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Abstract 

Measuring functional connectivity between cortical regions of the human brain has become an 

important area of research. Modern theory suggests that brain networks exhibit non-stationarity, 

constantly forming and reforming depending on task demands. A robust means of determining 

effective connectivity in the short-lived neural responses that occur in event related paradigms would 

allow the investigation of event related cortico-cortical dynamics.  We present such a mathematical 

model of wave propagation, motivated by current neuroscience literature, and demonstrate the utility 

of the method in a clinical sample of schizophrenia patients. MEG data were acquired in 10 patients 

with schizophrenia and 12 healthy controls during a relevance modulation task. Data were filtered 

into the theta band (4-8Hz) and source localised using a beamformer. The model was implemented 

using Fourier analysis methods which uncovered an event related travelling wave moving from the 

visual to frontal cortices. The model was validated using Monte Carlo phase randomisation and 

compared with another plausible model of wave propagation in the cortex. Results from the clinical 

sample revealed that wave speed was modulated by task condition and patients were found to have less 

difference between conditions (ANOVA revealing a significant interaction between group and 

condition, p<0.05). In conclusion, our method provides a simple and robust means to investigate 

event related cortico-cortical brain dynamics in individuals and groups in the task positive state. 

Introduction: 

Measuring functional connectivity between spatially distinct brain regions has become an important 

goal for understanding human brain function. There is wide consensus that integration between 

functionally specific regions is crucial for the processing of information in the healthy brain (Buzsaki 

and Draguhn, 2004; Engel et al., 2001; Schnitzler and Gross, 2005; Uhlhaas and Singer, 2010). 

Moreover it has been hypothesised that a breakdown in the efficacy of such connections may underlie 

a number of neuro-pathologies including developmental disorders such as ADHD (Liddle et al., 

2011), severe psychiatric illnesses such as schizophrenia (Friston, 1999; Phillips and Silverstein, 2003; 

Schnitzler and Gross, 2005; Stephane et al., 2008; Uhlhaas and Singer, 2010) and neurodegenerative 

disorders such as Parkinson’s disease (Hutchison et al., 2004; Schnitzler and Gross, 2005; 

Timmermann et al., 2004). Our ability to measure, with high spatio-temporal precision, the means by 

which functionally specific regions co-ordinate their activity is therefore of key importance. Brain 

network formation has primarily been investigated using functional magnetic resonance imaging 

(fMRI), and nearly two decades of research has demonstrated the existence of a relatively small 
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number of robust large-scale distributed networks of connectivity; some associated with sensory 

systems (e.g. the visual and sensori-motor networks) and others associated with attention and 

cognition (e.g. the default mode and dorsal attention networks).  

Using electrophysiological measurements, several authors have proposed that phase synchronisation of 

oscillatory activity serves as an effective means of cortico-cortical communication (Engel and Singer, 

2001; Gray and Singer, 1989; Gray et al., 1989; Singer and Gray, 1995) in both short range (Eckhorn 

et al., 1988; Engel et al., 1991; Gray et al., 1989) and long range connections (Engel et al., 2001; 

Fries, 2005; Hipp et al., 2012; Salinas and Sejnowski, 2001; von Stein et al., 2000; Uhlhaas et al., 

2010; Varela et al., 2001). Though useful, current methods primarily aim to identify aggregate brain 

networks observable over large time windows, in many cases lasting several minutes. However, human 

brain function relies on our ability to react to stimuli on a rapid timescale. This must necessitate the 

rapid formation and disintegration of transient brain networks, defined by short lived connections that 

are superimposed upon the distributed networks observable using traditional static metrics (Engel et 

al., 2013). fMRI is an indirect measure of brain activity based upon slow haemodynamics and thus is 

not well suited to the investigation of these transient brain states. 

We aimed to use the relatively short-lived induced envelope from a seed location, and predict activity 

at other brain regions using a transfer function. This transfer function takes into consideration the 

non-linear effects of temporal delay, thereby capturing the transient effective connectivity associated 

with a particular cognitive task. The model presented here is informed by relevant knowledge of 

neuronal functioning showing that oscillatory coupling between regions results in effective 

connectivity and cortical communication.  

Communication between cortical regions may be achieved by synchronised firing of neuronal 

populations, since the integration of such coincident firing at the target population increases the 

likelihood of a neuronal response (Abeles, 1982; König et al., 1996; Salinas and Sejnowski, 2001). 

Therefore, tightly synchronised oscillations are more effective than non-synchronised outputs at 

transferring information from one region of the cortex to another (Alonso et al., 1996; Azouz and 

Gray, 2000; Bruno and Sakmann, 2006). Engel et al. (2013) have described short lived spatiotemporal 

patterns of connectivity as intrinsic coupling modes (ICMs) categorised loosely by two mechanisms of 

interaction; the first mechanism involves a linear fixed phase relationship between the oscillations 

generated by spatially distinct brain areas (Gow Jr et al., 2008; Gross et al., 2001; Ioannides et al., 

2000; Jerbi et al., 2007; Nolte et al., 2004; Schlögl and Supp, 2006; Schoffelen and Gross, 2009; Tass 

et al., 1998). The second involves temporal correlation between the amplitude envelopes of neural 

oscillations in different regions (Brookes et al., 2011a, 2012; Bruns et al., 2000; Hall et al., 2013; 

Hipp et al., 2012; Liu et al., 2010; de Pasquale et al., 2010). Both forms of coupling identify networks 
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of functional connectivity in the human brain. Furthermore, both forms have a degree of spatial 

concordance with the networks observed using fMRI (Brookes et al., 2011a; Marzetti et al., 2013; de 

Pasquale et al., 2010; Schölvinck et al., 2010).  

However, the precise mechanism by which amplitude correlation occurs is not known. One 

mechanistic interpretation is that state changes in distributed cortical networks are modulated on slow 

timescales by neuro-modulatory input (Leopold et al., 2003; Munk et al., 1996). However, on shorter 

timescales, i.e. during a cognitive task containing short trials, amplitude modulation is likely to be 

driven by transient synchronisation of local cortical oscillations (Neuper et al., 2006; Pfurtscheller and 

Aranibar, 1977; Pfurtscheller and Lopes da Silva, 1999). The true picture is likely a combination of 

the two. However, for building our model, we will assume that transient connections between cortical 

regions during a task are driven by inter-cortical communication. When two or more neuronal 

populations are engaged in coherent activity, phase differences between sending and receiving 

populations may regulate the flow of information (the effective connectivity) (Fries, 2005; 

Womelsdorf et al., 2007) a proposition that forms the basis of effective connectivity measures in the 

EEG and MEG such as dynamic causal modelling (DCM) (Friston et al., 2003; Stephan et al., 2007). 

In the stimulus induced response this directed form of connectivity may also manifest in the envelope 

as correlation of event related synchronisation (ERS), even in the absence of long range phase 

coherence (Bruns et al., 2000). Therefore, inter-cortical delays in transient ERS and event related 

desynchronisation (ERD) might provide a phase independent marker for effective connectivity. 

Importantly, this theory implies that greater synchronisation corresponds to communication that is 

more efficient. Locally, this should be evident in the envelope as more rapid ERD and ERS in the post 

stimulus response (in other words a more rapidly modulated envelope in both communicating 

regions). In terms of cortico-cortical communication, this increased efficiency should result in a 

decrease in delay. Therefore, we make the prediction that temporal delay between cortical sites is 

proportional to the modulation frequency of the envelope.   

In order to test a model based on these assumptions it is necessary to adopt a paradigm known to elicit 

long-range communication, and to elicit reliable components in the stimulus-induced response. The 

theta band has been implicated in communication between the occipital and medial frontal regions 

during working memory (Sarnthein et al., 1998) and visual attention paradigms (Gregoriou et al., 

2009), suggesting a role for theta in long range communication between distant cortical sites. 

Furthermore, the amplitude of post stimulus theta ERS scales with task difficulty (Brookes et al., 

2011a, 2011b; Jensen and Tesche, 2002) supporting the idea that theta ERS is somehow functionally 

significant in visual working memory. Anatomically, the visual processing pathway is comprised of a 

cortical hierarchy that sub-serves cognitive function by participating in both feed-forward and 

feedback cortical connections. Feed-forward signals convey sensory information, while feedback 
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mechanisms provide modulatory input (Bastos et al., 2015a, 2015b; Felleman and Van Essen, 1991; 

Markov et al., 2014). Furthermore, sensory-guided goal-directed behaviour necessary for the 

completion of most cognitive tasks, relies on both feed-forward (Brookes et al., 2011a; Donner et al., 

2009; Glimcher, 2003; Mazaheri et al., 2009, 2010) and feedback networks (Donner et al., 2008, 

2009; Driver et al., 2009; Gold and Shadlen, 2001; Horwitz et al., 2004; Kastner and Ungerleider, 

2000; Kim and Shadlen, 1999; Moore and Armstrong, 2003; Nienborg and Cumming, 2009; Ress 

and Heeger, 2003; Serences and Yantis, 2006; Zanto et al., 2011). Bastos et al. (Bastos et al., 2015a) 

have recently shown that, in the primate visual system, feed-forward and feedback influences are 

carried by distinct frequency ranges of neural oscillations. Specifically, theta (~4Hz) and high gamma 

band (~60-80Hz) oscillations were involved in routing of information from V1 to higher processing 

areas, while feedback influences were carried by beta (~14-18Hz) oscillations. Inter-regional delay of 

power fluctuations between several functional networks have also been observed during a visual 

working memory study in humans (Brookes et al., 2011a; Liddle et al., 2016) suggesting that the 

relevance modulation task is a useful paradigm for investigating striatal-frontal connectivity. It was 

found, in both of these studies, that trial averaged induced responses revealed a burst of theta 

oscillations peaking at ~200ms post stimulus onset in the visual cortex. A similar theta waveform was 

observed in the frontal regions, but was delayed relative to the stimulus by ~400ms. If this observable 

theta burst is indeed representing a feed-forward influence within a hierarchical network it follows that 

a direct correlation should be observable between the theta waveform within these separate regions, if 

the mapping function between those two regions can be determined accurately.  

Here, we aim to investigate the precise relationship between visual and frontal theta-band envelopes. 

Using MEG, we measure the theta band waveforms that are induced across multiple brain locations by 

a cognitive stimulus. We formulate two simple models of propagation of the theta envelope waveform 

from the occipital cortices to anterior brain regions. In the first model, we assume that wave 

components at all frequencies travel through the brain with the same velocity, such that the theta 

waveforms measured in the frontal regions are simply time-delayed reconstructions of the equivalent 

theta waveform in the visual cortex. In the second model, we employ a model to test the prediction 

that higher frequency envelope modulations will travel through the brain with a shorter delay. As a 

result, the envelope modulation frequency will be linearly related to the propagation delay, leading to a 

temporally distorted theta waveform in distant cortical regions. Note that this is not the same as 

measuring phase lag in the carrier signal. We present evidence that the latter model offers a useful 

means to investigate connectivity between distal brain regions (specifically visual to frontal). We also 

show that the parameters characterising the model are affected by the cognitive task undertaken by the 

subject. Finally, we show that these same parameters differ in patients with schizophrenia compared to 

healthy controls.  
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Theory: 

In order to assess connectivity between two distal brain areas we first begin with a simple description 

of the two models to be tested. Consider first a simple sinusoidal waveform, induced by an external 

stimulus (e.g. visual stimulation) within a neural network at brain location ��. This waveform is 

subsequently “transmitted” via some means to a spatially separate brain location, �� (see Figure 1A for 

an example). 

 

Figure 1: Two simple models of conduction through the brain. A) A phase shifted sinusoid. B) 

First order phase shift representation of a waveform with multiple frequency components, leading 

to a time shifted version of the original data. Note that the end of the original data is appended to 

the beginning of the time shifted data. D) Flow charts showing the difference between the zero-

order and first order models. 

If ����, ��� represents the measured waveform at location �� then taking the simplest possible 

waveform, we can assume 

����, 	�� 
 � sin����.     [1] 
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Note that amplitude, �, and frequency, �, are determined by the external stimulus driving the 

waveform (i.e. if the stimulus were a flashing light, then � would likely be defined by the frequency of 

the flash) and the localised cortical response to that stimulus at brain location ��. Now assume that 

����, ��� is the transmitted waveform measured at brain location ��. Note that the signal has, via 

some unknown path, been transmitted between �� and �� over a distance ��, with some effective 

velocity �. Mathematically we guess that 

����, 	�� 
 � sin���� − ����.    [2] 

Here, �� is the time taken for the wave to travel from �� to �� and so 

�� 
 ��
�  .      [3] 

Therefore, 

����, 	�� 
 � sin ��� − ���
� �.    [4] 

Note here that unlike the general case for a physical wave (e.g. light waves), the parameters ω and � 

are unrelated. ω is likely to depend on the stimulus and response function of brain area �� whereas � 

represents conduction velocity in the brain. 

The above treatment only accounts for a pure wave of a single frequency component. To generalise 

this, consider what happens if multiple different frequency components originate at ��. Here,  

����, ��� 
 ����� sin���� ��.    [5] 

Again, assuming that a linear shift in the waveform between 	� and 	� we could write that  

����, ��� 
 ����� sin ��� − ���
� � ��.   [6] 

Note that �, the amplitude of each frequency component is allowed to vary with frequency. Recall 

also that for our simple case, �� and � are constant. We now rewrite the expression for �� as 

����, ��� 
 ����� sin��� − ������ ��  [7] 

Where 
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 ����� 
 ��
� �      [8] 

In words we state that �� is a phase term which is directly proportional to frequency ω. Implicit in the 

model is that we assume that conduction velocity, �, is frequency independent, meaning that the 

measured waveform at �� is simply a time shifted version of that measured at ��. This simple model is 

depicted in Figure 1B and, since �� is a first order polynomial in ω, we term this a first order phase 

shift model.  

The assumption inherent in the first order phase shift model is that all amplitude modulation 

frequencies travel with the same velocity, �. However, alternative models may be proposed where 

other factors affect propagation velocity. One possible factor is the synchrony of the cortical 

population. Here we assume that a rapid modulation of band-limited power reflects a rapid change in 

synchrony of the local neural population. Neurons within the local population entrain distant 

connected neurons resulting in a rapid change in power at the connected region. Therefore both 

regions will show rapid modulation of power with a time delay that is proportional to the modulation 

frequency. This effect is independent of axonal conduction velocity which is assumed here to be 

relatively fast and of constant velocity. On different trials, and within different neuronal 

subpopulations, amplitude modulations of varying frequency add linearly resulting in a more complex 

average waveform.  

For a simple idealised envelope with sinusoidal time course: 

� !!��� 
 "�      [9]  

Where c is an unknown constant. Note that we do not suggest that physical conduction velocity 

through white matter changes with wave frequency, rather we use � as an effective velocity which 

accounts for relative delay in action potential generation caused by different group delay. To denote 

this, we employ the term � !! . Substituting Equation [9] into the above model we can write: 

����, ��� = ����� sin #�� − ���
�$%%���& ��  [10] 

Or simply: 

����, ��� = ����� sin��� − �'� ��	   [11] 
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Where �' = ��/" and is a constant for all frequency components. In other words, the phase shift is 

independent of frequency (i.e. �' is a zero-order polynomial). We term this model a zero-order phase 

shift. In fact, the zero order phase shift results not in a time shifting of the original waveform as 

depicted in Figure 1B, but rather a distorted version of the original waveform. This depicted in Figure 

1D which shows two flow charts detailing the first order and zero-order phase shift models of 

transmission between two brain regions. 

 

 

Figure 2. Left panel illustrates how the summation of sine waves at different frequencies and 

phases results in a signal with a complicated waveform. The right panel illustrates the effect of 

zero order and first order phase shifting on the same constituent sine waves that make up the 

complex time series. The ZOPS method results in a rotation of the waveform about the complex 

axis. If all sine waves are shifted by 180 degrees, this results in a complete inversion of the 

timecourse. In the FOPS each frequency is shifted by a constant time regardless of frequency, 

resulting in a simple translation of the wave in the time domain. 
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Materials and Methods: 

Participants and Paradigm: 

MEG data were acquired in 22 subjects. This comprised 10 patients satisfying the DSM-IV criteria for 

schizophrenia (Leckman et al., 1982)(Liddle et al., 2002), and 12 healthy controls not differing 

significantly from the patient group in mean age, sex or parental socioeconomic status (Pevalin and 

Rose, 2002). Nine patients (75%) were receiving anti-psychotic medication.  Patients below the age of 

18 or over 50, or with an IQ score of below 70 on the Quick Test (Ammons and Ammons, 1962), 

were not considered for the study. Healthy controls were recruited from the community via 

advertisements and were free from Axis I psychiatric disorders. The study was given ethical approval 

by the National Research Ethics Committee, Derbyshire, United Kingdom. All participants gave 

written informed consent. 

All subjects took part in a “Relevance Modulation” task designed specifically to modulate the relevance 

to the subject of incoming visual stimuli. Note that this task has been employed in previously 

published studies (Brookes et al., 2011a) and we include its description here again for completeness. 

The subject was shown a series of visual stimuli (duration=800ms) in which pictures of butterflies were 

alternated with pictures of ladybirds. Inter stimulus intervals (ISI’s) were jittered, a single stimulus 

being presented, on average, every 2s. A single block comprised presentation of 40 alternating stimuli, 

followed by a resting phase. Blocks were 120s in total. At the beginning of each block, subjects were 

informed whether the relevant stimuli were the butterflies or the ladybirds. In blocks where butterflies 

were relevant, the subject’s task was to respond when the butterfly on the screen matched an example 

butterfly (shown at the start of the block) on three dimensions (shape, outer wing colour; inner wing 

colour); in blocks in which the ladybirds were relevant (LB blocks), the subject’s task was to respond if 

the number of red ladybirds in the picture was equal to the number of yellow ladybirds. The number 

of ladybirds ranged from 4 to 6, and they were presented in pseudo-random positions and 

orientations.  In both block types, the “target” stimuli were rare (probability = 0.05), and these 

“target” trials were excluded from analyses so as to avoid confound from a motor response. Eight 

blocks were presented to each subject, in the order: BF, LB, LB, BF, LB, BF, BF, LB.  Both task types 

(responding to a butterfly that matched the example; responding to equal numbers of red and yellow 

ladybirds) were designed to require close attention to the relevant stimulus. 

Data Acquisition and Preprocessing 

MEG data were acquired using the third order synthetic gradiometer configuration of a 275 channel 

MEG system (MISL, Coquitlam, Canada), at a sampling rate of 600Hz and using a 150Hz low pass 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/123471doi: bioRxiv preprint 

https://doi.org/10.1101/123471
http://creativecommons.org/licenses/by/4.0/


anti-aliasing filter. Three head position indicator (HPI) coils were attached to the subject’s head at the 

nasion, left preauricular and right preauricular points. These coils were energised with a subject inside 

the scanner to allow localisation of the head relative to the geometry of the MEG sensor array. The 

surface shape of the subject’s head was then digitised using a 3D digitiser (Polhemus, Isotrack) relative 

to the coils. The surface shape of each subject’s head and the coil locations were then coregistered with 

an anatomical MR image, acquired using a Philips 3T Achieva MR system at 1x1x1mm3 isotropic 

resolution using an MPRAGE sequence.  

In order to project sensor space MEG data into brain space a scalar beamformer spatial filtering 

approach was employed (Robinson and Vrba, 1999; Van Veen et al., 1997). Beamformer weighting 

parameters were computed on a regular 8mm grid spanning the whole brain space. A different 

covariance matrix was computed for each frequency band. The forward model was based upon a 

multiple local sphere head mode (Huang et al., 1999) and the dipole model described by (Sarvas, 

1987). Multiplication of the theta band filtered MEG data by the beamformer weights generated a 

timecourse of electrical activity for each voxel. Theta-band envelope time-series were then generated 

Hilbert transformation. These envelopes were averaged across all of the relevant and irrelevant trials in 

the dataset in a time window spanning 0+ < � < 2+ where � represents peri-stimulus time.  

FOPS and ZOPS Model Generation 

Our primary aim, as detailed in our introduction, was to test whether the zero order phase shift 

(ZOPS) model was better able to measure transmission of a waveform through the brain than the first 

order phase shift (FOPS) model. To do this, we first take the measured waveform, ����, ��� at brain 

region �� and act upon it using simple Fourier analysis to simulate the waveform at ��. The simulated 

waveform can then be compared to the measured waveform in order to test which of the two models 

best fits the data. We denote the Fourier transform of ����, ��� as .�����, ���� which can be written:  

.�����, ���� = ����/01���    [12] 

Where, ���� represents the amplitude and ���� the phase of each frequency component in Fourier 

space. We now simulate the signal at �� based upon the signal from 	�, using the FOPS model as: 

�2��34���, ��� = .5������/0�1���516�����  [13] 

Note here .5� represents the inverse Fourier transform, and we use the ‘hat’ notation �2� to represent 

the simulated version of ��. Note also that as required for the FOPS model, ����� = 7� where p is a 
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constant. Similarly it is possible to simulate the signal at �� based upon the signal from 	�, using the 

ZOPS model as: 

�2��84���, ��� = .5������/0�1���519��   [14] 

Where �' is a constant, meaning that to generate the simulated ZOPS signal we modify the phases of 

each frequency component by the same amount, irrespective of frequency.  

Model testing and statistical analyses 

In order to compute the similarity between the model and the data, correlation coefficients were 

computed between the measured theta timecourse �� and the modelled theta timecourse �2�. In order 

to generate the model, a time series, ��, was taken from a seed location in primary visual cortex and 

used, alongside either Equation 13 or 14, to generate the modelled timecourses �2�.  

For the zero order phase shift, �' was allowed to vary, taking 100 equally spaced values in the range 

:0 < � < 2;<. A set of 100 correlation coefficients was calculated for every voxel in the brain and in 

all cases the highest correlation across the 100 phase values was extracted and used in further analysis 

(i.e. we select the phase shift value that best fits the data for any one single voxel). 

For the first order phase shift, the phase change effectively amounts to a shift in time of the original 

seed time series. 100 iterations of the model time series were therefore computed with the time shift 

equally spaced between 0s and 2s.  Again a set of 100 correlation coefficients was calculated, for every 

voxel in the brain, and the highest correlation across the 100 time shift values was extracted (i.e. in this 

case we select the time shift value that best fits the data for any one single voxel). 

A potential limitation of the correlation approach is that for MEG, signals derived from multiple 

spatially separate voxels are not necessarily independent. This “signal leakage” between voxels is a 

direct result of the ill posed MEG inverse problem and is particularly problematic for voxels close to 

the centre of the head. In such cases the signal to noise ratio is very low and the projected timecourse 

can often represent a heterogeneous mix of the cortical signals. For this reason, in addition to 

correlation coefficients we also computed covariance. Computing the covariance between the model 

and the data not only accounts for similarity between �� and �2� but also the variance in ��. In 

beamforming, the variance of the signal is downweighted according to the norm of the weights vector 

(see Hall et al 2013) meaning that in deep regions, where leakage is high, the variance of �2� will be 
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relatively low. We would therefore hypothesise that the covariance metric would generate a more 

accurate spatial map than the correlation metric.  

To generate the correlation and covariance images, each subjects individual MRI was segmented and 

the brain extracted using the brain extraction tool (BET2) in FSL (Smith, 2002). The brain extracted 

MRI for each subject was then coregistered to MNI space using FLIRT (Jenkinson and Smith, 2001) 

and the same transform was applied to the functional (beamformer derived) data which were averaged 

across subjects in standard space. The covariance and correlation maps were then computed on an 

8mm grid in MNI space using the subject averaged data. All covariance and correlation maps were 

interpolated to a 1mm3 isotropic MNI grid, overlaid on to a standard MNI brain (MNI152 1mm 

brain, available in FSL) yielding 100 covariance and 100 correlation maps (i.e. one map was available 

for each of the 100 phase shifts (in the case of ZOPS) or time shifts (in the case of FOPS). Animations 

were generated by sequencing these images from low to high phase shift. Finally, maps of optimum 

phase for every voxel in the brain were generated.  

Calculation of statistical confidence intervals for each method, and comparisons between methods, 

were approximated by Monte Carlo phase randomisation of real signals extracted from the control 

subjects. Firstly, timecourses were extracted using beamformer source localisation at 50 locations 

spanning the visual and frontal cortices, chosen to be representative of the whole head. For each 

iteration of the Monte Carlo simulation, the extracted signals were phase randomised in the Fourier 

domain using the same method as described in (Prichard and Theiler, 1994) to maintain the 

covariance structure between locations, and preserving zero phase lag correlations such as those caused 

by weights correlation (see Fig 1.02). Each surrogate dataset was analysed using the same methodology 

as that used in real data. The phase-randomisation process was repeated 1000 times for each location 

producing a null distribution of r values. All values from >90mm were grouped to produce a general 

null distribution. 
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Figure 1.02. Results generated by phase randomisation simulations. The mean correlation of the 

null distribution is shown in blue, and the lower and upper 95% confidence limits are shown in 

grey below and above the mean. The effect of seed blur on the envelope correlation can be 

observed near 0mm. However, this flattens off at >30mm after which point the mean remains 

relatively constant. Note that FO method generates consistently higher mean correlation values 

under the null distribution than the ZO method. This difference needs to be taken into account 

when comparing procedures in real data.  

 

Between Groups Comparisons (Clinical Data) 

For the between groups comparisons of the controls and clinical sample, analyses were performed on 

individual subjects. Here the delay estimates for each model were calculated per voxel, and then 

averaged across distance bins producing 9 delay values (1 per distance bin) for each subject. These 

values were then checked for statistical normality. Our hypothesis was focused on the frontal cortex, so 

only the last two distance bins (encompassing the frontal cortices >120mm from the seed) were 

entered into an ANOVA model (2 x condition, 2 x group, 2 x distance). 

Results: 

Healthy Volunteer ZOPS Connectivity Analysis: 

Figure 2 shows results of our ZOPS connectivity analysis applied to data from healthy subjects, with a 

seed location in primary visual cortex. Analysis was limited to the averaged theta (4-8Hz) envelope 

timecourse. Figures 2A and B show axial and sagittal correlation images for phase values varying from 

0ο to 91ο ; Figure 2A shows the case for the relevant stimuli whilst Figure 2B shows the case for 

irrelevant stimuli. (The locations of the axial and sagittal slices used are shown in Figure 2H.) It is 

noteworthy that the ZOPS model generates high correlation, with the voxels exhibiting the highest 

correlation appearing to move anterior, as phase value is increased. The peak correlation of r=0.97 was 

located in medial frontal cortex and p values (obtained using the Monte-Carlo phase randomisation 

method) survive a Bonferroni correction for all 4626 voxels tested (pcorrected<0.05). This was considered 

a very conservative significance test. The anterior movement of regions of high correlation between the 

data and the ZOPS model, as phase is incremented, generates the effect of a ‘travelling wave’ 

propagating through the head. Note that the correlation values are affected by task condition, with 

high correlation for relevant stimuli and lower correlation for irrelevant stimuli. Figure 2C and D 
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shows the equivalent covariance images, derived by taking the correlation values in A-B and scaling by 

their normalised covariance. Note here that the images become more focal, with visual areas 

highlighted for low phase change and medial frontal cortices highlighted when the phase change 

approaches 90ο. The increased focality of the highlighted regions likely results from the fact that 

variance normalisation, inherent in the correlation images, amplifies leakage close to the centre of the 

head; the fact that the variance of such regions is down-weighted by the beamformer means that they 

fail to appear when covariance is employed. 

Figures 2E and 2F contain example timecourse fits, for voxels located in the frontal cortex.  The seed 

timecourse,	Y�, from the primary visual cortex, is shown in green, the test voxel timecourse, Y� is 

shown in blue and the model fit,	Y>�, is shown in red. Note the excellent agreement between the model 

and the data, particularly for the relevant condition. Figure 2G shows phase maps, highlighting the 

best fitting phase angle for each voxel in the head. The relevant condition is shown on the left and 

irrelevant on the right. Note the higher phase values in the frontal regions for the relevant condition. 

Note also the difference between the relevant and irrelevant conditions. Overall, the results presented 

in Figure 2 show good evidence that the ZOPS model generates good fits to measured theta-band 

envelope waveforms. Furthermore, the fitted phase angles change with location in the brain, with 

increased phase occurring in the frontal regions. Note also that the fitted parameters change with task 

condition.  
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Figure 3. A-B) Correlation images overlaid onto axial and sagittal slices of the standard brain, for 

6 linearly spaced phase shifts between 0 and 91 degrees. The lower threshold is set to r = 0.5 for 

visualisation. A and B show the relevant and irrelevant conditions respectively. C-D) Masked 

correlation maps, derived by taking the correlation values in A-B and scaling by their normalised 

covariance. C and D show relevant and irrelevant conditions respectively. Note that scaling by 

covariance offers more focal peaks in correlation. E-F) Example fits with the seed timecourse,	��  

shown in green, the test voxel timecourse, �� shown in blue and the model fit,	�2� , shown in red 

(E = relevant condition, F = irrelevant condition). G) Phase maps, showing the best fitting phase, 

in radians, for each voxel. The relevant condition is shown on the left and irrelevant on the right. 
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Note the higher phase values in the frontal regions for the relevant condition. H) Anatomical 

image showing slice positioning. 

Comparison of ZOPS and FOPS 

Figure 4 shows a comparison of the zero-order and first-order phase shift methods, for both the 

relevant and irrelevant condition. Correlation values (derived from the optimum phase angle) are 

plotted against Euclidean distance between the seed and the test voxel. The ZOPS model is shown in 

blue, and the FOPS model in red. Figure 4A shows a single point for every voxel whilst in figure 4B, 

voxels are grouped into 9 equally spaced bins (representing Euclidean distance) and the mean and 

standard deviations across voxels in each bin displayed. The primary result shows that the ZOPS 

method is better able to explain variance in the data compared to the FOPS method for large 

Euclidean distances in the brain, specifically for those regions greater than ~120mm from the seed. As 

shown by the inset image, these voxels were primarily located in the frontal lobes. The difference 

between the two models, for the relevant condition and for voxels >120mm from the seed, was 

analysed statistically, revealing a significant difference in between methods (p<0.05). There was no 

significant difference between models for the irrelevant condition. The dotted line represents the 95th 

percentile of the null distribution computed via the monte-carlo phase randomisation procedure 

(outlined in methods).  

 

Figure 3) Comparison between the ZO and FO phase shift methods. A) Maximum correlation 

achieved for each voxel against distance from the seed: ZOPS shown in blue, FOPS in red. B) 

Mean and standard deviation across voxels for each distance bin. The 95% confidence interval 
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generated for each method is plotted as a dotted line. In both A and B, the relevant condition is 

shown on the left hand side and irrelevant on the right hand side. 

Analysis in Schizophrenia and Correlations with Behaviour 

Finally, we used the ZOPS model to look for interrelationships between the visual cortex and the 

frontal lobes in patients with schizophrenia. Figures 3A-D shows correlation and covariance maps, for 

the relevant and irrelevant conditions, in a group of 10 patients. Visual comparison between the 

control group in Figure 1 and the patient group in Figure 3 reveals differences between patients and 

controls in the magnitude of the values in the frontal cortex.  Figures 3E and F show a comparison of 

the mean measured phase angle, plotted as a function of Euclidean distance from the seed, for the 

relevant (green) and irrelevant (red) conditions. Note that for group statistical comparisons, ZOPS 

analysis was performed on individual subjects giving a phase estimate per voxel, per subject. The 

results, illustrated in figure 3, show that in the control group, task condition had a large modulatory 

effect on delay. However, in the patient group delay did not appear to be modulated by task 

condition. For statistical comparison, the last 2 bins (those that encompass the frontal cortices) were 

entered into a repeated measures ANOVA [2 distance x 2 condition] with group as a between subjects 

factor, and the mean phase in each bin as the dependent variable. The analysis revealed a significant 

effect of condition (F=7.35, p<0.05), a significant effect of distance (F=5.09, p<0.05), and a significant 

interaction between group and condition (F=4.87, p<0.05). This demonstrates that overall, phase 

significantly changes with distance from seed location, and the presence of a task induces a significant 

change in phase in the controls but not the patients.  

Finally, Figure 4 shows correlation between the measured phase from the ZOPS model, and 

behaviour; specifically we employed D-Prime as a measure of signal detection on the RM task (see 

methods). The results show that the degree of phase shift in the frontal cortex, during the relevant 

condition of the task, negatively correlates with discriminability (r=-0.48, p<0.05, two tailed).  
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Figure 3. Correlation and covariance masked correlation for schizophrenia patients. Note that the 

thresholds on these maps have been altered to reveal peak locations in the patient group that were 

below the 0.5 threshold used in Figure 1. A and B show covariance for the relevant and irrelevant 

conditions respectively. Likewise, C and D show covariance masked correlation for the relevant 

and irrelevant conditions respectively. Here the differences between the patients, and controls 

shown in Figure 1. E-F) Phase change, plotted as a function of Euclidean distance from the seed 

location, for relevant (green) and irrelevant conditions (red). E) shows controls and F) shows 

patients – note that the difference induced by task condition in controls is absent in patients. 
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Figure 3. Scatter plot showing the correlation between mean phase estimate in the last distance 

bin (>140mm) and task performance (D’). To maximise variance, both patients and controls were 

included. The Y-axis shows D-Prime, a measure of the subject’s ability to detect a target.  Phase 

delay was negatively correlated with D-Prime (r=-0.48, p<0.05) supporting the hypothesis that 

task performance is related to inter-regional phase delay in the theta BLE.  
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Supplementary Figures   

 

Supp. Fig. 1. The alpha band appears to show a 180 degree phase shift. i.e. an anti-correlation.  
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Supp Fig. 2. Beta band appears to show, a 90 degree phase lag between frontal and visual cortex. Here 

the beta-band power fluctuations in frontal cortex appear to precede those in visual cortex. 

Discussion:  

We have introduced a novel method to assess transient task induced connectivity between brain 

regions, based upon measurement of a phase delay between theta-band envelope signals measured 

across the entire cortex. We have compared two separate phase based models; in our first model, 

termed first order phase shift (FOPS), we assume that all frequency components in the theta envelope 

will travel through the brain at the same velocity, leading to a time shifted version of the seed envelope 

at the second brain region.  In our second model, termed zero order phase shift (ZOPS), we propose 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/123471doi: bioRxiv preprint 

https://doi.org/10.1101/123471
http://creativecommons.org/licenses/by/4.0/


that faster and more efficient processes will manifest in the envelope signal as higher frequency 

components. These components of the signal will travel with a higher effective velocity than the slower 

components, leading to a temporally distorted version of the seed envelope at distant brain regions. 

We have shown that, at least for the cognitive task employed here, the ZOPS significantly better than 

the FOPS model, and that the ZOPS model performs significantly better than chance when using 

randomised surrogate data. Furthermore, we have shown that the fitted phase values are altered 

significantly by task condition, they are correlated with a behavioural measure, and the condition 

dependent modulation of phase seen in healthy subjects is not present in patients with schizophrenia. 

This methodology represents a fundamentally new way to measure directed functional connectivity in 

the brain.  

Correlation vs. Covariance 

Correlation metrics of connectivity used here appeared to reveal that a large proportion of the brain is 

connected during the relevant condition of the task, with a spatio-temporal pattern similar to a 

travelling wave of theta-band activity. However, using covariance data in the theta-band allowed the 

discrimination of a task relevant network involving primarily the occipital lobes and medial frontal 

cortex. These findings appear to be consistent with previous research implicating theta oscillations in 

long range connectivity (Buzsaki and Draguhn, 2004; Engel et al., 2001; von Stein and Sarnthein, 

2000; Varela et al., 2001) and research relating theta amplitude modulation to task performance in the 

frontal midline (Brookes et al., 2011b; Gevins et al., 1997; Jensen and Tesche, 2002; Luft et al., 

2013). In the present study, mid frontal theta envelope variance is almost entirely explained (R2 = 0.94 

at the peak) by a ZOPS of the envelope from V1 indicating a close coupling of these two regions. We 

have also shown that inter-cortical latency is dependent on task condition, which had a significant 

modulatory effect on the dynamics of the theta envelope. The context dependent modulation of the 

theta band suggests some task dependent top-down modulation of feed-forward influences, in line 

with current predictive coding models of brain function and cognition (Arnal and Giraud, 2012; 

Engel et al., 2001; Friston, 2005). Abnormalities in the establishment of long-range connectivity via 

low frequency oscillations appear to be disrupted in patients   

Neural Mechanisms Underpinning the ZOPS Model 

We have used a mapping function with an occipital seed as the input to accurately model theta-band 

envelope time-courses across many distant cortical areas. However, it is unclear how the carrier signal 

of these envelopes supports this close relationship. It is known that connectivity in the envelope can 

exist without measurable phase coherence in the carrier signal, particularly in long range connections 

(Bruns et al., 2000). Furthermore, the effective connectivity observed here in the theta band was 

observed in the group average per condition. Phase coherence must necessarily be measured in the raw 
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signal, to avoid cancellation caused by phase jitter. In future, we plan to use phase-based measures, 

such as granger causality to investigate the relationship between the carrier signal and the envelope. 

Travelling Waves as Possible Mechanisms of Oscillatory Influence 

Although the model put forward here has performed well in describing inter-regional variation in the 

band-limited envelope, the precise neurobiological mechanisms underpinning the apparent travelling 

wave observed are not fully understood. Inter-cortical phase coupling is widely thought to be the 

primary mechanism for communication between cortical sites (Engel et al., 2001; Fries, 2005; Salinas 

and Sejnowski, 2001) and is modulated by stimulus context, task, or cognitive setting (Engel et al., 

2001; Siegel et al., 2012; Singer, 1999). However, our model is based on coupling of signal envelopes 

rather than oscillatory phase, and as discussed, the two are not directly related. Engel et al. (2013) 

points out that short periods of non-stationary network connectivity (termed intrinsic coupling 

modes; or ICMs) may occur between cortical regions either in the oscillatory signal or in the band-

limited envelope, and they are both potentially present in the task positive state. Further work is 

clearly needed to understand the mechanisms responsible for the phenomena observed here, and that 

should include measures of phase coherence between regions found to have high effective connectivity 

in the post-stimulus envelope. However, it is possible that measuring the post-stimulus envelope has 

allowed the measurement of some aspect of brain function that is not normally visible in the 

oscillatory phase – perhaps due to SNR issues in the oscillatory signal, or because those cortical 

processes that underlie these envelope modulations do not necessarily rely on phase coupling. We 

observed clear travelling wave like phenomena in the envelope that shares some similarities with TW 

phenomena in the oscillatory signal of the EEG and MEG.  

It has been shown that cortical travelling exist in the oscillatory signal at varying spatial scales ranging 

from the columnar scale covering small patches of neurons a few millimetres across (Brookes et al., 

2011a; Sato et al., 2012), intra-regional scales, such as within the entire primary visual cortex or motor 

cortex (Freeman and Barrie, 2000; Rubino et al., 2006; Takahashi et al., 2011) and inter-regional scale 

covering the whole brain (Alexander et al., 2006; Brookes et al., 2011a, 2011a; Nunez, 1974a; Nunez 

et al., 1997). Nunez (1974a) introduced the concept of the global theory of standing and travelling 

waves and proposed the brain wave equation as a theoretical model for the global wave like phenomena 

observed in the EEG. The general postulate put forward (Nunez and Srinivasan, 2006) is that 

oscillatory waves observed in the EEG are partly composed of TWs, as the term is used in the physical 

sciences to describe a disturbance that moves through a medium (for example, as sound waves 

propagate through air). A number of experimental studies have demonstrated the existence of wave 

like behaviour in the EEG during wakefulness in the alpha band (Nunez, 1974b), slow wave sleep 

(Massimini et al., 2004, 2007, 2009), and in steady state visually evoked potentials (SSVEPs) (Burkitt 
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et al., 2000; Hughes, 1995; Klimesch et al., 2007; Thorpe et al., 2007), demonstrating the general 

feasibility of viewing the cortex as a medium through which waves of excitatory and inhibitory action 

may travel. One major drawback in the experimental study of TWs is that they are degraded by trial 

averaging of the post stimulus response. In a study employing EEG, ECoG, and MEG, Alexander et 

al. (2011a) found that travelling waves analysed on a single trial basis accounted for the spatiotemporal 

pattern of observed ERs in trial-averaged data, but as evoked responses depend mainly on phase 

locking, trial averaging obscures travelling wave like phenomena. Evoked responses can therefore be 

explained as TWs and standing waves in the global field oscillations that are phase locked to the 

stimulus only at specific locations across the cortex, leading to an interference pattern in the trial 

averaged signal.  

Consequently, while evoked responses may be a useful indicator of primary sensory processing latency 

(Henson and Rugg, 2003), it is likely that trial averaging obscures important information relating to 

cortical dynamics and stimulus driven connectivity. Those methods described above attempt to 

overcome this issue by measuring phase differences between adjacent sensors, building up a picture of 

the phase gradient (2011a, 2011a). The phase gradient therefore shows the general direction of wave 

propagation by indexing the phase coherence between adjacent sensors. However, phase gradients do 

not necessarily lead to long-range coherence as cumulative phase jitter may result in phase 

randomisation at long distances. Alexander found that the theta band TW moves in the posterior-

anterior direction while alpha moves in the anterior-posterior direction, which is broadly in agreement 

with both Bastos (Bastos et al., 2015a) and our results.  

Research into travelling waves outlined above points to the possibility that the evoked response and 

the induced response are closely related; the induced response is simply a time shifted version of the 

evoked response with randomised phase in the carrier signal. In fact, there is some evidence to suggest 

that components of the evoked response that are lost in trial averaging of the raw signal due to phase 

variations may be transferred to the induced response (David et al., 2005; Makeig, 1993). These two 

aspects of post stimulus activity (evoked and induced) are therefore closely related and may together 

form a travelling wave like pattern in the envelope signal (that contains both evoked and induced 

responses) as the later cortical events occur at more distal regions from the origin. In our case, the 

evoked response in the visual cortex marks the origin of a travelling wave that becomes increasingly 

phase incoherent as it moves further away from the origin. It is therefore concluded that temporal 

delay observed between cortical sites involves the gradual transition from a phase locked to a non-

phase locked response, which is only visible in the envelope signal. This idea is directly testable by 

measuring how the evoked signal relates to the travelling wave in the envelope observed here and could 

be the focus of further investigations.  
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