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Abstract  

Multiplexed small molecule inhibitors covalently bound to Sepharose beads (MIBs) were used to 
capture functional kinases in luminal, HER2-enriched and triple negative, basal-like and claudin-
low breast cancer cell lines and tumors. Kinase MIB-binding profiles at baseline without 
perturbation were significantly uncorrelated to transcript abundance for many kinases and 
proteomically distinguished the four breast cancer subtypes.  Understudied kinases were highly 
represented in the MIB-binding taxonomies and shown to be integrated in kinase signaling 
subnetworks with characterized kinases. Computationally it was possible to define subtypes 
using profiles of only 50 of the more than 300 kinases bound to MIBs that included understudied 
as well as metabolic and lipid kinases (22 of 50 were understudied). MIB-binding profiles 
readily defined subtype-selective differential adaptive kinome reprogramming in response to 
targeted kinase inhibition. Comprehensive MIBs-based capture of kinases provides a unique 
proteomics-based method for defining functional kinome dynamics and subnetworks in cells and 
tumors that integrates poorly characterized kinases of the understudied kinome that is not 
possible using genomic strategies. 
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Introduction 
 
Breast cancer has two primary subtypes that includes luminal A and B as well as the majority of 
HER2+ breast cancers and triple negative breast cancer (TNBC) that can be divided into basal-
like and claudin-low [1]. Interestingly, basal-like breast cancer using molecular taxonomies is as 
different from luminal and HER2+ breast cancers as lung cancer, leading to the proposal that 
basal-like breast cancers are in fact a unique disease [2], [3]. Estrogen and progesterone receptor 
dependence and HER2 addiction define vulnerabilities in luminal/HER2+ breast cancers. 
However, in basal-like and claudin-low triple negative breast cancer, there are no oncogenic 
drivers that define a vulnerability that can be therapeutically targeted.  
 
Even with the growing databases of genomic information for breast cancers, it is often still 
unclear how molecular taxonomies translate to phenotype. Additional methods characterizing 
proteomic taxonomies are needed to understand signaling networks, particularly of protein 
kinases due to their druggability. Important for this analysis of the breast cancer kinome is a 
characterization of understudied kinases, representing nearly half of the kinome and lacking 
essential functional characterization as well as molecular tools for their manipulation and study 
[4]. These understudied kinases need to be functionally integrated into kinase networks for a 
global understanding of kinome dynamics to be achieved both at baseline and in response to 
perturbation.  
 
To this end, we have developed methods using multiplexed inhibitor beads (MIBs) coupled with 
mass spectrometry (MIB/MS) that have the ability to bind and identify a large percentage of 
kinases in the human kinome [5], [6]. By RNA-seq, most cell lines express 350 or so kinases and 
our MIB-binding profiling captures a significant percentage of the expressed kinome [7]. In the 
current study we have compiled the baseline kinase MIB-binding profile using MIB/MS for 15 
cell lines across breast cancer subtypes in addition to patient tumors. Using feature selection 
methodologies, it was possible to define kinase taxonomies for breast cancers based on the 
MIB/MS profile of 50 kinases among the kinases captured by MIB/MS that includes 
understudied protein kinases, lipid and metabolic kinases. Using the baseline MIB-binding state 
in a machine-learning framework further allows accurate classification of breast cancer in both 
cell lines and primary tumors. Kinases identified within these distinguishing profiles are 
distributed throughout the kinome, representing multiple subnetworks with a significant 
representation of understudied kinases. The findings demonstrate that determining the functional 
kinome based on MIB-binding has prognostic value in defining the integration of signaling 
networks that is not currently possible using genomic strategies. 
 
 
Results 
 
Multiplexed Kinase Inhibitor Beads capture kinases from every subfamily and provide a 
means to assay understudied kinases 
Multiplexed kinase inhibitor beads (MIBs) are a set of Sepharose beads each with a specific 
covalently-attached kinase inhibitor [8], [9]. Coupling MIB gravity-flow affinity chromatography 
with mass spectrometry (MIB/MS) provides the ability to capture and identify kinases from 
whole cell lysates on a kinome scale. Binding of kinases is dependent on the functional 
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expression of the kinase and affinity for the different immobilized inhibitors. To determine the 
inhibitor bead selective distribution of bound kinases, we assayed kinase capture by six different 
inhibitors individually covalently coupled to Sepharose beads [6], [8]: CTx-0294885, VI-16832, 
PP58, Purvalanol B, and two custom synthesized molecules, UNC-8088A and UNC-2147A. 
Four cell lines representative of breast cancer subtypes: HCC1806 (basal-like), SUM159 
(claudin-low), MCF7 (luminal), and SKBR-3 (HER2-enriched) were used for analysis (Figure 
1A). Of these, CTx-0294885 (CTx) and VI-16832 (VI) captured the most total kinases (265 and 
254, respectively) and the most unique kinases (32 and 29, respectively). The other four beads 
bound a lesser number of kinases (PP58, 194 kinases; Purvalanol B, 164; UNC-8088A, 162; 
UNC-2147A, 130, Figure 1B, Table S1). Although UNC-8088A binds the fewest unique kinases 
(only five), these include the atypical bromodomain and extraterminal (BET) domain-containing 
family of chromatin readers BRD2, -3, and -4 [10]. Hierarchical clustering of identified kinase 
peptides shows each bead binds a unique set of kinases and UNC-2147A displays the most 
distinct binding profile selectively enriching the AGC kinases (Figure 1C). 
 
Understudied kinases make up a large proportion of kinases captured across the inhibitor beads, 
ranging from 23-34% of all kinases captured for any individual bead (Figure 1D). Understudied 
kinases [4] represent approximately 40% (Table S2) of the expressed kinome. Characteristics of 
understudied kinases includes: i) integration of the protein kinase in signaling networks is poorly 
defined, ii) function and/or regulation is poorly defined, iii) activation loop phospho-antibodies 
and/or IHC grade antibodies may not exist, iv) lack of selective chemical tools for use in 
characterization of function (e.g., small molecule inhibitors), v) RNAi and CRISPR/Cas9 for 
knockout/altered expression and cDNAs for overexpression may be primary tools, vi) kinase 
knockout or altered expression may not provide readily assayable phenotypes (e.g., growth, 
migration, apoptosis or in vivo function in mouse organ physiology).  
 
Across all MIB/MS runs, 381 kinases in total were identified. Of these, 35 are metabolic and 
lipid kinases, 346 are protein kinases of which 142 can be considered understudied (41% of 
protein kinases identified) (Figure 1E). The overall distribution of kinases bound indicates CTx 
and VI are clearly pan-kinase inhibitors (Figure 1F, circle size proportional to number of unique 
peptides identified per kinase). Purvalanol B also binds kinases across families but to a lesser 
extent. PP58 has some preference for tyrosine kinases (TKs), and UNC-8088A has preference for 
TKs, CMGC, and atypical kinases over other families. UNC-2147A, designed for interaction 
with the binding pocket of AKT, has a strong affinity for AGC kinases lacking in most of the 
other five kinase inhibitors. CTx, VI, and PP58 have a strong affinity for the PRKDC (DNA-PK) 
not seen with the other three inhibitors. All inhibitor beads display high affinity for many 
understudied kinases (green circles and text). The most-highly captured understudied kinases 
across the four cell lines were GAK, SLK, MRCKB, AAK1, TBK1, and NEK9. 
 
Kinases known to be oncogenic drivers in general and/or nodal signaling kinases display 
anticipated MIB-binding profiles across the different breast cancer subtype cell lines (Figure 
1G). For example, SKBR3 (luminal HER2+) and MCF7 (luminal) cells have abundant AKT1/2 
MIB-binding. Other well-characterized kinases are highly represented in a specific cell line, such 
as EGFR and FAK1 in HCC1806, EPHA2 and UFO (AXL) in SUM159, IGF1R and KS6B1 
(p70 S6K) in MCF7, and HER2/ERBB2 and TGFBR1 in SKBR-3 cells.  Several understudied 
kinases also show high selectivity in functional MIB-binding including CDK13, DMPK, SIK3 
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and TESK1 in MCF7 and CLK4, CDK14 and NLK in SUM159 cells (Figure 1H). Figure 1I and 
Table S1 show kinases whose MIB-binding is greatest in each of the four cell lines, proportional 
to the number of unique peptides identified. Unsupervised hierarchical clustering illustrates the 
differences in MIB-binding throughout the kinome for each cell line (Figure 1J). These findings 
indicate the four cell lines display a unique MIB/MS binding profile for both well-characterized 
and understudied kinases. 
 
Integrating understudied and well-characterized kinases by kinome proteomic profiling 
defines breast cancer subtypes 
We characterized the baseline kinome of 15 breast cancer cell lines representing the four major 
breast cancer subtypes defined by gene expression profiles [1]. Cell lysates were passed over an 
affinity column composed of the six kinase inhibitor beads and processed for LC-MS/MS 
(Figure 2A). Using label-free peptide quantitation measurements a total of 360 kinases were 
identified having at least 3 unique peptides (Data file S1). Claudin-low and basal-like cells 
(TNBC) are readily distinguished from HER2-enriched/luminal cells by MIB profiling of the 
cellular kinomes shown by consensus clustering in Figure 2B. The basal-like HER2-amplified 
cell line HCC1954 clusters with basal-like lines by kinome profile and is thus separated from the 
luminal HER2+ lines. Interestingly, the SKBR-3 HER2-enriched cell line shows an intermediate 
clustering between HCC1954 and other HER2+/luminal cell lines, and a previous report 
demonstrated SKBR-3 patterns as basal-like in functional RNAi screens [11].  Hierarchical 
clustering of kinases further separated cell lines with the claudin-low phenotype, SUM159, 
MDA-MB-231 and MDA-MB-468 (basal-like), showing the greatest difference from other cell 
lines (Figure 2C). SUM229 cells have two subpopulations, a basal-like EpCAM positive/E-
cadherin positive (SUM229pos) and a claudin-low EpCAM negative/E-cadherin negative 
population (SUM229neg). The two populations are genomically similar by exome sequencing, 
but differ epigenetically [12] and cluster together based on their kinome MIB-binding profile 
(Figure 2C). 
 
Principal components analysis (PCA) of baseline MIB-binding kinase profiles revealed 
significant differences between subtypes within the first principal component, clearly separating 
triple-negative from HER2-enriched and luminal cell lines (Figure 2D). Further separation of the 
triple-negative group into claudin-low and basal subtypes is also readily achieved. Appreciable 
separation of HER2-enriched cell lines from luminal cell lines is observed in the second principal 
component, as is that of the basal-like/HER2-amplified cell lines from the basal-like and claudin-
low lines. A loadings plot, which defines relationships between MIB-binding for each kinase, 
highlights those kinases with significant variation within subtypes, with numerous understudied 
kinases being apparent (Figure 2E). Examples of understudied kinases with differences in MIB-
binding among cell lines include ADCK1, PKN3, STK17A and TESK1. Similarly, well-
characterized kinases known for their relevance in breast cancer are observed, such as ERBB2, 
EPHA1, MET and TGFBR2. 
 
Supervised differential expression analysis of MIB-captured kinases from claudin-low/basal-like 
(TNBC) versus HER2/luminal cell lines defined several statistically significant differences 
(Figure 2F). Multiple Ephrin receptors (EPHA2/A7/B2) and members of the TGF-beta 
superfamily (TGFBR2, ACVR1) are among the kinases most associated with TNBC while 
ERBB3 and RET are over-represented in HER2+ and luminal cell lines. Many understudied 
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kinases display higher MIB-binding in HER2+/luminal cells, including DMPK, ADCK1, and 
TESK1. Individual plots for selected kinases are shown in Figure 2G, showing distinctive 
patterns of MIB-binding across subtypes. 
 
Kinase MIB-binding activity is independent from mRNA expression level 
Our results clearly demonstrate that kinase MIB-binding displays strong variation across breast 
cancer subtypes. Global gene expression measurements have similarly shown subtype-specific 
dynamics, with expression of selected gene sets being utilized in subtype determination and 
diagnosis [13]–[15]. We compared baseline RNA-seq measurements with corresponding MIB-
capture of protein kinases to assess the relationship between transcript abundance and functional 
kinome behavior.  Comparison of kinase transcript expression with MIB-binding using label-free 
quantitation of kinase peptide abundance for each subtype showed relatively low 
correspondence, with correlation coefficients of 0.25 or below, implying that less than 7% of the 
observed variation between MIB-binding and RNA abundance in breast cancer subtypes is 
explained through this relationship (Figure 3A-D). These results are consistent with earlier work 
that found the average correlation between gene expression and protein abundance in TCGA 
colorectal cancer samples to be approximately 0.47, with a lesser correlation of 0.23 when 
comparing gene expression and protein variation [16]. The low correlation between RNA-seq 
and MIB-binding suggests that the use of MIB/MS provides a picture of kinome behavior 
complementary to that provided through expression measures. In particular, these results support 
the potentially significant role of post-translational and transcriptional regulation in kinome 
dynamics [17] [18]. The relationship between these two measures is shown as a scatter plot for 
cell lines representing the basal subtype in Figure 3A (left panel), with the Z-scores for both read 
count and MIB-binding plotted on the x- and y-axes, respectively, and further emphasize the lack 
of strong correlation between these two measures of kinase behavior. Kinases along the gray line 
(y=x) represent those where transcript expression directly corresponds to MIB-binding (i.e. a unit 
increase in expression corresponds to a unit increase in MIB-binding). A point above the gray 
line in the scatter plot indicates a kinase that has more MIB-binding than expected given the 
expression level of that kinase in that subtype; these kinases are referred to as “functionally 
dominant” for their increased MIB-binding relative to transcript expression. Examples of 
functionally dominant kinases in the basal-like subtype are KCC2A, HCK, and EPHA5; in the 
claudin-low subtype KCC2A, MK10, and FGFR2; in the HER2-enriched subtype KCC2A, 
HCK, and EPHB1; and in the luminal subtype KCC2A, HCK, and FYN. Similarly, points below 
the gray line indicate kinases that have less MIB-binding than expected given the expression 
level of that kinase and are labeled as “expression dominant” kinases. Examples of expression 
dominant kinases include KPYM, TIF1B and K6PL.  The significant number of both 
functionally and expression dominant kinases common across several subtypes is readily 
detected by MIB/MS and suggests a post-transcriptional regulation of different kinases likely 
related to differential covalent regulatory modifications and protein stability. Such proteomic 
behavioral properties can not be detected by RNA-seq. In addition, recombinant kinases often 
used to profile on-target/off-target inhibitor profiles are not representative of endogenous kinases 
in cell lysates that have associated regulatory subunits and post-translational modifications [19], 
[20]. These data describing endogenous kinases captured in cell lysates by MIBs provides an 
integrated perspective, with both understudied and well-characterized kinases having similar 
functional versus expression dominant properties as well as demonstrating the potential for 
common mechanisms of regulation. Furthermore, the properties of a subset of characterized and 
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understudied kinases suggest the dynamic regulation of a subset of the kinome not previously 
detected using other methods.  
 
In contrast to the lack of correlation between expression and MIB-binding of specific kinases, 
there are a significant subset of kinases that show a high MIB-mRNA correlation across cell 
lines, including some having a correlation value greater than 0.8. These include ERBB2, 
expressed at high levels in HER2+ breast cancer, as well as PDPK1and several other kinases 
such as PKN1 and others (Figure 3E), consistent with these kinases having transcriptional 
regulation as an important component of their overall functional output. Similar to the low 
correlation observed in Figure 3A-D, the distribution of the Pearson correlation coefficients of all 
kinases across all 15 cell lines shows a low correspondence between MIB-binding and RNA-seq 
(Figure 3F), with the mean correlation being 0.2. As also observed in Figure 3G there are a 
number of kinases that are only observed with one of the applied methods, MIB/MS or RNA-
seq. This discrepancy is partly due to the 50+ RSEM read threshold used here as a positive 
identification in RNA-seq, potentially missing very lowly expressed kinases. Similarly, kinases 
not observed with MIB/MS but identified in RNA-seq may be missed due to being in an inactive, 
nonfunctional state and/or failure of chosen inhibitors to bind these kinases with adequate 
affinity. Pseudokinases that do not bind ATP will generally not be captured by MIBs. 
 
Kinome profiles accurately define tumor biopsies 
Cumulatively, our data show measurement of kinases by MIB capture allows integration of a 
significant fraction of the expressed kinome, including both understudied and well-characterized 
kinases. MIB-binding profiles define a taxonomy of breast cancer determined by the functional 
behavior of protein kinases. This functional taxonomy is used below to define subnetworks 
within the kinome that integrates understudied and well-characterized kinases that is not possible 
using transcriptome data.   
 
Given both the variation in kinase MIB-binding profiles observed across subtypes, as well as 
their differing information content when compared to RNA expression measurements, we sought 
to better understand which kinases were key nodes in the subtype-selective baseline breast 
cancer kinome. To address this question we investigated the MIB-binding behavior of kinases 
across all four subtypes. We predicted three major classes of kinases: 1) those that show 
variation in MIB-binding across all subtypes, 2) those that exhibit more limited subtype-specific 
behaviors, and 3) kinases that have nominal distinguishing behavior. Standard application of 
PCA identifies those kinases displaying the greatest variation across all samples (“pan-subtype 
kinases”; Figure 2E) and thus we used a feature selection approach based on the Bhattacharyya 
distance [21] to determine subtype-specific kinases that are highly distinguishing/informative for 
a single cancer subtype (see Methods). The combined set of the 50 most informative kinases is 
shown in Figure 4A, with column ordering based on similarity of the kinome profile and 
recapitulating similarity between claudin-low and basal subtypes as well as HER2-enriched and 
luminal. The HER2+ cell line that profiles as basal-like (HCC1954, in purple) is displayed 
separately. Recognized cancer-related kinases are again observed in this set, including ERBB2, 
FGFR2, PTK6, RAF1 and RON (MST1R) as well as 22 understudied kinases. Using the 50 most 
informative pan- and subtype-specific kinases in Figure 4A, we assessed their effectiveness in 
subtype identification using a support vector machine (SVM) classifier along with leave-one-out 
cross-validation. We found that the ability to classify a cell line's subtype from measurement of 
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these kinases was highly accurate, with perfect precision and specificity for claudin-low and 
basal subtypes (Table S3).  
 
The kinases shown in Figure 4A have the greatest variation within and across subtypes and are 
representative of each of the major subfamilies of kinases in addition to three metabolic kinases 
captured by MIBs (Figure 4B). Under the assumption that TNBC (represented by basal/claudin-
low cell lines) and HER2/luminal breast cancer are separate diseases, we again used 
unsupervised feature selection of MIB/MS data to identify kinases that distinguish TNBC 
(basal/claudin-low) from HER2/luminal breast cancer [21]. As shown in Figure 4C, obvious 
differences in the kinome profiles of TNBC and HER2/luminal are observed, demonstrating the 
unique functional phenotypic features of the kinome in the two different breast cancers. Sixteen 
understudied kinases showed strong variance between TNBC and HER2/luminal breast cancer, 
with higher-ranked understudied kinases being DAPK3, ADCK1, MRCKA (CDC42BPA), 
STK17A, DMPK and VRK2.  
 
Using the kinases chosen from feature selection in Figure 4C, we evaluated the ability to use 
MIB-binding profiles to define subtypes of human HER2+ needle biopsies and TNBC breast 
tumors (Figure 4D & E). Diagnostic needle biopsies of 2 patient tumors (2 HER2+) having ~1 
mg of total protein were processed using MIB enrichment. With just 1 mg of tumor lysate 
protein, the total number of kinases purified from each biopsy ranged from ~200 to 275. 
Utilizing the kinases in Figure 4C in a SVM classifier, it was possible to clearly identify HER2+ 
and TNBC primary patient tumors. As with cell lines, application of PCA to MIB-binding 
profiles showed a clear separation between TNBC tumors and HER2+ tumors (Figure 4F). 
Kinases driving the variation within the data included ERBB2 as expected and several 
understudied kinases including TESK1 and DMPK (Figure 4G). Thus, the MIB-binding activity 
of as few as 50 kinases is sufficient to discriminate the functional phenotypic nature of the 
kinome in breast cancer. 
 
A functional interaction network of MIB-binding kinases 
To determine the basic architecture of the kinome using MIB-bound kinases, we compiled 
protein interaction and phosphorylation data from multiple data sources (HIPPIE, HPRD, I2D, 
PhosphoSitePlus, Reactome; see Methods) and established a functional interaction network 
among 246 of the 254 kinases commonly identified in the panel of 15 breast cancer cell lines. 
Spectral clustering of this network further enabled the identification of 16 subnetworks (Figure 
5A). Understudied kinases (green glyphs) are widely distributed across all the major 
subnetworks, demonstrating these poorly characterized kinases are integrated into subnetworks 
with well-characterized kinases. The 50 distinguishing kinases identified for cell lines in Figure 
4A (triangle glyphs) were also distributed throughout the network and associated subnetworks. 
The scope of subnetwork coverage by these kinases suggests that their predictive value in our 
subtype classification comes from their distribution across many subnetworks, providing an 
overall estimate of the state of many functional processes simultaneously. Example subnetworks 
with enriched GO terms for the innate immune response (subnetwork 1) and cell division and 
mitosis (subnetwork 2) are shown in Figures 5B and 5C, respectively. 
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Kinome MIB-binding profile and response to drug perturbation 
To assess how the baseline kinome and associated understudied kinases change in their 
functional MIB-binding profile in response to targeted drug perturbation, we exposed four cell 
lines to three subtype-relevant kinase inhibitors: SUM159 and HCC1806 with trametinib (a 
MEK1/2 inhibitor); SKBR3 with lapatinib (a HER2/EGFR inhibitor); and MCF7 with buparlisib 
(a PI3K inhibitor). The four inhibitors each strongly inhibited growth of the treated cell line 
(Figure 6A). We have previously shown that the kinome is dynamic and rapidly adapts to 
targeted perturbation by kinase inhibitors [5], [6]. This adaptive response is readily observed by 
changes in the MIB-binding profiles for each drug treatment (Figure 6B, Data file S3), with 
SUM159 cells showing the strongest dynamic response to drug perturbation relative to the other 
cell lines, but each line clearly shows an adaptive response of the kinome measured by MIB-
binding profiles. Figure 6C shows the kinases that are unique to each subtype defined in Figure 
2C (Table S4).  
 
Scatter plots of the SUM159 and HCC1806 dataset defines specific kinases and kinome 
subnetworks that drive the adaptive response to MEK1/2 inhibition that are represented by both 
understudied and well-characterized kinases (Figure 6D). Understudied (i.e. NEK2 and PASK) 
and well-characterized (i.e. DDR1 and EPHA4) kinases respond differently in the two subtypes 
(basal-like and claudin-low) when they are treated with the same kinase inhibitor (trametinib). 
The kinases in the subnetworks defined in Figure 5 also respond uniquely in the basal-like and 
claudin-low subtypes when treated with trametinib (Figure 6E). The adaptive kinome response 
measured by dynamic changes in MIB-binding profiles is more clearly seen when specific 
subnetworks are analyzed (Figure 6F). The global response of the seven largest subnetworks to 
these drug perturbations is shown with their functional annotation as estimated from Gene 
Ontology terms and KEGG pathway enrichment shown on the x-axis and MIB-binding response 
reported on the y-axis as a mean across all cell lines and drugs. Subnetworks have heterogeneous 
responses, with some subnetworks being fairly coordinated in response and others having kinase 
members acting in a more strongly divergent manner. For instance, subnetwork 3 (SN3) is 
enriched with many kinases relevant to cytoskeleton, adhesion and motility and has many of its 
members strongly up-regulated in response to drug perturbation. In comparison, SN2, involved 
in cell cycle and cell division, contains both strongly up-regulated and down-regulated kinases, 
with the largest responses being loss of MIB-binding, consistent with the inhibition of cell 
growth. Understudied kinases (green labels in Figure 6F) often display large responses to drug 
treatment within a given subnetwork, demonstrating these kinases actively contribute to adaptive 
kinome reprogramming in response to targeted kinase inhibition. Similarly, a more detailed look 
at targeted inhibition of specific subnetworks for each of the cell lines shows the dynamic 
response of the kinome to be highly dependent on the drug, subtype and subnetwork context 
(Figure 6G, Table S5). More broadly, the response of kinases in subnetworks is consistent with a 
unique functional regulation of the kinome in cancer subtypes and in response to different 
perturbations.  
 
 
Discussion 
 
While the creation of molecular taxonomies has established the existence of subtypes in many 
tissue-specific cancers, how these taxonomies can be leveraged to characterize phenotype or to 
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guide the development of targeted therapeutics remains unclear. A complication for improving 
therapeutic intervention with targeted kinase inhibitors in cancer is the extensive number of 
understudied kinases, whose poor characterization presents significant challenges to 
understanding their role in emergent processes such as adaptive bypass reprogramming and 
resistance to kinase inhibitors. Despite such challenges, understudied kinases do have the 
potential as novel drug targets once their functional integration into signaling networks is more 
clearly determined. Methods generally have been lacking to capture kinases, both well-
characterized and understudied, to define the functional kinome en masse. Characterization of 
kinase MIB-binding in tumor cell lysates has proven to be a powerful technique for 
characterizing functional architectures of the kinome that provides the capability to identify 
prognostic signatures and differential response to perturbations such as targeted kinase 
inhibition, as well as better establishing the integration and function of understudied kinases. 
This is clearly seen in the 50 kinase profile distinguishing TNBC from HER2+/luminal breast 
cancer with many of the 50 kinases representing understudied kinases.  
 
The highest weighted understudied kinases distinguishing TNBC from HER2+/luminal breast 
cancer include ADCK1 (AarF Domain Containing Kinase whose function is unclear), DAPK3 
(Death-associated protein kinase thought to be involved in apoptosis), DMPK (Dystrophia 
myotonica protein kinase whose function is not well-defined), MRCKA (Myotonic dystrophy 
kinase-related CDC42 binding protein kinase alpha that may signal CDC42 control of the actin 
cytoskeleton and is related to DMPK), STK17A (Serine/threonine kinase 17A has apoptosis-
inducing activity and is a member of the DAP kinase-related family), TLK2 (Tousled-like kinase 
2 is involved in chromatin assembly and possibly DNA repair) and VRK2 (Vaccinia-related 
kinase 2 that is believed to regulate apoptosis and cell growth). Screening of the cBioPortal for 
Cancer Genomics (http://www.cbioportal.org/public-portal/) indicates amplification of MRCKA 
(CDC42BPA) in 13-25% of invasive breast cancer while TLK2 is amplified in 10% of invasive 
breast cancer and 25% of adenoid cystic breast cancer. ADCK1, DAPK3, DMPK STK17A and 
VRK2 were found to be similarly amplified in other cancers including prostate adenocarcinoma, 
uterine carcinosarcoma and pancreatic adenocarcinoma. Prominent MIB-binding signatures 
combined with potential increased expression in tumors suggests these understudied kinases 
have important functions for the tumor cell phenotype that have not been characterized to date.  
 
The dynamic nature of the kinome is clearly captured in the kinase MIB-binding profiles 
characterizing baseline versus post-drug treated cells. This adaptive reprogramming of the 
kinome is involved in the epigenetic development of resistance to kinase inhibitors [22]. We 
have proposed that blocking this adaptive reprogramming is important clinically for making 
single kinase inhibitors more durable [6]. Pre- and post-drug treatment MIB/MS analysis allows 
for the quantitative measure of kinome adaptive responses and the rapid screening of 
combinations of kinase or epigenetic inhibitors that would block the adaptive behavior of the 
kinome [6], [9], [22]. This analysis can be done in preclinical models as well as patient trials 
where biopsy accessible tumor specimens are available. We have been able to capture more than 
200 kinases with as little as 300 µg of tumor biopsy protein. Thus, MIBs provide a proteomic 
approach to characterize the functional state and dynamics of the kinome and thus define 
therapeutic response and targetable adaptive resistance networks. Importantly, MIBs capture 
both well-characterized and understudied kinases for a comprehensive measure of the functional 
kinome. 
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Materials and Methods 
 
MIB affinity chromatography 
Broad spectrum Type I kinase inhibitors (CTx-0294885, VI-16832, PP58, Purvalanol B, UNC-
2147A, and UNC-8088A) were custom-synthesized with hydrocarbon linkers and terminal 
amine groups and covalently attached to ECH-activated Sepharose beads as previously described 
[6]. Cells were rinsed in PBS and processed in lysis buffer (50 mM HEPES, 150 mM NaCl, 
0.5% Triton X-100, 1 mM EDTA, 1 mM EGTA, at pH 7.5 containing 10 mM NaF, 2.5 mM 
NaVO4, cOmplete protease Inhibitor Cocktail (Roche), and 1% Phosphatase Inhibitor Cocktails 
2 and 3 (Sigma)). Tumor biopsies obtained from UNC Tissue Procurement were manually 
homogenized with a chilled mortar and pestle in lysis buffer. For individual bead profiling 
(Figure 1), 2mg of total protein was gravity-flowed over 100uL of each bead. For Figure 2 (cell 
lines), 5mg of total protein lysate and for Figure 4 (human tumor biopsies), 1mg of total protein 
was gravity-flowed over a mixture of the six kinase inhibitor-linked beads (175uL total beads). 
Beads were washed with at least 30 volumes of high salt (1M NaCl) and low salt (150mM NaCl) 
lysis buffer, then 500uL of low salt lysis buffer containing 0.1% SDS. Bound proteins were 
eluted by boiling with 0.5% SDS and 1% β-mercaptoethanol in 100mM Tris-HCl, pH 6.8, 2X 15 
minutes, treated with DTT (5mM, 25min at 60°C) and Iodoacetamide (20mM, 30min in the dark 
at RT), and spin-concentrated to 100µL (Millipore Amicon Ultra-4, 10K cutoff) before 
Methanol/Chloroform precipitation. Proteins were trypsinized overnight at 37°C and then dried 
down in a speed-vac. Peptides were cleaned with C-18 spin columns (Pierce). 
 
Mass Spectrometry and Analysis 
Peptides were resuspended in 2% ACN and 0.1% Formic Acid. For Figure 1 (bead profiling) 
20% of each sample was injected onto a Thermo Easy-Spray 75µm x 15cm C-18 column using 
an Easy nLC-1000 in technical triplicate and separated on a 150 min gradient (5-40% ACN). For 
Figures 2 and 4 (cell lines and tumor biopsies), 40% of the final peptide suspension was injected 
onto an Easy-Spray 75µm x 25cm C-18 column and separated on a 300min gradient (cell lines) 
or a 180min gradient (tumor biopsies). For all runs, ESI parameters: 3e6 AGC MS1, 80ms MS1 
max inject time, 1e5 AGC MS2, 100ms MS2 max inject time, 20 loop count, 1.8 m/z isolation 
window, 45s dynamic exclusion. Spectra were searched against the Uniprot/Swiss-Prot database 
with Sequest HT on Proteome Discoverer software (Figures 1 and 2) or MaxQuant (Figure 4). 
Only peptides with medium or greater confidence (5% FDR) were considered for quantitation, 
and only kinases having 3 or more unique peptides were considered for further analysis. Heat 
maps were generated using GENE-E software (BROAD institute). Kinome trees were generated 
using Kinome Render (http://bcb.med.usherbrooke.ca/kinomerender.php). 
 
RNA-seq 
Total RNA was spin column purified using RNeasy Plus Mini kit (Qiagen). Library construction 
was performed at the UNC Lineberger Comprehensive Cancer Center Genomics Core and the 
sequencing at the UNC High-Throughput Sequencing Facility. mRNA-Seq libraries were 
constructed with 1 µg total RNA using the Illumina TruSeqTMRNA Sample Prep Kit according 
to the manufacturer’s protocol. 50-cycled single-end sequencing runs with multiplexing were 
produced using an Illumina HiSeq2000. CASAVA 1.8.2 generated bases and assessed sequence 
quality. The QC-passed reads were aligned to the hg19 human reference genome using 
MapSplice and the alignment profile was determined by Picard Tools v1.64 [23]. Aligned reads 
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were sorted and indexed using SAMtools, and then translated to transcriptome coordinates and 
filtered for indels, large inserts, and zero mapping quality using UBU v1.0. Transcript abundance 
estimates for each sample were determined using an Expectation-Maximization algorithm [24]. 
Publicly available data from [25], [26] were also processed using this computational method. 
Data is available in Data file S2.  
 
Data analysis 
Hierarchical clustering, Principal Components Analysis (PCA), and feature selection were 
performed in MATLAB. PCA is a commonly-used data analysis and dimension-reduction 
technique that transforms variables into a set of linearly uncorrelated principal components [27]. 
Application of PCA also provides the ability to assign a weight to each feature (kinase) in the 
data set that can be used as a relative measure of its ability to distinguish subtypes. To identify 
kinases that dominate individual PCs, kinases having weights in the 90th-percentile (i.e. those 
weighted in the top 10% of weights) per PC were selected from the first three PCs and used in 
downstream classification tasks. Feature selection using the Bhattacharyya distance was also 
used as a secondary mechanism for ranking kinases in terms of their ability to distinguish 
subtypes [21]. Pairwise classification between subtypes (e.g. basal-like subtype from all others, 
claudin-low from all others, etc) was iteratively performed to identify the most informative 
features. 
 
Kinases identified through feature ranking and PCA are combined to create a list of the most 
distinguishing kinases in MIB-binding across the breast cancer subtypes. Subtype-specific 
signature kinases are defined as the top 5% of the highest ranking kinases found using the 
Bhattacharyya feature ranking coefficient for each subtype are compiled for the overall list. Pan-
subtype signature kinases are defined as the most heavily weighted kinases (top 10%) from the 
first three PCs are used. Subtype-specific signature kinases are compiled from each of the breast 
cancer subtypes then the global signature kinases are added (in order from most heavily weighted 
to less heavily weighted) starting with PC1 kinases then moving to PC2 then to PC3 until a 
maximum of 50 kinases is reached to make up the list of distinguishing kinases. A total of 50 
kinases was chosen as classification accuracy of the breast cancer subtypes plateaued at this level 
(Figure S1).  
 
Comparison of MIB-binding to transcript abundance 
The Z-score is calculated by sample based on the average log2 value per kinase and using the 
standard deviation of all kinases for a given sample; the samples within a particular subtype are 
then averaged (Figure 3 A-D). The Pearson correlation calculated by subtype (Figure 3 A—D) is 
the correlation between the MIB-binding profile to the RNA transcript levels within a single 
subtype. The Pearson correlation of individual kinases (Figure 3F) is calculated for each kinase 
across the 15 cell lines (not distinguished by subtype) between MIB-binding and RNA transcript 
levels. The correlation calculated by subtype (Figure 3 A—D) is the correlation between MIB-
binding and RNA transcript levels to see how the profiles of each data type correlate between 
MIB-binding and RNA. The correlation calculated for each kinase is a correlation across cell 
lines to determine how a kinase correlates across all cell lines analyzed here. 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2017. ; https://doi.org/10.1101/122739doi: bioRxiv preprint 

https://doi.org/10.1101/122739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Prediction of subtypes 
Classification of subtype based on a previously unobserved kinome signature was performed 
using a Support Vector Machine (SVM). The SVM is a commonly used machine learning 
technique used in supervised classification, and thus requires a training set on which to learn 
parameters that can then be applied towards prediction of previously unobserved data [28]. The 
SVM used here was trained on the 50 distinguishing kinases previously identified. Performance 
of the SVM was analyzed using leave-one-out cross validation, where training is performed on 
all samples except for one and a classification prediction being carried out for the left-out 
sample. Predictions are made in this way for every sample and final sensitivity, specificity, and 
precision are calculated on classification performance across all samples. Human tumors are 
classified into one of the major groups (TNBC or HER2+/Luminal) or as “other” using the SVM 
trained on the 50 distinguishing kinases identified from breast cancer cell line samples. 
 
Network Analysis 
Protein-protein interaction information was compiled from multiple public data sources for the 
254 kinases analyzed in this data set and included, the Human Integrated Protein-Protein 
Interaction rEference (HIPPIE) (updated 9/1/2015; [29]), Human Protein Reference Database 
(HPRD Release 9; [30]), Interlogous Interaction Database (I2D version 2.9; [31], [32]), 
PhosphoSitePlus (phosphosite.org - downloaded 10/15/2015; [33]) and Reactome protein-protein 
interactions (downloaded 12/15/2015; [34]). The union of all interactions between the 254 
kinases was used to form a single network that was then clustered into communities/subnetworks 
with the spectral method in Mathematica (ver 10.3).  
 
 
Supplementary Materials 
Fig. S1. Classification accuracy across subtypes in LOOCV. 
Table S1. Kinases bound to individual beads. 

Table S2. Understudied kinases list.  
Table S3. Precision, specificity, and sensitivity for all four subtypes in SVM. 

Table S4. Kinases bound uniquely within a subtype. 
Table S5. Kinases within subnetworks.  

Data file S1. Baseline MIB-binding data matrix. 
Data file S2. Matrix of RSEM values across cell lines. 

Data file S3. MIB-binding response data matrix.  
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Figures and Tables  

 
Fig. 1. Assessment of multiplexed kinase inhibitor beads (MIBs) for kinase capture across breast 

cancer subtypes. (A) Experimental design to assess performance of six kinase inhibitor 
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beads. (B) Combined data from all four cell lines assayed shows CTx-0294885 binds the 
most number of kinases. Number of kinases captured uniquely by each bead is shown in 
red. (C) Euclidean hierarchical clustering kinase peptides bound by the six beads shows 
each bead enriches for a distinct set of kinases. UNC-2147A displays the most unique 
binding profile. (D) A large proportion of kinases captured by MIBs (23-24%) are 
understudied or poorly characterized (green). (E) 381 kinases were identified across all 
four cell lines, including 346 protein kinases and 35 metabolic kinases. Of these protein 
kinases, 142 are understudied (green). (F) Chemical structures and kinase-binding of each 
inhibitor bead across the kinome. Circle size is proportional to the number of unique 
peptides identified per kinase. PRKDC (DNA-PK) is over-represented in VI-16832 and 
PP58 (large circle under Atypical protein kinases). Most beads capture kinases across 
families but UNC-2147 preferentially enriches for AGC family kinases. Shown to the 
right of each kinome tree are the 15 most-highly captured kinases for each bead. Green 
circles and text signifiy understudied kinases. (G) Comparison of relative binding of 
characterized kinases across breast cancer cell lines/subtypes. (H) Comparison of relative 
binding of understudied kinases across breast cancer cell lines/subtypes. (I) Each cell line 
representing the different breast cancer subtypes displays a unique kinome profile. Only 
kinases with the greatest number of peptides identified in particular cell line are shown. 
Cirlce size is proportional to the number of peptides identified. (J) Hierarchical clustering 
of peptides identified for each kinase (rows) across the cell lines (columns) cluster triple-
negative cell lines (SUM159, HCC1806) together and indicates HER2-positive SKBR3 
cells have the most distinct kinome profile.  
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Fig. 2. MIB/MS kinome profiling assigns breast cancer cell lines to functional subtypes. (A) 

Individual samples run across 6-bead composition with LC-MS/MS analysis. (B) Heat 
map of correlation between MIB/MS samples for cell lines analyzed. Color bars indicated 
the subtype of each cell line (blue: basal-like, red: claudin-low, pink: HER2-enriched, 
black: luminal, purple: basal-like/HER2amp). White in the heat map indicates a low 
correlation between samples, while red shows higher correlation. Rows and columns are 
hierarchically clustered. (C) Heat map of MIB/MS average for each of the 15 cell lines 
analyzed. Rows are kinases; columns are MIB/MS cell line averages. Color bar for 
columns indicates the subtype associated to each cell line. Each column is an average of 2 
or 3 MIB/MS samples, depending on the cell line. Colors in the heat map are relative by 
row minimum (blue) and maximum (red). A total of 254 kinases passed filtering (see 
Methods). Rows and columns are hierarchically clustered using Euclidean distance and 
average linkage. (D) Principal Component Analysis (PCA) on the entire MIB/MS data 
set. PC1 and PC2 account for 14.0% and 10.3% of the variance in the data set, 
respectively. A total of 32 samples across the fours subtypes are represented by their 
subtype (red circle: claudin-low, blue square: basal-like, pink upward triangle: HER2-
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enriched, black right-pointing triangle: luminal, purple square: basal-like/HER2amp). (E) 
PCA on the MIB/MS data set to show highly variable kinases across the samples. 
Characterized and understudied kinases are shown in black and green, respectively. PC1 
and PC2 account for 44.0% and 7.83% of the variance in the data set, respectively. (F) 
Volcano plot showing characterized (black) and understudied (green) kinases that are 
significantly (p<0.05) different between the Luminal/HER2-enriched and TNBC (basal-
like/claudin-low) cell line samples in the MIB/MS data set. (G) Profiles of selected 
characterized (top row) and understudied (bottom row) kinases across breast cancer 
subtypes.      
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Fig. 3. Overall MIB-binding and mRNA expression levels are not correlated. (A—D) 

Comparison of baseline normalized MIB/MS (y-axis) intensities and baseline normalized 
mRNA (x-axis) counts in cell lines for representing each of the four subtypes (A: basal-
like, B: claudin-low, C: HER2-enriched, D: luminal). The grey line indicates a 1-to-1 
relationship between normalized MIB/MS and RNA levels. Above the line indicates 
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Function Dominance, while below the line indicates Expression Dominance. Correlation 
between the MIB/MS and RNA levels were basal-like: 0.03, claudin-low: 0.25, HER2-
enriched: 0.18, and luminal: 0.16. (E) Representative raw profiles of ERBB2, PKN1, 
PDPK1, and MARK2 in MIB/MS intensity (orange bars) and mRNA RSEM counts (bue 
bars), which are both highly correlated between the two data sets (correlation > 0.8). A 
table of 32 kinases that have a correlation greater than 0.7 across the four subtypes is also 
shown (bottom). (F) Frequency distribution of Pearson’s correlation coefficient across all 
cell lines in MIB/MS and RNA-seq for each of the 254 kinases. (G) KinomeTrees for 
MIB-binding (left), RNA expression (middle), and the overlap between the two data sets 
(right) for the HCC1806 (basal-like) cell line. In the overlap, yellow indicates where the 
two data sets overlap.  
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Fig. 4. Baseline kinome of cell lines and tumors across breast cancer subtypes. (A) Compilation 

of subtype specific and pan-subtype kinases chosen from feature selection and PCA, 
respectively. All data is log2 normalized and autoscaled by sample, with heat map colors 
indicating low (blue) to high (red) MIB-binding. Column color bar indicates subtype 
(red: claudin-low, blue: basal-like, pink: HER2-enriched, black: luminal, purple: basal-
like/HER2amp; Understudied kinases are denoted by *). Global maximum and minimum 
color assignment. (B) KinomeTree with the 50 distinguishing features from (A) are 
denoted. Black circles denote characterized kinases, while green circles represent 
understudied kinases. (C) Kinases chosen from feature selection when comparing 
Luminal/HER2-enriched cell line samples against basal-like/claudin-low (TNBC) cell 
line samples. Kinases are ordered from top to bottom in the same ordering as from the 
feature selection (most heavily weighted kinases are at the top of the heat map). All data 
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is log2 normalized and autoscaled by sample, with heat map colors consisten with those 
in (A) (Understudied kinases are denoted by *). Global maximum and minimum color 
assignment. (D) Heat map of Luminal/HER2-enriched cell line average (HER2+/Luminal 
column; black in “Sample Type” column color bar) across the kinases shown in (C) with 
two tumor samples (teal in “Sample Type” column color bar). Data is log2 normalized 
and autoscaled by samples, as previously noted. Yellow in the “Classification” column 
bar shows which samples are classified correctly as Luminal/HER2-enriched by the SVM 
using the kinases from (C). Blue in the heat map indicates a low MIB-binding, red 
indicates high MIB-binding, and grey (in the tumor samples only) indicates that a kinase 
was not detected by MIBs in the tumor sample. Global maximum and minimum color 
assignment. (E) Heat map of TNBC cell line average (TNBC column; black in “Sample 
Type” column color bar) across the kinases shown in (C) with five tumor samples (teal in 
“Sample Type” column color bar). Data is log2 normalized and autoscaled by samples, as 
previously noted. Yellow in the “Classification” column color bar shows which samples 
are classified correctly as TNBC by the SVM using the kinases from (C). Dark red in 
“Classification” indicates that the tumor sample was incorrectly classified (not classified 
as TNBC) by the SVM using the kinases identified in (C). Color scheme in the heatmap 
is consistent with that described in (D). Global maximum and minimum color 
assignment. (F) PCA scores plot of tumor samples with PC1 and PC2 accounting for 
58.4% and 16.1% of variance, respectively. TNBC tumors are blue and HER2-enriched 
tumors are pink. (G) PCA loadings plot of tumor samples with PC1 and PC2 accounting 
for 71.5% and 16.5% of variance, respectively. Black points are characterized kinases 
and green points denote understudied kinases.  
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Fig. 5. Subnetworks in the functional kinome. (A) Compiled and clustered protein-protein 

interaction network from public data sources of the 254 kinases analyzed in the MIB/MS 
cell line data set. Green nodes represent understudied kinases, while grey and blue nodes 
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represent characterized kinases. Triangles are kinases that are also in the distinguishing 
features found in Figure 4A. (B) The largest subnetwork in (A) that contains understudied 
(10 kinases; 34.5%) and distinguishing (2 kinases; 6.9%) kinases. This subnetwork is 
enriched for the GO term “Innate Immune Response”. (C) The second largest subnetwork 
within (A) that contains 12 (41.4%) understudied and 6 (20.7%) distinguishing kinases 
and is enriched for “Cell Cycle”, “Cell Division”, and “Mitosis” GO terms.  
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Fig. 6. Kinome drug response overall and by subnetwork. (A) Growth curves for HCC1806 + 

Trametinib, SUM159 + Trametinib, SKBR3 + Lapatinib, and MCF7 + BKM120. All 
curves were done at two different doses. (B) Repsonse of kinome in representative cell 
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lines across four subtypes of breast cancer (claudin-low: SUM159, basal-like: HCC1806, 
HER2-enriched: SKBR3, luminal: MCF7) when treated with the indicated kinase 
inhibitor. Distribution of the kinome response on the log2-scale is shown for each cell 
line/subtype; each point represents a kinase. (C) KinomeTree showing the kinases that 
are uniquely captured in each of the subtypes in the baseline data set. Blue circles denote 
kinases bound to the MIBs only in basal-like samples. Similarly, red circles represent 
claudin-low, pink circles represent HER2-enriched, and black circles represent luminal 
uniquely bound kinases. (D) Scatter plot of the response of the basal-like vs. claudin-low 
cell lines to treatment with 100nM Trametinib. All values are fold change to untreated 
cells and log2-transformed. Kinase points are colored black for characterized and green 
for understudied. (E) Scatter plot of the response of the basal-like vs. claudin-low cell 
lines to treatment with 100nM Trametinib (same as in (D)). Kinases are colored by 
subnetwork assigned to each kinase from Figure 5. (F) Subnetwork response to drug 
perturbation showing mean fold change across the four representative cell lines 
(SUM159, HCC1806, SKBR3, and MCF7) for the top 7 subnetworks identified from 
Figure 5. Characterized and understudied kinases in each subnetwork are labeled in black 
and green, respectively. The color of each circle indicates the mean fold change 
(red=high/above 0, blue=low/below 0), while the area of the circle denotes the standard 
deviation of the fold changes across the representative cell lines. (G) Distribution of the 
kinome response in the three subnetworks (SN1, SN7, and SN13 on the log2-scale is 
show for each cell line/subtype.  
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