation of ATP-dependent chaperone families such as 

HSP90s and HSP60s, while ATP-independent chaperones, co-chaperones, and small heat 

shock proteins (sHSPs) are consistently downregulated, is opposed to chaperome alteration 

patterns observed in brain tissues during aging and in neurodegenerative diseases (Brehme 

et al. 2014). These characteristic chaperome-wide differences further justify our approach 

and need for systematic maps of PN deregulation across the human diseasome. 

 In order to enable comprehensive, contextual, and quantitative representations of the 

complexity of chaperome alterations across a large number of patient biopsy disease 

datasets, we developed a custom data dimensionality reduction and visualisation approach. 

Combining a principal component analysis (PCA) based two-step dimension reduction 

algorithm with polar plot visualisations, we provide intuitive quantitative maps of cancer 

chaperome gene expression changes (Figure 1B). The mechanistic understanding of 

genotype-phenotype relationships in complex genetically heterogeneous diseases such as 

cancers requires the consideration of the cellular interactome network (Sahni et al. 2013). 

We projected differential gene expression changes onto a custom curated high-confidence 

physical protein-protein interactome network in order to project chaperome functional family 

gene expression changes onto the interactome (Figure 1C). We then integrated these 

dimensions into interactome - guided, three - dimensional topographic maps that intuitively 

provide a quantitative view of cancer-specific chaperome deregulation (Figure 1D). We 

developed Proteostasis Profiler (Pro2), an integrated web-based suite of applications that 

enables intuitive quantitative analyses and comparative visualisation of differential 

expression of complex PN alterations across large disease dataset compendia such as the 

TCGA. Visualisation and analysis features include heat map clustering and polar plot 

display. Integrated meta-networks and interactome-guided 3D topographic maps ease 

comparative exploration of cancer chaperome deregulation in the context of interactome 

network wiring. Pro2 is designed to serve the scientific community as a user-friendly 

application for systems-level exploration of PN disease alterations, at reduced complexity. 

 Overall, this study represents a systematically derived systems-level atlas of 

chaperome deregulation maps in cancers and neurodegenerative diseases, with a detailed 
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focus on chaperome functional family alterations. The integrated genomic analysis workflow, 

built into the Pro2 suite of visualisation tools, provides a resource and analytical platform for 

future characterisation and exploration of PN deregulation patterns across the human 

diseasome, and as a readout interface for network shifts induced by therapeutic regulation. 

RESULTS 

Systematic Differential Gene Expression Profiling Highlights Functional Clusters of 
Chaperome Deregulation in Human Cancers 
Homeostasis of the cellular proteome, or proteostasis, is fine-tuned by the proteostasis 

network (PN), an intricately regulated network of conserved processes that have evolved to 

safeguard the native functional proteome and cellular health. The human chaperome, an 

ensemble of 332 chaperones and co-chaperones, represents a central functional arm within 

the PN in charge of maintaining the cellular folding landscape (Brehme et al. 2014). (Table 

S1A). Motivated by the genetic heterogeneity of cancers, their prevalence and associated 

medical need as well as the lack of a systems-level understanding of the role of proteostasis 

genomic alterations during carcinogenesis, we systematically assessed chaperome gene 

expression changes across the diverse spectrum of human cancers. We focused on an 

established resource of human cancer patient biopsy RNA-seq datasets provided through 

The Cancer Genome Atlas (TCGA) (Weinstein et al. 2013, Schubert et al. 2016). We 

considered 22 human solid cancers with available corresponding healthy counterpart tissue 

biopsy data. To obtain global views on chaperome commonalities or differences between 

cancers, we applied Gene Set Analysis (GSA) in order to quantify gene expression changes 

of the chaperome and its functional families. GSA is an advanced derivative of gene set 

enrichment analysis (GSEA) that methodologically differs primarily through its use of the 

maxmean statistic, the mean of the positive or negative gene scores in each gene set, 

whichever is larger in absolute value, that has proven superior to the modified Kolmogorov-

Smirnov statistic used in GSEA (Efron and Tibshirani 2007). Secondly, GSA uses a different 

null distribution for false discovery rate (FDR) estimations, through a restandardiation of 

genes in addition to sample permutation in GSEA. This step is crucial, as it allows assessing 

statistical robustness of the expert-curated chaperome functional gene ontology groups. We 

obtained the GSA derived probability (p values) for each functional gene group to be 

significantly up- or downregulated in cancer as ∆GSA values in the interval [-1, +1] according 

to ((1 - upregulation p value) - (1 - downregulation p value)). 

 Notably, the human chaperome is predominantly upregulated across the majority of 

TCGA solid cancers (+0,51 ∆GSA group mean change, Figure 2A). These overall 

chaperome upregulation highlights cellular non-oncogene addiction to chaperone-assisted 
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folding and protein quality control mechanisms in consequence of increased client load, 

further challenging cellular proteostasis and driving “proteostasis addiction” in cancer 

(Drummond and Wilke 2008). Despite the diverse established knowledge about the role of 

chaperone upregulation in cancer, the deregulation of the human chaperome has not been 

assessed at a systems-level throughout the human cancer landscape. To functionally 

resolve the general chaperome upregulation across cancers, we zoomed in on functional 

family gene expression alterations. GSA followed by Euclidean clustering of chaperome 

functional families revealed characteristic cancer differences. We found the key ATP-

dependent HSP90 and HSP60 families, of which selected members have previously been 

shown to be upregulated in cancers, as the most highly upregulated functional families with 

the highest group mean changes of +0.62 and +0.52, respectively, followed by Prefoldins 

(PFDs, +0,46), mitochondria-specific chaperones (MITOs, +0,45), and the HSP100 AAA+ 

ATPases (+0,44) (Figure 2B). Intriguingly, the HSP70-HSP40 system and the large family of 

TPR-domain containing co-chaperones display a transition cluster with less consistent and 

largely cancer-specific expression alterations. HSP40 co-chaperones cluster closest with 

HSP70s, indicative of the functional relationship they engage in during the HSP70 

chaperone cycle. Surprisingly, HSP70s are largely unchanged across cancers (0,04). While 

HSP40 co-chaperones are overall only weakly downregulated (-0.06), also the second group 

of co-chaperones, the TPR-domain containing proteins, clustered with the HSP70-HSP40 

system and were almost unchanged (+0,05). Overall, sHSPs (-0,70) and ER chaperones (-

0,36) clustered at the opposite end, showing consistent, strongly reduced expression in 

cancers. Besides marked differences in the pattern of cancer functional family changes, 

Euclidean clustering of cancer groups (rows) revealed three major clusters (Figure 2B). The 

vast majority of cancers is characterised by the consistent upregulation of HSP100s, MITOs, 

PFDs, HSP60s, and HSP90s, opposed by a consistent downregulation of sHSPs. This group 

comprises Cluster I, representing ~64% of cancers, with consistent downregulation of both 

sHSPs and ER chaperones, while Cluster II comprises ~27% of cancers in which ER 

chaperones are upregulated. Cluster III represents two cancers with largely differing 

chaperome deregulation, skin cutaneous melanoma (SKCM), and pheochromocytoma and 

paraganglioma (PCPG), both of which feature repression of most chaperome functional 

families. 

 In summary, systematically assessing gene expression data derived from a total of 

10,456 patient samples uncovers broad differences in chaperome-scale deregulation across 

the variety of human solid cancers. While the vast majority of cancers shows consistent and 

strong upregulation of chaperome genes, this analysis reveals marked clusters of 

chaperome functional family expression signatures that further stratify cancers by differential 

chaperome expression. 
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Preferential Upregulation of ATP-Dependent Chaperones in Cancers 
The major ATP-dependent chaperone functional families are consistently upregulated across 

a majority of cancers, while co-chaperones and sHSPs are consistently repressed (Figure 

2B). In order to quantify this trend, we assessed the 22 differentially regulated cancer 

chaperomes for functional characteristics. 

First, we compared expression of 88 chaperones against 244 co-chaperones 

represented in the human chaperome (Brehme et al. 2014). Projecting TCGA cancer groups 

by their chaperone and co-chaperone differential expression highlights a significant 

preponderance of cancer chaperome upregulation, including both chaperones and co-

chaperones, while only a minor fraction each is downregulated (Figures S2A,B). Overall, 

chaperones tend to be more upregulated than co-chaperones (Figure S2B). Consistently, 

within the group of chaperones, we find an overall preponderance of upregulation of both 

ATP-dependent and ATP-independent chaperones, while only small fractions each are 

downregulated (Figures S2C,D). The 50 ATP-dependent chaperones are more upregulated 

than the 38 ATP-independent chaperones, while ATP-independent chaperones are more 

downregulated than ATP-dependent chaperones (Figure S2D). 

 Together, this analysis exposes a sub-group of cancers as notable exceptions to 

these trends, suggesting fundamental differences in chaperome deregulation. Projection of 

TCGA cancer groups by chaperone and co-chaperone up- and downregulation lends 

support for two groups of cancers, Group 1 and Group 2 (Figure 3A). These groups are 

recapitulated when projecting cancers by up- and downregulation of ATP-dependent versus 

ATP-independent chaperones (Figure 3C). K-means clustering confirms the significant 

separation of the Group 2 cancers pheochromocytoma and paraganglioma (PCPG), thyroid 

carcinoma (THCA), and the three kidney cancers kidney chromophobe (KICH), kidney renal 

papillary cell carcinoma (KIRP), and kidney renal clear cell carcinoma (KIRC) from Group 1 

cancers, with a median silhouette width of s = 0.63 (Figure 3A) and s = 0.68 (Figure 3C). 

Group 1 cancers (red) represent the majority of cancers, characterized by strong overall 

chaperome upregulation, with low chaperone and co-chaperone repression, and a trend for 

upregulation of ATP-dependent chaperones (Figure 3B,D). Five Group 2 cancers however 

partition more distantly, with a lack of chaperome upregulation (Figure 3A,C). These cancers 

include three different kidney cancers, KICH, KIRP, and KIRC, which consistently lack 

chaperome upregulation (Figure 3A,B). Also, ATP-dependent chaperones are not 

preferentially upregulated in kidney cancers. Rather, an inverse trend is observed with 

increased downregulation of ATP-dependent chaperones (Figure 3C,D). Notably also, 

pheochromocytoma and paraganglioma (PCPG), rare related tumors of orthosympathetic 

origin, similarly show an even more prominent inverse alteration, with a preponderance of 

overall chaperome downregulation and preferential downregulation of ATP-dependent 
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chaperones. Pheochromocytomas originate in the adrenal medulla, with close spatial 

association to the kidney, whose cancers are also Group 2 cancers. THCA is similar to 

PCPG, with a preferential downregulation of the chaperome. PCPG and THCA represent 

tumors forming from cells of neuroendocrine origin, and are both characterized by inverted 

overall chaperome alteration signatures (Figure 2A,B). 

 Collectively, the data point to a preferential upregulation of ATP-dependent 

chaperones in the majority of cancers, which we refer to as Group 1 cancers, with general 

differences in proteostasis deregulation in Group 2 cancers, comprising kidney cancers and 

cancers of neuroendocrine origin, such as PCPG and THCA. 

Proteasome and TRiC/CCT Upregulation in Cancers Reminisces Enhanced Stem Cell 
Proteostasis 
Human embryonic stem cells (hESCs) are characterized by their capacity to replicate 

infinitely in culture, while maintaining a pluripotent state (Miura et al. 2004). This immortal, 

undifferentiated phenotype resembles hallmark features of cancer cells such as an elevated 

global translational rate (You et al. 2015) and is expected to demand increased PN capacity 

capable of buffering imbalances to maintain proteostasis. Given the “stemness” phenotype 

of cancer cells and their resemblances with pluripotent stem cells we hypothesized that the 

consistent chaperome upregulation in cancers acts to mimic an enhanced stem cell PN 

setup. Increased proteasome activity (Vilchez et al. 2012) and elevated overall levels of the 

TRiC/CCT complex (Noormohammadi et al. 2016) have recently been associated with the 

intrinsic PN of pluripotent stem cells that acts to support their identity and immortality. It can 

be hypothesized that increased levels of central PN processes in stem cells exemplify 

characteristics of an enhanced PN setup. We thus assessed to which extent this stem cell 

PN setup is recapitulated in cancers. 

 First, we assessed differential changes of the proteasome across TCGA cancers and 

observed an overall consistent upregulation of the 43 proteasomal genes (HGNC) (Gray et 

al. 2015) in > 70% of cancers (Figure 4A, Table S1B), matching the role of increased 

proteasomal activity for proteome maintenance in stem cells (Vilchez et al. 2012). Notably, 

Group 1 and Group 2 cancers, which are specifically defined based on chaperome 

differential expression signatures (Figure 3), do not co-partition with cancer clusters obtained 

by proteasome differential expression. Next, we assessed cancer differential expression of 

the eukaryotic chaperonin TRiC/CCT, a hetero-oligomeric complex of two stacked rings with 

each eight paralogous subunits representing the cytoplasmic ATP-driven HSP60 

chaperones in charge of folding approximately 10% of the proteome (Lopez et al. 2015). 

TRiC/CCT is highly conserved and essential for cell viability (Lopez et al. 2015). Loss of 

complex subunits induces cell death and a decline of pluripotency of hESCs and induced 
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pluripotent stem cells (iPSCs) (Noormohammadi et al. 2016). Within the PN, TRiC/CCT 

mediated folding and autophagic clearance act in concert to prevent aggregation (Pavel et 

al. 2016). TRiC/CCT levels decline during stem cell differentiation, and CCT8 acts as 

complex assembly factor (Noormohammadi et al. 2016). Intrigued by the finding that CCT8 

is the most highly elevated subunit in stem cells and likely acting as TRiC/CCT assembly 

factor (Noormohammadi et al. 2016), we assessed differential expression of individual 

TRiC/CCT subunits across cancers. Hierarchical clustering of subunit expression across 

solid cancers highlighted CCT8 as highly consistently upregulated across all cancers (mean 

change = 0.76, t test), and as overall second most highly upregulated subunit besides 

CCT6A (mean change = 0.786, t test) (Figure 4B). Consistent with the overall preferential 

downregulation of ATP-dependent chaperones observed in Group 2 cancers (Figure 3), we 

found these cancers to cluster together with overall lowest TRiC/CCT expression, where 

PCPG stands out with a consistent downregulation of all subunits (Figure 4B). 

 Together these findings suggest that proteostasis shifts in cancer cells add to an 

altered, enhanced PN state that mimics the immortal and resilient stem cell phenotype, 

buffering genome instability and ensuing proteomic imbalances in support of sustained and 

increased cellular proliferation throughout cancerogenesis. 

Opposing Chaperome Deregulation in Cancers and Neurodegenerative Diseases 
Overall chaperome upregulation in cancers, with preferential enrichment for upregulation of 

ATP-dependent chaperones, alongside consistent downregulation of sHSPs, is diametrically 

opposed to chaperome deregulation trends observed in a study of chaperome alterations in 

human aging brains and in patient brains with age-onset neurodegenerative diseases 

(Brehme et al. 2014). While sHSPs were the only chaperome family found significantly 

induced in brain aging and the age-onset neurodegenerative diseases Alzheimer’s (AD), 

Huntington’s (HD), and Parkinson’s (PD) disease, this family is consistently downregulated 

across cancers (Figure 2B). This opposed chaperome deregulation points towards 

characteristic and fundamental differences in PN deregulation between disease families. 

 To investigate this disease group difference further, we applied the analysis outlined 

for cancers above also on the gene expression datasets that had earlier revealed global 

chaperome repression in AD, HD, and PD (Brehme et al. 2014). Our analysis reproduced 

the human chaperome as overall downregulated across AD, HD, and PD (-0,20 ∆GSA group 

mean change, Figure 5A). Delving deeper into chaperome functional subfamilies, we 

reproduce earlier findings reporting broad repression of the major chaperome functional 

families except for sHSPs, the only family found strongly upregulated (Figure 5B). Thereby, 

our analytical workflow reproduces previously observed trends that had been obtained in 

independent analyses, with different methods. With strong sHSP repression and 
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upregulation of the HSP100, MITO, PFD, HSP60, and HSP90 chaperone families, cancers 

and neurodegenerative diseases display markedly diametrically opposed chaperome 

deregulation, not only at the overall chaperome-level (Figure 5C), but also with respect to 

alteration trends of chaperome functional families (Figure 5D). 

 These opposing chaperome deregulation signatures are in line with differing 

implications of proteostasis alterations in these diseases. While broad chaperome repression 

and proteostasis functional collapse is associated with aggregation and cytotoxicity of 

chronically expressed misfolding-prone proteins in neurodegenerative diseases (Brehme et 

al. 2014), enhanced proteostasis buffering capacity is associated with “stemness”, 

immortality and proliferative potential of both stem and cancer cells (Whitesell and Lindquist 

2005). Indeed, epidemiological evidence suggests an inverse correlation between cancers 

and neurodegenerative diseases (Driver et al. 2012, Musicco et al. 2013, Ou et al. 2013, Li 

et al. 2014), supportive of a potential mechanistic link between opposed chaperome 

deregulation and the molecular underpinnings of the two disease groups. These global 

differences in chaperome deregulation call for a systematic and quantitative assessment of 

PN deregulation dynamics in human diseases. 

A Multi-Step Dimension-Reduction Approach Enables Quantitative Visualisation of 
Chaperome Shifts in Cancer 
In light of the diverse signatures of differential chaperome deregulation observed across 

cancers (Figure 2), and motivated by the increasing amount of genomics datasets available 

for cancers and other challenging human diseases, we aimed at reducing data complexity by 

extracting quantitative indicators of chaperome differential cancer gene expression 

alterations, while retaining maximum information content. 

 We devised a principal component analysis (PCA) based two-step dimension 

reduction approach (Meta-PCA) that facilitates stratification of cancer patient and normal 

control samples within heterogeneous gene expression datasets (Figure 1B). Meta-PCA first 

uses tissue-wise PCA analyses to separate cancerous from control samples for individual 

tissues and maps functional process group gene expression change to the global, or “meta”, 

mean expression change across cancers to obtain M-scores as quantitative indices of 

relative disease gene expression change (Equation 1). Inherent to the Meta-PCA method, 

patient-specific genomic variability is averaged out through the use of Meta-PCs derived 

from the TCGA collection of cancer biopsy samples, yielding mean reference boundaries. 

Assessing quantitative M-scores obtained through Meta-PCA against differential gene 

expression (∆GSA) obtained via GSA (Figure 2), we observed an overall significant 

correlation of 0.7 (Limma package) (Figure S1). In addition to general comparability between 

results obtained through both methods, Meta-PCA analysis reduces complexity while 
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retaining genomic information. Therefore, we focus on Meta-PCA for quantitative 

representation of proteostasis alterations in human diseases. We plot differential chaperome 

changes as M-scores for all cancer samples and chaperome functional families 

simultaneously using polar plots, such that axes represent functional families or sub-groups, 

ordered counter-clockwise decreasing from overall highest to lowest group mean change 

(∆GSA) (Figure 2). We obtain the mean of all biopsy samples as reference boundaries for 

healthy (blue line) and cancer groups (red line) and include the 90% confidence interval (CI) 

(red and blue halos) (Figure 6). This quantitative visualisation reduces complexity and 

highlights relativity of disease gene expression changes at a chaperome-scale (Figure 6). 

The polar maps recapitulate characteristic chaperome deregulation signatures in GSA-

derived Cluster I cancers such as lung adenocarcinoma (LUAD) (Figures 2, 6A), or the 

inverse trend with overall chaperome downregulation in Cluster III cancers such as 

pheochromocytoma and paraganglioma (PCPG) (Figures 2, 6B). Concordantly, chaperome 

polar maps reveal characteristic patterns of differential chaperome expression in Group 1 

versus Group 2 cancers (Figures 3, 6). In LUAD, representative of Group 1 cancers, most 

functional chaperome families are upregulated, while ER chaperones and sHSPs are 

reduced (Figure 6A). On the contrary, in Group 2 cancers such as PCPG, gene expression 

of most chaperome functional families is downregulated (Figure 6B). Inconsistencies 

between these broad clusters exist, suggesting differences in tissue of origin and molecular 

underpinnings of respective cancers. However, broad commonalities between distinct 

cancers originating from the same organ are revealed. For instance, lung adenocarcinoma 

(LUAD) and lung squamous cell carcinoma (LUSC) share overall similarity, revealing only 

subtle differences, for instance in HSP40 expression (Figures 2, S3). The kidney cancers 

KICH, KIRP, and KIRC also show similar patterns. As Group 2 cancers, they share and 

stand out against other cancers with a lack of preferential upregulation of ATP-dependent 

chaperones (Figure 3), and overall reduced upregulation or downregulation of HSP60s 

(Figures 2, 3, 4B, S3). A recent study indeed implicated HSP60 downregulation in 

tumorigenesis and progression of clear cell renal cell carcinoma by disrupting mitochondrial 

proteostasis (Tang et al. 2016). 

Overall, these contextual quantitative representations enable an appreciation of the 

complex chaperome shifts in different cancer tissues derived from tens of thousands of 

patient samples. The resulting compendium of differential cancer chaperome polar maps 

(Figure S3) is also available online through the “Proteostasis Profiler (Pro2)” tool associated 

to this study. 
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Interactome-guided Topographic Maps Highlight Relative Changes of Chaperome 
Functional Families in Cancers 
The integration of disease-related differential transcriptomic changes with the cellular protein 

interactome network, or the ‘edgotype’, is instrumental to our understanding of genotype - 

phenotype relationships (Sahni et al. 2013). Towards integrated quantitative views of cancer 

chaperome deregulation, we curated a high-confidence physical chaperome protein-protein 

interactome network (CHAP-PPI) to serve as coordinate base grid layout for the analysis of 

differential chaperome topographies (Figure 1C). 

 We start with 328,244 unique human PPIs (edges) between 16,995 proteins (nodes) 

downloaded from the BioGRID, IntAct, DIP, and MINT databases (Chatr-Aryamontri et al. 

2013),(Kerrien et al. 2012),(Salwinski et al. 2004),(Licata et al. 2012). Zooming in on cancer 

chaperome alterations in the context of physical interactome wiring, we extracted the CHAP-

PPI considering the 332 human chaperome genes as previously described (Brehme et al. 

2014). Considering edges with the PSI-MI annotation 'physical association' we obtain 

272,367 unique physical edges, of which 666 unique edges connect 220 chaperome nodes. 

We developed a custom script to curate the high-confidence physical CHAP-PPI, 

considering edges with multiple pieces of evidence, that is experimental methods or 

publications (PMIDs), as more reliable than those supported by only a single piece of 

evidence. The curation script resolves ambiguous database annotation of methods terms 

through up-propagation within the PSI-MI ontology tree, only accepting uniquely different or 

rejecting identical experimental evidence. Automated interactome curation results in eight 

curation levels (L1 - L8), through which we obtain three interactomes of increasing 

confidence level (see Methods). All 666 unique physical edges between 220 chaperome 

nodes, without curation for type or number of evidence, represent the single evidence 

chaperome interactome (SE-CHAP). Curating for high-confidence interactions, we obtained 

a multiple evidence chaperome (ME-CHAP) comprised of 222 unique physical chaperome 

edges between 128 chaperome nodes, of which a subset of 132 interactions between 96 

nodes is supported by multiple different experimental methods (MM-CHAP) (Table S2). 

 In order to enable focussed views on transcriptomic alterations of top-level 

chaperome functional families, we collapse individual nodes onto functional family meta-

nodes, and edges shared between families are collapsed as meta-edges such that meta-

node sizes correspond to the number of family members and meta-edge thickness 

represents the number of shared interactions between families. We consider meta-

interactomes derived from the curated high-confidence ME-CHAP interactome (Table S2), 

where all meta-nodes corresponding to the 10 functional chaperome families are fully inter-

connected in a single network component. We set node colour to visualize cancer gene 

expression changes (M-scores) and applied a force-directed spring layout algorithm to 
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optimize graph layout (Kamada and Kawai 1989). The resulting integrated cancer 

chaperome meta-interactomes visualize relative chaperome differential changes at reduced 

complexity across diverse human cancers in the context of physical interactome connectivity 

(Figures 7A, S4). Next, we extract x-y coordinates of the chaperome meta-nodes in the 

optimized meta-network graph to serve as a 2-dimensional base grid (x-y coordinates) 

guiding the spatial layout of 3-dimensional chaperome topographic maps of differential 

chaperome gene expression changes (M-scores) between cancerous and healthy biopsies 

(z coordinate) (Figures 7B, S5). 

 This interactome-guided topographic display of differential chaperome alterations 

enables dimensionality and complexity reduction for the coherent display and comparative 

analysis of functional network shifts that can serve to compare differential changes i) in 

disease versus controls, ii) between diseases and disease classes, and iii) between 

perturbed or unperturbed states across large numbers of heterogeneous genomic datasets. 

Furthermore, this visualization lends itself for a systems-level assessment of PN 

deregulation topologies and their readjustment in human disease and therapeutic 

intervention. We implemented topographic map visualisations into the Proteostasis Profiler 

(Pro2) suite of tools, to improve accessibility and applicability by the scientific community. 

Proteostasis Profiler (Pro2) - An Integrated Online Resource and Toolbox for the 
Analysis and Visualization of Proteostasis Disease Alterations 
Here we exemplify a systematic analysis of differential chaperome gene expression 

alterations in cancers and neurodegenerative diseases. We reduce complexity through the 

focus on top-level chaperome functional families. The challenge in this analysis is in the 

complexity and heterogeneity of available samples for disease groups such as cancers, 

combined with the multitude of diverse biological processes interconnected within the PN, as 

highlighted here at hands of the human chaperome. 

To date, there has been no systematic interactome-guided analysis of the 

implications and alterations of cellular proteostasis biology at a systems-level, in a 

comprehensive set of diseases, such as cancers. Here, we showcase an integrated 

analytical workflow for the dimension reduction, analysis and visualization of chaperome 

differential alterations in a representative set of human solid cancers. Our approach focuses 

on the visualisation of a confined set of quantitative indices (M-scores) as descriptors of top-

level chaperome functional families. We have developed “Proteostasis Profiler” (Pro2) as an 

integrated web-based resource and suite of tools, for interactive dimensionality-reduction, 

analysis and visualisation of disease-specific alterations of proteostasis functional arms, 

such as the chaperome, in the context of the interactome network. In this study we highlight 

Pro2 use-cases for the human chaperome across TCGA solid cancers in comparison to the 
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three major neurodegenerative diseases using differential gene expression heat maps 

(∆GSA) (Figures 2, 5), Meta-PCA derived quantitative polar plots (M-scores) (Figures 6, S3), 

meta-interactomes and interactome-guided 3-D topographic maps (Figures 7, S4, S5). Pro2 

provides an integrated online suite for the application of the underlying algorithms. Pro2 is 

accessible directly at http://www.proteostasys.org or through the JRC-COMBINE resources 

collection at http://www.combine.rwth-aachen.de/index.php/resources.html. 

DISCUSSION 
Proteostasis imbalances and functional collapse are implicated in an increasing spectrum of 

human diseases, setting the stage for systematic analyses of proteostasis network (PN) 

alterations in disease. Important progress has been made in our understanding of 

proteostasis biology, building on fundamental insights on conserved proteostasis processes 

and their role in disease, such as chaperone-assisted protein folding and quality control 

(Hartl and Hayer-Hartl 2002, Young et al. 2004, Hartl et al. 2011, Kim et al. 2013), clearance 

through autophagy (Ohsumi 2001, Behrends et al. 2010, Janku et al. 2011, Rubinsztein et 

al. 2012, Türei et al. 2015) and the ubiquitin-proteasome system (UPS) (McNaught et al. 

2001, Turnbull et al. 2007, Ciechanover 2015), followed by the appreciation of their 

concerted action within a conserved tightly regulated PN (Balch et al. 2008, Powers and 

Balch 2013). The identification, development and first clinical evaluations of small molecule 

proteostasis regulators (PR) for therapeutic re-adjustment of proteostasis diseases such as 

cystic fibrosis represents a novel and powerful therapeutic paradigm (Balch et al. 2008, 

Powers et al. 2009, Calamini et al. 2011) (Ramsey et al. 2011) (Bouchecareilh and Balch 

2011, Silva et al. 2011, Brandvold and Morimoto 2015, Das et al. 2015). First investigations 

have started to explore systems-level quantitative and functional approaches to assess the 

implications of PN functional arms such as the chaperome in human tissue aging and 

disease (Taipale et al. 2010, Brehme et al. 2014, Taipale et al. 2014, Rodina et al. 2016). A 

precise understanding of the molecular mechanisms by which PN alterations contribute to 

disease could open novel therapeutic intervention strategies in a wide spectrum of 

proteostasis-related diseases. To date, there has been no systematic study addressing the 

characteristics and extent of PN alterations in human diseases at a systems-level. Cancer 

prevalence, genetic complexity and heterogeneity represent unmet medical need and a 

significant challenge to personalized medicine, calling for genome-informed therapeutic 

intervention strategies (Burrell et al. 2013). In cancers, mutations and genomic instability 

inevitably also entail alterations of proteome composition and balance that are far less well 

explored than the consequences of nucleic sequence alterations. Post-translational 

alterations at the proteomic level are beyond the reach of DNA repair mechanisms. 

Proteome instability and pathological alterations in the abundance of key signalling or 
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housekeeping molecules such as kinases, metabolic enzymes or molecular transporters 

have to be buffered by the PN to ensure cellular survival. The cancerous state poses 

characteristic requirements on the PN, such as high chaperone levels and elevated 

proteasome activity in order to ensure for sufficient correction or elimination of aberrant 

protein species in light of increased translational flux and metabolic stress (Whitesell and 

Lindquist 2005). Paradoxically however, the characteristics and extent of PN alterations in 

cancers are largely unexplored and not understood at a systems-level. Cancer cell line 

global transcriptional characteristics have been extensively studied (Klijn et al. 2015) and 

numerous individual studies have assessed alterations of various chaperone and co-

chaperone expression levels in specific cancers (Jolly and Morimoto 2000, Whitesell and 

Lindquist 2005). In light of limitations in the clinical translation of hypotheses derived from 

cell lines and the lack of a systems-level understanding of proteostasis alterations in human 

disease, we argue that precise quantitative maps of proteostasis deregulation in human 

disease derived directly from clinical biopsy data will enable precise understanding of the 

role of PN alterations in pathogenesis towards testable hypotheses and rationalised 

approaches of PR therapy (Balch et al. 2008, Hutt and Balch 2010). 

 Here, we focused on the human chaperome, a central PN component, and highly 

conserved facilitator and safeguard of the healthy folded proteome using an expert-curated 

human chaperome functional gene ontology comprising an ensemble of 332 chaperone and 

co-chaperone genes (Brehme et al. 2014) to systematically characterize chaperome 

alterations in a representative clinically relevant dataset of 22 human solid cancers with 

matching healthy tissue, corresponding to over 10,000 patient biopsy samples provided 

through the TCGA consortium (Weinstein et al. 2013). We found the human chaperome 

consistently highly upregulated across the vast majority of cancers assessed. While 

numerous individual chaperones and co-chaperones have previously been found 

upregulated in individual cancers (Jolly and Morimoto 2000, Whitesell and Lindquist 2005), 

this knowledge is not coherently derived from consistent data resources or systematic 

genome-wide analyses in biopsy tissue. Here, we provide systematic quantitative maps of 

chaperome deregulation in cancers that highlight the relevance, characteristics and extent of 

chaperome upregulation in cancers. Our analysis revealed chaperome deregulation 

signatures that not only feature broad upregulation of ATP-dependent chaperones but also 

consistent repression of ER-specific chaperones and the ATP-independent sHSPs. The data 

also suggest two cancer groups that can be stratified specifically by their chaperome 

deregulation patterns. Overall chaperome upregulation across cancers is in agreement with 

existing evidence on individual chaperones that has been previously reviewed (Morimoto 

1991, Fuller et al. 1994, Jolly and Morimoto 2000). For instance, elevated heat shock protein 

expression levels have been reported for HSP90 in breast and lung cancers (Jameel et al. 
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1992, Wong and Wispe 1997), HSP70 was found increased in breast, oral, cervical and 

renal cancers (Ciocca et al. 1993, Kaur and Ralhan 1995, Ralhan and Kaur 1995, Santarosa 

et al. 1997), and HSP60 showed increased expression in Hodgkin’s disease (Hsu and Hsu 

1998). The cellular safeguarding functions of chaperones are subverted during oncogenesis 

to facilitate malignant transformation in light of increased translational flux and aberrant 

protein species in cancer cells (Whitesell and Lindquist 2005). Increased chaperone levels 

have previously been correlated with poor prognosis and cancer survival (Jameel et al. 

1992, Yano et al. 1996, Jolly and Morimoto 2000). Chronic dependency on stress response 

and quality control mechanisms drives cancer cells into a phenotype of non-oncogene 

addiction (Solimini et al. 2007). The observed extent of chaperome alterations suggests a 

broader state of cancer “chaperome addiction”, beyond the dependency on individual 

chaperones. 

Evidence points towards functional associations between increased proteostasis 

buffering capacity and maintenance of “stemness”, immortality and proliferative potential in 

both cancer cells and pluripotent stem cells (Whitesell and Lindquist 2005). For instance, 

autophagy was found to maintain “stemness” by preventing senescence through sustained 

proteostasis (Garcia-Prat et al. 2016). Increased proteasomal activity and elevated levels of 

the HSP60 chaperonin complex TRiC/CCT have recently been linked to stem cell identity by 

conferring proteostasis robustness (Vilchez et al. 2012, Noormohammadi et al. 2016). 

Fundamental similarities between stem cells and cancer raise the question to the extent of 

similarity between cancer and stem cell PN states and capacity. Our data suggest that 

cancers consistently display signatures of elevated proteostasis functional processes such 

as the chaperome and proteasome-mediated clearance, and are in agreement with the 

hypothesis that upregulated clearance mechanisms such as the proteasome and increased 

chaperome topologies, particularly increases in ATP-driven chaperones such as the HSP60 

chaperonin complex TRiC/CCT, confer increased proteostasis capacity and survival benefits 

to cancer cells just like they are essential to stem cell biology. Precise knowledge of 

systems-level network deregulation therefore sheds light on fundamental processes at play 

from stem cell biology to cancerogenesis. Chaperone upregulation is largely regulated 

through heat shock factor 1 (HSF1) (Dai et al. 2007). Overexpression of the TRiC/CCT 

subunit CCT8 protects against hsf-1 knockdown in C. elegans (Noormohammadi et al. 

2016), consistent with a regulatory connection between TRiC/CCT and HSF1 (Neef et al. 

2014). Connecting processes at the PN level, this evidence suggests a connection between 

TRiC/CCT and HSF1 stress response signalling also in cancers (Mendillo et al. 2012, 

Noormohammadi et al. 2016). While increased expression of TRiC/CCT subunits has been 

observed in cancer cell lines (Boudiaf-Benmammar et al. 2013), and increases in CCT8 

expression are linked to individual cancers (Huang et al. 2014, Qiu et al. 2015), we describe 
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consistent TRiC/CCT upregulation within global cancer chaperome signatures throughout 

the majority of TCGA solid cancers, or Group 1 cancers, whereas Group 2 cancers lack 

chaperome and, to large extent, TRiC/CCT upregulation. 

 Contrary to stem cell proteostasis, which is set up to maintain pluripotency and 

proliferative capacity, neurodegenerative diseases such as Alzheimer’s (AD), Huntington’s 

(HD), and Parkinson’s disease (PD) display signs of proteostasis functional collapse. 

Misfolding diseases feature overexpression of aggregation - prone proteins such as Aβ in 

AD, α-synuclein in PD, or huntingtin in HD that entail a “toxic-gain-of-function” resulting in 

chaperome overload, gradually exceeding proteostasis capacity (Knowles et al. 2014), while 

“loss-of-function” misfolding diseases feature specific perturbations such as dysfunctional 

∆F508-CFTR in cystic fibrosis (Chanoux and Rubenstein 2012). Functionally deficient 

steady-state dynamics of the folding environment affect cellular protein repair capacity and 

proteome maintenance (Wang et al. 2006). Most cancer cells however harbour manifold 

genetic aberrations even at the karyotype level that likely entail dramatic effects on proteome 

balance (Harper and Bennett 2016). The collective damage caused by oncoprotein 

expression, compromised DNA repair, genomic instability, reactive oxygen species (ROS), 

elevated global translation and chaperome overload triggers stress response mechanisms in 

light of a challenged cellular proteostasis capacity (Csermely 2001). Chaperome 

deregulation dynamics observed in cancers indeed display concordantly opposed trends as 

compared to alterations in the major neurodegenerative diseases. 

A recent study linked repression of ~30% of the human chaperome in aging brains 

and in neurodegenerative diseases to proteostasis functional collapse and pointed to the 

role of a chaperome sub-network as a conserved proteostasis safeguard (Brehme et al. 

2014). Intriguingly, while only ~8% of the human orthologous chaperome had protective 

phenotypes upon functional perturbation in C. elegans models of amyloid β (Ab) and polyQ 

proteotoxicity, chaperones and co-chaperones far less well studied than HSP90 had equally 

strong protective effects (Brehme et al. 2014). Similarly, an overlap between the chaperome 

and the “essentialome” set of 1,658 core fitness genes in K562 leukemia cells (Wang et al. 

2015) found only 55 overlapping with the 332 chaperome genes (Balchin et al. 2016). 

Interestingly, HSP60s showed the highest fraction of essential chaperones in agreement 

with their function as a highly conserved folding complex that hosts ~10% of the proteome’s 

clients (Lopez et al. 2015). Collectively, these findings suggest a highly functionally 

redundant and robust role of the central conserved chaperome within the PN (Brehme and 

Voisine 2016). 

 In summary, our study showcases a systematic profiling of the extent of chaperome 

deregulation, as a central PN functional arm, in a panel of human cancers and three major 

neurodegenerative disorders, accompanied by a resource of quantitative multi-dimensional 
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maps with reduced complexity. Therapeutic PN regulation for increased or restored 

proteostasis capacity may be beneficial in both loss-of-function and gain-of-toxic-function 

diseases of protein misfolding (Powers et al. 2009). Attenuating the PN on the other hand, 

such as inhibiting chaperones like HSP70 and HSP90 or the UPS clearance machinery, are 

widely acknowledged as promising therapeutic avenues in cancers (Whitesell and Lindquist 

2005, Miyata et al. 2013, Balchin et al. 2016, Li et al. 2016). While this manuscript was in 

preparation, Rodina and co-workers reported findings on a highly integrated chaperome 

subnetwork, or ‘epichaperome’, as a classifier of cancers with high sensitivity to HSP90 

inhibition, while cancers with a less interconnected chaperome are less vulnerable by 

HSP90 inhibition (Rodina et al. 2016). Several HSP90 inhibitors have shown encouraging 

results in clinical trials (Khajapeer and Baskaran 2015). Our study further supports the 

central role of the chaperome in PN biology, justifying particular focus on understanding 

chaperome alterations in human diseases at a systems level. The characteristic signatures 

of cancer chaperome alterations revealed in this study suggest broad commonalities and 

differences that could serve as testable hypotheses for therapeutic chaperome targeting 

strategies in cancer. Our results underline the value of charting quantitative systems-level 

maps and provide a resource towards an improved functional understanding of proteostasis 

biology in health and disease. A systems-level understanding of contextual PN alterations 

throughout the human diseasome will be instrumental for charting a clearer picture of the PN 

as a therapeutic target space, and as a resource for clinical biomarkers, including the 

chaperome. In face of increasing amounts of genome-scale disease data we are confronted 

with tremendous challenges of data complexity. Therefore, our study provides Proteostasis 

Profiler (Pro2), an integrated web-based suite of tools enabling processing, analysis and 

visualisation of proteostasis alterations in human diseases at reduced dimensionality, 

towards hypotheses-building for mechanistic understanding and clinical translation. 

METHODS 

Gene Expression Data Preparation  
Focussing on pan-cancer analysis of the human chaperome, we chose The Cancer Genome 

Atlas (TCGA) as the main source for our analyses, as an established dataset that is widely 

used and adopted by the scientific community. The Broad Institute TCGA GDAC Firehose 

was accessed to download TCGA RNAseqv2 raw counts data followed by application of the 

voom method for the transformation of count data to normalized log2-counts per million 

(logCPM) (Law et al. 2014). Each of these logCPM values were centered gene-wise for 

sample normalization and comparability and used for all analyses. Considering TCGA 
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clinical data annotation, we extracted those 22 tissue biopsy group datasets that provide 

both “primary solid tumor” and “solid tissue normal” sample type annotations. 

Gene Set Analysis (GSA) and Heatmap Representation 

We applied Gene Set Analysis (GSA) (Efron and Tibshirani 2007), an advanced derivative of 

Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005), in order to assess 

chaperome gene family expression changes between cancerous and corresponding healthy 

tissue samples. When applying GSA, we implemented 100 permutations of chaperome 

genes contained in each functional family in order to allow for statistical assessment of 

differential expression upon re-standardization of gene groups for more accurate inferences. 

Results are displayed as heatmaps indicating significance of up or down-regulation of gene 

expression as ∆GSA values derived from the difference of (1 - upregulation p value) - (1 - 

downregulation p value) in disease compared to matching healthy tissue for TCGA cancer 

datasets, or control patient biopsies for neurodegenerative disease datasets (AD, HD, PD). 

∆GSA values are normalized within the interval [-1, +1], where ‘+1’ indicates significant 

upregulation (upregulation p value = 0), while ‘-1’ indicates significant down-regulation 

(downregulation p value = 0), accordingly. Bar graphs represent group mean changes of 

each chaperome functional family gene group over all diseases. 

Linear Modeling of Chaperome Functional Subsets 
We subdivided the human chaperome into functional subsets of chaperones and co-

chaperones, and further divided chaperones into two sets of ATP-dependent and ATP-

independent chaperones according to the annotations provided by Brehme et al. 2014 

(Brehme et al. 2014). We performed linear modelling using the Limma package in R. Genes 

with p values < 0.05 following Benjamini-Hochberg correction are considered in the fraction 

of differentially expressed genes corresponding to each functional subset. 

Meta-Principal Component Analysis (Meta-PCA) 
Gene Set Analysis (GSA) is a statistical hypothesis testing method that is by definition 

limited to confirmatory data analysis with respect to pre-existing hypotheses. In order to 

serve the goal of quantitative exploratory pan-cancer chaperome analysis, while retaining a 

maximum information content during model reduction, we devised a quantitative multi-step 

dimension reduction model fitting strategy based on principal component analysis (PCA). 

Principal component analysis (PCA) uses orthogonal transformation to convert a set of 

variables to linearly uncorrelated variables, such that they are ordered by their information 

content, which allows for removal of dimensions with lowest information content for 

dimensionality reduction in complex heterogeneous datasets. In order to stratify cancer from 
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healthy biopsy gene expression samples based on chaperome functional family gene 

expression in highly convoluted datasets comprising multiple different cancer types, we 

designed a novel two-step ‘Meta-PCA’ method capable of handling this type of 

heterogeneous data. We hypothesized that each chaperome functional family or process 

can be described by a low number of variable dimensions, considering that genes within 

each group are either related or act together in molecular complexes. Therefore, we used a 

PCA-based approach for quantitative assessment and dimensionality reduction of functional 

chaperome alterations based on disease gene expression data. Challenged by highly 

varying sample counts in the different TCGA cancer group datasets, where datasets 

(tissues) with high sample numbers are at risk of dominating PCA results as compared to 

cancer groups with low sample numbers, we developed a custom approach that is not 

limited by a lack of underlying models for interpolation or undesirable loss of information, 

such as in up- or down-sampling, respectively, allowing us to consider all samples in the 

included TCGA cancer groups. Assuming distinct roles for each chaperome functional group 

we define 

Equation 1   𝑀𝐶𝐻𝐴𝑃𝑥 = 𝐹𝑥	(𝐺𝑥), 

where 𝑀 denotes the M-score of chaperome (CHAP) family x, 𝐺.	 is the vector of gene 

expression values corresponding to genes in CHAP family x, and 𝐹. is the function we want 

to fit. For simplicity, we considered a linear first degree model as follows: 𝐹. is a vector of 

weights 𝑊. with identical length as the vector 𝐺., and we aim to find 𝑊.  for all x using PCA. 

Assuming equivalent biological function of each 𝐶𝐻𝐴𝑃. among all tissues, we first calculate 

𝐹. for each tissue in order to separate disease from healthy samples for each tissue, and 

then combine all “relevant” PCs in order to obtain the main underlying PC, or ‘Meta-PC’, of 

the corresponding CHAP group. We outline the ‘Meta-PCA’ algorithm as follows: 

Step 0: For each CHAP group and tissue we assume a model 

Equation 1’   𝑀	01234
5 = 𝐹		.5 	(𝐺		.5 ), 

Where 𝑀	01234
5  is the M-score of CHAP group x in tissue t, 𝐹		.5  is the unknown function 

mapping gene expression values for CHAP group x in tissue t to an M-score value, and 𝐺		.5  

is the gene expression vector of all genes in CHAP group x in tissue t. 

Step 1: Assuming 𝑀	01234
5 	can be approximated using PC1, we assume 𝐹		.5  is equal to  

W t
x, which is the vector of weights for CHAP group x and tissue t. Then we calculate PCA 

on the gene expression matrix (GEX) comprising all genes in CHAP group x, and all 
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samples of tissue t, including ‘solid tissue normal’ and ‘primary solid tumors’. So in this step 

we have 𝐹			.5 ≃ 𝑊			.5  as loadings of PC1. 

Step 2: The 𝐹			.5 ≃ 𝑊			.5  assumption in Step 1 is not necessarily true; PCA extracts the most 

variable direction in GEX, but in case CHAP group x does not change drastically between 

healthy and cancer, PC1 will represent an unwanted variable or even noise. So we have to 

filter out the 𝐹		.5  that did not fit well to the data. For this we use Student’s t-test. For each 

tissue, we test the separation of 𝑀	01234
5  between ‘solid tissue normal’ and ‘primary solid 

tumor’ samples, and discard all 𝐹		.5  with p values > 10-4. 

Step 3: We combine all 𝑊			.5  to obtain 𝑊., which is the universal mapping of gene 

expressions in CHAP group x to its corresponding M-score, regardless of tissue type. 

Therefore, we calculate	𝑊. as 

Equation 2   𝑊. ≃ 𝑀		.
5 , 

where the loading of each gene in the universal mapping is the mean value of all the 

loadings of the same gene on different tissues. Importantly, prior to calculating mean 

loadings, we set all 𝑊			.5  to be uni-directed in order preserve directionality of change from 

healthy to cancer, yielding final Meta-PCs. 𝑊. can be used as the universal function 𝐹. 

(Equation 1) in order to map a query sample to the corresponding M-score of CHAP group x. 

Step 3’: In order to validate 𝐹. and resulting M-scores we performed random forest 

regression using 80% of M-scores and their annotation labels as training set and 20% as 

test set. 

Quantitative Visualisation of Chaperome Alterations in Diverse Cancers 
In order to visually represent quantifications of chaperome functional family differential 

cancer gene expression, we used Meta-PCA fitted functions in order to calculate disease-

specific M-scores for each chaperome functional gene group as described. We then plotted 

relevant M-scores using polar plots, such that radial axes represent functional processes, 

ordered counterclockwise by decreasing overall group mean expression change across all 

cancers. 

Physical Protein-Protein Interactome Network Assembly and Curation 
Human physical protein - protein interactions (PPIs), hereafter referred to as ‘edges’, were 

downloaded on 23 Dec 2016 from the BioGRID (Chatr-Aryamontri et al. 2013), IntAct 

(Kerrien et al. 2012), DIP (Salwinski et al. 2004), and MINT (Licata et al. 2012) databases. In 

order to obtain a high confidence chaperome physical protein - protein interactome network, 
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we developed a custom Python script to curate raw interactome pairs, or edges, as 

downloaded from the above databases, considering edges detected by multiple 

experimental methods as more reliable than those detected by only a single method. 

Similarly, edges supported by multiple publications are considered at higher confidence than 

edges supported by only one study. Edges supported by multiple methods and / or multiple 

studies are collectively referred to as ‘multiple evidence’ (ME), of which those identified by 

multiple different methodologies represent a subset of highest confidence (MM). The Python 

script processes the interactome raw data as follows: UniProt IDs are mapped to NCBI 

Entrez Gene IDs and for each human PPI between any two chaperome members (nodes), 

interacting partners are mapped to Gene IDs. Only edges annotated with PSI-MI term 

'physical association' type are considered. Eight different curation levels exist: 

L1: met_single_pub_multiple: 1 method (not binary), > 1 PubMed 

L2: met_single_binary_pub_multiple: 1 method (binary), > 1 PubMed 

L3: met_pub_single_binary: 1 method (binary), 1 PubMed 

L4: met_pub_single: 1 method (not binary), 1 PubMed 

L5: met_pub_multiple: > 1 method (not binary), > 1 PubMed 

L6: met_multiple: > 1 method (not binary), 1 PubMed 

L7: binary_met_pub_multiple: > 1 method (≥ 1 binary), > 1 PubMed 

L8: binary_met_multiple: > 1 method (≥ 1 binary), 1 PubMed 

Considering these curation levels, three physical chaperome (CHAP) interactomes of 

increasing confidence level are obtained (Table S2): 

(1) SE-CHAP:  666 unique physical edges between 220 nodes without curation for type 

or number of evidence (single evidence SE-CHAP) 

(2) ME-CHAP:  222 unique physical edges between 128 nodes with multiple pieces of 

evidence detected by ≥ 2 different experimental methods OR reported 

by ≥ 2 independent studies (PMIDs) (multiple evidence ME-CHAP) 

(3) MM-CHAP:  132 unique physical edges between 96 nodes detected by ≥ 2 different 

experimental methods only (multiple method MM-CHAP). 

Different PPI source databases may annotate an identical reported PPI to different PSI-MI 

terms situated at different depth of the same branch within the PSI-MI ontology tree. In these 

cases, PPIs that are actually only supported by one piece of evidence can unintentionally be 

mislabelled as multiple evidence PPIs. Our automated quality curation script resolves this 

problem through up-propagation within the PSI-MI - ontology tree. Assume one PPI is 

annotated with two different interaction detection methods, A and B, then 1) if PSI-MI 

ontology tree levels of method A and method B are identical but their PSI-MI terms (IDs) are 
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different, then the methods are considered as different, otherwise A and B are considered 

the same and the interaction is eliminated from the MM-CHAP interactome, 2) if the level of 

method A is higher (deeper in the ontology tree) than the level of method B, then the code 

searches for its parent situated at the same level as method B and compares the parent 

method ID with B to determine if the methods are identical or different. 

Interactome-Guided 3-D Topographic Maps 
We consider 2-dimensional physical interactome information to guide the spatial layout (x-y 

coordinates) of human chaperome functional ontology families in a 3-dimensional (x-y-z 

coordinates) topographic representation of chaperome M-score changes between disease 

and healthy tissue (z coordinate). Physical chaperome protein-protein interactome network 

data (PPIs) was obtained and curated as described above. We considered a network 

involving only high quality curated interactions supported by multiple pieces of evidence 

(ME-CHAP). We used the R package iGraph in order to collapse nodes corresponding to 

each level 1 functional ontology family into meta-nodes, and edges shared between all 

members of any two different level 1 functional families into meta-edges, such that meta-

node size corresponds to the number of family members and meta-edge thickness 

represents the number of shared interactions between two families. Meta-node colour is set 

to reflect gene expression changes of each respective functional family in disease. We then 

applied a force-directed network graph layout algorithm to the meta-network according to 

Kamada and Kawai (Kamada and Kawai 1989) and extracted resulting x-y coordinates of 

each family meta-node in the network. We use Python to draw the meta-network according 

to the parameters obtained in iGraph to serve as interactome-guided base grid for disease-

specific quantitative 3-dimensional topographic network representations. To this end we 

expand the 2-dimensional network landscape with Meta-PCA derived chaperome M-score 

values (z coordinate). 

Proteostasis Profiler (Pro2) Web-Tool 
We designed a web-based Proteostasis Profiler (Pro2) in order to enable visual exploration 

of the data and results described in this manuscript, obtained through our algorithms and 

visualisation tools. Pro2 is accessible directly at http://www.proteostasys.org or through the 

resources collection at the Joint Research Center for Computational Biomedicine (JRC-

COMBINE) at http://www.combine.rwth-aachen.de/index.php/resources.html. Pro2 is 

implemented using Django (https://www.djangoproject.com/), a web framework written in 

Python language (https://www.python.org). All the charts in the tool are made using the plotly 

platform (https://plot.ly). The Pro2 tool itself is hosted on the Heroku platform 

(https://www.heroku.com) and related code is available at the Github repository at 

https://github.com/brehmelab/Pro2. 
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Figures and Tables 

 

Figure 1. Chaperome Cancer Landscape Profiling. A. The human chaperome is a central PN 

functional arm in charge of maintaining the cellular folding environment and comprises 332 

chaperones and co-chaperones, representing ten functional families (Brehme et al. 2014).  B. Gene 

Set Analysis (GSA) and custom two-step principal component analysis (PCA) - based dimension 

reduction for quantitative analysis of expression states across a compendium of human solid cancer 

biopsy RNA-seq gene expression data provided through TCGA. Polar plots visualise contextual 

quantitative chaperome changes.  C. We connect human chaperome members (nodes) in a high-

confidence literature-curated physical protein-protein interactome network (edges).  D. We chart 3-

dimensional quantitative topographic maps using a physical meta-interactome-guided base grid (X-Y 

dimensions) and Meta-PCA derived M-scores, indicating expression change (Z dimension). Heatmap, 

interactome network, polar plot and 3D topographic map visualisations are accessible through the 

proteostasis profiler web-tool (Pro2). 
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Figure 2. Chaperome Gene Expression Alterations in Human Cancers. Chaperome (A) and 

chaperome functional group (Level 2) (B) gene expression states in human cancer RNA-seq datasets 

from The Cancer Genome Atlas (TCGA) explored by Gene Set Analysis (GSA). Heatmaps indicate 

significance of up or down-regulation of cancer versus healthy gene expression as ∆GSA values in 

the interval [-1, +1], where ‘+1’ indicates significant upregulation (upregulation p value = 0), while ‘-1’ 

indicates significant downregulation (downregulation p value = 0). Chaperome functional sub-families 

Figure 2
A BPN / Chaperome PN / Chaperome / Level 2

sH
SP ER

H
SP

40

H
SP

70

TP
R

H
SP

10
0

M
IT

O

PF
D

H
SP

60

H
SP

90

C
ha

pe
ro

m
e

−1 0 1

Value

0
6

C
ou

nt

GSA

−1 0 1
Value

0
8

C
ou

nt

GSA

C
ha

pe
ro

m
e

G
ro

up
 M

ea
n 

C
ha

ng
e 

(G
S

A
)

-1,00

-0,50

0

0,50

1,00

0,51

C
ha

pe
ro

m
e 

Fu
nc

tio
na

l F
am

ily
G

ro
up

 M
ea

n 
C

ha
ng

e 
(G

S
A

)

-0,70

-0,36

-0,06

0,04 0,05

0,44 0,45 0,46 0,52
0,62

-1,00

-0,50

0

0,50

1,00

C
lu

st
er

 I
C

lu
st

er
 II

C
lu

st
er

 II
I

PCPG

SKCM

THCA

KIRC

GBM

PAAD

BLCA

UCEC

SARC

KIRP

HNSC

STAD

CHOL

LIHC

KICH

PRAD

ESCA

THYM

CESC

BRCA

LUSC

LUAD

PCPG

SKCM

THCA

KIRC

GBM

PAAD

BLCA

UCEC

SARC

KIRP

HNSC

STAD

CHOL

LIHC

KICH

PRAD

ESCA

THYM

CESC

BRCA

LUSC

LUAD

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2017. ; https://doi.org/10.1101/122044doi: bioRxiv preprint 

https://doi.org/10.1101/122044
http://creativecommons.org/licenses/by/4.0/


 

31 

(B) are clustered by Euclidean distance (dendrograms). Bar graphs in A and B indicate functional 

family GSA group mean changes. Order of TCGA cancer groups (rows) in A and B is according to 

Euclidian distance of chaperome differential expression (dendrogram). Turquoise box highlights the 

human chaperome broken down into functional families in B. Yellow borders indicate marked clusters 

separated by Euclidean distance clustering of chaperome functional families. TCGA cancer group 

acronyms: THYM (thymoma), ESCA (esophageal carcinoma), BRCA (breast invasive carcinoma), 

LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), KICH (kidney chromophobe), 

STAD (stomach adenocarcinoma), CHOL (cholangiocarcinoma), LIHC (liver hepatocellular 

carcinoma), PRAD (prostate adenocarcinoma), HNSC (head and neck squamous cell carcinoma), 

KIRP (kidney renal papillary cell carcinoma), SARC (sarcoma), UCEC (uterine corpus endometrial 

carcinoma), BLCA (bladder urothelial carcinoma), PAAD (pancreatic adenocarcinoma), CESC 

(cervical squamous cell carcinoma and endocervical adenocarcinoma), GBM (glioblastoma 

multiforme), KIRC (kidney renal clear cell carcinoma), SKCM (skin cutaneous melanoma), PCPG 

(pheochromocytoma and paraganglioma), THCA (thyroid carcinoma). 
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Figure 3. Preferential Upregulation of ATP-Dependent Chaperones in Group 1 Cancers. 
Analysis of differential cancer gene expression of chaperome functional subsets.  A. Comparing 

upregulation and downregulation of gene expression (∆GSA) of chaperones (n = 88) and co-

chaperones (n = 244) reveals general chaperome upregulation for the majority of cancers (Group 1), 

while a small group of Group 2 cancers do not follow this trend. Colour code indicates chaperone up-

regulation of gene expression, axes represent chaperone downregulation, co-chaperone upregulation 

and down-regulation of gene expression. s = median silhouette width (k-means clustering).  B. Box-

and-whisker plots highlight fractions of differentially expressed genes in each chaperome subset for 

Group 1 (red) and Group 2 (blue) cancers separately (see A). Differentially expressed genes in each 

set were obtained by linear modelling (Limma package in R), considering genes with p value < 0.05 

(Benjamini-Hochberg corrected). Box boundaries, 25% and 75% quartiles; middle horizontal line, 

median; whiskers, quartile boundaries for values beyond 1.5 times the interquartile range; small circle, 

outlier.  C. Assessing differential expression of ATP-dependent (n = 50) vs. ATP-independent (n = 38) 
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chaperones highlights preferential upregulation of ATP-dependent chaperones in Group 1 cancers. 

Group 2 cancers do not follow this trend. s = median silhouette width (k-means clustering).  D. Box-

and-whisker plots (as in B.) show fractions of differentially expressed genes in the two sets of ATP-

dependent and ATP-independent chaperones, partitioned by Group 1 and Group 2 cancers (see C). 

 

 

Figure 4. Proteasome and CCT/TRiC Complex Increase in Human Cancers Reminisces Stem 
Cell Proteostasis.  A. Heatmap indicates overall gene expression changes (∆GSA) of the human 

proteasome (43 genes according to HGNC) throughout 22 TCGA solid cancers. Heatmap ∆GSA 

values are in the interval [-1, +1], where ‘+1’ indicates significant upregulation (upregulation p value = 

0), while ‘-1’ indicates significant downregulation (downregulation p value = 0) as in Figure 2.  B. 
Heatmap highlights HSP60 gene level differential expression of TRiC/CCT complex subunits 

throughout 22 TCGA solid cancers. Heatmap indicates significance of up- or downregulation of gene 

expression (t test) in cancer compared to matching healthy tissue (1 - signed p value) in the interval [-

1, +1], where ‘+1’ indicates significant upregulation (upregulation p value = 0), while ‘-1’ indicates 

significant downregulation (downregulation p value = 0). Blue highlights indicate Group 2 cancers. 
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Figure 5. Opposing Chaperome Deregulation in Cancers and Neurodegenerative Diseases.  A - 
B. Heatmaps indicate significance of up or down-regulation of gene expression (∆GSA) of chaperome 

(A) and chaperome functional families (B) in Alzheimer’s (AD), Huntington’s (HD), and Parkinson’s 

disease (PD) compared to age-matched healthy controls. Datasets: GSE5281 (AD, superior frontal 

gyrus) (Liang et al. 2008), GSE3790 (HD, nucleus caudatus) (Hodges et al. 2006), and GSE20295 

(PD, substantia nigra) (Moran et al. 2006). ∆GSA values are in the interval [-1, +1], where ‘+1’ 

indicates significant upregulation (upregulation p value = 0), while ‘-1’ indicates significant 

downregulation (downregulation p value = 0) as in Figure 2. Functional families (columns) are ordered 
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by increasing ∆GSA group mean change (bar graphs). Turquoise box highlights the ‘Folding’ group, 

representing the human chaperome.  C - D. Comparison of gene expression changes (∆GSA) of 

chaperome (C), or chaperome functional families (D) in cancers versus neurodegenerative diseases 

(NeuroD). Bar graphs are functional family ∆GSA group mean changes in cancers (black) compared 

to NeuroD (grey). 

 

 

Figure 6.  Polar Maps of Chaperome Shifts in Human Cancers. Polar plot visualization of Meta-

PCA derived quantitative indices (M-scores) of relative disease gene expression shifts of chaperome 

functional processes. Examples representative of Group 1, Lung Adenocarcinoma (LUAD) (A), and 

Group 2, Pheochromocytoma and Paraganglioma (PCPG) (B), cancers, are shown. Blue (normal) 

and red lines (cancer), cancer sample means. Halos, confidence interval at the 90% quantile range 

(5% - 95%). Axes are ordered counter-clockwise by overall mean decrease of expression across 

cancers. LUAD (lung adenocarcinoma), PCPG (pheochromocytoma and paraganglioma). 
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Figure 7.  Interactome-Guided Topographic Maps of Cancer Chaperome Shifts.  A. Cancer-

specific chaperome meta-interactome networks, collapsing edges and nodes onto meta-edges and 

meta-nodes, highlight cancer-specific gene expression changes of chaperome functional families in 

context of connectivity within the high-confidence physical interactome network (ME-CHAP) at 

reduced complexity. Node size and edge thickness correspond to the number of functional family 

member nodes and the sum of inter-family edges, respectively. Node colour indicates combined 

cancer gene expression changes (M-scores).  B. Projecting differential changes between cancer and 

normal counterpart biopsy gene expression (z dimension) onto the ME-CHAP interactome serving as 

base-grid layout (x-y dimensions), we derive cancer-specific interactome-guided 3D topographic 

maps. LIHC = liver hepatocellular carcinoma. 
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SUPPLEMENTARY INFORMATION 

Supplementary Figures 
Figure S1.  Correlation of Chaperome GSA and Meta-PCA scores. 
Correlation between GSA-scores (Efron and Tibshirani 2007) and Meta-PCA T-statistic values 

derived using Limma linear modelling on all TCGA cancer groups considered in this study indicates 

overall correlation (cor = 0.656). 

 
Figure S2.  Preferential Chaperome Upregulation in Cancers. Analysis of differential cancer gene 

expression of chaperome functional subsets, comparing chaperones and co-chaperones as well as 

ATP-dependent and ATP-independent chaperones (Brehme et al. 2014). See also Figure 3.  A. 
Comparing upregulation and downregulation of gene expression of chaperones and co-chaperones 

using GSA reveals a general upregulation of chaperones and co-chaperones in cancer, with 

preferential upregulation of chaperones. Colour code indicates chaperone up-regulation of gene 

expression. Axes represent chaperone downregulation, co-chaperone upregulation and 

downregulation of gene expression. B. Box-and-whisker plots highlight fractions of differentially 

expressed genes in each chaperome subset for all TCGA cancers assessed, based on A. 

Differentially expressed genes in each set were obtained by linear modelling (Limma package in R) 

and considering genes with p value < 0.5 following Benjamini-Hochberg correction. Box boundaries, 

25% and 75% quartiles; middle horizontal line, median; whiskers, quartile boundaries for values 

beyond 1.5 times the interquartile range; small circle, outlier.  C. Assessing differential expression of 

ATP-dependent (n = 50) vs. ATP-independent (n = 38) chaperones highlights a preferential 

upregulation of ATP-dependent chaperones across TCGA cancers D. Box plots (drawn as in B.) show 

fractions of differentially expressed genes in the two sets of ATP-dependent and ATP-independent 

chaperones for all TCGA cancers assessed, based on C. 

 
Figure S3.  Compendium of Cancer Chaperome Polar Maps. Chaperome gene expression shifts 

between healthy and cancer tissue biopsy datasets are quantified by Meta-PCA and visualized in 

context by plotting resulting M-scores on polar maps as in Figure 6. Blue (healthy) and red (cancer) 

lines represent means across all samples for each cancer. Halos represent confidence interval at the 

90% quantile range (5% - 95%). Axes are ordered counter-clockwise by overall mean decrease of 

expression across cancers. 

 
Figure S4.  Compendium of Cancer Chaperome Interactome Meta-Networks. Cancer-specific 

chaperome meta-interactome networks are shown as in Figure 7A. Multiple-evidence chaperome 

(ME-CHAP) edges and nodes are collapsed onto meta-edges and meta-nodes. Node size and edge 

thickness correspond to the number of functional family member nodes and the sum of the number of 

inter-family edges, respectively. Node colour indicates combined cancer gene expression changes 

quantified via Meta-PCA. 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 29, 2017. ; https://doi.org/10.1101/122044doi: bioRxiv preprint 

https://doi.org/10.1101/122044
http://creativecommons.org/licenses/by/4.0/


 

38 

Figure S5.  Compendium of Cancer Chaperome 3-D Topographic Maps. 3D topographic maps of 

cancer chaperome alterations are obtained by projecting gene expression changes between 

cancerous and healthy counterpart biopsy gene expression (z dimension) onto the high-confidence 

chaperome meta-interactome (ME-CHAP) graph layout (x-y dimensions). 

Supplementary Tables 
Table S1.  Human Chaperome and Proteasome Functional Gene Ontology. Tab S1A. List of 332 

human chaperome genes, expert curated by functional ontology groups at six levels of increasing 

detail (Level 1 = broad >> level 6 = detailed). For each entry, HGNC gene symbol, EntrezID, and 

functional ontology annotation levels are indicated. Human chaperome as in (Brehme et al. 2014), 

Tab S1B. List of 43 proteasome genes. For each entry, HGNC gene symbol, EntrezID, and functional 

ontology annotation levels are indicated. Proteasome complex annotation according to HGNC (Gray 

et al. 2015). 

 
Table S2.  Human Chaperome Physical Protein-Protein Interactions. Human physical protein-

protein interactions (PPIs) were obtained for 332 human chaperome members from curated public 

databases reporting human PPIs with PSI-MI method annotations (IntAct, BioGrid, MINT, DIP). For 

each node, Entrez Gene ID and corresponding HGNC symbol, chaperome functional ontology 

annotation levels 1 and 2, interaction detection method MI code as annotated in the respective source 

database, and unique methods per PPI following curation, curation evidence level, PMIDs with 

corresponding literature evidence for each interaction, source databases, and respective MI method 

IDs are indicated.  Tab S2A. 666 curated physical human protein - protein interactions between 220 

chaperome nodes supported by any number of evidence, including interactions reported only by one 

single study (PMID).  Tab S2B. 222 curated high-confidence physical human protein - protein 

interactions between 128 chaperome nodes supported by multiple pieces of evidence, including 

interactions reported by multiple methods or studies (PMIDs).  Tab S2C. 132 curated high-confidence 

physical human protein - protein interactions between 96 chaperome nodes supported by multiple 

pieces of evidence, including only interactions reported by multiple methods. 

 
Table S3.  Gene Expression in TCGA Solid Cancers. Voom-transformed TCGA RNA-seq 

chaperome and proteasome gene expression data used for Gene Set Analysis (GSA), linear 

modeling and t test (Figures 2, 3, 4, 5), and Meta-PCA analyses (Figures 6, 7). 

Other Supplementary Resources 
All R and Python scripts and code related to this manuscript are accessible through the 

proteostasis profiler (Pro2) Github repository at https://github.com/brehmelab/Pro2. 
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