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We introduce Scallop, an accurate, reference-based transcript assembler for RNA-seq data. Scallop6

significantly improves reconstruction of multi-exon and lowly expressed transcripts. On 10 human7

samples aligned with STAR, Scallop produces (on average) 35.7% and 37.5% more correct multi-exon8

transcripts than two leading transcript assemblers, StringTie [1] and TransComb [2], respectively.9

For transcripts expressed at low levels in the same samples, Scallop assembles 65.2% and 50.2%10

more correct multi-exon transcripts than StringTie and TransComb, respectively. Scallop obtains11

this improvement through a novel algorithm that we prove preserves all phasing paths from reads12

(including paired-end reads), while also producing a parsimonious set of transcripts and minimizing13

coverage deviation.14

RNA sequencing (RNA-seq) is an established technology that enables identification of novel genes and15

splice variants as well as accurate measurement of expression abundances [3]. The RNA-seq protocol pro-16

duces short sequencing reads sampled from the expressed transcripts, and transcript assembly is the funda-17

mental computational problem to reconstruct the full-length expressed transcripts from the reads. This step18

is crucial for transcript quantification and differential expression analysis, and also plays a central role in19

revealing tissue-specific splicing patterns [4] and understanding the regulation of gene expressions [5].20

Transcript assembly methods can be divided into reference-based (or genome-guided) methods and de21
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novo methods, depending on whether a reference genome is assumed to be available. Reference-based22

methods (e.g., Cufflinks [6], Scripture [7], IsoLasso [8], SLIDE [9], CLIIQ [10], CEM [11], MITIE [12],23

iReckon [13], Traph [14], Bayesembler [15], StringTie [1], CIDANE [16] and TransComb [2]) usually first24

use the read alignments produced by an RNA-seq aligner (e.g., TopHat2 [17], SpliceMap [18], STAR [19],25

and HISAT [20]) to build a so-called splice graph for each gene loci. In the splice graph, vertices correspond26

to exons (or partial exons), edges correspond to splice junctions, and coverage of exons and abundance of27

splice junctions are encoded as weights of vertices or edges. The expressed transcripts, represented as a set28

of paths of the splice graph, are inferred so as to mostly fit the topology and the weights of the splice graph.29

For instance, StringTie [1] iteratively computes the heaviest path in the splice graph, collect that path, and30

updates the weights of the remaining splice graph via a max-flow formulation. TransComb [2] employs a31

bin-packing strategy to gradually reconstruct paths guided by the weighted junction graph [21]. De novo as-32

sembly methods (e.g., TransABySS [22], Rnnotator [23], Trinity [24], SOAPdenovo-Trans [25], Velvet [26],33

Oases [27], IDBA-Tran [28], and BinPacker [21]), are mainly used for non-model species and cancer sam-34

ples, for which a reference genome is unavailable or significantly diverged. When a high-quality reference35

genome is available, reference-based methods usually obtain better accuracy, since they can tolerate much36

lower read coverage inside exons.37

Transcript assembly remains an open and challenging problem, due to the ubiquity of paralogs, unevenness38

of read coverage, and diversity of splice variants. According to the benchmarking studies [29, 30], the accu-39

racies of existing transcript assembly methods are still very low, especially for lowly expressed transcripts40

and those genes with multiple spliced isoforms. Hence, new algorithmic ideas are needed to produce more41

accurate transcript assemblies.42

Scallop is a reference-based transcript assembler that enables accurate identification of multi-exon tran-43

scripts and lowly expressed transcripts. Scallop obtains higher accuracy through a novel algorithm to de-44

compose splice graph into transcripts. Our algorithm fully takes advantage of the phasing information45

derived from the reads (including paired-end reads) spanning more than two exons. Such phasing informa-46

tion is organized as a set of phasing paths, and our algorithm can be proved to preserve all phasing paths47

(except for those with false negative edges). This theoretical guarantee is achieved through subroutines to48

decompose the splice graph so as to not to break any phasing path. In addition, our algorithm simultaneously49

optimizes two other objectives of minimizing the read coverage deviation and minimizing the number of ex-50
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pressed transcripts. To minimize the deviation from the observed read coverage, we formulate and solve a51

linear programming problem as a subroutine. We also identify when these linear programming instances52

have multiple optimal solutions and use the abundance of the phasing paths to adjust them via another linear53

programming problem. To minimize the number of predicted transcripts following the parsimony principle,54

we devise an efficient subroutine to reduce an upper bound on the required paths. This subroutine can also55

naturally identify false positive edges in the splice graph. All three objectives are unified into a single it-56

erative optimization framework, and act together to cause Scallop to possess both high sensitivity (through57

fully using the phasing information and minimizing the coverage deviation) and high precision (through58

minimizing the number of reconstructed transcripts and removing false positive edges).59

We compare Scallop with two recent and popular reference-based transcript assemblers, StringTie and60

TransComb. We first evaluate them using 10 human RNA-seq samples, all of which use strand-specific61

and paired-end protocols (Supplementary Table 2). Among them, ST1, ST2, and ST3 were evaluated in the62

StringTie paper, TC1 and TC2 were used in the TransComb paper, while the other five (SC1, SC2, . . . , SC5)63

were chosen by us from ENCODE project (https://genome.ucsc.edu/ENCODE, 2003–2012). We have tuned64

the parameters of Scallop on the first 5 samples (i.e., ST1, ST2, ST3, TC1 and TC2, hereinafter we call them65

training samples) and after that we froze Scallop and tested it on other 5 samples (testing samples).66

For each of the 10 samples, we experiment with three RNA-seq aligners, TopHat2, STAR, and HISAT2,67

to map the sequenced reads to the reference genome. Taking the reads alignment as (the only) input, each68

method predicts a set of expressed transcripts. (The current version of TransComb does not support HISAT269

alignments, so we only compare StringTie and Scallop when using HISAT2 alignments.) Since we do not70

have a ground truth set of expressed transcripts, we evaluate the predicted transcripts by comparing them71

with the entire annotation database of known human transcripts, as is commonly done [15, 1, 16, 2]. Usually72

for a given sample only a small subset of the transcripts in the database are expressed, and it is also likely73

that some predicted transcripts are novel and thus are not in the current database. A multi-exon transcript74

is defined as correct if its exon chain can be exactly matched to a known (multi-exon) transcript, while a75

single-exon transcript is correct if it overlaps at least 80% with a known single-exon transcript. We use the76

gffcompare program to determine whether a predicted transcript is correct. Sensitivity is then taken to be77

the ratio between the number of correct transcripts and the total number of known transcripts, and precision78

is the ratio between the number of correct transcripts and the total number of predicted transcripts.79
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All three methods support specifying a parameter, minimum coverage threshold, to control the minimum80

expression abundance of the predicted transcripts. Since highly expressed transcripts are easier to assem-81

ble, this parameter essentially balances the sensitivity and precision of the predicted transcripts. In our82

experiments, to evaluate the capability of these methods in balancing sensitivity and precision, we run these83

methods on 10 different thresholds across a reasonable range: {0,1,2.5,5,7.5,10,25,50,75,100}.84

The accuracy of these three assemblers using different alignment programs and different minimum coverage85

thresholds is shown in Figure 1 (for the 5 testing samples) and Supplementary Figure 1 (for the 5 training86

samples). The trade-off between sensitivity and precision of multi-exon transcripts as the minimum cov-87

erage threshold is varied is shown in Figure 1A and Supplementary Figure 1A. The curves for Scallop are88

highest for all 10 samples and for all three aligners, indicating that no matter the desired sensitivity-precision89

trade-off, Scallop outperforms the other two assemblers in reconstructing multi-exon transcripts. Accuracy90

is further summarized as the area under the precision-sensitivity curve (AUC), shown in Figure 1B and91

Supplementary Figure 1B. With TopHat2 alignments, the average AUC score of Scallop over the 5 testing92

samples is 22.0% and 21.8% higher than that of StringTie and TransComb, respectively. With STAR align-93

ments, the improvement is 34.1% over StringTie and 106% over TransComb. With HISAT2 alignments,94

Scallop’s AUC is 23.5% higher than that of StringTie.95

The default values of the minimum coverage threshold used by StringTie, TransComb and Scallop are96

2.5, 0, and 1.0 respectively (circled in Figure 1A and Supplementary Figure 1A). At default parameters,97

Scallop is significantly more sensitive than StringTie and TransComb at detecting multi-exon transcripts98

(Figure 1C and Supplementary Figure 1C): averaged over the 5 testing samples, Scallop produces between99

34.7%–47.0% more correct multi-exon transcripts than StringTie, and between 13.2%–26.0% more than100

TransComb, depending on the aligners used. StringTie’s higher precision at default parameters can be101

explained by its higher default minimum coverage threshold. When evaluated at equivalent sensitivity (Fig-102

ure 1A and Supplementary Figure 1A), Scallop obtains higher precision than both StringTie and TransComb.103

In particular, Scallop consistently outperforms StringTie and TransComb in terms of both sensitivity and pre-104

cision when the minimum coverage threshold is set to 0 (i.e., sensitivity is maximized) for all three methods105

(Figure 1D and Supplementary Figure 1D). On average over the 5 testing samples, Scallop predicts 26.2%–106

30.9% and 15.5%–28.5% more correct multi-exon transcripts than StringTie and TransComb, depending on107

the aligners used. (A comparison of the sets of correct multi-exon transcripts predicted by three methods is108
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given in Supplementary Figure 2.) Further, at minimum coverage equal to 0, the three methods obtain simi-109

lar multi-exon precision when using TopHat2 alignments, while for STAR and HISAT2 alignments Scallop110

obtains a significantly higher precision than both StringTie and TransComb.111
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Figure 1: Comparison of the three methods (StringTie, TransComb, and Scallop) over the 5 testing samples.
(A) The precision-sensitivity curves for multi-exon transcripts. Each curve connects 10 points, correspond-
ing to the 10 different minimum coverage thresholds {0,1,2.5,5,7.5,10,25,50,75,100}; the default value
of this parameter is circled. (B) The average AUC (area under the precision-sensitivity curve) over the 5
samples. The three groups of bars correspond to TopHat2, STAR, and HISAT2 alignments, respectively (the
same for other panels). The error bars show the standard deviation over the 5 samples (the same for other
panels). (C) The average sensitivity and precision of multi-exon transcripts for methods running with default
parameters. (D) The average sensitivity and precision of multi-exon transcripts for methods running with
minimum coverage set to 0. (E) The average sensitivity and precision of single-exon transcripts for methods
running with default parameters. (F) The average number of correct transcripts with different number of
exons for methods running with minimum coverage set to 0. (G) The average sensitivity and precision of
multi-exon transcripts with each subset of transcripts (corresponding to low, middle, and high expression
level) as ground truth for methods running with minimum coverage set to 0.
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StringTie and TransComb obtain higher sensitivity but lower precision than Scallop on single-exon tran-112

scripts with default parameters (Figure 1E and Supplementary Figure 1E). However, the overall number of113

correct single-exon transcripts obtained by these methods is relatively small compared with that of multi-114

exon transcripts (compare scale of Figure 1E with Figure 1C). Scallop aggressively filters short and lowly115

expressed single-exon transcripts to make the precision of single-exon transcripts comparable to that of116

multi-exon transcripts.117

We further compare the number of correct transcripts with different numbers of exons when their sensitivity118

is maximized (i.e., the minimum coverage threshold is 0). The results are shown in Figure 1F and Sup-119

plementary Figure 1F. While Scallop is able to identify more correct transcripts for genes with at least up120

to 17 exons, its advantage is most pronounced on transcripts with 2–7 exons. For example, with TopHat2121

alignments, on average over the testing samples, Scallop obtains 60.0% and 54.9% more correct transcripts122

with 2 or 3 exons than StringTie and TransComb, respectively.123

Scallop also significantly improves identification of lowly expressed transcripts. To perform a quantitative124

measurement, we use Salmon [31] to quantify the 10 RNA-seq samples using human annotation database125

(ENSEMBL release 87) as reference. For each sample, we collect all multi-exon transcripts with expression126

abundance larger than a threshold (TPM ≥ 0.1), sort them according to their expression abundances, and127

divide them into three equal subsets corresponding to low, middle and high expression levels. We then128

compute the accuracy of the three methods on multi-exon transcripts with each subset as the ground truth129

(Figure 1G and Supplementary Figure 1G). Scallop achieves higher accuracy on all three expression levels,130

but the advantage is much more significant for low and middle levels. For example, with STAR alignment,131

on average over the 5 testing samples, Scallop obtains 59.6%, 55.8%, and 24.1% more correct multi-exon132

transcripts than StringTie for low, middle, and high expression levels, respectively.133

To show the generality of the above results, we collected all human RNA-seq paired-end samples from134

the ENCODE project (https://www.encodeproject.org, 2013–present) that provide pre-computed read align-135

ments (for experiments with more than one such sample, we arbitrarily select one). This yielded 50 strand-136

specific and 15 non-strand-specific samples. Since the three methods use different parameters to balance137

precision and sensitivity, to compare them on equal footing, we compute an adjusted sensitivity and ad-138

justed precision. Specifically, for each sample, we fix the precision φ of the method with highest precision,139
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and for each of the other two methods with smaller precision, we discard its predicted transcripts from the140

lowest coverage until the precision equals φ; the adjusted sensitivity is the sensitivity at this precision φ.141

We compute the adjusted precision analogously, filtering low-coverage transcripts of the two methods with142

higher sensitivity until all methods have the same sensitivity.143

Scallop shows higher adjusted sensitivity and adjusted precision than both StringTie and TransComb on144

nearly all samples when using default parameters (Supplementary Figure 3 and Supplementary Figure 4).145

On average over these 50 strand-specific samples, Scallop obtains 17.4% and 19.3% more correct multi-146

exon transcripts (after adjustment to identical precision) than StringTie and TransComb, respectively. The147

average adjusted precision are 39.1%, 38.6%, and 47.3% for StringTie, TransComb, and Scallop, respec-148

tively. On average over the 15 non-strand-specific samples, Scallop obtains 14.6% more correct multi-exon149

transcripts (after adjustment) than StringTie and obtains an average adjusted precision of 48.0%, while that150

of StringTie is 42.0%. (TransComb fails on all 15 non-strand-specific samples.) Scallop’s advantage is even151

more pronounced when lowly expressed transcripts are included by setting the minimum coverage to 0 for152

all three methods (Supplementary Figure 5 and Supplementary Figure 6). This provides additional evidence153

that Scallop is particularly more sensitive to lowly expressed transcripts.154

Scallop has a comparable but slightly longer running time than StringTie, while TransComb takes signif-155

icantly longer (Supplementary Figure 7). On average over the 10 samples and the 10 minimum coverage156

thresholds, with TopHat2 alignments, the running times of Scallop and TransComb are 1.08× and 3.78× that157

of StringTie. With STAR alignments, Scallop and TransComb take 1.34× and 5.42× longer than StringTie,158

respectively. With HISAT2 alignments, Scallop takes 1.25× longer than StringTie.159

Scallop presents a new technique for estimating transcriptome assembly from RNA-seq. While building160

upon the standard paradigm of the splice graph, it uses a novel algorithm to decompose the graph through161

optimizing several competing objectives. This leads it to achieve both higher sensitivity and higher preci-162

sion over a wide range of minimum coverage thresholds. In particular, Scallop can theoretically guarantee163

to fully use the phasing information to resolve complicated alternative splicing variants, causing signifi-164

cant improvement on assembling multi-exon transcripts and lowly expressed transcripts. Scallop is freely165

available as open source at http://www.github.com/Kingsford-Group/scallop.166
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Online Methods245

Problem Statement246

Based on a given alignment of sequencing reads to a reference genome, we build the splice graph, denoted247

as G = (V,E), as follows. We first extract splice positions from the alignments. These splice positions imply248

the boundaries of exons (or partial exons) and introns of the reference genome. For each inferred exon,249

we add a vertex v to V . If there exist reads spanning two exons u and v (where u occurs before v in the250

genome), we add a directed edge e = (u,v) to E, and set the weight of e, denoted as w(e), to the number of251

such reads that span u and v. We also add a source vertex s, and for each vertex u ∈V \{s} with in-degree252

of 0, we add a directed edge (s,u) with weight w(s, t) = ∑(u,v)∈E w(u,v). Similarly, we add a sink vertex253

t, and for each vertex v ∈ V \ {s, t} with out-degree of 0, we add a directed edge (v, t) to E with weight254

w(u, t) = ∑(u,v)∈E w(u,v). See Figure 2 for an example.255

Many reads (including paired mates) can span more than two exons, providing phasing information to recon-256

struct the expressed transcripts. We collect such phasing information as a set of phasing paths of G, denoted257

as H, as follows. If a read spans vertices vi1 ,vi2 , · · · ,vim of G (i.e., this read sequentially aligns to these corre-258

sponding exons), m≥ 3, we then add a phasing path (vi1 ,vi2 , · · · ,vim) to H. For the case of paired-end reads,259

if we have that one read span vertices vi1 ,vi2 , · · · ,vim , and its mate read spans vertices v j1 ,v j2 , · · · ,v jn , and260

there exists a unique path (vim ,vk1 ,vk2 , · · · ,vkl ,v j1) from vim to v j1 in G, and that m+n+ l ≥ 3, we then add261

a phasing path (vi1 , · · · ,vim ,vk1 , · · · ,vkl ,v j1 , · · · ,v jn) to H. In the following, we shall equivalently represent262

each phasing path with k vertices as a consecutive list of (k−1) edges. Different reads or paired-end reads263

1 2 3 4 5

(a)

s 1 2 3 4 5 t
6 2 2 3 4 6

3 2

1

(b)

Figure 2: Example of building splice graph and phasing paths. (a) Alignment of reads to the reference
genome. Inferred (partial) exons are marked with blue numbers. Reads that span more than two exons are
marked red, from which we can get the set of phasing paths as {(1,3,4),(2,3,5),(1,3,5)}. The abundance
of these phasing paths are g(1,3,4) = 2, g(2,3,5) = 1, and g(1,3,5) = 1. (b) The corresponding splice
graph and weights for all edges.
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might produce the same phasing path. For each phasing path h ∈ H, we use g(h) to record the number of264

such reads or paired-end reads that produce h.265

Based on G, w and H, we compute a set P of s-t paths of G and associate a real-value f (p) for every path266

p ∈ P. Each path p ∈ P implies an expressed transcript, and f (p) estimates the expression abundance of267

the corresponding transcript. We now design three objectives to guide reconstructing P and f . First, since268

each phasing path is constructed from a single read or paired-end reads, which must be sampled from a269

single transcript, we expect that each phasing path appears as a whole in some reconstructed transcript.270

Formally, we say a phasing path h ∈ H is covered by P, if there exists an s-t path p ∈ P such that h is a271

consecutive subset of edges of p. We do not enforce that all phasing paths in H must be covered by P. This272

is because there exist false positive edges in the splice graph due to alignment errors or sequencing errors.273

Our algorithm will try to identify and remove these false positive edges. Except these phasing paths with274

false positive edges, we do require that all other phasing paths in H are covered by P. Second, for each edge275

e ∈ E we expect that the superposition of the abundances of the inferred s-t paths passing through e, i.e.,276

∑p∈P:e∈p f (p), is as close to its observed read coverage w(e) as possible. Therefore, the second objective is277

to minimize the deviation between these two quantities, defined as278

d(P, f ,w) := ∑e∈E
∣∣w(e)−∑p∈P:e∈p f (p)

∣∣ .
Third, following the principle of parsimony, we expect to use a smaller set of s-t paths to explain G, w and279

H. That is, the third objective is to minimize |P|.280

Combining all the three objectives, we informally describe the task of transcript assembly as follows.281

Problem 1 (Transcript Assembly) Given G, w and H, compute a set of s-t paths P of G and abundance282

f (p) for each p ∈ P, such that P covers all phasing paths in H (except those with false positive edges), and283

that both d(P, f ,w) and |P| are as small as possible.284

Algorithm285

Our algorithm employs an iterative strategy to gradually decompose the splice graph into s-t paths while286

achieving the three objectives above. Specifically, we divide all vertices into three types based on the287
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influence of the phasing paths on each vertex, and design different subroutines to decompose each type of288

vertices. In each iteration, our algorithm decomposes a single vertex so as to either locally minimize the289

deviation d(P, f ,w), or minimize the number of reconstructed paths |P|, while preserving all phasing paths290

in H. Our algorithm can guarantee that, except the phasing paths containing false positive edges, all other291

phasing paths can be covered by the final set of s-t paths. This property is achieved by enforcing all three292

subroutines to keep the invariant that after each iteration every phasing path can be covered by some s-t in293

the current splice graph.294

We say a vertex v ∈ V \ {s, t} is trivial, if its in-degree is 1, or its out-degree is 1; otherwise we say v is295

nontrivial. Intuitively, there is a unique way to decompose a trivial vertex, while there might be multiple296

ways to decompose a nontrivial vertex. For those nontrivial vertices, we introduce a data structure to further297

classify them into two types based on the influence of phasing paths on them. For any nontrivial vertex298

v, we build a bipartite graph Gv = (Sv ∪ Tv,Ev), in which its vertices (Sv ∪ Tv) correspond to edges in G,299

while its edges (Ev) describe whether the corresponding two edges in G are connected by some phasing path300

in H. Formally, let Sv be the set of edges that point to v, and let Tv be the set of edges that leave v, i.e.,301

Sv = {e ∈ E | e = (u,v)} and Tv = {e ∈ E | e = (v,w)}. For each pair of edges e ∈ Sv and e′ ∈ Tv, we add302

an edge (e,e′) to Ev if there exists a phasing path h ∈ H such that (e,e′) is a consecutive pair in h. We say303

a nontrivial vertex v is unsplittable if all elements of Sv, or all elements of Tv, are in the same connected304

component of Gv (Figure 3(a,b)); otherwise we say v is splittable (Figure 5(a,b)). In the following, we305

design different subroutines to decompose unsplittable vertices, splittable vertices, and trivial vertices.306

Decomposing Unsplittable Vertices. We now describe the subroutine to decompose an unsplittable vertex307

v (Figure 3). The aim of this subroutine is to replace v as a set of trivial vertices so as to locally minimize308

d(P, f ,w) and also preserve all phasing paths.309

The first step is to balance v by computing new weights w(·) for adjacent edges of v (i.e., Sv∪Tv). Specif-310

ically, for any subset E1 ⊂ E we define w(E1) := ∑e∈E1 w(e). Let rv :=
√

w(Sv)/w(Tv). Then we set311

w(e) := w(e)/rv for any edge e ∈ Sv, and set w(e) := w(e) · rv for any edge e ∈ Tv. Similarly, we define312

w(E1) := ∑e∈E1 w(e) for any subset E1 ⊂ E. Clearly, we have that w(Sv) = w(Tv), i.e., after balancing the313

sum of weights of all in-edges of v equals that of all out-edges of v.314
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Figure 3: Example of decomposing an unsplittable vertex. (a) Subgraph associated with vertex v. The
weight of each edge is shown in the parenthesis. Assume that phasing paths contain (e1,e4), (e1,e5), (e2,e5),
(e3,e5) and (e3,e6). (b) Bipartite graph Gv (without the dashed edge), and the extended bipartite graph
Gv (with the dashed edge). The balanced weights are next to the vertices. The weights given by the optimal
solution of the linear programming are next to edges. (c) Updated subgraph after decomposing v.

The second step of the subroutine is to build the extended bipartite graph Gv = (Sv ∪Tv,Ev). The goal of315

this extension is to connect edges with no phasing paths to the most likely preceding or succeeding edge.316

Specifically, let es := argmaxe∈Sv w(e) and et := argmaxe∈Tv w(e) be the edges that have the largest balanced317

weights in Sv and Tv, respectively. Let S0
v ⊂ Sv and T 0

v ⊂ Tv be the set of edges that have total degree of 0 in318

Gv. We then set Ev := Ev∪{(e,et) | e ∈ S0
v}∪{(es,e) | e ∈ T 0

v }. See Figure 3(b) for an example.319

The third step of the subroutine is to assign weights for all edges (Ev) in the extended bipartite graph Gv320

so as to locally minimize the deviation w.r.t. w(·), i.e., d(P, f ,w). We formulate it as a linear programming321

problem. For each edge (e,e′) ∈ Ev (recall that each edge in Gv corresponds to a pair of edges in the splice322

graph G), we have a variable xe,e′ to indicate the desired weight of edge (e,e′). For each vertex e ∈ Sv∪Tv323

(recall that each vertex in Gv corresponds to an edge in G) we add a variable ye to indicate the deviation324

between its balanced weight w(e) and the sum of the weights of all edges that are adjacent to vertex e in Gv.325

Formally, we have the following constraints:326

∣∣∣w(e)−∑e′∈Tv:(e,e′)∈Ev
xe,e′

∣∣∣ ≤ ye, ∀e ∈ Sv;∣∣∣w(e′)−∑e∈Sv:(e,e′)∈Ev
xe,e′

∣∣∣ ≤ ye′ , ∀e′ ∈ Tv.

The objective function of the linear programming instance is taken to be:327

minimize ∑e∈Sv ye +∑e′∈Tv ye′ .

In most cases, when Gv is not a tree, i.e., it contains a cycle (see Figure 4), the above linear programming has328
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Figure 4: Example with multiple optimal solutions when the extended bipartite graph contains cycles. The
balanced weights, i.e., w(·), are next to the vertices. (a, b) Two optimal solutions with deviation of 0 w.r.t.
w(·). (c) When −2 < ε < 2, the solution is always optimal.

multiple optimal solutions. We use the abundance information of the phasing paths stored in g(·) to reassign329

weights while keeping the optimal deviation w.r.t. w(·). For each edge (e,e′) ∈ Ev, we denote by g(e,e′)330

the number of reads or paired-end reads that continuously go through e and e′, which can be computed as331

g(e,e′) = ∑h∈H:h contains (e,e′) g(h). Our goal is then to reassign the weights for edges in Gv so as to keep the332

above minimal deviation w.r.t. w(·) but to minimize the deviation w.r.t. g(·, ·).333

We formulate this problem as another linear programming instance. Specifically, let y∗e and y∗e′ , e ∈ Sv and334

e′ ∈ Tv, be the optimal solution of first linear programming instance (thus y∗e and y∗e′ are constants rather than335

variables in the second linear programming problem). Similar to the first linear programming problem, we336

use variables xe,e′ to indicate the weight of edge (e,e′) in Gv. We use the following constraints to guarantee337

that the optimal weights have the same deviation w.r.t. w(·) as the first linear programming solution:338

∣∣∣w(e)−∑e′∈Tv:(e,e′)∈Ev
xe,e′

∣∣∣ = y∗e , ∀e ∈ Sv;∣∣∣w(e′)−∑e∈Sv:(e,e′)∈Ev
xe,e′

∣∣∣ = y∗e′ , ∀e′ ∈ Tv.

The objective function of this linear programming instance is then taken to minimize the sum of the deviation339

of weights w.r.t. g(·, ·):340

minimize ∑(e,e′)∈Ev
|g(e,e′)− xe,e′ |.

We assign the weights for edges in Ev to be the optimal value of xe,e′ of the second linear program. Note341

that if the first linear program has the unique optimal solution, then both linear programs will have the same342

optimal solution.343

Finally, we update splice graph G by replacing v with Gv (see Figure 3(c)); we denote by G′ the updated344

splice graph. For the edges in Gv that added to G′, we maintain the information that they are artificially345
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added edges and thus do not correspond to any edge in G. This information will be used after decomposing346

all vertices to backtrace the paths with respect to the original splice graph (see line 6 of Algorithm 1). For347

example, if (e1,e2) ∈ Ev, then the path (. . . ,e1,(e1,e2),e2, . . .) in G′ corresponds to the path (. . . ,e1,e2, . . .)348

in G. We then update H; we denote by H ′ the updated set of phasing paths. For any phasing path h ∈ H, if349

h contains a pair of continuous edges e and e′ in G such that (e,e′) ∈ Ev, i.e., h = (. . . ,e,e′, . . .), then h will350

become h′ = (. . . ,e,(e,e′),e′, . . .) ∈ H ′.351

This subroutine preserves all phasing paths in H, i.e., every phasing path h ∈ H is still covered by some352

s-t path p′ of G′ (i.e, if we transform p′ of G′ into the corresponding path p of G through removing the353

artificially added edges in p′ (if any), then p covers h). This is true because according to our construction of354

G′ and H ′ there is a one-to-one correspondence between H and H ′ and every phasing path in H ′ is covered355

by some path in G′.356

To choose which unsplittable vertex v to apply the above transformation to, we define357

z(v) :=
(
∑e∈Sv

√
y∗e +∑e′∈Tv

√
y∗e′
)
/(w(Sv)+w(Tv)) ,

and select a vertex v that minimizes z(v) to decompose (see line 3 of Algorithm 1).358

Decomposing Splittable Vertices. We now describe the subroutine to decompose a splittable vertex v359

(Figure 5). The aim of this subroutine is to reduce |P| while preserving all phasing paths. Since P is not360

explicitly available until we have finished decomposing all vertices, we use U := |E|−|V |+2 to approximate361

|P|. It has been proved that U is an upper bound of |P| in the flow decomposition scenario: for a given flow362

at most U paths are required to decompose this flow [32, 33]. Following this approximation, in order to363

reduce |P|, our subroutine to decompose a splittable v will increase the number of vertices or decrease the364

number of edges, while at the same time preserving all phasing paths. Splittable vertices will typically be365

replaced by two new vertices.366

The first step of this subroutine is also to balance v by computing w(·) for edges in Sv ∪Tv following the367

same procedure as in decomposing unsplittable vertices. The second step is to split v into two vertices so as368

to keep all phasing paths and to minimize the balanced weight discrepancy (i.e., to make each of the two new369

vertices as balanced as possible). Formally, we seek S′v ⊂ Sv and T ′v ⊂ Tv, S′v∪T ′v 6= /0 and S′v∪T ′v 6= Sv∪Tv,370
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such that for each (e,e′) ∈ Ev, either e ∈ S′v and e′ ∈ T ′v , or e 6∈ S′v and e′ 6∈ T ′v , and that |w(S′v)−w(T ′v )| is371

minimized. Intuitively, this formulation forces that two edges in some phasing path must be adjacent after372

splitting, and thus all phasing paths can be preserved.373

The above problem can be equivalently transformed into the subset-sum problem. Let C be the set of all374

connected components of Gv. We define r(C) := ∑e∈Sv:e∈C w(e)−∑e′∈Tv:e′∈C w(e′), for any C ∈ C . Then the375

above problem is equivalent to computing a nonempty and strict subset of {r(C) |C ∈ C} such that the sum376

of all elements of this subset is closest to 0. In our implementation, we use the existing pseudo-polynomial377

time dynamic programming algorithm to solve it.378

Let S′∗v and T ′∗v be the optimal subsets returned by the above algorithm. We then update splice graph G379

through performing the following procedure to decompose v. We denote the updated splice graph as G′ (see380

Figure 5). Vertex v will be split into two vertices by adding another vertex v′ to G′. Edges in S′∗v ∪T ′∗v will381

be detached from v and attached to v′. Notice that the weights for edges in Sv ∪Tv are kept unchanged as382

w(·), i.e., the balanced weight w(·) is only used to compute S′∗v and T ′∗v .383

It could be the case that |S′∗v ∪T ′∗v |= 1 (or symmetrically, |(Sv \S′∗v )∪ (Tv \T ′∗v )|= 1), i.e., the new vertex v′384

will have either in-degree of 0 and out-degree or 1, or out-degree of 0 and in-degree of 1. In this case, the385

above procedure of decomposing v will degenerate into removing this edge from G, instead of splitting v386

into two vertices. If this is the case, it indicates that this particular edge is more likely to be a false positive387

edge. In other words, this procedure can be used to naturally remove false positive edges in the splice graph.388

For this case, we remove the appearance of this false positive edge for all phasing paths in H.389

Notice that in either the general case of splitting v into two vertices, or the degenerate case of removing one390

edge from G, after decomposing splittable vertex v, we have that U will be reduced by 1.391
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Figure 5: Example of decomposing a splittable vertex. (a) Subgraph associated with v. Assume that phasing
paths contain (e1,e4), (e1,e5) and (e3,e6). (b) Bipartite graph Gv with balanced weights next to vertices.
Optimal decomposition gives S′∗v = {e1,e2}, T ′∗v = {e4,e5}. (c) Updated subgraph after decomposing v.
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For the degenerated case of removing one edge from G, these spanning paths that contain this edge shall be392

not covered by G′. For the usual case of splitting vertex this subroutine keeps all phasing paths H unchanged.393

Finally, we define394

ẑ(v) := |w(S′∗v )−w(T ′∗v )|/(w(Sv)+w(Tv))

as the measurement to decide which splittable vertex to decompose (see line 4 of Algorithm 1).395

Decomposing Trivial Vertices. There is a unique way to decompose a trivial vertex. Let v ∈ V be a396

trivial vertex. Again, let Sv be the set of edges that point to v, and let Tv be the set of edges that leave v.397

Without loss of generality, we assume that the in-degree of v is 1; let e = (u,v) be the only in-edge of v, i.e.,398

Sv = {e = (u,v)}. We denote by G′ the updated splice graph after decomposing v. The construction of G′399

from G is to remove edge e from G, and merge u and v as a single vertex v (Figure 6). For each edge in400

e′ ∈ Tv, we maintain the information that e′ is preceded by an extra edge e, i.e., for e′ in G we label it as ee′401

in G′. When we retrieve the paths w.r.t. the original splice graph (line 6 of Algorithm 1), ee′ in G′ will be402

expanded as a pair of edges (e,e′) in G. We then update the phasing paths H; we denote by H ′ the updated403

set of phasing paths. Consider two cases of a phasing path h ∈ H that contains e. If e is the last edge of h,404

i.e., h = (· · · ,e1,e), then we simply remove e from h, i.e., it becomes h′ = (· · · ,e1) ∈ H ′. Otherwise, if e is405

not the last element of h, i.e., h = (· · · ,e,e1, · · ·), we replace e and e1 as the edge ee1 in G′, i.e., it becomes406

h′ = (· · · ,ee1, · · ·) ∈ H ′.407

In the complete algorithm (Algorithm 1), we first decompose all nontrivial vertices before decomposing408

any trivial vertex. In other words, when we use the above subroutine to decompose a trivial vertex, all409

vertices in the current splice graph are trivial vertices. We now prove that, when the splice graph contains410

only trivial vertices, our subroutine to decompose trivial vertex also preserves all phasing paths. Again,411
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u v
d

f

e1(4)

e2(5)

e3(9) e4(2)

e5(7)

(a)

a

b

v
d

f

e1(4)

e2(5)

e34(2)

e35(7)

(b)

Figure 6: Illustration of decomposing trivial vertices v. (a) Subgraph before decomposing v. (b) Subgraph
after decomposing v. Notice that we maintain the information that e4 and e5 are preceded by e3 by labeling
them as e34 and e35.
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consider the two cases of a phasing path h ∈ H that contains e. If h = (· · · ,e,e1, · · ·) ∈ H, then we have412

h′ = (· · · ,ee1, · · ·) ∈ H ′, and h′ is covered by G′. Since ee1 is essentially the concatenation of e and e1,413

we have that G′ covers h. For the other case that h = (· · · ,e1,e) ∈ H, we have that h′ = (· · · ,e1) ∈ H ′.414

(Although G′ covers h′, but this alone does not necessarily imply that G′ covers h any more.) Let e1 = (w,u)415

and e = (u,v) in G. Since we assume that all vertices in G are trivial vertices, in particular u is a trivial416

vertex, we have that in G′ all the succeeding edges of e1 are in the type of ee′, where e′ ∈ Tv (see Figure 6).417

In other words, for any path in G′ that contains h′, the next edge of e1 in this path must be an concatenated418

edge with preceding edge of e. Hence, we have that G′ covers h.419

We emphasize that if the splice graph contains nontrivial vertex, then decomposing a trivial vertex might not420

preserve all phasing paths. Figure 7 gives such an example. Thus, it is essential to decompose all nontrivial421

vertices before decomposing any trivial vertex.422
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Figure 7: Decomposing a trivial vertex may not preserve all phasing paths if the splice graph contain non-
trivial vertices. (a) Splice graph G with trivial vertex v and nontrivial vertex u. Assume that we have a single
phasing path of H = {(e1,e5)}. (b) Updated splice graph G′ after decomposing trivial vertex v. Notice that
now we have H ′ = {(e1)}. Since a phasing path with a single edge is not informative, we actually have that
H ′ = /0. (c,d) The following decomposition of G′ by applying the subroutine for splittable vertices. Notice
that in the final three s-t paths, none of them covers (e1,e5).

Complete Algorithm. Our complete algorithm for Problem 1 is to iteratively decompose vertices by ap-423

plying the above three subroutines, until finally the splice graph becomes a set of s-t paths. The complete424

algorithm is in Algorithm 1. Notice that when the Algorithm 1 reaches line 5, all vertices must be trivial425

vertices. Among nontrivial vertices, we further give priority to unsplittable ones, since their decomposition426

is fully determined by phasing paths.427
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Algorithm 1: Heuristic for Problem 1
Input: G, w, H and g
Output: P and f

1. Let V1 ⊂V \{s, t} be the set of unsplittable vertices.
2. Let V2 ⊂V \{s, t} be the set of splittable vertices.
3. If V1 6= /0, compute v := argminv′∈V1 z(v′), decompose v by updating G, w and H, and goto step 1.
4. If V2 6= /0, compute v := argminv′∈V2 ẑ(v′), decompose v by updating G, and goto step 1.
5. Arbitrarily choose a (trivial) vertex v ∈V \{s, t}, decompose v by updating G and H, and goto step 1.
6. For all the s-t edges of G, recover the original s-t paths as P; set f as the corresponding weights of the edges.
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Supplementary Figure 1433
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Supplementary Figure 1: Comparison of the three methods (StringTie, TransComb, and Scallop) over the
5 training samples. (A) The precision-sensitivity curves for multi-exon transcripts. Each curve connects 10
points, corresponding to the 10 different minimum coverage thresholds {0,1,2.5,5,7.5,10,25,50,75,100};
the default value of this parameter is circled. (B) The average AUC (area under the precision-sensitivity
curve). The three groups of bars correspond to TopHat2, STAR, and HISAT2 alignments, respectively (the
same for other panels). The error bars show the standard deviation over the 5 samples (the same for other
panels). (C) The average sensitivity and precision of multi-exon transcripts for methods running with default
parameters. (D) The average sensitivity and precision of multi-exon transcripts for methods running with
minimum coverage set to 0. (E) The average sensitivity and precision of single-exon transcripts for methods
running with default parameters. (F) The average number of correct transcripts with different number of
exons for methods running with minimum coverage set to 0. (G) The average sensitivity and precision of
multi-exon transcripts with each subset of transcripts (corresponding to low, middle, and high expression
level) as ground truth for methods running with minimum coverage set to 0.
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Supplementary Figure 2: Correlation among different assemblers. For each Venn diagram, the number in the
parenthesis below gives the number of correct transcripts in the union of all three assemblers. The numbers
inside the Venn diagram gives the percentage of the correct transcripts in the corresponding subset with
respect to the union. The three assemblers are very diverse from each other. Specifically, the ratio between
the number of correct transcripts shared by all the three assemblers and that in the union of them is 43.1%
and 31.0% for TopHat2 and STAR alignments, respectively. With HISAT2 alignments, the ratio between
the number of correct transcripts shared by StringTie and Scallop and that in the union of them is 57.5%.
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Supplementary Figure 3: Comparison of the adjusted sensitivity (shown as the number of correct transcripts)
of multi-exon transcripts for methods (StringTie, TransComb, and Scallop) running with their default param-
eter settings. The experiment uses 50 strand-specific samples (leftmost three columns of this figure) and 15
non-strand-specific samples (the rightmost column of this figure). Read alignments for these samples were
downloaded from ENCODE project (2013–present). For each sample, we mark its (partial) ID in ENCODE
on the left side. The complete ID adds the prefix “ENCFF”. TransComb fails on the 15 non-strand-specific
samples so for them we only compare the results given by Scallop and StringTie.
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Supplementary Figure 4: Comparison of the adjusted precision of multi-exon transcripts for methods
(StringTie, TransComb, and Scallop) running with their default parameter settings. The samples are identi-
cal to those in Supplementary Figure 3.
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Supplementary Figure 5: Comparison of the adjusted sensitivity (shown as the number of correct transcripts)
of multi-exon transcripts for methods (StringTie, TransComb, and Scallop) running with the minimum cov-
erage threshold set to 0. The samples are identical to those in Supplementary Figure 3. Scallop produces
higher adjusted sensitivity than StringTie on 64 out of the 65 samples, and than TransComb on all the 50
strand-specific samples. (TransComb fails on all non-strand-specific samples.) On average over the 50
strand-specific samples, Scallop obtains 24.1% and 18.7% more correct multi-exon transcripts (after adjust-
ment) than StringTie and TransComb, respectively. Averaged over all the 15 non-strand-specific samples,
Scallop finds 28.0% more correct multi-exon transcripts (after adjustment) than StringTie.
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Supplementary Figure 6: Comparison of the adjusted precision of multi-exon transcripts for the three meth-
ods (StringTie, TransComb, and Scallop) running with the minimum coverage threshold set to 0. The
samples are identical to those in Supplementary Figure 3. Scallop produces higher adjusted precision
than StringTie on 64 out of the 65 samples, and than TransComb on all the 50 strand-specific samples.
(TransComb fails on all non-strand-specific samples.) On the 50 strand-specific samples, the average ad-
justed precision is 30.9%, 34.8%, and 44.1% for StringTie, TransComb, and Scallop, respectively. On the
15 non-strand-specific samples, the average adjusted precision for Scallop is 42.8%, significantly outper-
forming StringTie at 27.1%.
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Supplementary Figure 7: Comparison of the running time (measured as CPU time) of the three assemblers
(StringTie, TransComb, and Scallop) on 10 RNA-seq samples. All programs are run with their single-thread
mode on a machine with 48 cores and 40GB RAM. The error bars show the standard deviation over the 10
runs with different minimum coverage parameters {0,1,2.5,5,7.5,10,25,50,75,100}.
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Supplementary Table 1440

Software Version Command Line

StringTie 1.3.2d stringtie bam-file strandness -c min-coverage

TransComb v.1.0 TransComb -b bam-file -s strandness -f min-coverage

Scallop v0.9.8 scallop -i bam-file -o gtf-file --library type strandness
--min transcript coverage min-coverage

TopHat2 v2.1.1 tophat2 -p 6 index fastq1 fastq2

STAR 2.5.2a STAR --outSAMstrandField intronMotif --chimSegmentMin 20
--runThreadN 6 --genomeDir index --readFilesIn fastq1 fastq2

HISAT2 2.0.4 hisat2 -p 6 -x index -1 fastq1 -2 fastq2

gffcompare v.0.9.9c gffcompare -r reference-gtf predicted-gtf

Salmon v.0.7.2 salmon quant -i index -l ISR -1 fastq1 -2 fastq2 -p 6

Supplementary Table 1: Programs and their versions and arguments used in this paper.
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Supplementary Table 2441

ID SRA Accession GEO Accession Chosen By #Spots Cell Line Localization Length

ST1 SRR534319 GSM981256 StringTie 25M CD20+ cell 76
ST2 SRR534291 GSM981244 StringTie 114M IMR90 cytosol 101
ST3 SRR545695 GSM984609 StringTie 40M CD14+ cell 76
TC1 SRR387661 GSM840137 TransComb 125M K562 cytosol 76
TC2 SRR307911 GSM758566 TransComb 41M H1-hESC cell 76
SC1 SRR545723 GSM984621 Scallop 147M HMEpC cell 101
SC2 SRR315323 GSM765399 Scallop 30M NHEK nucleus 76
SC3 SRR307903 GSM758562 Scallop 36M BJ cell 76
SC4 SRR315334 GSM765404 Scallop 39M HeLa-S3 cytosol 76
SC5 SRR534307 GSM981252 Scallop 167M MCF-7 cytosol 101

Supplementary Table 2: Summary of the 10 RNA-seq samples used in this paper (except samples in Sup-
plementary Figures 3). All these 10 samples are from human, and the sequencing employs paired-end and
strand-specific protocols. All datasets are downloaded from ENCODE project (2003–2012).
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