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Abstract

Model simulations indicate that the response of growing cell populations on mechanical
stress follows the same functional relationship and is predictable over different cell lines
and growth conditions despite the response curves look largely different. We develop a
hybrid model strategy in which cells are represented by coarse-grained individual units
calibrated with a high resolution cell model and parameterized measurable biophysical
and cell-biological parameters. Cell cycle progression in our model is controlled by
volumetric strain, the latter being derived from a bio-mechanical relation between
applied pressure and cell compressibility. After parameter calibration from experiments
with mouse colon carcinoma cells growing against the resistance of an elastic alginate
capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii)
in different experimental conditions where the mechanical stress is generated by osmosis
via a high molecular weight dextran solution, and iii) for other cell types with varying
doubling times. Our model simulation results suggest that the growth response of cell
population upon externally applied mechanical stress is the same, as it can be
quantitatively predicted using the same growth progression function.

Author summary

The effect of mechanical resistance on the growth of tumor cells remains today largely
unquantified. We studied data from two different experimental setups that monitor the
growth of tumor cells under mechanical compression. The existing data in the first
experiment examined growing CT26 cells in an elastic permeable capsule. In the second
experiment, growth of tumor cells under osmotic stress of the same cell line as well as
other cell lines were studied. We have developed and agent-based model with
measurable biophysical and cell-biological parameters that can simulate both
experiments. Cell cycle progression in our model is a Hill function of cell volumetric
strain, derived from a bio-mechanical relation between applied pressure and cell
compressibility. After calibration of the model parameters within the data of the first
experiment, we are able predict the growth rates in the second experiment. We show
that that the growth response of cell populations upon externally applied mechanical
stress in the two different experiments and over different cell lines can be predicted
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using the same growth progression function once the growth kinetics of the cell lines in
abscence of mechanical stress is known.
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1 Introduction 1

Mechanotransduction is the mechanism by which cells transform an external mechanical 2

stimulus into internal signals. It emerges in many cellular processes, such as embryonic 3

development and tumor growth [1]. Cell growth in a confined environment such as 4

provided by the stroma and surrounding tissues increases cell density and affects the 5

balance between cell proliferation and death in tissue homeostasis [2, 3]. Tumor 6

spheroids have long been considered as appropriate in vitro models for tumors [4]. 7

While the dynamics of freely growing spheroids has been extensively studied both 8

experimentally [5] and numerically (e.g. [6, 7]), more recent experiments have also 9

addressed the growth of spheroids under mechanical stress. 10

Helmlinger et al. (1997) and later Cheng et al. (2009) and Mills et al. (2014) [8–10] 11

experimentally investigated the growth of spheroids embedded in agarose gel pads at 12

varying agarose concentration as a tunable parameter for the stiffness of the 13

surrounding medium. Other approaches such as the application of an osmotic pressure 14

determined by a dextran polymer solution have also been developed to investigate the 15

impact of external pressure on spheroid growth [11]. In all cases mechanical stress was 16

reported to slow down or inhibit spheroid growth. Delarue et al. [12] suggested that 17

growth stagnation is related to a volume decrease of the cells. However, a quantitative 18

relation between pressure and cell fate is not reached yet. The works of Helmlinger et 19

al. [8] and their follow-ups have inspired a number of theoretical papers aiming at 20

explaining the observations, either based on continuum approaches considering locally 21

averaged variables (e.g. for density and momentum, for overview see [13]) [3, 14–17], or 22

by agent-based models (ABMs) representing each individual cell [18, 19] belonging to 23

the class of models, which are extended and refined in the presented work. For example, 24

the growth kinetics of multicellular spheroids (MCS) embedded in agarose gel as 25

observed by Helmlinger et al. [8] could be largely reproduced, if cell cycle progression 26

was assumed to be inhibited either above a certain threshold pressure or below a certain 27

threshold distance between the cell centers, whereby growth inhibition occurred at 28

different spheroid sizes for different densities of extracellular material [18]. However, the 29

model developed in that reference has no notion of cell shape, hence does not permit 30

definition of cell volume, thus pressure and compression cannot be physically correctly 31

related [20]. 32

Here, we first establish a computational model to quantitatively explain the growth 33

kinetics and patterns found for CT26 (mouse colon carcinoma cell line) multi-cellular 34

spheroids constrained by a spherical elastic capsule, partially based on data previously 35

published [21] and partially based on new data introduced below. This novel 36

experimental technique, called the “cellular capsule technology” [21] allows to measure 37

the average pressure exerted by the cell aggregate onto the calibrated capsule by 38

monitoring the radial expansion of the shell once confluence is reached. Pressure can be 39

recorded over periods as long as a week and the histological data collected and analyzed 40

on fixed and sliced spheroids can provide snapshots of the spatial multicellular pattern. 41

We refer to this experimental technique as ”Experiment I”. The thickness, and thus 42

the stiffness of the capsule, was varied to mimic different mechanical resistance 43

conditions. 44

Delarue et al. (2014) [12] investigated the effect of mechanical stress on MCS growth 45

using the same cell line in a different experimental setting. We exploit these results to 46

challenge our model and determine whether the same computational model designed to 47

match experiment I is capable to quantitatively explain also this experiment (referred to 48

as ”experiment II”). In experiment II, mechanical compression was imposed using the 49

osmotic effects induced by a dextran solution. The main difference between those two 50

experiments is that whereas the pressure gradually increases with increasing 51

deformation of the elastic capsule in experiment I, in experiment II a constant stress is 52
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Fig 1. Summary of key experimental and simulation results. (A)Two experiments
setups for growing spheroids considered in this study. In experiment I, the spheroid is in
mechanical contact with a capsule, and the mechanical resistance is determined by the
wall thickness H. In experiment II, the spheroid is immersed in a dextran polymer
solution, and the mechanical resistance originates from the osmotic pressure related to
the dextran concentration. (B) Radial growth curves data of the spheroids in units of
R0 (= 100µm), for experiment I and II and respective model runs. The blue full circles
are the free growth data for CT26, from [21]. The thin blue line indicates theoretical
pure exponential growth with doubling time of 17h. The data starts deviating from an
exponential after 2 days. The other lines are simulation results. The black dashed line
indicates the optimal parameter set for the stress response in experiment I, performed
with final model I. The full black line indicates the same model run for free growth in
Exp.I. After re-calibration of one model parameter in model I for the Exp.II conditions
in absence of dextran (full red line), the model (referred to as model II to stress the
change of the parameter) predicts the stress response in experiment II (red dashed line).
(C) Simulation snapshots of both experiments. The cells are colored according to their
volume (cells at the border are larger than in the interior). (D-G) Model simulations
for Exp.II for the cell lines BC52, AB6, FHI and HT29, respectively. Full red lines
represent the same initial calibration procedure, while red dashed lines represent the
predicted stress conditions. The stress conditions are p = 5 kPa for AB6, FHI and BC52,
and p = 10 kPa for HT29 (see section Validation of model for experiment II: other cell
lines).
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applied due to osmotic forces in the absence of any obstructing tissue (see Figure 1A). 53

In this paper, we aim to decipher and quantify certain mechanisms of spheroid 54

growth altered by mechanical stress. At this stage, we establish a robust computational 55

approach that can be applied to various systems (cell lines and experimental 56

procedures) and that allows to recapitulate the growth dynamics and the observed 57

cellular patterns. We will show that this can be reached with a minimal number of 58

hypotheses without having to explicitly integrate specific molecular pathways. Gaining 59

insight in the molecular mechanisms would require additional challenging experiments 60

in which the pathways are selectively inhibited or enhanced in a three-dimensional 61

environment, and would add further parameters to the model. To the best of our 62

knowledge, a specific mechanotransduction molecular pathway has been highlighted 63

once, demonstrating the impact of cell volume change on the expression of the 64

proliferation inhibitor p27Kip1 [12]. 65

As modeling technique we here developed an agent-based model. Simulations with 66

ABMs provide a computer experiment representing an idealized version of the true 67

wet-lab experiment [74]. ABMs naturally permit accounting for cell to cell variability 68

and inhomogeneities on small spatial scales as they represent each cell individually. 69

Center-Based Models (CBM) are a prominent representative in the class of ABMs in 70

which forces between cells are calculated as forces between their centers. Center-based 71

models for multicellular systems were derived from conceptual anologies to collodial 72

particle dynamics by re-interpretation of parameters and addition of growth and 73

division processes [48, 72]. The model developed here is fully parameterized in terms of 74

physical parameters, which makes each component possible to validate. However, it 75

circumvents difficulties that standard center-based models have at large compression 76

(see [20]) establishing a hybrid modeling strategy to compute the mechanical interaction 77

forces by so-called 3D Deformable Cell Models (DCMs) [67,75]. A DCM displays cell 78

shape explicitly at the expense of high computational cost (see Figure 3). In our hybrid 79

strategy the parameters of the CBM that considers the cell shape only in a statistical, 80

“coarse grained” sense thereby permitting simulations of large cell population sizes, are 81

pre-calibrated from a finer scale DCM. This strategy permits to combine the advantages 82

of the DCM with the short simulation time of the CBM. Both CBM and DCM are 83

parameterized by measurable quantities to identify the possible parameter range of each 84

model parameter and avoid non-physiological parameter choices. 85

We studied the series of experimental settings in the works [21] and [12] as both 86

utilize a common cell line, and exert stress on growing MCS of that cell line in different 87

experimental settings. The model is then further tested with experiments on other cell 88

lines as provided in the second work. 89

To unravel the dynamics of MCS subject to external mechanical stress, our modeling 90

strategy is to postulate and implement hypotheses on cell growth, quiescence and death, 91

and iteratively adapt or extend them in case the model simulations are falsified by 92

comparison with the experimental data. Pursuing a similar strategy enabled us to 93

obtain predictions of subsequently validated mechanisms in liver regeneration [22,23]. 94

Based upon analysis of the relation between pressure, cell density and cell 95

compressibility in the two different experiments, our findings suggest that contact 96

inhibition can be regarded as a robust continuous process imposed by a reduction of cell 97

volume as a consequence of increasing pressure and individual cell compressibility. In 98

addition, the high-resolution model shows that potential effects of micro-mechanics at 99

the interface with the capsule may depend on the mechanical properties of the cells. 100

For the sake of clarity, we below start to first present the minimal model that was 101

able to explain the data, before discussing in which ways simpler models with other 102

hypotheses failed. 103
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Results 104

Experimental observations 105

Experiment I: Following microfluidics-assisted encapsulation of CT26 cells into alginate 106

hollow capsules, the growing aggregates of cells were monitored by phase contrast 107

microscopy (see [21] for details). After the tumor cells reached the inner border of the 108

elastic alginate capsule corresponding to a radius of about 100µm (t = 0d in Figure 1B), 109

they were observed to further induce a dilatation of the capsule, which is an indicator of 110

the exerted pressure. The capsule expansion was measured from the point of confluence 111

over several days, while histological data of the spheroids were collected at the stage of 112

confluence and at 48h past confluence. Capsules have been designed to generate shells 113

with two different thicknesses. The thin ones (H/R0 ≈ 0.08; H = 8µm) are the softer 114

while the thick ones (H/R0 ≈ 0.25; H = 30µm) will mimic a larger mechanical 115

resistance against growth. Besides the data extracted from [21], we have also exploited 116

and analyzed unpublished data corresponding to new sets of experiments in order to 117

critically test the reliability of the method (see Figure 4A). We extract four main 118

observations from these experiments: 119

(EI.OI) In the absence of a capsule, an initial exponential growth stage was 120

observed with doubling time Tcyc = 17h [21]. The growth kinetics however starts to 121

deviate from exponential growth for spheroid size (R ≈ 175µm, see Figure 1B). 122

(EI.OII) In the presence of a capsule, the exponential growth is maintained until 123

confluence, i.e. (R = R0 ≈ 100µm), which shows that the capsule is permeable to 124

nutrients and allows normal growth. Once confluence is passed, the time evolution of 125

the capsule radius exhibits two regimes: i) an initial “fast” growth stage T1 (t < 1day), 126

crossing over to ii) a ”slow“ quasi-linear residual growth stage T2 (t > 1 day) that at 127

least persists as long as the capsules are monitored, i.e. up to one week. The transition 128

happens roughly at a pressure of ∼ 1.5 kPa, see Figure 4C. The observed long-time 129

growth velocities were ∼ 2µm/day for the thin capsules (Figure 4A) and 0.7µm/d for 130

the thick capsules (Figure 5). 131

(EI.OIII) The nuclei density, obtained from cryosections, increases from ∼ 1 132

nucleus / 100µm2 before confinement, to roughly 2 nuclei / 100µm2 after confluence, 133

with a relatively higher number near the center of the spheroid (1.2 times more 134

compared to the outer regions), and a local increase at the border of the capsule. The 135

distribution and shape of cell nuclei reported in [21] suggests that cells near the capsule 136

border are deformed thus deviating from a spherical shape cells adopt in isolation, while 137

those in the interior look spherically shaped. 138

(EI.OIV) Most of the cells in the core of the spheroid are necrotic after 48h of 139

confinement, while the cells located in a peripheral viable rim of roughly two cell layers 140

thickness (λI ≈ 20µm), show viability and proliferative activity during the whole time 141

course of the experiment, including period T2. 142

Experiment II: in the work of Delarue et al. (2014) [12], CT26 spheroids (initial 143

radius ∼ 100µm) were grown in a dextran polymer solution. To recover osmotic 144

balance, water expulsion out of the spheroid generates osmotic forces exerted to the 145

outer cells that are transferred as compressive stresses to the interior (bulk) cells. The 146

concentration of dextran regulates the applied pressure. 147

(EII.OI) The growth rate at p = 5 kPa is significantly lower than in control 148

spheroids where no pressure is exerted. 149

(EII.OII) The spheroid free growth data does not show an initial exponential phase 150

found in (EI.OI) (Figure 1B). This surprising discrepancy might result from the 151

different culture conditions between both experiments. In experiment I, the medium has 152

repeatedly been refreshed [21], while in experiment II this has not been done so often 153

(private communication), leading to lower concentrations of nutrients and other 154
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molecular factors in experiment II. During the whole course of osmotic stress 155

application, an over-expression of the kinase inhibitor p27Kip1 together with an 156

increased number of cells arrested in the G1 phase was observed, but no significant 157

change in apoptosis rates after 3 days was reported. 158

(EII.OIII) Delarue et al. (2014) also considered the stress response for other cell 159

lines (AB6, HT29, BC52, FHI) performing steps EII.OI and EII.OII for each cell line. 160

These data will be used to validate our model despite less information concerning cell 161

size and cycling times is available for these cell lines. 162

Hypotheses for growth and death of tumor cells 163

As a first step we proposed a number of hypotheses for the growth dynamics common to 164

experiments I and II. 165

(H.I) In both experiments a linear growth phase was observed after exposing the 166

MCS to external stress. The growth of the cell population that is not constrained by 167

either mechanically-induced growth inhibition, nutrient, oxygen or growth factor 168

limitations is exponential [4]. We assumed that deviation of growth from an exponential 169

indicates limitation of proliferation to a proliferating rim. This may have different 170

reasons, for example necrosis that has been only reported for experiment I (EI.OIV), or 171

of cells being quiescent. Both necrosis and quiescence can result from a lack of 172

nutriments or other factors [6, 24], that may indirectly be promoted by pressure, e.g. in 173

case the compression of the cell layer squeezed between the capsule shell and the inner 174

cell layers leads to the formation of an obstructive barrier for some nutriments (as 175

glucose) to the cells located more deeply in the interior of the tumor. However, cell 176

quiescence or cell death may also be a direct consequence of mechanical pressure, e.g. if 177

cells subject to compression cannot advance in cell cycle for too long and then undergo 178

apoptosis [6, 24]. We do not specify the origin the proliferating rim here, we take it into 179

account through the definition of a thickness λk (k = I, II is the experiment index). In 180

Exp. I, λI distinguishes the necrotic cells from proliferating ones, in Exp.II, λII 181

separates the quiescent from the proliferating ones. Necrotic cells as observed in 182

experiment I can undergo lysis, in which they steadily lose a part of their fluid mass. 183

The decrease of mass is limited to about 70%− 90% of the total initial mass of the 184

cell [25, 26]. 185

(H.II) Cell growth rate may be declined or inhibited by pressure [8]. The authors of 186

a recent study [12] hypothesized that the growth rate may be down-regulated if the cell 187

volume is reduced as a consequence of pressure. We here test the hypothesis that 188

growth rate is dependent on the volumetric strain (“true strain”, commonly used in case 189

of large strains), 190

εV = − log(V/Vref ), (1)

where V is the actual compressed volume and Vref is the volume of the cell in free 191

suspension. The volumetric strain can be related with the pressure by integration of the 192

relation dp = −KdεV . K is the compression modulus of the cell and depends on the 193

actual volume fraction of water, and the elastic response of the cytoskeleton structure 194

and organelles. It may also be influenced by the permeability of the plasma membrane 195

for water, the presence of caveolae [27], and active cellular responses. As such, the 196

timescale at which K is measured is important. 197

In our simulations, we regarded K as the long timescale modulus of cell, as growth 198

and divisions are slow processes. We studied constant and a volume-dependent 199

compression moduli (the calculation of growth, volume and pressure for each cell in the 200

model is explained in the Methods section Cell growth, mitosis, and lysis, Equation 8). 201

On the molecular level, volume reduction correlates with over expression of p27Kip1 202

which progressively decreases the proliferating potential. Other molecular players such 203
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as the transcriptional regulators YAP/TAZ were also reported to be 204

mechano-sensitive [28]. In the scope of the present work, these reports suggest that 205

quiescence, and perhaps also apoptosis, may be controlled by either pressure or cell 206

volume. Experimental studies [29–32] mainly measured the growth rate of dry mass or 207

size. These indicate that the growth rate α varies within the cell-cycle, yet a unique 208

relationship is difficult to infer. 209

We propose as general form for growth rate α the Hill formula: 210

α = α0

εnVtr

εnV + εnVtr

, (2)

where α0 is the growth rate of the unconstrained cell, εVtr
is a threshold value1, and n is 211

an integer. The parameter εVtr
is the value where the cells have lost 50% of their initial 212

growth rate. Note that for εVtr
→∞ we retrieve a constant growth scenario, whereas 213

increasing n from 1 to ∞ modifies the curve from a linear-like decrease to a sharp 214

pressure threshold (see Figure 2A). The use of a Hill function thus makes a variety of 215

growth scenarios possible. Hill formulas have been used in the past to simulate contact 216

inhibition in epithelial tissue and tumors [17,33,34]. We discuss the generality of this 217

approach in the Discussion section. 218

(H.III) It is generally accepted that cells who have passed the G1 checkpoint (also 219

known as restriction point) are committed to divide, else they go into quiescence (G0). 220

In our model we assume this checkpoint is situated after 1/4 of the total cell cycle 221

time [35]. The transition criterion to the quiescence state can be defined as the one at 222

which the growth rate ”stalls”, i.e. α/α0 < αqui (see Figure 2A). 223

”Sizer versus Timer”: According to hypothesis H.II growth rate depends on the 224

compression of the cells, hence the volume doubling time can locally vary and is larger 225

than for uncompressed cells. Limiting cases would be that division occurred after 226

volume doubling at a variable time [6] (”sizer”), or after a pre-defined time (”timer”) 227

often mentioned in developmental biology [36]. We therefore also compared the effect of 228

constant time vs. doubling of volume criterion in cell division on the cell population 229

behavior. Also mentioned in H.II, the unconstrained growth rate α0 itself may vary 230

during the cell cycle. To study the potential effect of these variations we performed 231

comparative runs considering constant growth rate as well as exponential growth rate 232

during the cell cycle (details in section Cell growth, mitosis, and lysis). 233

Establishment of the Agent-Based Model and its 234

parameterization 235

For the model development and parameterization we pursued a multi-step strategy 236

sketched in Figure 3 (see also Table 1 and 2). The model parameters for the ”model I” 237

to mimic experiment I, {PM1}, and ”model II” to mimic experiment II, {PM2}, were 238

step-wise calibrated from experiments I and II, and in each case first for growth in 239

absence of external mechanical stress on the growing population, then in presence of 240

stress. They can be categorized by separating between cell line-specific parameters 241

{PC=j}, where j ∈ {CT26, AB6, HT29, BC52, FHI}, determines the cell line, and 242

experiment-specific parameters {PExp=k} with k = I, II characterizing the experimental 243

setting. The simulations were performed with a center-based model (CBM). As the 244

model is parameterized by measurable physical and bio-kinetic parameters, parameter 245

ranges could readily be determined within narrow limits (Table 2, [22] ). 246

First {PM1} was identified in three steps (1)-(3) (Table 1). 247

(1) As the ”standard” CBMs are inaccurate in case of high compression [20], the 248

cell-cell interaction force in the CBM in this work was calibrated using computer 249

1We assume V/Vref ≤ 1 in the experiment meaning the cells are always in a compressive state
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Fig 2. (A) Plot of Hill growth rate function as function of the volumetric strain
εV = εV (p), for n = 1, 2 and a large value of n, and for a constant growth scenario (
εVtr →∞). Plot of a linear growth rate function with εVtr such that α/α0 = 1/2. Below
the pink zone indicated by αqui cells become quiescent and growth stalls. (B)
simulation snapshots of a CT26 spheroid during the initial free growth, just before
confinement (coloring according to cell radius), and at 48h of confinement in capsule
(coloring here indicates necrotic cells (dark) and viable cells (white)) .

simulations with a deformable cell model (DCM), resulting in an effective stiffness Ẽi in 250

the CBM at high compression, that increases with increasing compression, see Methods 251

section Calibration of the CBM contact forces using DCM. Ẽi belongs to {PC=CT26} 252

of the CBM. The DCM could not be directly used for the growth simulations, as it is 253

computationally too expensive to run simulations up to the experimentally observed cell 254

population sizes of ∼ 104 cells. Next, the experimental information was taken into 255

account (Figure 3). 256

(2) Comparing simulations of the CBM with the data from the stress-free growth 257

control experiment of multicellular CT26 spheroids (MCS) in experiment I permits 258

determining those parameters of {PC=CT26} that were are unaffected by the presence of 259

the elastic capsule (Table 2), see Methods section Model setup and parameter 260

determination. 261

(3) Adding a thin elastic capsule specifies the set of experimental parameters 262

{PExp=1} (Young modulus, Poisson ratio and thickness of the capsule etc.), and 263

permits identifying those cell line specific parameters that respond on the presence of 264

the capsule. 265

In experiment I these are the parameters characterizing cell cycle entrance and cell 266
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growth (2). Finally, model I is characterized by the conjunction of the cell-specific and 267

the experiment-specific parameter sets {PM1} = {PC=CT26} ∪ {PExp=1}. 268

Replacing the thin by a thick capsule in the simulations by changing the 269

experimentally determined thickness parameter for the thin capsule in {PExp=1} by 270

that for the thick capsule leads to a predicted simulated growth dynamics that matches 271

well with the one experimental data without any additional fit parameters (Figure 5B). 272

Experiment II has been performed with CT26, AB6, HT29, BC52, FHI cells. For 273

CT26 cells, the cell-line specific parameter set remains the same in experiment II as in 274

experiment I. Different from experiment I, stress-free growth in experiment II is not 275

exponential but linear, reflecting different growth conditions that limit cell proliferating 276

to a proliferating rim. This determines the proliferating rim size λII as the 277

experimental parameter of set {PExp=2} that summarizes the impact of growth medium 278

under the conditions of experiment II in stress-free growth. In presence of dextran, 279

{PExp=2} is expanded by only the measured pressure exerted by dextran, which as it is 280

experimentally determined, is no fit parameter (λII remains unchanged). With the 281

parameter set {PM2} = {PC=CT26} ∪ {PExp=2}, the simulation model predicts a 282

growth dynamics that quantitatively agrees with the one experimentally found 283

indicating that the growth response only depends on the exerted pressure, not on any 284

other parameter (Figure 1B). 285

In a last step, the stress response of the other cell lines, 286

j = {AB6, HT29, BC52, FHI} have been modeled for the experimental setting of 287

experiment II, again in two steps (Figure 1D-G). The first step was to adjust the cell 288

cycle time Tcyc of the cell line to fit the stress-free growth leading to replacement of that 289

one parameter in passing from {PC=CT26} to {PC=j}, the second was predicting the 290

growth subject to dextran-mediated stress without any parameter fitting i.e., using 291

{PExp=2} for the experimental parameters. 292

Summarizing, almost the entire parameter determination is done by adjusting the 293

model parameters to experiment I for a thin capsule. After this step there is only one fit 294

parameter for each cell line, summarizing the cell-line specific effect of growth 295

conditions of experiment II for the stress-free growth (i.e., the control experiment). The 296

step to simulate population growth subject to external stress, both in the thick capsule 297

for CT26 as well as in experiment II with dextran for the cell lines CT26, AB6, HT29, 298

BC52 and FHI is performed without parameter fitting. 299

Parameter set symbol unit value ref
Cortex Young’s modulus Ecor Pa 2400 [37]
Cortex thickness hcor µm 0.1 [37]
Cell compressibility K kPa [2.5, 10] CS, [12,37–39]

Table 1. Nominal physical parameter values for the DCM to calibrate the CBM.
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Fig 3. Model calibration overview. Simulations were performed with a center-based
model (CBM). In step 1, the contact forces in CBM were calibrated from DCM
simulations with parameters (Ecor, hcor, K), yielding a variable effective contact
stiffness Ẽ of the CBM depending on the compression level. In step 2 the parameters
{PC=CT26} of the CBM for cell line CT26 were determined. Comparing simulations of
the CBM with stress-free growth of multicellular CT26 spheroids in experiment I
determines most parameters of {PC=CT26} (Figure 1B, full black line ). step 3: those
cell-line parameters that are affected by the capsule, are specified by comparison with
the data from experiment I in presence of the thin capsule. The set of
experiment-specific parameters {PExp=1} (Young modulus and thickness of the capsule)
are given by the experimental setting. For the so specified complete set of parameters
the simulation reproduces the experimental data I for the thin capsule (Figure 1B,
dashed black line), and, after replacement of the capsule thickness, predicts the
experimental data for the thick capsule (Figure 5B). For CT26 cells growing in
experiment setting II the cell parameters remain unchanged {PC=CT26}. The deviation
of the growth dynamics of stress-free growth from an exponential in experiment II
(Figure 1B, full red line) is taken into account by an experiment-specific parameter,
namely the proliferative rim . Without any further fit parameter, the model then
predicts the correct growth dynamics subject to dextran-mediated stress (Figure 1B,
dashed red line). In order to predict the stress-affected growth kinetics of the cell lines
j = {CT26, AB6, HT29, BC52, FHI}, their cell cycle duration is modified to capture
the stress-free growth analogously to that of CT26 cells in experimental setting II
(Figure 1D-G, full red lines). After determining the parameters, the growth kinetics of
these cell lines subject to stress could be predicted (Figure 1D-G, dashed red lines).
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Parameter set symbol unit value ref

PC,CT26

Mean cell cycle time (*) Tcyc hours 17 CS, [21]
Mean cell radius Ri µm 7 Observation [21]
Cell Young’s modulus (*) E Pa 450 [6]
Cell compressibility (*) K kPa 2.5− 10 CS, [12,37–39]
Cell motility D m2/s 10−16 CS, [18]
Cell Adhesion energy W J/m2 10−4 CS, [6]
Cell-cell friction || γcc,|| Ns/m3 5× 1010 CS, [40,41]
Cell-cell friction, ⊥ γcc,⊥ Ns/m3 5× 1010 CS, [40,41]
Cell-ECM friction, γECM Ns/m3 5× 108 CS, [40]
Cell relaxation time Trel hours 2 [42,43]

Cell effective stiffness Ẽ Pa 450− 106 CS
Stall growth rate αqui - 0.3 CS
Hill exponent n - 1− 2 CS
Hill threshold (*) εVtr - 0.35 CS
Cell lysis time (*) Tlys days 6 CS, [26]
Cell solid mass fraction φ - 0.1− 0.3 [25,26]

PEXPI
Cell-capsule friction γc,cap Ns/m3 2× 1010 CS
Pressure threshold bulk (necrosis) (*) pth kPa 1.5 CS, [21]
Rim thickness (necrosis) λI µm 20 Observation [21]
Capsule Young modulus Ecap kPa 68 Observation [21]
Capsule Poisson ratio νcap - 0.5 Observation [21]
Capsule Radius Rin µm 100 Observation [21]
Capsule Thickness (thin/thick) H µm 8/30 Observation [21]

PEXPII
Rim thickness (quiescence) λII µm 30 CS
Pressure threshold bulk (necrosis) (*) pth kPa − Not observed [12]

PC,AB6 := PC,CT26

Mean cell cycle time (*) Tcyc hours 12 CS
PC,HT29 := PC,CT26

Mean cell cycle time (*) Tcyc hours 30 CS
PC,BC52 := PC,CT26

Mean cell cycle time (*) Tcyc hours 31 CS
PC,FHI := PC,CT26

Mean cell cycle time (*) Tcyc hours 20 CS

Table 2. Reference physical parameter values for the model. CS indicates a model
choice. If CS shows up with references next to it, the value was chosen from the
parameter range in the references. A reference only means the value is fixed from
literature. An (*) denotes parameter variability meaning that the individual cell
parameters are picked from a Gaussian distribution with ±10% on their mean value.
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Model for experiment I with thin capsule 300

Calibration step: 301

Growth without external stress: First, we simulated CT26 cells growing freely 302

in the liquid suspension ((EI.OI), Figure 3) for the parameters, see Table 2). In this 303

situation, CT26 cells grew approximately exponentially indicating absence of growth 304

inhibition. For the simulation we needed to specify a subset of parameter set 305

{PC=CT26}, namely the division time Tcyc, cell radius R, cell Young modulus E and cell 306

compressibility K, characteristic lysis time Tlys, the diffusion constant D of the cell as it 307

specifies the micro-motility, the perpendicular and tangential cell-cell friction coefficients 308

γcc,‖ and γcc,⊥, the cell-ECM (extra-cellular matrix) friction coefficient γECM , the cell 309

relaxation time Trel, and the growth rate of the cell not subject to mechanical stress α0. 310

For each of these parameters, either estimates from experiment I or literature estimates 311

exist (see Methods section Model setup and parameter determination and Table 2). 312

For a constant cell cycle duration of Tcyc = 17h (no inhibition), in the observation 313

period −2 d ≤ t ≤ 1 d, we found a good mutual agreement between the model, the 314

experimental growth curve, and an exponential, see Figure 1B. This determines the 315

intrinsic cell cycle duration Tcyc of a growing cell population subject to neither external 316

mechanical stress nor nutriment limitation. (A movie (Video 1) of this simulation is 317

provided in section Videos.) 318

Growth in presence of external stress: In the next step, we used the same 319

model to mimic a growing multicellular spheroid in a thin capsule (H = 8µm). In the 320

experiment after confluence, the growth curve crosses over into an approximately linear 321

slope ( t ≥ 1d in Figure 1B) at a measured pressure of pth ≈ 1.5kPa (EI.OII) with a 322

viable rim of size λI ≈ 20µm (see EI.OIV and H1) enclosing a necrotic zone. Necrosis 323

indicates a lack of nutriments. It is possible that at that pressure, border cells may be 324

so compressed that nutriment diffusion becomes inhibited. 325

As the experimental data needed to explicitly model the influence of nutrients is not 326

available and would require knowledge on many parameters (see [24]), we do not model 327

nutriment-dependency explicitly but directly implement the experimental observation 328

that the cells further inside the capsule than at distance λI die at pressure p = pth 329

(observation EI.OII and Figure 4C), see section Model setup and parameter 330

determination for more details. 331

In our first attempts all cells in the viable rim were assumed to proliferate with a 332

constant rate α0. This assumption led to a too high spheroid growth speed, hence could 333

not explain the growth kinetics in presence of the capsule (see section Model setup and 334

parameter determination, Figure 10A), expressing that λI does not determine the 335

growth speed, but only the size of the viable rim. 336

The constant growth speed for t > 2d, despite increasing pressure experienced with 337

increasing size of the MCS, indicates the proliferating rim to be of constant size. This 338

was confirmed by visual observation of the spheroids (personal communication). This 339

argues against an increasing limitation of nutriments with tumor size in the linear 340

growth regime, and in favor of a direct impact of pressure on cell cycle progression. 341

In our model this was taken into account by replacing the constant growth rate α0 342

by a compression-dependent growth rate α(εV ) Equation 2 expressing, that cells can 343

enter G0 if the relative growth rate α/α0 falls below a threshold αqui between division 344

and restriction point, see H.III and Figure 2). In our model, cells divide after their 345

volume have doubled. Consequently, a cell subject to compressive stress has a longer 346

cell cycle duration than an isolated cell. 347

With this model we found a very good agreement between experimental data and 348

simulation results for εVtr
≈ 0.35, n ∈ [1, 2] and αqui ≤ 0.33 (Figure 4A, Figure 4B)). 349

Values of n ∈ [1, 2] do hardly discriminate. Choosing n ≥ 4 results in a faster growth in 350
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Fig 4. (A) Time evolution of the radius of the thin capsule for the experimental data
and the simulations using Model I showing the effect of a parameter variation for n with
αqui = 0.33, and n = 1 with αqui = 0.5. (B) Simulation and experimental values of the
radial cell density in the spheroid at T = 0h, and T = 48h for the optimal parameters.
(C) Pressure curves indicating the pressure at the transition point from free spheroid
growth to spheroid growth against the thin capsule in ref. [21] and the simulation.
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the beginning as here ε < εVtr
, and an experimentally not observed flattening of the 351

residual growth resulting from the sharp decrease of α for εV > εVcr
. n→∞ leads to a 352

plateau. Increasing αqui to 0.5 results in a significant growth stall as cells then already 353

enter quiescence at higher growth rates (Figure 4A). Increasing εVtr
results in a faster 354

capsule dilatation over the whole period as then the growth rate decreases only above a 355

larger pressure (noticing that dεV /dp > 0). We selected εVtr ≈ 0.35 as best fit. The 356

effect of εVtr
is shown in the thick capsule experiment (section Validation of model for 357

experiment I with thick capsule data, Figure 5A). The Hill function parameters 358

complete parameter set {PC=CT26} (Table 2). 359

We verified that the replacement of α0 by α(εV ) did not result in a disagreement 360

between model simulation and experimental data for stress-free growth (black full line 361

in Figure 1B) indicating that no critical pressure builds up for MCS growth in liquid 362

suspension in absence of the capsule during the experimental observation time period. 363

We have also tested the hypotheses whether cells either have a growth rate α, 364

constant during the cycle, or an exponential increase (see Methods section Cell growth, 365

mitosis, and lysis), yet we did not find any significant differences for the spheroid 366

growth, indicating robustness of the results against such variations. 367

As an alternative mechanism to cell division after volume doubling we also tested the 368

assumption that a cell rather divide after a fixed cell cycle time (”timer“). This resulted 369

in smaller daughter cell volumes if the mother cell experienced compressive stress during 370

growth, and as a consequence in a too large nuclei density at 48h (see Figure 10C). 371

Concluding, using Model I a good agreement with data could be obtained whereby 372

the main underlying assumption is that the cell growth rate and thereby the duration of 373

the cell cycle is controlled by the cells’ degree of volumetric compression. (A movie 374

(Video 2) of this simulation is provided in the Supplementary Material, section Videos.) 375

Validation of model for experiment I with thick capsule data 376

In the first validation step, we considered the thick capsule experiment (H = 30µm). A 377

thicker capsule provides a stronger resistance against the spheroid expansion. In 378

simulations with model I and the parameter set (n ∈ [1, 2], εVtr = 0.35, αqui = 0.3) that 379

was able to explain the MCS growth against a thin capsule, we obtained a good 380

agreement also for the thick capsule data without any additional fit parameter 381

(Figure 5A). 382

For higher or lower values for the volumetric strain threshold εVtr
, respectively, an 383

overestimation or underestimation for the residual growth would be observed 384

consistently with the thin-capsule data. Values n ≥ 2 resulted in a clear deviation the 385

end of the observation period and were hence rejected. 386

In the work of Alessandri et al., additional experiments were performed using thick 387

capsules with a larger sizes (R0 ∼ 400µm) and thicker walls yet with the same aspect 388

ratio H/R0 ∼ 0.25. The experiments show that the presence of a capsule did not affect 389

the free growth of the MCS. The growth dynamics after confluence for the large thick 390

capsule could not be uniquely determined as the duration of this phase was too small. 391

For this reason we here did not simulate this case (see Figure 12F). Yet, to permit 392

further validation of the model we also depict simulations for a capsule with thickness 393

H = 60µm. This run predicts a slightly lower dilatation rate (Figure 5G) yet the 394

pressure increase per day in the capsule (Figure 5C) is comparable with the 30µm case, 395

about 250 Pa/day. 396

Validation of model for experiment II: same cell lines as for experiment I 397

Model II : 398
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Fig 5. (top) (A) Time evolution of the thick capsule radius (H = 30µm), shown for
the experimental data and the simulation with Model I, indicating the effect of the
parameter n and εVtr

. As the number of data sets on the thick capsule did not suffice to
estimate the experimental error, the errors on the thick capsule data (gray zone) were
estimated from the spreading on the thin capsule data, by determining the minimum -
maximum intervals for the thin capsule data. These were then rescaled by the ratio of
thin - thick capsule dilatations and shifted on to the thick capsule curve. (B) Global
view of experiment I and II and respective model runs, including a model prediction for
a capsule wall thickness H = 60µm. (C) Simulated evolution of the average pressure in
a capsule with H = 30µm and H = 60µm.
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Fig 6. (A) Simulation snapshot at the beginning of a free growing CT26 spheroid
(R = 100µm), indicating quiescent (dark) and proliferating cells (light). (B-D)
Simulation snapshots of growing CT26 spheroids at R = 120µm during dextran
application (p = 5 kPa), indicating quiescent and proliferating cells (B), individual cell
pressure (C), and volume for the cells (D).

We challenged the model calibrated for experiment I by studying whether it would 399

be able to predict the observed growth of CT26 multicellular spheroids subject to 400

osmotic stress (Experiment II, [12]). The concentration of dextran regulates the applied 401

pressure. The growth rate at p = 5 kPa here is also significantly lower than those in 402

control spheroids (freely growing in iso-osmotic conditions). Surprisingly however, the 403

control spheroids in experiment II grow slower than in Experiment I, revealing an overall 404

linear but not exponential growth kinetics. Since the cell line is identical, we associate 405

this difference to varying culturing conditions (e.g. less frequent change of medium). 406

Growth without external stress: To take the different culture conditions into 407

account within our simulations, we first simulated again the free growing spheroid. 408

Linear growth is characteristic for a proliferative rim of constant size, with the size and 409

spatial distribution of proliferating cells in the rim determining the speed of spheroid 410

expansion [24,44]. Following the same reasoning as for experiment I, we impose a 411

proliferating rim of size λII measured from the edge of the spheroids inwards to capture 412

the linear growth. Here, the edge of the spheroid is computed as the average of the 413

radial positions of the most outer cells plus one mean cell radius (see Figure 6A). We 414
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found that for λII = 30µm with cells adopting the same parameter set as in 415

Experiment I, Model I (n = 1, εVtr
= 0.35, αqui = 0.3), matches well with the data for 416

freely growing spheroids (Figure 7A). As in experiment II no increase in cell death, 417

neither by apoptosis nor by necrosis has been reported, cells outside of the proliferating 418

rim are assumed to rapidly enter a quiescent state without undergoing necrosis i.e., they 419

do not shrink. This is referred to as Model II. Notice that λ is the only parameter value 420

by which Model II differs from Model I, reflecting the response on the growth conditions 421

(therefore attributed to the parameter set PEXPII). 422

Growth in presence of external stress: The same parameter values are kept for 423

the growth simulations in the presence of dextran. In another work by Delarue et al. 424

(2014) [38], slight cell elongations were reported towards the tumor center. We neglected 425

here this effect to test whether the experimentally observed response of a growing tumor 426

subject to osmotic stress can already be captured with the model originally developed 427

for the capsule, with the only difference being an adaptation for the free growth 428

conditions. 429

In accordance with the known pressure-exerting effect of dextran, we apply an 430

external force only to a small boundary of outer cells, directed towards the center of the 431

spheroid, mimicking the osmotic effects which induce depletion-induced adhesion and an 432

increase of the contact area between the cells [45]. The magnitude of the applied force 433

on every outer cell reads: 434

Fext = F0
V

Vref
. (3)

The magnitude F0 (fixed parameter) is chosen such that the experimentally observed 435

average cell pressure 〈p〉 is in the simulation maintained in the bulk of the spheroid 436

during growth. The volume-scaling factor is needed to minimize pressure variations as 437

much as possible. As there is no confining volume of the MCS, we use a local 438

calibration approach to compute the contact forces in the agent-based model, see 439

section ”Local” calibration approach, needed for experiment II. 440

Remarkably, the slope of the growth curve obtained from a simulation with the 441

model without any further adjustment matches very well with the data (Figure 7A and 442

Figure 1B). This indicates that the response of the CT26 cells on compressive stress is 443

robust and reproducible even if the cells are subject to different environmental 444

conditions. Moreover, the surprisingly good agreement between model prediction and 445

experimental observation suggests that the slight cell elongations observed in [38] might 446

not be a fundamental determinant in the overall response of a growing tumor to 447

external mechanical stress by osmosis. The major contribution to the stress response 448

may be controlled by the proliferating cells that are mainly located close to the border. 449

As proliferating cells, which are on average larger than resting cells, are mainly localized 450

at the border, the nuclei-nuclei distance is larger close to the border of the spheroid 451

than inside (see Figure 6D), consistent with reported experimental observations in [12] 452

and in freely growing spheroids [44]. 453

Within our model we find that i) the pressure distribution in the bulk cells is quite 454

homogeneous, and ii) the pressure is locally lower for the most outer cells because some 455

of these cells are experiencing less contact forces from their neighbors (see Figure 6C). 456

In simulation runs testing parameter sensitivity of the growth kinetics in Experiment 457

II we found for growth parameters αqui > 0.33, εVtr
< 0.2 or n > 2 a significant 458

underestimation of grow (too many cells go into quiescence), in agreement with our 459

simulations for Experiment I. 460

Validation of model for experiment II: other cell lines 461

In order further challenge our model, we also simulated the dextran experiments 462

performed with other cell lines, i.e. AB6 (mouse sarcoma), BC52 (human breast cancer), 463
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Fig 7. (A-B) Detail of the time evolution of radius of the CT26 and FHI spheroid
relative to its initial state. Data from [12] shown for free growth and at p = 5 kPa. Runs
with Model II are for free growth and for p = 5 kPa. In the CT26 cell line an additional
model run is shown assuming a linear cell cycle progression function. In the FHI cell
line the vertical line indicates the presumed changes in experimental conditions for free
growth over time resulting in a lower surface growth (v1 → v2). The gray zones in the
plots indicate the min-max values of the data.
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FHI (Mouse Schwann) all at p = 5 kPa, and the cell line HT29 (human colon carcinoma) 464

at p = 10 kPa. Since these experiments were less documented, our assumptions are that 465

i) in the simulations the experimental conditions are a priori the same, but ii) cell 466

cycling times are different. These doubling times were estimated by calibration of the 467

growth curves without external stress before predicting the growth curves in presence of 468

external stress without any additional fit parameter following the same strategy as for 469

experiment II above for the CT26 cell line. Doing so, we found that the long-term 470

growth speed was again surprisingly well predicted by the model for all three cell lines. 471

Only transients partially deviate from experimental curves (Figure 1D-G, Figure 7A-B ). 472

We here adjusted the cell cycle duration Tcyc to capture the growth kinetics of the 473

MCS in absence of externally exerted mechanical stress but we could also have modified, 474

for example, the thickness of the proliferating rim λII , as the expansion speed vf of the 475

freely growing MCS is vf ∝ λII/Tcyc [46], so that changing λII has the same effect as 476

the opposite change in Tcyc. We emphasize in this context that λII does not determine 477

the growth speed vS under dextran-induced stress, as vS � vf . Thus, our prediction is 478

not dictated by parameter λII . 479

For AB6 (Figure 1E), we found a doubling time of 13h to make the simulated free 480

growth case matching well with the experiment (comparing slopes over period of ∼ 9d ; 481

full red line in Figure 1E). We however, did not have any additional information 482

concerning cell size and doubling time on this cell line. Applying the pressure of 5kPa 483

in the simulations, one still sees that the simulation agree quite well with the 484

experiment (Figure 1E, dashed red line). 485

For HT29 (Figure 1G), a pressure of 10 kPa was applied in the experiment, and 486

hence this puts an extra challenge as the growth model is tested for larger compression. 487

In the simulations, we now had to double the applied forces in the most outer cells to 488

reach the same average pressure. The calibrated doubling time of HT29 for growth in 489

absence of dextran was found to be 46h, in agreement with values in reported in [47] 490

(full red line in Figure 1G). The cell size is comparable to that of CT26 [12]. The 491

simulation results in presence of dextran indicates a significant differences in the 492

beginning of the experiment, yet overall the growth slope matches quite well with the 493

data (Figure 1G, red dashed line). 494

Finally, for BC52 (Figure 1D) and FHI (Figure 1F and 7B), the experimental results 495

show a more complex behavior, as there seem to be two regimes in the growth. In the 496

case of BC52 the spheroid first grows with v1 ∼ 0.41µm/h for the first 9d, then in the 497

subsequent period the growth slows down to v2 ∼ 0.29µm/h (see Figure 1D). We 498

attributed this to a change in growth conditions in the experiment. The model a-priori 499

does take the cross-over effect into account, but we still can test it by imposing ad-hoc 500

changes of experimental conditions after a period of 9d. To so so, we assumed in the 501

simulations for the dextran-free growth that the thickness proliferating rim has 502

decreased during the cross-over by λII → λII × v2/v1 ≈ 0.7λII , which resulted in an 503

overall good calibration curve (full red curve in the Figure 7B ). The same procedure 504

was applied to the FHI cells, with here the factor v2/v1 ≈ 0.35 for the simulation in 505

absence of dextran (see full red line in Figure 7B). The corresponding simulations in 506

presence of dextran for BC52 (Figure 1F, dashed red line) and FHI (Figure 7B, dashed 507

red line) then shows that the model is again able to predict the experimentally observed 508

slopes in both regimes reasonably well. 509

Hence, we conclude that this model is able to predict the effect of mechanical stress 510

on the expansion speed of the MCS in the elastic capsule experiment (experiment I) and 511

the dextran experiment (experiment II) after calibration of the model parameters with 512

experimental growth data in absence of capsule and dextran i.e., with experimental 513

growth kinetic data in absence of externally exerted mechanical stress. 514

June 5, 2018 20/51

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/122614doi: bioRxiv preprint 

https://doi.org/10.1101/122614
http://creativecommons.org/licenses/by-nc-nd/4.0/


Robustness of the proposed cell cycle progression function 515

In our model we had proposed that the cell growth rate decreases according to a general 516

Hill function (Equation 2). From the capsule simulations, we observed that neither a 517

constant growth scenario (εVtr →∞) nor a sharp threshold (n→∞) could explain the 518

data. However, in order to justify the choice of the Hill functional shape as compared to 519

a simpler functions, we have performed comparative simulations with a linear 520

progression function. This function has the same boundary value α = α0 at εV = 0, and 521

α = 0.5× α0 at εV = 0.35 , but has a steeper decrease further on (dashed line in 522

Figure 2). We found that with this function the experimental data for small and large 523

capsule thickness could still be reproduced with a fair agreement (see Figure 12E, 524

”Linear I” in the Appendix). However using the same function, we could subsequently 525

not match the data of Experiment II, for the CT26 cell lines as well as for the other cell 526

lines. In that case the simulations systematically underestimated the growth (see 527

Figure 7A, black line) indicating the tail of the Hill function is important as it controls 528

the still non-negligible contribution to growth at high strains occurring in the dextran 529

experiment. On the other hand, a linear function (boundary value α = α0 at εV = 0) 530

calibrated such that the CT26 dextran experiment could be reproduced, resulted in an 531

overestimation of growth in the capsule experiment (see Figure 12E, ”Linear II” in the 532

Appendix). Concluding, a sufficiently long ”tail” in the diagram α versus εV seems to 533

be necessary to explain the residual growth of the cells. This points towards an 534

nonlinear response of inhibition of growth of the cells upon compression, and further 535

shows that the choice of a nonlinear progression function is necessary so that a Hill 536

growth function, despite it looks complex, seems the most simple one that is able to 537

explain simultaneously growth of MCS subject to externally applied stress in both 538

experiment types. 539

Discussion 540

By establishing a quantitative model of growing multicellular spheroids (MCS) subject 541

to compressive stress calibrated with data on growth in an elastic capsule we were able 542

to demonstrate that the stress response of a growing tumor is quantitatively robust and 543

reproducible even if cells grow under different conditions and if the pressure is exerted 544

by different experimental methods. Given the enormous complexity of intracellular 545

processes involved in the control of MCS growth this is fascinating as it might open the 546

possibility that largely separated robust functional modules may be identified and 547

studied in separation without the need to analyze all interactions of the components of 548

one module with the components of other modules, and without incorporating all 549

interactions at the molecular level. In particular, we first developed a model to study 550

CT26 cells grown in an elastic thin and thick capsule, and then modified this model in a 551

minimal way by taking into account the remarkably different growth behavior of freely 552

growing tumor spheroids (i.e. not subject to compressive stress) to simulate the tumor 553

growth response of CT26 and other cell lines in a dextran solution. We show that the 554

mechanical stress response is quantitatively the same despite significantly different 555

culture and protocol conditions. Without the model, it would have been very difficult to 556

identify this equivalence. The key results of our analysis are: 557

(R.I) With increasing compression the cell growth rate decreases. This relation 558

could be well captured by a Hill function for the growth rate α that depends on the 559

volumetric strain (Equation 2), and a transition into quiescence if the growth rate 560

dropped below a threshold value. A sharp volume or pressure threshold below which no 561

cell cycle entrance would occur anymore, is not compatible with the data. Together 562

with the strain hardening assumption of cells during compression, this overall points to 563
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a nonlinear increasing growth resistance of the cells upon mechanical stress. 564

(R.II) Cells divide when their dry mass has doubled during the cycle. A ”timer“ as 565

a decision mechanism for dividing could not explain the data. 566

A particular point of concern in many studies of spheroids is the appearance of cell 567

death. Our work is based on the observations of Alessandri et al. (2013), who observed 568

necrosis (CT26 cells, using FM4-64) in capsule confined cells, while their free growing 569

spheroids exhibited the normal exponential growth for R < 150µm. Helmlinger et al. 570

(1996) [8] observed a decrease in apoptotic (LS174T cells, using TUNEL) events during 571

compression, and reported little necrosis (not quantified) for spheroids with R < 150µm. 572

They concluded that the haltered growth of the spheroids is mainly due to the 573

increasing compressed state, which can be partially confirmed by our simulations. In 574

the work of Delarue et al. (2014) [12], no increase of apoptosis (HT29 cells, using 575

cleaved-caspase 3) was observed after 3 days for spheroids with R ∼ 100µm. Contrary, 576

earlier Montel et al. (2012) [11] did report increased apoptosis using cleaved-caspase 3 577

for CT26 cells, while Cheng et al. (2009) [9] did observe an increase of necrosis (67NR 578

cells, using propidium iodide) even in very small spheroids R ∼ 50µm, yet mainly for 579

the interior cells. At the periphery, cells were still dividing. Whether necrosis and 580

apoptosis occurs may well be dependent on the cell type and experiment, but overall it 581

seems that the peripheral cells are unaffected. 582

Our modeling strategy is based on in silico experiments i.e., abstracted experiments 583

on the computer, where each individual cell was represented as modeling unit with those 584

properties, actions and interactions that were considered as necessary to quantitatively 585

explain the cellular growth response on mechanical compression. The implementation of 586

cell-cell and cell-environment interaction directly accounts for physical laws with (in 587

principle) measurable physical parameters that permit straightforward limitation of 588

parameter ranges to those physiologically relevant. This made it possible for us to 589

largely confine the parameter values to published or directly observed relatively narrow 590

ranges, and introduce free fit parameters only for the cell cycle progression. A 591

particular challenge was to construct an individual agent-based model that permits 592

stable and robust simulations up to several tens of thousands cells under high 593

compression. Under these conditions cell displacements may have to be minimal, which 594

rules out models operating on lattices unless the lattice size would be chosen a very 595

small fraction of the cell diameter (in which case they would lose their computational 596

advantage). Thus, the requirements of constraining the parameters, and providing 597

realistic simulation trajectories in time favored models operating in lattice-free space 598

implementing a dynamics simulated by equations of motion (as opposed to a Monte 599

Carlo dynamics, which under some condition mimics a master equation). The prototype 600

of lattice free models are center-based models that calculate the forces between cells as 601

forces between cell centers. However, as mentioned above and explained in more detail 602

elsewhere [20] this model type has significant problems in dealing with cell populations 603

under large compressive stress i.e., with exactly the situation we are faced with in this 604

work. To solve this issue, we developed a deformable cell model, which represents each 605

individual cell in much greater detail as in center-based models but at the expense of 606

much longer simulation times. As simulations with that model up to several thousands 607

of cells were not feasible, we performed simulations with this model of characteristic 608

MCS configurations under large compressive stress and used the results to establish a 609

new interaction force model within center-based models that permit to mimic large cell 610

populations under large compression. 611

Finally, we mention that despite their limit on cell numbers, simulations with DCM 612

can give valuable information on micro mechanics. In our study, we found that stiffer 613

cells in a scaled capsule model more likely could cause a gradient in cell pressure from 614

the border to the center of the spheroid than soft cells (see Appendix, Cell deformation 615
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and pressure distribution during in a compressed spheroid in DCM). These potential 616

effects are difficult to investigate with center-based models and prove the necessity of 617

further development of high resolution models, and perhaps running them on high 618

performance computers. 619
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Mathematical methods for the agent-based models 620

This section summarizes the most important model assumptions and components, and 621

then explains how model parameters were calibrated. More details about the 622

mathematical formulations, can be found in the Appendix, section Appendix. 623

We start from a standard center-based model in which cells are represented by 624

spheres. However, this model needs to be extended by calibration with a model that can 625

deal with high compression, the ”deformable cell model”, in order to obtain realistic 626

results for the envisaged in vitro multi-cellular systems (section Calibration of the CBM 627

contact forces using DCM). 628

Center-based model (CBM) 629

In CBMs cells are approximated as simple geometrical objects capable of active 630

migration, growth and division, and interaction with other cells or a medium [48]. In 631

CBMs the precise cell shape is not explicitly modeled but only captured in a statistical 632

sense. Here, the cells are represented by homogeneous isotropic elastic, adhesive spheres. 633

Equation of motion for the cells 634

The center of mass position of each cell i is obtained from a Langevin equation of 635

motion, which summarizes all forces on that cell including a force term mimicking its 636

micro-motility: 637

ΓECM ~vi + Γc,cap~vi +
∑
j

Γcc(~vi − ~vj) =
∑
j

~Fcc,ij + ~Fmig,i + ~Fcap,i + ~Fdext,i (4)

The lhs. describes cell-matrix friction, cell-capsule friction and cell-cell friction, 638

respectively. Accordingly, ΓECM , Γc,cap, and Γcc denote the friction tensors for 639

cell-ECM, cell-capsule, and cell-cell friction. The first term on the rhs. of the equation 640

of motion represents the cell-cell repulsive and adhesive forces ~Fcc, the 2nd term is an 641

active force term ~Fmig, mimicking the cell micro-motility. ~Fmig is mimicked by a 642

Brownian motion term with zero mean value and uncorrelated in time (see Appendix). 643

The existence of the 3rd and 4th term depends on the growth condition. In presence of 644

an elastic capsule as in experiment I, the 3rd term denotes the interaction force 645

experienced by the cell from the capsule ~Fcap,i for those cells i that are in physical 646

contact with the capsule. As cells cannot adhere to the capsule, ~Fcap,i is purely repulsive. 647

In absence of a capsule this term is dropped, ~Fcap,i = 0. Analogously, in presence of 648

dextran, ~Fdext,i denotes the body force induced by dextran on the outermost cells i. In 649

absence of dextran, ~Fdext,i = 0. Due to high friction of the cells with their environment, 650

inertia is neglected [49]. Based on the observation that ECM is produced by the cells 651

(visualized by fibronectin staining [21]), which forms a substrate for the cells to actively 652

migrate before confluence is reached, the first term on the lhs and the 2nd on the rhs 653

express interactions with ECM. As the ECM network form fibronectin indicates a mesh 654

size of the order of the cell size, and the ECM stiffness is usually much higher than that 655

of cells [73], we assume momentum transfer to the ECM by the ECM friction and active 656

micro-motility term but we do not model the ECM explicitely. When confluence is 657

reached, the expansion of the spheroid originates from the volume increase of the cells 658

against the mechanical resistance of the capsule or the osmotic forces, while the active 659

micromotility force become negligible. This is further confirmed by simulations 660

performing parameter variations in the micromotility forces which do not significantly 661

influence the results (see section Model parameter and algorithm sensitivity). 662
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Adhesive and repulsive forces 663

Interphase cells are approximated by homogeneous, isotropic, elastic and adhesive 664

spheres which split into two adherent cells during mitosis. Under conditions met in this 665

paper [40, 48], the total cell to cell interaction force can be approximated by the sum of 666

a repulsive and an adhesive force : 667

~Fcc = ~Frep + ~Fadh. (5)

The repulsive Hertz contact force reads: 668

Frep,ij = 4/3Eij
√
Rijδ

3/2
ij , (6)

in which Eij and Rij are defined as

Eij =

(
1− ν2

i

Ei
+

1− ν2
j

Ej

)−1

and Rij =

(
1

Ri
+

1

Rj

)−1

,

with Ei and Ej being the cell Young’s moduli, νi and νj the Poisson numbers and Ri 669

and Rj the radii of the cells i and j , respectively. δij = Rj +Ri − dij denotes the 670

overlap of the two undeformed spheres, whereby dij = ||~rj − ~ri|| is the distance of the 671

centers of cells i and j (see Figure 11A). 672

The original Hertz contact model does not take into account volume compression 673

under large pressure by many surrounding cells. To account for multi-body interactions 674

while using the classical Hertz model, we replace the Young moduli Ei by an ”apparent” 675

contact stiffness Ẽi that increases as function of the cell density (Equation 14), see 676

section Calibration of the CBM contact forces using DCM. The modification of the 677

Hertz model is calibrated with a Deformable Cell Model (DCM) that represents cell 678

shape explicitly. 679

The adhesive force term between cells can be estimated as proportional to the 680

contact area and the energy of the adhesive contact W [50]: 681

Fadh,ij = −πWRij . (7)

Cell volume and compressibility 682

In our model, cells are compressible meaning that cell volume is related to pressure by 683

dpi = −Ki
dVi
Vi

= − Ei
3(1− 2ν)

dVi
Vi
, (8)

in case the cells’ properties are largely controlled by the elastic properties of its 684

cytoskeleton and other cytoplasmic constituents. Ki is the bulk modulus of the cell. 685

The observed volume change in general depends on the speed of compression. For slow 686

compression, water can be squeezed out of cells (and tissues), while for fast compression, 687

water would yield incompressible resistance. In case Ki = K0,i is a constant, integration 688

of the above equation yields the cell volume Vi as a function of the pressure on cell i, 689

εV,i = (pi − p0)/K0,i with p(Vref ) = p0. Here, εV,i = − log(Vi/Vref,i) is the logarithmic 690

strain permitting to capture large strains and Vref,i = 4/3πR3
ref,i is the uncompressed 691

cell volume the cell would have in isolation, with Rref,i being considered as constant for 692

a quiescent cell. For small deviations V ≈ Vref the known relation 693

εV = log(V/Vref ) ≈ (V − Vref )/Vref is recovered. 694

Several authors have reported strain hardening effects leading to an increased elastic 695

modulus upon mechanical stress [51–53]. Stiffening of the cells can occur as the 696
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cytoskeleton gets denser [54]. In case of strain hardening, K increases with decreasing 697

volume. We mimicked this by [54]: 698

Ki(Vi) = K0,i
Vref,i
Vi

(9)

with K0,i the compression modus of cell i in absence of stress. In this case, 699

εV,i = log ((pi − p0)/K0,i + 1). The quantity of interest is the volume response on a 700

pressure change pi − p0, whereby throughout this paper we set pi ≡ pi − p0. 701

Now we assume that as a consequence of internal friction and by remodeling of the 702

cytoskeleton, a cell subject to pressure adapts its volume with a certain delay according 703

to the equation 704

γint,i
dεV,i
dt

+K0,iεV,i = g(pi) (10)

where γint,i is a lumped parameter expressing the relaxation behavior after an imposed 705

change of the pressure. It is related to the relaxation time by γint,i = KiTrel for a single 706

cell (an analogous argument applies to the whole spheroid). The relaxation period may 707

range from several seconds or minutes up to hours, depending on how long the stress 708

has been applied [12,42,55]. This is related to both intracellular and intercellular 709

reorganizations. In our simulations, we assume Trel ∼ O(1h) for viable cells motivated 710

by observations of relaxation times in compression experiments [43]. For Ki = K0,i we 711

have g(pi) = pi, while in case of a dependency as by Equation 1 it is 712

g(pi) = K0,i log(pi/K0,i + 1). 713

Measures for stress and pressure 714

The external pressure pi on a cell i is derived from the viral stress and given by: 715

pi =
1

3
tr(σi) with σi =

1

Vi

∑
j

(
~Fij ⊗ ~rij

)
(11)

being the stress tensor quantifying the stresses cell i experiences subject to contact 716

forces ~Fij with other cells j [20]. Here, ~rij is the vector pointing from the center of cell i 717

to the cell j with ||~rij || = dij/2 and Vi is the sampling volume which can be taken as 718

the cell volume. The stress tensor can be diagonalized in order to find the principal 719

direction of stress. 720

Cell growth, mitosis, and lysis 721

Our basic model assumes constant growth rate during the cell cycle and updates the 722

volume Vref,i of cell i in time as 723

dVref,i(t)

dt
= αi(t), (12)

where αi(t) is the growth rate. We studied both, a constant volume growth rate 724

(αi(t) = C1) and an exponentially increasing cell volume mimicked by 725

αi(t) = C2 × Vref,i(t) [29–32] . The cell cycle times in both cases are equal for 726

C2 = log 2× C1/V0,i. However, on the time scale (several days) of growth considered 727

here, growth rate variations on time scales of an hour turned out to be negligible. After 728

a cell has doubled its reference volume, it splits into to spherical cells (see the Appendix 729

for more information). 730

Cells dying either by apoptosis or necrosis eventually undergo lysis. During lysis 731

they gradually shrink. In experiment I the necrotic core appeared very solid like, 732
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indicating that the water was drained as a consequence of the high pressure. We mimic 733

the lysing process by setting first Vref,i → φVref,i after necrosis, where φ is the 734

volumetric solid mass fraction. The cell volume change rate is mimicked by Equation 10 735

and controlled by γint. We assumed that lysis times Tlys have a physiological range of 736

5h to 15 days [26], and we set γint ∼ KTlys in Equation 10 during lysis. 737

Deformable Cell Model (DCM) 738

Agent-based models permitting large deformations and representing cell shape explicitly 739

are generally called Deformable Cell Models (DCMs) [20,56–58,71]. In a basic DCM the 740

cell surface is discretized with nodes which are connected by viscoelastic elements. 741

Nodes and their connecting elements represent a flexible scaffolding structure. The 742

discretization can be extended to the entire cell cytoplasm and even organelles be 743

represented, yet here we regard the cell interior as a homogeneous matter. The nodes at 744

the boundary form a triangulated structure, accounting for the mechanical response of 745

the membrane and cortical cytoskeleton. The total force on each node consists of 746

cell-cell interaction and intracellular interaction forces, the latter describing membrane 747

and cortex mechanical behavior, and cell volumetric compressibility. 748

The basic equations of motion in DCM is formally the same as for the center-based 749

model (Equation 4), but is now applied to each node i of a cell2: 750

Γns,i~vi+
∑
j

Γnn,ij(~vi−~vj) =
∑
j

~Fe,ij︸ ︷︷ ︸
in-plane

+
∑
m

~Fm,i︸ ︷︷ ︸
bending

+ ~Fvol,i︸ ︷︷ ︸
volume change

+
∑
T

~FT,i︸ ︷︷ ︸
area correction

+ ~Frep,i + ~Fadh,i︸ ︷︷ ︸
contact

(13)
with the matrices Γns and Γnn representing node-substrate friction and node-node 751

friction, respectively. ~vi denotes the velocity of node i. The first and the 2nd term on 752

the rhs represent the in-plane elastic forces and bending force, the third term on the rhs 753

a volume force controlled by the cell compressibility. The fourth term is a force that 754

avoids excessive triangle distortion. The two last terms (~Fadh,i, ~Frep,i ) describe the 755

adhesion and repulsion forces on the local surface element in presence of nearby objects 756

as e.g. another cell or the capsule in experiment I (details see Appendix Deformable 757

Cell Model: friction terms and forces). Different from CBMs, the cell bodies in contact 758

do not overlap and therefore triangles belonging to different cells will be repelled upon 759

approaching each other. For consistency with the CBM we chose the model components 760

of the DCM such that cells are inherently isotropic. As the DCM directly represents cell 761

compartments, the range of its parameters can readily be determined (Table 1, for 762

further details, see Appendix). 763

Calibration of the CBM contact forces using DCM 764

During the process of compression, cells rearrange and deform to a closer packing. As 765

discussed above, common models to model the interactions between cells (such as Hertz, 766

JKR, extended Hertz, Lennard-Jones, etc.) base on pair-wise interaction force 767

calculations and do not take into account the effect of volume compression emerging 768

from the simultaneous interaction of many cells [20, 48]. In simulations using these 769

interaction force models, the apparent volume (as seen in the simulation) that the 770

spheroid occupies upon strong compression, may become much smaller than consistent 771

with the material parameters; even incompressible cells having Poisson ratio ν = 0.5 772

reduce their volume [20,59]. Simulations of spheroid growth in a capsule performed with 773

an uncalibrated model result in an unrealistic capsule dilatation (see Figure 12). 774

2The cell index has been dropped here for clarity.
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The deformable cell model (DCM) does not suffer from such shortcomings, but is 775

not amenable to the amount of cells observed in experiments I and II in reasonable 776

computing time on standard desktop computers. For this reason we here chose a hybrid 777

strategy: we corrected the interaction force in the CBM based upon numerical 778

compression experiments performed with the DCM, and used the so calibrated CBM to 779

perform simulations reminiscent of virtual computer experiments in the experimental 780

settings I and II (Figure 8). 781

In order to estimate the repulsive contact forces in case of many cell contacts, we 782

have constructed a DCM spheroid computer experiment with ∼ 400 cells initially 783

positioned in a closest sphere packing. In this computer experiment, the outer cells were 784

then pushed towards the spheroid center quasi-statically to avoid friction effects, using a 785

shrinking large hollow rigid sphere encompassing the cells (see Figure 8A). All cells have 786

the same size but taking into account a moderate variable cells size were found to not 787

affect the results significantly. Interestingly we observed in the calibration simulations, 788

that cell shape of isotropic cells in the calibration compression simulations with the 789

deformable cell model appear distorted near the capsule border in agreement with the 790

shapes one would infer from the position of the cell nuclei in the capsule 791

experiments [21]. 792

”Local” calibration approach, needed for experiment II 793

For the DCM simulations we adopted Ecor ≈ 2400 Pa, hcor ≈ 100 nm and 794

νcor ≈ 0.5 [37] as fixed elastic properties of the cortex. The cortical stiffness 795

Ecorhcor = 0.24 mN/m, is close to values deduced from other experiments performed on 796

fibroblasts [60]. As the cell compression modulus K maybe variable and further plays a 797

significant role in this work, we constructed the calibration method such that it works 798

for different values of K. 799

During the simulated DCM compression experiment (Figure 8A) we ”measure” all 800

the contact forces between a bulk cell i and the surrounding cells j in our simulation, 801

which gives us the force, pressure and volumes change on that cell, as a function of their 802

relative positions, d̃ij = 1− dij/(Rref,i +Rref,j). The distance dij is computed as the 803

length of the vector connecting the two center of masses of the two cells i, j. Rref,k is 804

computed as ( 3
4πVref,k)1/3, with k = i, j. The average contact force of the central cell i 805

with its neighbors j as a function of the cell-to-cell average distance d̃i =
∑Nc

j=1 d̃ij/Nc 806

(Nc = number of contacts) is depicted in Figure 8C, for K = 2500 Pa, 5000 Pa, and a 807

variable K = K0(V ) using K0 = 5000 Pa due to strain hardening (see section Cell 808

volume and compressibility). Overall we find that this contact force curve still can be 809

characterized as initial Hertzian contact for d̃i < 0.08, but is after a transition zone 810

followed by a steep increase (d̃i > 0.12). The first part in this curve is largely 811

determined by the mechanical properties of the cortex and the changing contact area of 812

the cells, whereas the behavior at larger compression is determined by the bulk modulus 813

of the cells. 814

We have developed a CBM calibration approach where we keep the original Hertz 815

contact law (Equation 6) but replaced the Young modulus Ei by an apparent contact 816

stiffness Ẽi (i.e., Ei → Ẽi) of the cells as they get nearer to each other. In other words, 817

Ẽi gradually increases in Equation 6 as the cells get more packed, based on the 818

reasoning that indenting a piece of material with another object gets more difficult 819

when confined. The total strain of the cell is composed of a deformation of the cortex 820

largely determined by the apparent stiffness Ẽi, and the volumetric compression 821

determined by Ki. The volume (and radii) of the cells are adapted using Equation 10. 822

It is important to stress here that Ẽi only reflects the contact stiffness of the cell 823

through Equation 6, while the bulk modulus (Equation 8) is determined by the original 824

cell Young’s modulus Ei. 825
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Fig 8. (A) Cartoon illustrating the compression experiment using deformable cells in a
capsule to calibrate the center-based model. (A, bottom) Equivalent compression
experiment using the center-based model with indication of the maximal principal stress
directions of the cells in the capsule during compression using Equation (11). (B)
Cartoon showing the volume compartments Vi, Vint and Vcaps in a capsule with

thickness H. (C) Average contact force vs. d̃ij = 1− dij/(Rref,i +Rref,j) for different
K values simulated using DCM (diamonds), and CBM with corrected Hertz contact
force (full colored lines) replacing E by Ẽ, see Equation 14. dij is the distance between
the centers of cells i and j, Rref,k the radius of a free cell k ∈ {i, j}. The modified
Hertz force shows the same evolution as the force in the DCM, while an uncorrected
Hertz force (gray line, Equation 6) strongly underestimates the interaction force for
strong volumetric compression. (D) Pressure curves during compression of the spheroid
as a function of the inter-cellular volume fraction simulated with the DCM and the
CBM with modified Hertz force. The pressure for CBM was computed using both the
capsule pressure and average virial stress per cell calculated from Equation (11). A
representative movie (Video 3) of these simulations is provided in the Supplementary
Material)
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To take into account the limited cell volume compressibility in a pairwise cell-cell 826

interaction force, we fitted Ẽi by a function that depends on the local average distance 827

d̃ij for a bulk (i.e., interior) cell in the simulated experiment in Figure 8A: 828

Ẽi(d̃i,K,Ecor, hcor) =

{
Ei 0 ≤ d̃i ≤ 0.08,

a0 + a1d̃i + ...+ a6d̃
6
i 0.08 < d̃i.

(14)

Here, the akwith k ∈ [0, 6] are fit constants (see Appendix). They are calibrated 829

such that the function is monotonically increasing and results in an optimal fit to the 830

average force a cell i experiences upon compression of the cell aggregate (see Figure 8A) 831

as function of the distance between the center of cell i and its neighboring cells j in the 832

DCM simulations (see Figure 8C). The higher the compression, the higher gets the 833

contact stiffness, so that at strong compression, the contact forces only result in a very 834

small increase of indention, yet the cell volume decreases (Equation 10). 835

At the point of confluence when outer cells touch the capsule wall, the DCM cells 836

exert a total interaction force Fcap =
∑
i Fcap,i on the capsule wall. The capsule 837

pressure was then computed by pcap = Fcap/Acap where Acap is the inner surface area 838

of the capsule. On the other hand we defined the intercellular volume fraction, as 839

εint = Vint/Vcap (see Figure 8C). Here Vint = Vcap −
∑
i Vcell,i is the volume of the 840

space in between the cells, Vcap is the total capsule volume. We then compared for the 841

DCM simulations and calibrated CBM the resulting pressure versus intercellular volume 842

fractions. These curves do not match exactly, but follow each other closely (Figure 8D). 843

We further complemented this study by pursuing a ”global” approach where we 844

estimated the forces and pressure exerted by the MCS on the capsule as a function of 845

the total intercellular space fraction occupied by cells within the elastic capsule (see 846

Appendix, section ”Global” calibration approach, only valid for confined spheroid), 847

obtaining the same results. Both calibration approaches can be used for arbitrary values 848

of K. 849

Elastic Capsule Model 850

The capsule is made of an quasi-incompressible alginate gel exhibiting a strain 851

hardening behavior. The stress-strains relationship was measured in a stretching 852

experiment of an thin alginate cylinder. Strain hardening behavior was observed for 853

strains > 15%. In case of a thick walled capsule, the expansion strain is low and hence 854

linear elasticity can be applied. We refer to the hollow sphere example as described 855

in [61] to compute the radial displacement of the capsule from the internal pressure. If 856

on the other hand the capsule has a thin wall, strains can become large, and the linear 857

elasticity hypothesis fails. For this case, in line with ref. [21] the original young modulus 858

is modified instead of employing nonlinear elasticity theory. The nonlinear relationship 859

in stress and strain (εcap) was phenomenologically characterized in ref. [21]: 860

Ecap = Ecap,0(1 + aεcap) (15)

where εcap is the strain and a = 1.5 to obtain an optimal fit with the experiment. 861

The capsules have an initial inner and outer radius Rin,0 and Rout,0 respectively, 862

whereby typically H = Rout,0 −Rin,0 > 0.2Rin,0 for thick capsules, H being the capsule 863

thickness. The pressure difference along the capsule wall can be related to the change in 864

radii by [21]: 865

pcap =
4

3
EcapsR

′u(Rin)

Rin
(16)

Where Ecaps is the Young modulus of the capsule material, Rout is the outer radius, 866

and u(Rin) = Rin −Rin,0 is the displacement at the outer radius. Furthermore, 867
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R′ =
(

1 + 1
1+∆R3

0/R
3
in

)
, in which the outer radius is related to the inner radius Rin by 868

∆R3 = R3
out −R3

in = R3
out,0 −R3

in,0, assuming incompressibility of the elastic shell. To 869

simulate the radius evolution of the capsule, one computes pressure pcap by dividing the 870

sum of all contact forces of the cells with the capsule by the actual inner surface area. 871

Taking into account the damping by the alginate material, we arrive at an ODE, 872

formally similar to Equation 10: 873

γcap
Rin(t)

dRin(t)

dt
= pcap(t)−

4

3
EcapsR

′u(Rin(t))

Rin
, (17)

with a lumped material damping parameter γcap. It was shown in [43] that the viscosity 874

of the capsule material is low and does not influence the much slower dynamics of the 875

spheroid. Accordingly, in our model γcap was chosen low to reflects the material’s 876

ability to rapidly adapt to a change in spheroid radius while not affecting the slow 877

growth dynamics. 878

Model setup and parameter determination 879

We here explain the determination of the mechanical model parameters starting from 880

the thin capsule experiment. A large fraction of the parameters are fixed from direct 881

observations or published references, see Table 2 for more details. 882

Within parameter sensitivity analysis simulations the parameters that could not be 883

fixed by experimental observations, were varied within their physiological ranges to 884

study their impact on the simulation results. Some parameters turned out to only 885

negligibly affect the simulations results, see section Model parameter and algorithm 886

sensitivity. 887

As the simulation time was too long to determine the parameters within their 888

physiological ranges based on a maximization of a likelihood function, or to perform a 889

parameter identifiability analysis, we identified plausible parameters by a two-step 890

procedure. 891

We first determined those model parameters that determine the simulated growth 892

behavior in case of free growth by comparison to the experimental data for CT26 in 893

experiment I. In the next step the parameters relevant for the specific experiment were 894

fixed. After this, two remaining parameters, namely K and Tlys were calibrated by the 895

thin capsule simulations, yielding a model without a growth rate adaptation (see 896

section Cell-specific parameters K and Tlys during stress conditions). 897

Each simulation result was compared to the experimentally observed spheroid 898

diameter of the growing spheroid prior to confluence, and the slope of the residual 899

growth curves after 48h, thereby retaining the parameters that are physically plausible 900

and can best explain the data at the same time. 901

Cell-specific parameters {PC=j} to obtain the initial spheroid configuration 902

and free growth 903

Starting from the calibrated model (step 1), a single run was performed with a small 904

aggregate of 10 CBM cells, all at the beginning of their cell cycle, to grow a spheroid up 905

to the size of R = 100µm, which corresponds to the size before confluence, see 906

Figure 2B. A cell cycle time of Tcyc = 17 was assigned to each of the cells as this 907

matches the experimental observation. Cells increased their radius from ∼ 6µm until 908

their radius reached the division size (7.5µm). After each cell division, a new cell cycle 909

time was assigned to each of the daughter cells, randomly chosen from a Gaussian 910

distribution with 〈Tcyc〉 = 17h and standard deviation of ±10/%. The intrinsic free 911

growth cell cycle time defines the growth rate α0 = 1/Tcyc. 912
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The cell-cell adhesion energy W determines how close the cells approach each other 913

in aggregates not subject to compression by external forces, and has been chosen such 914

that the area density, measured in a cryosection of width 10µm of the resulting 915

spheroid with R = 100µm, matches that of the experiments (∼ 0.85 /100µm2) [21]. In 916

these simulations the cells have a fixed Young’s modulus of E ∼ 450 Pa and a cell 917

motility coefficient D of 10−16 m2/s [18]. The compression modulus was here set to 918

K = 5 kPa inferred as an average from values reported in literature, see Table 2. For 919

MCS grown in absence of external stress, K, if varied in the range of experimentally 920

observed values, had no significant effect on the growth simulation results. 921

The physical parameters responsible for the inter-and intracellular friction are in the 922

CBM represented by γint, γcc,⊥, γcc,|| ∈ {PC=j}. Mechanical relaxation time of 923

spheroids compressed over a longer time period indicate relaxation times of 1 to 5 hours 924

in experiments [42, 43]. We have calibrated the friction parameters in the model from a 925

relaxation experiment starting from a compressed spheroid (see Figure 8A) such that 926

Trel ∼ 2 h, lying well in the reported range [1h, 5h], was obtained using as observable 927

the spheroid size as function of time. The calibrated coefficients correspond to those 928

found in [40,41]. 929

The parameter set as determined above resulted in a good agreement for free growth 930

simulation with data from experiment I. The model robustness was finally tested by 931

varying these parameters to see how they affected the simulation results of the thin 932

capsule (see Appendix Model parameter and algorithm sensitivity). 933

Experiment specific parameters {PEXP } 934

Here, we determined the parameters that are exclusively related to the experiments. See 935

Table 2 for an overview. 936

Experiment I: From the data for the capsule radius at which the curve is in the 937

transition stage T1 to T2 (Figure 9, t = 1d) and using Equation 16, a pressure of 938

pth ∼ 1500 Pa could be inferred (Figure 4C), at which bulk (interior) cells further away 939

from the border than λI are experimentally observed to become necrotic. To express 940

the variability in the cells’ response on pressure we chose pth from a Gaussian 941

distribution with mean 1500 Pa and standard deviation of 150Pa (10%) in all 942

simulations. A variation of ±300 Pa on the mean value reduced the agreement with 943

data in all simulations. The rim thickness λI within which the cells remain viable is 944

fixed during the simulations as it did not change during the experiment. Notice 945

however, that the value of λI does not explain the MCS expansion speed that differs for 946

the thick capsule from that for the thin capsule, as it is demonstrated below (Figure 947

9A). We further assumed that cell-capsule friction coefficients γc,cap are similar to those 948

of cell-cell friction. However, the simulation results are robust with respect to wide 949

variations on friction parameters, see Appendix Model parameter and algorithm 950

sensitivity. The elastic properties of the capsule are fixed to the values measured in [21]. 951

Experiment II: In Experiment II, λII was calibrated to match the growth rate 952

kinetics of the spheroid in the absence of dextran (see EII.OII). Contrary to Experiment 953

I, after adding external mechanical stress via dextran, no increase of necrosis was 954

observed (EII.0II). This was formally captured by setting pth →∞ in the model. The 955

magnitude of the osmotic forces to obtain the desired bulk spheroid pressure was 956

computed from Equation 3, fixed for each experiment. 957

Cell-specific parameters K and Tlys during stress conditions 958

In the next step the compression modulus and the cell specific lysis time have been 959

specified. To acquire the most realistic parameters within their physiological range, we 960
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consider the spheroid growth in the capsule, first with the constant growth rate α0 of 961

the cells as determined from free spheroid growth in Experiment I. 962

Compression modulus of the cells: The compression modulus of the cells 963

influences the volumetric strain and hence through Equation 10 the growth rate α. First 964

we tested the hypothesis that K remains constant during the experiment, varying K in 965

the range K ∈ [2.5 kPa, 150 kPa] in simulations for Experiment I. K ∼ 2.5 kPa has been 966

measured for quasi uncompressed L929 fibroblasts [37], K ∼ 10kPa for compressed 967

CT26 cells [12]. 968

Simulations with K = 10 kPa resulted in a cell density increase at 48h by only a 969

factor of 1.5, while experimentally a factor of two is observed (Figure 9B), suggesting 970

that this value of K is too high. Moreover, a significant overestimation of both the 971

initial and the residual radial growth could be observed (Figure 9A). We further tested 972

two extremes for K. For K = 150 kPa the cell density at 48h is now only 1.3 times the 973

original one (Figure 9B), with a largely overestimated initial radial growth. By contrast, 974

for a much smaller value K ∼ 2.5 kPa, the cell density is strongly overestimated 975

(increase by 3-fold at 48h), hence we reject such low values. 976

In a next step we tested the consequence of strain hardening (section Cell volume 977

and compressibility, [51–53]). K(V ) can be initially relatively small, leading to a higher 978

overall cell nuclei density (Figure 9B), yet gradually increasing during compression. For 979

an applied pressure of 5 kPa, we find K(V ) = 10 kPa while for an applied pressure of 980

10 kPa we have K(V ) = 15 kPa, comparable to the values reported in [12,38]. The 981

simulations with strain stiffening show a better estimation of the cell density at 48h. 982

However, the stiffening alone did not solve the discrepancy between data and model 983

simulation results. It allows a rapid nuclei density increase in a spheroid for low 984

pressure but at the same time leads to higher mechanical resistance with increasing 985

pressure. The capsule pressure generally shows a highly nonlinear behavior with a 986

maximum (Figure 9C). This is typical because the mechanical stiffness of a capsule 987

drops at high dilatation [62] as confirmed in the experiment by the observation of cells 988

sometimes breaking through the capsule at later stages [21]. 989

Note further that all the simulations of the capsule radius upon deformation by the 990

growing MCS with time exhibit a short initial lag, in where the capsule dilatation is 991

small (Figure 9A). In this stage, the spheroid touches the capsule border but cells are 992

mainly pushed inwards, filling up intercellular spaces. This is less visible in the 993

experiment, yet there the exact point of confluence is difficult to determine. After this 994

period, cells are becoming more and more compressed and the mechanical resistance of 995

the spheroid increases. 996

Overall, these results demonstrate that the proliferating rim with λI = 20µm, 997

constant growth rate and neither constant nor strain-dependent growth rate cannot 998

explain the velocity of the growing spheroid in the linear phase, as it is not possible to 999

simultaneously fit the nuclei density and the long-time radius expansion. For any value 1000

that would be capable of fitting the nuclei density, the slope of the radius expansion 1001

would be too high. 1002

Lysis time: In a next step we studied whether incorporating the effect of intrinsic 1003

volume loss of necrotic cells due to lysis would lower the radius expansion and establish 1004

agreement between model and data. Lysis as defined in ref. [26] induces an irreversible 1005

water loss and decrease of cell volume (see section Cell volume and compressibility) 1006

limited to the solid volume of the cell. Contrary to in vivo experiments, there are no 1007

macrophages present to phagocytose the remaining cell bodies, and phagocytosis by 1008

neighbor cells is very slow [24]. In line with [26], we studied lysis times Tlys ∈ [5h, 14d] 1009

using Model I. We notice that the shorter Tlys, the more the curves bend off in the 1010

beginning. However, because lysis results in more compression and thus gradually leads 1011

to stiffer cells, the numerical growth curves largely fail to reproduce the observed linear 1012

June 5, 2018 33/51

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/122614doi: bioRxiv preprint 

https://doi.org/10.1101/122614
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 9. (A) Time evolution of the radius of the thin capsule, shown for the experimental
data and the simulation using Model I, with parameter variation on the individual cell
compressibility (K(V ) means strain hardening). (B) Time evolution of the simulated
cell density. The dashed horizontal line indicates the experimentally observed cell
density at 48h. (C) Pressure in the capsule versus time.
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Fig 10. (top) (A) Time evolution of the radius of the thin capsule, shown for the
experimental data and simulations using Model I, showing the effect of a parameter
variation for the lysis time Tlys. (B) Time evolution of the simulated cell density. (C)
Cell density at 48h obtained from final model run with optimal parameters, but in
which cells divide after a fixed cycle time (”timer“) instead of a fixed size.
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behavior (see Figure 10). The effect becomes striking at very low lysis times (Tlys = 5h). 1013

Here, the initial behavior of the spheroid is determined by cells quickly loosing their 1014

volume (hence a low resistance against pressure). Further in time, a large stiff core 1015

develops which will eventually overcome the mechanical resistance of the thin capsule. 1016

Nevertheless, adopting Tlys ≈ 5d yields a good agreement with the cell nuclei density at 1017

48h (Figure 10B), which is in line with values found in an in silico model for ductal 1018

carcinoma in situ [26] and is relatively close to the apoptosis time found by fitting 1019

phenomenological growth laws for spheroids (∼ few days) [12,63]. Note that the lysing 1020

cells in the bulk tend to move very slowly towards the center of the spheroid (see the 1021

Supplementary Material, Video 2). 1022

Non-constant growth rate: Even including lysis it was still not possible to 1023

simultaneously fit growth and density curves as improvement of growth kinetics was 1024

accompanied by increasing mismatch of density and vice-versa. This prompted us to 1025

study non-constant growth rates, decreasing with increasing volumetric strain as 1026

explained in the main text. 1027
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Fig 11. (A) Contact between two cells defining (a) the distance dij , virtual overlap δij ,
reference radius Rref,i, actual radius Ri and volume Vi. (B) (left) DCM representation
of several adjacent cells. (right) Detail of nodal structure building cell surface and
depicting the forces that work on them.

Supplementary Material 1037

Appendix 1038

Below further technical details on the models and parameters calibration are explained. 1039

A flow chart of the model algorithms executed in the simulations is depicted in 1040

Figure 14. 1041

Center-based model: friction terms and forces 1042

We look at the Equation of motion (4) for cells in more detail. The general form for the 1043

friction tensors in Equation (4) reads 1044

Γij = γ⊥(~uij ⊗ ~uij) + γ||(I − ~uij ⊗ ~uij) (18)

with ~uij = (~rj − ~ri)/||~rj − ~ri||, where ~ri, ~rj denote the position of the centers of cell i 1045

and object j. I is the 3× 3 identity matrix, ⊗ denotes the dyadic product [20]. The 1046

individual cell friction coefficients are γ⊥ and γ||, respectively perpendicular and 1047

parallel to the movement direction. As experiments do not indicate ECM inhomogeneity 1048

or anisotropy, the cell-ECM friction matrix is considered to be diagonal. The ECM was 1049

not represented explicitly as experimental observations indicated that the ECM fraction 1050

is small and approximately homogeneously and isotropically distributed in the 1051

intercellular spaces. 1052

As represented in Equation 5 the interaction force resulting from compression, 1053

deformation and adhesion can be expressed as a sum of a repulsion force, here 1054

represented by a modified Hertz contact force, and an adhesion force. The interaction 1055

force acts along the line connecting the centers of two interacting spherical cells. 1056

The micro-motility force of cell i is mimicked by a Brownian motion term with zero 1057

mean value and are uncorrelated in time: 1058

< ~Fmig,i >= 0 with < ~F (t1)mig,i ⊗ ~F (t2)mig,i >= Aδ(t1 − t2). (19)

Based on a formal analogy to colloidal particle systems [64], the autocorrelation 1059

amplitude of the force as approximated A = 2Dγ2I, D being the cell diffusion constant, 1060

γ the friction coefficient of a cell in the medium and I the unity matrix. The scalar γ 1061

emerges in an isotropic environment, for which γ|| = γ⊥(:= γ). In an extracellular 1062

matrix environment, A is largely controlled by the cell itself [18]. The equations of 1063
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motion (4) do not conserve total momentum due to the micro-motility term as part of 1064

the momentum is transferred to the ECM, that is not explicitly modeled here. 1065

The system of Equation 4 was integrated numerically until the simulation time 1066

surpasses the total duration of the experiment which is ∼ 10d. Equation 4 results in a 1067

linear problem with a sparse symmetric matrix, which can be solved efficiently by a 1068

Conjugate Gradient method [20,65] and an explicit Euler integration scheme. 1069

Deformable Cell Model: friction terms and forces 1070

We recapitulate the basic equation of motion for a DCM denoted in (Equation 13). The 1071

individual elements generating the in-plane elastic forces between the surface nodes 1072

represented by the 1st terms on the lhs and rhs of Equation 13 are modeled by classical 1073

linear spring-damper systems. The force between the nodes captures the elastic 1074

response of the shell-like structure including the cortical cytoskeleton of the cell. When 1075

the elastic and dissipative components are summed up, one acquires a Kelvin-Voigt 1076

element. The vector force between two nodes i and j reads (see Figure 11B): 1077

~Fij = ~Fe,ij + ~Fv,ij = −ks(~dij − ~d0,ij)− γ~vij , (20)

where ~Fe,ij and ~Fv,ij are the elastic and dissipative forces, ks is the spring constant, γ 1078

represents the dissipation, ~d0,ij , ~dij are the initial and actual distance vectors, and ~vij is 1079

the relative velocity between the nodes, respectively. 1080

The second term in Equation 13 representing the surface bending resistance is 1081

incorporated by the rotational resistance of the hinges determined by two adjacent 1082

triangles α =
{
ijk
}

and β =
{
ijl
}

(Figure 11B). This defines the bending moment M : 1083

M = kbsin(θ − θ0) (21)

where kb is the bending constant, and θ is determined by the normals to the triangles 1084

~nα, ~nβ , with θ0 being the angle of spontaneous curvature. M can be transformed to an 1085

equivalent force system ~Fm acting on each of the nodes of the triangles [65]. Restoring 1086

volume compression / expansion forces ~Fvol,i controlled by the bulk compressibility of 1087

the cytoplasm are computed from the internal pressure using the volume change and 1088

compressibility modulus of the cytoplasm K. In our simulations K reflects the overall 1089

cell compressibility including the cortex, as in its physiological range of elasticity, the 1090

cortex contributes little to the overall bulk modulus of the cell, i.e. K � Ecorhcor/Rcell 1091

( [37], own test runs). In analogy to Equation 8 the pressure applied to the cell is 1092

therefore approximately given by: 1093

p = −K log(
V

V0
) (22)

The forces ~Fvol on the nodes are perpendicular to the cell surface and can be 1094

obtained by multiplying the pressure with the surface area assigned to each node (each 1095

node has 6 adjoining triangles which each count for 1/3 of the surface area). 1096

During the simulations, large variations in area of the triangles in the network can 1097

cause numerical artifacts. These can be avoided by adding a force FT , which is 1098

proportional to the area expansion of the individual triangles [66,67]: 1099

FT = kA(A−A0)/A0 (23)

Here, A0 and A are the initial and the current areas of the triangle, and kA is the area 1100

compression stiffness. The forces ~FT,i are summed over all triangles of the cell and 1101

transferred to the nodes in the direction perpendicular to the opposite vertex edge of 1102
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that node leading to increase (or decrease) the area of one triangle at the expense of a 1103

decrease (or increase) of its neighbor triangles. We chose kA such that the influence on 1104

the cortex elasticity is minimal, yet triangle deformations are minimized. Note, these 1105

forces do not induce shear elastic effects in the network. 1106

Finally, the interactions between neighboring cells are accounted for by introducing 1107

repulsive forces (~Frep,i) and the adhesive forces (~Fadh,i) between nodes belonging to 1108

different cells. The interaction forces were obtained as detailed in [67]. The model 1109

allows simulating the interaction between two arbitrarily shaped triangulated bodies but 1110

also between a triangulated body and non-triangulated simple geometric objects as 1111

spheres and flat substrates. 1112

Importantly, the parameters of the spring network in Equation 20 can be related to 1113

macroscopic elastic constants, approximating the cell cortex by a thin shell. For the six 1114

fold symmetric triangulated lattice on the cell surface, the linear spring constant ks can 1115

be computed from the Young modulus Ecor of the cortex with thickness hcor 1116

by [54,68,69]: 1117

ks ≈
2√
3
Ecorhcor (24)

Similarly, the bending stiffness of the cortex can be approximated by 1118

kb ≈
Ecorh

3
cor

12(1− ν2)
(25)

where ν is the Poisson ratio (= 0.3 for an equilateral 2D network of linear springs). 1119

”Global” calibration approach, only valid for confined spheroid 1120

The relationship between forces, inter-cellular volume fraction and pressure established 1121

in section ”Local” calibration approach, needed for experiment II can also be computed 1122

following a simpler, global approach in case of a confined volume as in experiment I. If 1123

compression rates are sufficiently slow as is the case in that experiment, the cells in the 1124

spheroid can reorganize, distributing the stress isotropically and homogeneously over the 1125

cells in the spheroid. For the intercellular spaces in the capsule the global intercellular 1126

volume fraction εint and the cellular fraction εcells are related by εint + εcells = 1 with 1127

εcells = Vcells/Vcaps. We can now use εcells to re-parameterize Equation 14 assuming 1128

cells are homogeneously distributed over the spheroid during compression (compare 1129

Figure 8A). The apparent contact stiffness Ẽi in that case increases for all cells equally 1130

with εcells being the equivalent of 1− d̃ij in the previous approach. 1131

With both different calibration methods, local and global, the CBM simulation 1132

results closely follow the DCM curve (Figure 8D; Figure 12). However, the curve using 1133

the global calibration method is smoother than for the local calibration method as it 1134

represents an average over all cells thus disregarding local fluctuations. For high 1135

pressures (p > 2 kPa), both curves become nearly parallel. On the other hand, as the 1136

local approach does not require the existence of an enclosed (capsule) volume it can be 1137

used more generally as a cell-cell interaction force upon volumetric compression in many 1138

configurations as in experiment II. 1139

We finally point out that no explicit representation of ECM has been considered in 1140

the model based on the observations the ECM fraction is rather small (personal 1141

communication) and approximately homogeneously and isotropically distributed in the 1142

intercellular spaces. 1143
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Model parameter and algorithm sensitivity 1144

We also studied the potential influence of parameters calibrated for the free growth 1145

conditions which could not be directly inferred from the experiments. For the friction 1146

terms, the cell-cell friction, cell -ECM friction and cell-capsule friction were varied 1147

between 1 % (”low”) and 200 % (”high”) of their reference values. The effect is shown 1148

in Figure 12A and indicates that even for low friction coefficients the results remain 1149

largely unaffected. For the cell-cell adhesion energy W and cell motility coefficients D, 1150

which were varied between 10 % and 500 % [23] , we did not observe any significant 1151

changes (results not shown). The strength of cell-cell adhesion has been shown to play a 1152

role in detachment, but to be of minor importance for multicellular systems under 1153

compression (e.g. [48]). Note, that also in MCSs growing in absence of externally 1154

applied forces cells are moderately compressed [46]. 1155

In conceptual analogy to experimental statistical procedures, we have performed 1156

growth expansion simulations in the thin capsule with the optimal parameter set but 1157

four different random seeds for the cell-specific cycle time, Young modulus and necrotic 1158

pressure threshold to test the effect of stochasticity (see Table 2, Figure 12B). Even 1159

after more than 7 days of simulation, only very little mutual differences can be observed, 1160

while the slopes of the curves are the same. This can be attributed to self-averaging 1161

effects such that the variations on the level of individual cells cancel out at the 1162

population level (e.g. ref. [24]). 1163

Comparison of calibration methods 1164

For the local calibration procedure, we used the following constants in Equation 14 1165

assuming strain hardening: a0 = 0.4454 · 105 , a1 = 2.347 · 105 , a2 = −7.918 · 106 , 1166

a3 = 6.615 · 108 , a4 = −1.206 · 109 , a5 = −3.091 · 109 , a6 = 1.1239 · 1010 , yielding a 1167

force cell - intercellular distance curve that matches well with the one obtained from the 1168

deformable cell simulations experiment (Figure 8). The function for Ẽ(d̃ij) is 1169

monotonically increasing (Figure 12D). For the global calibration approach, we obtained 1170

a similar curve. In test simulations for the MCS growth in the thin capsule using 1171

contact inhibited growth for both local and global calibration, we found only a mutual 1172

variation of 5− 7%, see Figure 12C. On the other hand, if no calibration was assumed, a 1173

largely unrealistic capsule dilation was obtained (Figure 12C), and a consistent relation 1174

between pressure and cell density could not be established . 1175

Influence of cell division algorithms 1176

As far as either the volume or the duration of the cell in the cell cycle have passed a 1177

threshold value, we replace the mother cell by two daughter cells which are placed very 1178

close to each other [7, 40]. This algorithm is different from the approach where cells 1179

slowly deform into dumbbells in mitosis phase before splitting into two daughter 1180

cells [48, 70]. In our model two daughter cells are created next to each other 1181

instantaneously. During the mitosis period (which takes about 1.5h) the daughter cells 1182

do not grow. However, the two newly created cells can generate short-time artificial 1183

pressure peaks which disappear during the division time course due to small local 1184

re-arrangements. To test the impact of the pressure peak formation on our growth 1185

simulation results we implemented an smoothing algorithm that reduces these peaks by 1186

ensuring that (1) the mother cell divides in the direction of the least stress as derived 1187

from the local stress tensor (see Methods, section Measures for stress and pressure), 1188

and (2) a local energy minimum is sought by varying the distance between the daughter 1189

cells and computing the interactions with the other cells. While the smoothing 1190

algorithm reduces the short-time pressure peaks, we did not see significant differences in 1191

the results compared to simulations where this algorithm had been dropped. 1192
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Fig 12. (A) Dependence of simulation results of the thin capsule on a variation on the
friction coefficients. (B) Comparison of 4 simulations with different random seed. (C)
Comparison of the global and local calibration approach for a growing spheroid in the
capsule. (D) Plot of the function Ẽ(d̃ij) used for cell contact stiffening upon spheroid
compression. (E) Simulated thin capsule dilatation using for cell cycle progression: the
proposed Hill function, the linear function (”Linear -I”) as depicted in Figure 2 (which
fails to explain the data in experiment II), and a linear function (”Linear -II”)
optimized to match the CT26 spheroid expansion in Experiment II. (F) Data plots of
MCS growth in a thick large capsule (∼ 400µm) growth. The stress-dominated growth
regime is too short to identify the stress-response.
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Cell deformation and pressure distribution during in a 1193

compressed spheroid in DCM 1194

The DCM simulations of a small spheroid compression experiment show that the cells 1195

have a flattened shape at the border of the capsule, see Figure 13. In the CBM this is 1196

only implicitly captured, by looking at the principal stresses (indicated in Figure 8A by 1197

arrows) that can be computed from the stress tensor Equation 11. One observes that 1198

the direction of maximal stress points radially to the border cells, while minimal stress 1199

direction points tangential to the capsule wall. 1200

We further considered whether the apparent boundary effect (EI.OIII) could be 1201

attributed purely to mechanical effects. For this, we used a spheroid compression 1202

experiment with a scaled capsule system using 400 (quiescent) DCM cells with different 1203

cortex properties (i.e. cells that have the reference Ecor and cells with 10 times this 1204

value). It is shown in Figure 13 that there can be a small mechanical effect in the case 1205

for a “high” stiffness of the cortex, as the simulations show that the cells near the 1206

boundary acquire higher pressures as compared to the bulk cells and a weak gradient 1207

from the center to the spheroid edge can be observed. This can be attributed to arching 1208

effects, the phenomenon where outer layers of cells bear more stress compared to inner 1209

layers. The effect increases with increasing cortex stiffness. On the other hand, 1210

reference parametrized cells spread out more easily, diminishing the pressure differences. 1211

To investigate the boundary mechanics in a more realistic system with dividing cells, 1212

the DCM could be extended with the capability to mimic mitosis. In our simple 1213

compression experiment with cells having estimated cortex properties, the boundary 1214

effect appears acceptable. 1215
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Fig 13. (A) Simulation snapshots of DCM cells within a scaled capsule model, for the
cases of cells with a reference cortex stiffness (top) and a “stiff” cortex stiffness (bottom).
The coloring is according to pressure (B) Internal cell pressure for deformable cells in a
shrunk capsule for nominal cells and stiff cells, as function of distance to the capsule
center. The stiff cells show a higher variability in pressure if moving away from the
center. Notice that like in the calibration simulations we use cells of equal volume prior
to compression but the method can equally be applied to any prior volume distribution.
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Fig 14. Model flow chart.
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Videos 1216

S1 Video. CT26 free growth.avi shows the simulated evolution of pressure a free 1217

growing CT26 spheroid. Note that a gradient in cell pressure gradually builds up from 1218

the center to the border of the spheroid. 1219

S2 Video. CT26 spheroid capsule.avi shows the simulated evolution of pressure 1220

and cell volume of the CT26 spheroid growing in a thin capsule. The pressure increases 1221

gradually but remains approximately uniform over the spheroid. 1222

S3 Video. DCM spheroid compression.avi shows the simulation of a 1223

compression experiment of a spheroid in a capsule containing 400 deformable cells. Cell 1224

pressure and global volume fraction of the cell volume is indicated. The capsule radius 1225

shrinks gradually so that equilibrium pressures are measured. The cell pressure may be 1226

slightly higher at the spheroid border due to arching effects of the outer cells. 1227

S4 Experimental Data. All Experimental data.xlsx (sheet 1) provides the 1228

capsule data from [21] plus new data. Sheet 2 provides the dextran data that was 1229

extracted from [12]. 1230
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