bioRxiv preprint doi: https://doi.org/10.1101/122077; this version posted March 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Genome analysis

Squeakr: An Exact and Approximate k-mer
Counting System

Prashant Pandey '-* Michael A. Bender !> Rob Johnson !> and Rob Patro -

' Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: k-mer-based algorithms have become increasingly popular in the processing of high-
throughput sequencing (HTS) data. These algorithms span the gamut of the analysis pipeline from
k-mer counting (e.g., for estimating assembly parameters), to error correction, genome and transcriptome
assembly, and even transcript quantification. Yet, these tasks often use very different k-mer representations
and data structures. In this paper, we set forth the fundamental operations for maintaining multisets of
k-mers and classify existing systems from a data-structural perspective. We then show how to build a
k-mer-counting and multiset-representation system using the counting quotient filter (CQF), a feature-rich
approximate membership query (AMQ) data structure. We introduce the k-mer-counting/querying system
Squeakr (Simple Quotient filter-based Exact and Approximate Kmer Representation), which is based on
the CQF. This off-the-shelf data structure turns out to be an efficient (approximate or exact) representation
for sets or multisets of k-mers.

Results: Squeakr takes 2x—4.3x less time than the state-of-the-art to count and perform a random-point-
query workload. Squeakr is memory-efficient, consuming 1.5X—4.3X less memory than the state-of-the-art.
It offers competitive counting performance, and answers point queries (i.e. queries for the abundance of
a particular k-mer) over an order-of-magnitude faster than other systems. The Squeakr representation of
the k-mer multiset turns out to be immediately useful for downstream processing (e.g., de Bruijn graph
traversal) because it supports fast queries and dynamic k-mer insertion, deletion, and modification.
Availability: https:/github.com/splatlab/squeakr

Contact: ppandey@cs.stonybrook.edu

1 Introduction k-mer-based methods are also heavily used for preprocessing HTS
data to perform error correction (Liu et al., 2013; Song et al., 2014; Heo

There has been a tremendous increase in sequencing capacity thanks
et al., 2014) and digital normalization (Brown et al., 2012; Zhang et al.,

to the rise of massively parallel high-throughput sequencing (HTS) ‘ N]
technologies. Many of the new computational approaches for dealing with 2014). Even in long-read (“3rd-generation”) sequencing-based assembly,
the increasing amounts of HTS data use the k-mer—a string of k bases—

as the atomic unit of sequence analysis. For example, most HTS-based

the k-mer acts as a building block to help find read overlaps (Berlin et al.,
2015; Carvalho et al., 2016) and to perform error correction (Salmela and

genome and transcriptome assemblers use k-mers to build de Bruijn graphs Rivals, 2014; Salmela et al., 2016).
(see e.g., Pevzner ef al. (2001); Zerbino and Birney (2008); Bankevich k-mer-based methods reduce the computational costs associated with

et al. (2012); Simpson et al. (2009); Grabherr et al. (2011); Schulz et al. many types of HTS analysis. These include transcript quantification
using RNA-seq (Patro et al., 2014; Zhang and Wang, 2014), taxonomic

(2012)). De-Bruijn-graph-based assembly is favored, in part, because it
classification of metagenomic reads (Wood and Salzberg, 2014; Ounit

eliminates the computationally burdensome “overlap” approach of the

more traditional overlap-layout-consensus assembly (Koren et al., 2016). et al, 2015), and search-by-sequence over large repositories HTS-based

sequencing experiments (Solomon and Kingsford, 2016).

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“paper” — 2017/3/29 — page 1 — #1

https://doi.org/10.1101/122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122077; this version posted March 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Pandey et al.

Many of the analyses listed above begin by counting the number of
occurrences of each k-mer in a sequencing dataset. In particular, k-mer
counting is used to weed out erroneous data caused by sequencing errors.
These sequencing errors most often give rise to “singleton” k-mers (i.e.
k-mers that occur only once in the dataset), and the number of singletons
grows linearly with the size of the underlying dataset. k-mer counting
identifies all singletons, so that they can be removed.

k-mer counting is nontrivial because it needs to be done quickly, the
datasets are large, and the frequency distribution of the k-mers is often
skewed. There are many different system architectures for k-mer counters,
because there are many different competing performance issues, including
space consumption, cache-locality, and scalability with multiple threads.

However, generally, k-mer counters are not designed to support
efficient point queries, i.e., queries for the count of an arbitrary k-mer.
Fast point queries are helpful in downstream analysis, for example, in de
Bruijn graph traversal (Chikhi and Rizk, 2013), and search (Solomon and
Kingsford, 2016), and are also important for computing inner-products
between datasets (Vinga and Almeida, 2003; Murray et al., 2016).

In general, the focus of recent k-mer-counting methods has been on
counting performance or memory usage, with less emphasis given to
query performance. Yet, many downstream analyses could benefit from
a representation that supports efficient queries. Squeakr outperforms or is
competitive with existing solutions in terms of counting performance and
memory usage, yet provides faster queries. Most applications perform a
combination of counting and querying and often querying is more prevalent
than counting. Because Squeakr is so much faster for queries it results in
faster overall applications with Squeakr than with other systems.

k-mer Counting Systems and AMQ Data Structures

Many k-mer-counting approaches have been proposed in recent
years, and are embodied in popular k-mer-counting tools such as
Jellyfish (Margais and Kingsford, 2011), BFCounter (Melsted and
Pritchard, 2011), DSK (Rizk et al., 2013), KMC2 (Deorowicz et al., 2015),
and Turtle (Roy et al., 2014).

These tools, as well as other sequence-analysis systems (Chikhi and
Rizk, 2013), use the Bloom filter (Bloom, 1970) as a data-structural
workhorse. The Bloom filter is a well known example of an approximate
membership query (AMQ) data structure, which maintains a compact
and probabilistic representation of a set or multiset. AMQs save space by
allowing membership queries occasionally to return false positive answers.

k-mer-counting systems such as Jellyfish2 (Marcais and Kingsford,
2011), BFCounter (Melsted and Pritchard, 2011), and Turtle (Roy et al.,
2014) use a Bloom filter to identify and filter out singleton k-mers, thus
reducing the memory consumption. Then the systems resort to larger hash
tables, or other, more traditional data structures, for the actual counting.
Under such a strategy, k-mers are inserted into the Bloom filter upon first
observation, and they are stored in a hash table (or other exact counting
data structure) along with their counts upon subsequent observations.

One drawback of the Bloom filter is that it supports a relatively small
set of operations and suffers from some performance issues (e.g., poor
cache locality). k-mer-counting systems based on Bloom filters have to
work around these performance and feature limitations. The limitations of
the Bloom filter mean that (at least) two separate data structures need to
be maintained: one for membership and one for counting. This requires
all inserts to lookup and inserts in multiple structures. The Bloom filter
requires a tight estimation of the number of distinct k-mers to get good
space usage. Moreover, it does not support resizing, deletes, and counting.
Additionally, a single counting quotient filter data structure is often more
space efficient than a Bloom filter and hash table combination.

Furthermore, exact k-mer counts are often not required, and memory
usage can be reduced even further, and the simplicity of the underlying
algorithm improved, by replacing the Bloom filter and exact counting

data structure by a single probabilistic data structure. For example, Zhang
et al. (2014) demonstrate that the count-min sketch (Cormode and
Muthukrishnan, 2005) can be used to answer k-mer presence and
abundance queries approximately. Such approaches can yield order-
of-magnitude improvements in memory usage. However, a frequency
estimation data structure, like count-min sketch, can also blow up the
memory usage for skewed data distributions like k-mers in sequencing
datasets (Pandey et al., 2016).

There do exist more feature-rich AMQs. In particular, the counting
quotient filter (CQF) (Pandey et al., 2016), supports operations such
as insertions, deletions, counting (even on skewed datasets), resizing,
merging, and highly concurrent accesses.

Results

In this paper we show how to build a k-mer-counting and multiset-
representation system using the recently-introduced counting quotient
filter (CQF) (Pandey et al., 2016), a feature-rich approximate membership
query (AMQ) data structure.

We show that this off-the-shelf data structure is well suited to serve as
anatural and efficient structure for representing and operating on multisets
of k-mers (exactly or approximately). We make our case by developing and
evaluating a k-mer-counting/querying system Squeakr (Simple Quotient
filter-based Exact and Approximate Kmer Representation), which is based
on the CQF.

Our CQF representation is space efficient and fast, and it offers a rich
set of operations. The underlying CQF is easily tuned to trade off between
space and accuracy/precision, depending upon the needs of the particular
application. In the application of k-mer counting, we observe that the
counting quotient filter is particularly well suited to the highly skewed
distributions that are typically observed in HTS data.

Our representation is powerful, in part, because it is dynamic. Unlike,
the Bloom filter (Bloom, 1970), which is commonly used in k-mer-
counting applications, Squeakr has the ability to modify and remove
k-mers. Unlike the count-min sketch (Cormode and Muthukrishnan,
2005), Squeakr maintains nearly exact (or lossless) representations of the
counts compactly.

In Squeakr, one can enumerate the hashes of the k-mers present in
the structure, allowing k-mer multisets to be easily compared and merged.
One interesting feature is that approximate multisets of different sizes can
be efficiently compared and merged. This capability is likely to have other
advantages beyond what we explore in this paper; for example it could
be instrumental in improving the sequence Bloom tree structure used for
large-scale search (Solomon and Kingsford, 2016).

We benchmark two settings of our system, Squeakr and Squeakr-
exact, the latter of which supports exact counting via an invertible hash
function, albeit at the cost of using more space. We compare both Squeakr
and Squeakr-exact with state-of-the-art k-mer counting systems KMC2
and Jellyfish2. Squeakr takes 2x—4.3x less time to count and perform
a random-point-query workload (de Bruijn graph graph traversal) than
KMC?2. Squeakr uses considerably less memory (1.5x—4.3 x) than KMC2
and Jellyfish2. Squeakr offers insertion performance similar to that of
KMC?2 and faster than Jellyfish2. Squeakr offers an order-of-magnitude
improvement in point query performance. We test the effect of query
performance under both random and application-specific workloads (e.g.,
de Bruijn graph traversal). For point query workloads Squeakr is 3.2Xx—
24 x faster than KMC2 and Jellyfish2. For de Bruijn graph graph traversal
workload Squeakr is 2x—4.3x faster than KMC2.

2 Methods

We begin by first describing the counting quotient filter data structure.
Then, we describe the design of Squeakr; how we use the counting quotient

“paper” — 2017/3/29 — page 2 — #2

https://doi.org/10.1101/122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122077; this version posted March 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Squeakr
File parts queue
Threads
T1 T2 T3 T4
[T innnnnim R [T [T
Local CQF Local CQF Local CQF Local CQF

Global CQF

Fig. 1: Squeakr system design: each thread has a local CQF and there is a global
CQEF. The dotted arrow shows that one thread did not get the lock in the first attempt
and had to insert the item in the local CQF.

filter in Squeakr for counting k-mers, and how we efficiently parallelize
Squeakr to scale with multiple threads.

2.1 Counting quotient filter

The counting quotient filter (CQF) implements a counting filter data
structure (Pandey et al., 2016) by storing a compact, lossless representation
of the multiset h(.S), where h : Y — {0, ..., 2P — 1} is a hash function
and S is a multiset of items drawn from a universe /. The CQF sets
p = log, % and obtains a false-positive rate § while handling up to n
insertions (Bender ef al., 2012).

The counting quotient filter divides h(z) into its first ¢ bits, quotient
ho(x), and its remaining r bits, remainder h1(x). The counting quotient
filter maintains an array @ of 29 r-bit slots, each of which can hold a
single remainder. When an element « is inserted, the counting quotient
filter attempts to store the remainder h1 (x) in the home slot Q[ho(z)]. If
that slot is already in use, then the counting quotient filter uses a variant
of linear probing (using few metadata-bits per slot), to find an unused slot
where it can store hj (z) (Pandey et al., 2016).

Instead of storing multiple copies of the same item to count, like a
quotient filter, the counting quotient filter employs an encoding scheme to
count the multiplicity of items. The encoding scheme enables the counting
quotient filter to maintain variable-sized counters. This is achieved by
using slots originally reserved to store the remainders to, instead, store
count information. The metadata bits maintained by the counting quotient
filter allows this dynamic reuse of remainder slots for large counters while
still ensuring the correctness of all counting quotient filter operations.

The variable-sized counters in the counting quotient filter enable the
data structure to handle highly skewed datasets efficiently. By reusing the
allocated space, the counting quotient filter avoids wasting extra space on
counters and naturally and dynamically adapts to the frequency distribution
of the input data. The counting quotient filter never takes more space
than a quotient filter for storing the same multiset. For highly skewed
distributions, like those observed in HTS-based datasets, it occupies only
a small fraction of the space that would be required by a comparable (in
terms of false-positive rate) quotient filter.

2.2 Squeakr design

A k-mer counting system starts by reading and parsing the input file(s)
(i.e., FASTA/FASTQ files) and extracting reads. These reads are then
processed from left to right, extracting each read’s constituent k-mers.
The k-mers may be considered as they appear in the read, or, they may
first be canonicalized (i.e., a k-mer is converted to the lexicographically
smaller of the original k-mer and its reverse-complement). The goal of
a k-mer counting system is to count the number of occurrences of each
k-mer (or canonical k-mer) present in the input dataset.

Squeakr has a relatively simple design compared to many existing k-
mer counting systems. Many k-mer counting systems use multiple data
structures, e.g., an Approximate Membership Query (AMQ) data structure

to maintain all the singletons and a hash table (Margais and Kingsford,
2011) or compaction-and-sort based data structure (Roy et al., 2014) for
the actual counting. The motivation behind using multiple data structures is
primarily to reduce the memory requirements. Yet, having to maintain and
modify multiple data structures when processing each k-mer can slow the
counting process, and add complexity to the design of the k-mer counter.
Other k-mer counting systems use domain specific optimizations (e.g.,
minimizers (Roberts et al., 2004)) to achieve faster performance (Roberts
et al., 2004; Deorowicz et al., 2015).

Squeakr uses a single, off-the-shelf data structure, the counting
quotient filter, with a straightforward system design, yet still offers superior
performance in terms of memory and running and query time.

In Squeakr we have a single-phase process for counting k-mers in a
read data set. Each thread performs the same set of operations; reading
data from disk, parsing and extracting k-mers, and inserting k-mers in the
counting quotient filter. The input file is read in chunks of 16MB, and each
chunk is then parsed to find the last complete read record.

To synchronize operations among multiple threads, Squeakr uses a
lock-free queue (Boost, 2014) for storing the state of each file being
read from disk, and a thread-safe counting quotient filter for inserting
k-mers. Each thread executes a loop in which it grabs a file off the lock-
free queue, reads the next 16MB chunk from the file!, returns the file to
the lock-free queue, and then parses the reads in the 16MB chunk and
inserts the resulting k-mers into a shared, thread-safe quotient filter. This
approach enables Squeakr to parallelize file reading and parsing, improving
its ability to scale with more threads. KMC2, on the other hand, uses a
single thread for each file to read and decompress which can sometimes
become a bottleneck e.g., when one input file is much larger than others.

Squeakr uses a thread-safe counting quotient filter (Pandey et al.,
2016) for synchronizing insert operations among multiple threads. Using
a thread-safe counting quotient filter, multiple threads can simultaneously
insert k-mers into the data structure. Each thread acquires a lock on the
region where the k-mer must be inserted and releases the lock once it
is done inserting the k-mer. k-mers that hash to different regions of the
counting quotient filter may be inserted concurrently.

This scheme of using a single, thread-safe counting quotient filter
scales well with an increasing number of threads for smaller datasets, e.g.,
F vesca and G. gallus (see Table 1) where the skewness (in terms of k-mer
multiplicity) is not very high. However, for larger highly-skewed datasets,
the thread-safe counting quotient filter scheme does not scale well. This is
due, in part, to the fact that these data have many highly-repetitive k-mers,
causing multiple threads to attempt to acquire the same locks. This results
in excessive lock contention among threads trying to insert k-mers, and
prevents an increase in the number of threads from leading to a concordant
decrease in the total time required to count all k-mers.

Scaling with multiple threads. Large datasets with high skewness
contain k-mers with very high multiplicity (of the order of billions). Such
k-mers causes hotspots, and lead to excessive lock contention among
threads in the counting quotient filter. To overcome the issue of excessive
lock contention, Squeakr tries to reduce the time spent by threads waiting
on a lock by amortizing the cost of acquiring a lock.

As explained in (Pandey et al., 2016), the time spent by threads while
waiting for alock can be utilized to do local work. As shown in Figure 1, we
assign a local counting quotient filter to each thread. Now, during insertion,
each thread first tries to insert the k-mer in the thread-safe, global counting
quotient filter. If the thread acquires the lock in the first attempt, then it
inserts the k-mer and releases the lock. Otherwise, instead of waiting on
the lock to be released, it inserts the k-mer in the local counting quotient

! Threads actually read slightly less than 16MB, since threads always
break chunks at inter-read boundaries.

“paper” — 2017/3/29 — page 3 — #3

https://doi.org/10.1101/122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122077; this version posted March 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

filter and continues. Once the local counting quotient filter becomes full,
the thread dumps the k-mers present in the local counting quotient filter
into the global counting quotient filter before processing any new k-mers.

The above approach helps to reduce the time spent by threads while
waiting on alock and also amortizes the cost of acquiring a lock. Intuitively,
repetitive k-mers are the ones for which it is hardest to acquire the lock
in the global counting quotient filter. When a thread encounters such a
k-mer and fails to obtain the corresponding lock in the global counting
quotient filter, the thread instead immediately inserts those k-mers in
the local (lockless) counting quotient filter and continues processing data.
Moreover, these repetitive k-mers are first counted in the local counting
quotient filter before being inserted with their corresponding counts in
the global counting quotient filter. Under this design, instead of inserting
multiple instances of the k-mer in the global counting quotient filter,
requiring multiple acquisitions of a global counting quotient filter lock,
Squeakr only insert the k-mers a few times with their counts aggregated
via the local counting quotient filters.

In Squeakr even while maintaining multiple data structures, a local
counting quotient filter per thread and a global counting quotient filter, one
operation is performed for the vast majority of k-mers. While inserting
k-mers that occur only a small number of times, threads obtain the
corresponding lock in the global counting quotient filter in the first attempt.
These k-mers are only inserted once. On the other hand, for repetitive k-
mers, instead of acquiring the lock for each observation, we insert them
in the local counting quotient filter and only insert them into the global
counting quotient filter once the local counting quotient filter gets full.

2.3 Squeakr is both an approximate and exact k-mer
counter

Squeakr is capable of acting as either an approximate or an exact k-mer
counter. In fact, this can be achieved with no fundamental changes to the
underlying system; but simply by increasing the space dedicated to storing
each hash’s remainder, and by adopting an invertible hash function.

In Squeakr each k-mer in the read dataset is represented as a bit vector
using 2k bits, i.e., each base-pair is represented using 2 bits. As explained
in Section 2.1, to achieve a maximum allowable false-positive rate § the
counting quotient filter requires a p-bit hash function, where p = log, %
and n is the number of distinct k-mers. For example, to achieve a false-
positive rate of 1/512 for a dataset with 230 distinct k-mers, we need a 39-
bit hash function. In Squeakr, we use the Murmur hash function (Appleby,
2016), by default, for hashing k-mers.

In the counting quotient filter, the p-bit hash is divided into ¢ quotient
bits and r remainder bits. The maximum false-positive rate is bounded by
27" (Bender et al., 2012). In Squeakr, we assign ¢ = log n, where n is
the number of distinct k-mers in the dataset and we use 9-bit remainders
to achieve a false-positive rate of 1/512.

In order to convert Squeakr from an approximate k-mer counter to an
exact k-mer counter, we need to use a p-bit invertible hash function, where
p = 2k. In Squeakr-exact, we use the Inthash hash function (Li, 2016)
for hashing k-mers. For a dataset with n distinct k-mers and a p-bit hash
function, the remainder » = p — log, n. For example, for n = 230 and
k = 28 (i.e., p = 56), we need » = 26 bits. This is still far less than the
56 bits that would be required to store each k-mer key explicitly.

3 Results

In this section we evaluate our implementations of Squeakr and
Squeakr-exact. Squeakr-exact, as described in Section 2.3, is an exact
k-mer counting system that uses the counting quotient filter with a p-bit
invertible hash function, where p is the number of bits to represent a k-mer
in binary. Squeakr is an approximate k-mer counting system that also uses
the counting quotient filter but takes much less space than Squeakr-exact.

Pandey et al.

dataset File size #Files #k-mer instances #Distinct k-mers

F vesca 3.3 11 4134078256 632436468
G. gallus 25.0 15 25337974831 2727529829
M. balbisiana 46.0 2 41063145194 965691662
H. sapiens 1 67.0 6 62837392588 6353512803
H. sapiens2 99.0 48 98892620173 6634382141

Table 1. datasets used in the experiments. The file size is in GB. All the datasets
are compressed with gzip compression.

The space savings comes from the fact that Squeakr allows a very small
false-positive rate.

We compare both versions of Squeakr with state-of-the-art k-mer
counting systems in terms of speed, memory efficiency, and scalability
with multiple threads. We compare Squeakr against two k-mer counting
systems; KMC2 (Danek, 2016) and Jellyfish2 (Marcais and Kingsford,
2011). KMC?2 is currently the fastest k-mer counting system (Deorowicz
et al., 2015), although not the most frugal in terms of memory usage
(when not run in disk-based mode). Jellyfish2, though not the fastest or
most memory-frugal system, is very widely used, and internally uses a
domain specific hash-table to count k-mers, and is thus methodologically
similar to Squeakr.

Khmer (Zhang et al., 2014) is the only approximate multiset
representation and uses a count-min sketch. Here, we don’t compare
Squeakr against Khmer, since they are geared toward somewhat different
use-cases. Squeakr exhibits a very small error rate, and is intended to be
used in places where one might otherwise use an exact k-mer counter,
while Khmer is designed much more as a sketch, to perform operations on
streams of k-mers for which near-exact counts are not required.

Squeakr is an in-memory k-mer counter and we compare it against
other in-memory k-mer counting systems. We currently only support k-
mers of maximum length 32, though, it is not a fundamental limitation of
the counting quotient filter.

We evaluate each system on two fundamental operations, counting
and querying. We use multiple datasets to evaluate counting performance,
and a subset of those datasets for query performance. We evaluate queries
for existing k-mers and absent k-mers (uniformly random k-mers) in the
dataset. We also evaluate Squeakr for performing queries for k-mers as they
appear in the context of de Bruijn graph traversal. Traversing the de Bruijn
graph is a critical step in any De-Bruijn-graph-based assembly, and using
an AMQ for a compact representation and fast traversal of the de Bruijn
graph has been shown in the past (Pell et al., 2012). To evaluate the ability
of the counting quotient filter to represent a de Bruijn graph and deliver fast
query performance during traversal, we performed a benchmark where we
query k-mers as they appear in the de Bruijn graph.

Other than counting and queries, we also evaluate Squeakr for
computing the inner-product between the k-mer abundance vectors of
a pair of datasets. The comparison of the k-mer composition of two
different strings (or entire datasets) has proven a fruitful approach for
quickly and robustly estimating their overall similarity. In fact, many
methods exist for the so-called alignment-free comparison of sequencing
data (Vinga and Almeida, 2003). Recently, (Murray et al., 2016) introduced
the k-mer weighted inner product as an estimate of the similarity
between genomic/metagenomic datasets. Prior work suggests that ability
to compute fast inner-product between two datasets is important. To assess
the utility of the CQF in enabling such types of comparisons, we performed
a benchmark to evaluate the performance of Squeakr to compute the
inner-product (or cosine-similarity) between two datasets.

3.1 Experimental Setup
Each system s tested for 28-mers and all the experiments are performed
in-memory. We use several datasets for our experiments, which are listed

“paper” — 2017/3/29 — page 4 — #4

https://doi.org/10.1101/122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

Squeakr

bioRxiv preprint doi: https://doi.org/10.1101/122077; this version posted March 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

in Table 1. All the experiments were performed on an Intel(R) Xeon(R)
CPU (E5-2699 v4 @ 2.20GHz with 44 cores and 5S6MB L3 cache) with
512GB RAM and a 4TB TOSHIBA MGO3ACA4 ATA HDD. In order
to evaluate the scalability of the systems with multiple threads, we have
reported numbers with 8 and 16 threads for all the systems and for each
dataset. In all our experiments, the counting quotient filter was configured
with a maximum allowable false-positive rate of 1/512. For reporting time
and memory metrics, we have taken the average over two runs for all the
benchmarks. The time reported in all the benchmarks is in seconds and
memory (RAM) is in GBs.

Counting benchmarks. For each dataset we have only counted the
canonical k-mers. In order to isolate the counting performance of each
system, we have only reported the time taken by the system to count
k-mers excluding the initialization time (e.g., allocating data structures,
locks, etc), though a small fraction of the total time. The time reported for
counting benchmarks is the total time taken by the system to read data off
disk, parse it, count k-mers, and write the k-mer representation to disk.

The memory reported is the maximum RAM required by the system
while counting k-mers, as given by “/usr/bin/time”. The RAM mentioned
in Table 2 is the average RAM required by the system for 8 and 16 threads.
Both Squeakr and Jellyfish2 require to give as a parameter the number
of distinct k-mers in the dataset. Squeakr needs the number of distinct k-
mers (approximate to next closet power of 2) as an input. Squeakr takes the
approximation of number of distinct k-mers as the number of slots to create
the CQF. We used Mohamadi ez al. (2017) to estimate the number of distinct
k-mers in datasets. As explained in Section 2.2, KMC2 can be bottlenecked
to decompress bzip2 compressed files. Therefore, we compress all the files
to gzip. In our experiments gzip decompression was fast enough and never
looked as a bottleneck.

Query benchmarks. We performed three different benchmarks for
queries. First, we randomly queried for k-mers that we knew existed in
the dataset. Second, we queried for 1.5B uniformly random k-mers (i.e.,
uniformly random 28-mers), most of which are highly unlikely to exist in
the dataset. Third, we performed a de Bruijn graph traversal, walking the
paths in the de Bruijn graph and querying the neighbors of each node. We
have performed the query benchmarks on two different datasets, G. gallus
and M. balbisiana. Also, we excluded Jellyfish2 in the de Bruijn graph
benchmark because Jellyfish2’s random query performance was very slow
for the first two query benchmarks. We note here that this appears to be a
result of the fact that Jellyfish2 uses a sorted, compacted list to represent
the final counts for each k-mer, rather than the hash table that is used during
counting. This helps to minimize on-disk space, but results in logarithmic
random query times.

In the de Bruijn graph traversal benchmark, for each distinct k-mer
in the dataset, we traverse in the graph to find the longest, non-branching
path (the longest path that can be traversed before hitting a fork). That is,
for each k-mer, we take the suffix of length k¥ — 1 and append each of the
four possible bases to generate four new k-mers. Then we perform four
separate queries for these newly generated k-mers in the database. If there
is more than one newly generated k-mer present (i.e., a fork) then we stop.
Otherwise, we continue this process. At the end, we report the total time
taken and the longest path in the de Bruijn graph.

In the inner-product query benchmark, we first count the k-mers from
two datasets and store the k-mer representations on disk. We then compute
the inner-product between the two datasets by querying k-mers from one
dataset in the other dataset. For this benchmark we do not load the whole
representation in memory. Instead we mmap the representation and allow
the kernel to load the respective blocks as we proceed in computing the
inner-product. We excluded KMC2 and Jellyfish2 from the inner-product
query benchmark because both KMC2 and Jellyfish2 do not expose an
API for computing inner-product.

5
dataset KMC2 Squeakr Squeakr-exact Jellyfish2
F vesca 8.3 4.8 9.3 8.3
G. gallus 32.8 13.0 28.8 31.7
M. balbisiana 48.3 11.1 14.2 16.3
H. sapiens 1 71.4 22.1 51.5 61.8
H. sapiens 2 107.4 30.8 60.1 61.8

Table 2. Amount of RAM used by KMC2, Squeakr, and Jellyfish2 for various
datasets for in-memory experiments. RAM is in GB.

For all query benchmarks, we only report the time to query k-mers
in the database. We exclude the time to read k-mers from an input file
or to generate k-mers (for uniformly random query benchmark). Also,
we first load the database completely in memory for all the systems before
performing any queries. In case of KMC2 we load the database in random-
access mode. For the de Bruijn graph traversal queries, we generate k-mers
to traverse the graph on-the-fly. The time reported for the de Bruijn graph
traversal query includes the time to generate these k-mers.

3.2 Memory requirement

Table 2 shows the maximum memory required by KMC2, Squeakr,
Squeakr-exact, and Jellyfish2 for counting k-mers from different datasets.
Squeakr requires the least RAM compared to the other systems. Even for
the human datasets, Squeakr is very frugal in memory usage and completes
the experiment in ~ 30GB of RAM. Across all datasets, Squeakr takes
1.5X—4.3X less RAM than KMC2 (in in-memory mode).

Squeakr-exact takes less RAM than KMC?2 for all (except F. vesca)
datasets and Jellyfish2 for human datasets. For smaller datasets, Squeakr-
exact takes approximately the same amount of RAM as Jellyfish2.

3.3 Counting performance

Figure 2 shows the time taken by different systems to count the k-mers
present in the datasets.

KMC?2 is the fastest k-mer counter across all datasets. Squeakr is the
second fastest k-mer counter. For human datasets, Squeakr is 24%—43%
slower than KMC2. For other datasets, Squeakr is 8%—56% slower than
KMC?2 and 5% faster than KMC?2 for the f.vesca dataset.

Squeakr scales better than KMC2 with an increasing number of threads.
For the M. balbisiana dataset, when going from 4 to 16 threads, KMC2’s
time decreases by 15%, whereas Squeakr’s time decreases by 75%. For G.
gallus dataset, when going from 4 to 16 threads, KMC2’s time decreases
by 54% whereas Squeakr’s time deceases by 79%.

Squeakr-exact is slower than Squeakr for all datasets tested. However,
we find that it is always faster than Jellyfish2.

3.4 Query performance

Random query for existing k-mers. Figure 3a shows the random
query performance for existing k-mers. Squeakris 3.2X—4.9X faster than
KMC?2 for random queries for existing k-mers. Jellyfish2 is the slowest.
This is likely because the on-disk representation used by Jellyfish2 is a
compacted, sorted list, not the hash table used during the counting phase.

Random query for uniformly-random k-mers. Figure 3b shows the
random query performance for uniformly-random k-mers. For uniformly-
random k-mers, Squeakr is 8.9X—10.8X faster than KMC2. Squeakr is
even faster for uniformly-random queries than when querying for existing
k-mers because there is a fast path for non-existing items in the counting
quotient filter. For non-existing items, the counting quotient filter often
returns the result by examining a single bit. Jellyfish2 is the slowest among
the three for uniformly-random k-mer queries.

Both Squeakr and Squeakr-exact have similar query performance, with
Squeakr-exact being slightly slower because the exact version requires a
larger counting quotient filter structure.

“paper” — 2017/3/29 — page 5 — #5

https://doi.org/10.1101/122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122077; this version posted March 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

6 Pandey et al.
1,500 |-] 1,500 - E
3 i
§ 200 1,000 - 1,000 (- B
2 100 500 7k | 500 i
0 T 0 T — 0
16 16
Thread count Thread count Thread count
(a) F. vesca (b) G. gallus (¢) M. balbisiana
| |
~ 4,000 - 6,000 -
2 0o KMC2
§ 4,000 — BE Squeakr
% 2,000 |- . 0 0 Squeakr-exact
E 2,000 N Bo Jellyfish2
= Z
0 0 77
Thread count Thread count
(d) H. sapiens 1 (e) H. sapiens 2
Fig. 2: k-mer counting performance of KMC2, Squeakr, Squeakr-exact, and Jellyfish2 on different datasets. (Lower is better.)
1,500] 1,000]
el Bo KMC2
§ 1,000 + B g8 Squeakr
% 500 7| |88 Squeakr-exact
E 500 - 0o Jellyfish2
H
0 0 m‘::: 2z :m:n‘m:::

M. balbisiana
datasets

G. gallus

(a) Existing query

G. gallus M. balbisiana

datasets

(b) Non-existing query

Fig. 3: Random query performance of KMC2, Squeakr, Squeakr-exact, and Jellyfish2 on two different datasets. (Lower is better.)

We also evaluated the empirical false-positive rate of Squeakr, which
we find to be very close to the theoretical false-positive rate. As
mentioned in Section 3.1, the theoretical false-positive rate is 1/512
ie., 0.001953125. The empirical false-positive rate reported during the
benchmark is 0.0012414.

de Bruijn graph traversal. Table 3 shows the de Bruijn graph traversal
performance of Squeakr and KMC2.

Squeakr being much faster than KMC2 for both type of queries,
existing k-mers and non-existing k-mers, performs 2X—4.3X faster than
KMC2 for de Bruijn graph traversal queries. For the de Bruijn graph
traversal, we perform 4 queries for each k-mer. To continue on the path,
only one out of the four queries should return true. In the whole benchmark,
~ 75% of the queries are false queries.

Table 3 also reports the longest path present in the graph reported by
both the systems. Squeakr, being an approximate k-mer counter has some
false-positives. The length of the longest path reported by Squeakr is off
from the exact answer by only 3 and 5 bases for the G. gallus and M.
balbisiana data sets, respectively.

In the table, we also present the time taken to count k-mers in the
dataset and the total time (i.e., counting time and de Bruijn graph traversal
time). Squeakr is 1.7X—3.9X faster than KMC?2 in terms of total time.

System dataset Max path length Counting time Query time Total time
KMC2 G. gallus 122 266 13921 14187
Squeakr G. gallus 125 412 3192 3604
KMC2 M. balbisiana 123 607 4105 4712
Squeakr M. balbisiana 128 662 1982 2644

Table 3. de Bruijn graph query performance on different datasets. The counting
time is calculated using 16 threads. The query time is calculated using a single
thread. Time is in seconds. We excluded Jellyfish2 from this benchmark because
Jellyfish2 performs slowly compared to KMC2 and Squeakr for both counting
and query (random query and existing k-mer query).

3.5 Inner-product queries

For inner-product queries, we first counted k-mers from two different
datasets, each having ~ 20 Billion k-mer instances and ~ 965 Million
distinct k-mers and stored the databases on disk. We then computed the
inner-product between the two datasets by reading the database from
disk. It took ~ 46 seconds for Squeakr to compute the inner-product
between these two datasets. This suggests that the CQF k-mer multiset
representation provides a fast and efficient way to enumerate and query k-
mers. This feature can be used for large-scale comparison and organization
of sequencing datasets.

KMC2 has an API to perform intersection on two k-mer
representations. We also implemented an APIin the counting quotient filter

“paper” — 2017/3/29 — page 6 — #6

https://doi.org/10.1101/122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

Squeakr

bioRxiv preprint doi: https://doi.org/10.1101/122077; this version posted March 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

for computing intersection on two on-disk counting quotient filters similar
to inner-product. Both KMC2 and Squeakr take similar time (= 200)
seconds to perform intersection on two different datasets used for the
inner-product query benchmark.

4 Conclusion

We argue that the counting quotient filter can serve as a memory-
efficient, fast, and feature-rich representation of k-mer multisets. We
demonstrate these qualities by building a counting quotient filter-based k-
mer counting system, Squeakr. Despite its relatively straightforward use of
an off-the-shelf data structure, Squeakr offers great counting performance
and exceptional query performance.

Squeakr is much more space efficient than other k-mer-counting
solutions (even when representing the k-mer multiset exactly), and scales
with multiple threads. Squeakr’s k-mer representation can be further used
to store and traverse the weighted de Bruijn graph over the k-mers with
high query throughput, an order-of-magnitude faster than other systems
like KMC?2 and Jellyfish2. Furthermore, Squeakr is dynamic, since k-mers
can be added or removed, and their counts can be updated.

We believe that these properties make Squeakr’s k-mer representation
a strong candidate for many downstream analysis tasks. For example,
the fast query performance and ability to accurately record k-mer counts
makes the counting quotient filter an enticing candidate atop which to build
a de Bruijn graph-based transcriptome assembler. We anticipate that, with
some domain specific optimizations, Squeakr’s counting quotient filter can
be made even more memory efficient and can be used to efficiently store
an exact weighted de Bruijn graph.

5 Acknowledgments

We gratefully acknowledge support from NSF grants BBSRC-
NSF/BIO-1564917, 11S-1247726, 1IS-1251137, CNS-1408695, CCF-
1439084, and CCF-1617618, and from Sandia National Laboratories.

References

Appleby, A. (2016). Murmurhash. https://sites.google.com/site/
murmurhash/. [Online; accessed 19-July-2016].

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S.,
Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., et al. (2012). SPAdes:
a new genome assembly algorithm and its applications to single-cell sequencing.
Journal of Computational Biology, 19(5), 455-477.

Bender, M. A., Farach-Colton, M., Johnson, R., Kaner, R., Kuszmaul, B. C.,
Medjedovic, D., Montes, P., Shetty, P., Spillane, R. P., and Zadok, E. (2012). Don’t
thrash: How to cache your hash on flash. Proceedings of the VLDB Endowment,
5(11).

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy,
A. M. (2015). Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nature biotechnology, 33(6), 623-630.

Bloom, B. H. (1970). Spacetime trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7), 422-426.

Boost (2014). Boost lockfree queue. http://www.boost.org/doc/libs/
1_59_0/doc/html/lockfree.html. [Online; accessed 19-July-2014].
Brown, C. T., Howe, A., Zhang, Q., Pyrkosz, A. B., and Brom, T. H. (2012). A
reference-free algorithm for computational normalization of shotgun sequencing

data. arXiv preprint arXiv:1203.4802.

Carvalho, A. B., Dupim, E., and Goldstein, G. (2016). Improved assembly of noisy
long reads by k-mer validation. Genome Research.

Chikhi, R. and Rizk, G. (2013). Space-efficient and exact de Bruijn graph
representation based on a Bloom filter. Algorithms for Molecular Biology, 8(1), 1.

Cormode, G. and Muthukrishnan, S. (2005). An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1), 58-75.

Danek, A. (2016). Kmc2 github. https://github.com/refresh-bio/
KMC. [Online; accessed 29-Apr-2016].

Deorowicz, S., Kokot, M., Grabowski, S., and Debudaj-Grabysz, A. (2015). Kmc 2:
Fast and resource-frugal k-mer counting. Bioinformatics, 31(10), 1569-1576.

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit,
I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al. (2011). Full-length

transcriptome assembly from RNA-Seq data without a reference genome. Nature
biotechnology, 29(7), 644—-652.

Heo, Y., Wu, X.-L., Chen, D., Ma, J., and Hwu, W.-M. (2014). BLESS:
bloom filter-based error correction solution for high-throughput sequencing reads.
Bioinformatics, page btu030.

Koren, S., Walenz, B. P,, Berlin, K., Miller, J. R., and Phillippy, A. M. (2016). Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. bioRxiv, page 071282.

Li, H. (2016). Inthash. https://gist.github.com/1h3/
974ced188be2£90422cc. [Online; accessed 19-July-2016].

Liu, Y., Schréder, J., and Schmidt, B. (2013). Musket: a multistage k-mer spectrum-
based error corrector for illumina sequence data. Bioinformatics, 29(3), 308-315.

Margais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics, 27(6), 764-770.

Melsted, P. and Pritchard, J. K. (2011). Efficient counting of k-mers in DNA
sequences using a bloom filter. BMC bioinformatics, 12(1), 1.

Mohamadi, H., Khan, H., and Birol, I. (2017). ntcard: A streaming algorithm for
cardinality estimation in genomics data. Bioinformatics, page btw832.

Murray, K. D., Webers, C., Ong, C. S., Borevitz, J. O., and Warthmann, N. (2016).
kwip: The k-mer weighted inner product, a de novo estimator of genetic similarity.
bioRxiv.

Ounit, R., Wanamaker, S., Close, T. J.,, and Lonardi, S. (2015). Clark:
fast and accurate classification of metagenomic and genomic sequences using
discriminative k-mers. BMC genomics, 16(1), 1.

Pandey, P, Bender, M. A., and Johnson, R. (2016). Counting quotient
filter. http://www3.cs.stonybrook.edu/~rp/tech_reports/
sbcstr-c6f£764£dd8£9d2b5eal3b31972a787bc/report . pdf.
[Online; accessed 29-Apr-2016].

Patro, R., Mount, S. M., and Kingsford, C. (2014). Sailfish enables alignment-free
isoform quantification from RNA-Seq reads using lightweight algorithms. Nature
biotechnology, 32(5), 462-464.

Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J. M., and Brown,
C.T. (2012). Scaling metagenome sequence assembly with probabilistic de Bruijn
graphs. Proceedings of the National Academy of Sciences, 109(33), 13272-13277.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An Eulerian path approach
to DNA fragment assembly. Proceedings of the National Academy of Sciences,
98(17), 9748-9753.

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer counting with very low
memory usage. Bioinformatics, page btt020.

Roberts, M., Hayes, W., Hunt, B.R., Mount, S. M., and Yorke, J. A. (2004). Reducing
storage requirements for biological sequence comparison. Bioinformatics, 20(18),
3363-3369.

Roy, R. S., Bhattacharya, D., and Schliep, A. (2014). Turtle: Identifying frequent
k-mers with cache-efficient algorithms. Bioinformatics, page btul32.

Salmela, L. and Rivals, E. (2014). LoRDEC: accurate and efficient long read error
correction. Bioinformatics, page btu538.

Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2016). Accurate selfcorrection
of errors in long reads using de Bruijn graphs. Bioinformatics, page btw321.

Schulz, M. H., Zerbino, D. R., Vingron, M., and Birney, E. (2012). Oases:
robust de novo RNA-Seq assembly across the dynamic range of expression levels.
Bioinformatics, 28(8), 1086-1092.

Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., and Birol, I.
(2009). Abyss: a parallel assembler for short read sequence data. Genome research,
19(6), 1117-1123.

Solomon, B. and Kingsford, C. (2016). Fast search of thousands of short-read
sequencing experiments. Nature Biotechnology.

Song, L., Florea, L., and Langmead, B. (2014). Lighter: fast and memory-efficient
sequencing error correction without counting. Genome biology, 15(11), 1.

Vinga, S. and Almeida, J. (2003). Alignment-free sequence comparisonik.”a review.
Bioinformatics, 19(4), 513-523.

Wood, D. E. and Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome biology, 15(3), 1.

Zerbino, D. R. and Birney, E. (2008). Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome research, 18(5), 821-829.

Zhang, Q., Pell, J., Canino-Koning, R., Howe, A. C., and Brown, C. T. (2014). These
are not the k-mers you are looking for: efficient online k-mer counting using a
probabilistic data structure. PloS one, 9(7), e101271.

Zhang, Z. and Wang, W. (2014). RNA-Skim: a rapid method for RNA-Seq
quantification at transcript level. Bioinformatics, 30(12), i283-i292.

“paper” — 2017/3/29 — page 7 — #7

https://doi.org/10.1101/122077
http://creativecommons.org/licenses/by-nc-nd/4.0/

