
Reducing gravity takes the bounce out of running

Delyle T. Polet1,,‡ Ryan T. Schroeder2, John E. A. Bertram3

Keywords: bipedal running, reduced gravity, leg swing, energetics, optimization,biomechanics

Summary Statement: During running, humans take higher leaps in normal gravity than in reduced1

gravity, in order to optimally balance the competing costs of stance and leg-swing work.2

Abstract3

In gravity below Earth normal, a person should be able to take higher leaps in running. We4

asked ten subjects to run on a treadmill in five levels of simulated reduced gravity and optically5

tracked center of mass kinematics. Subjects consistently reduced ballistic height compared to6

running in normal gravity. We explain this trend by considering the vertical takeoff velocity7

(defined as maximum vertical velocity). Energetically optimal gaits should balance energetic8

costs of ground-contact collisions (favouring lower takeoff velocity), and step frequency penal-9

ties such as leg swing work (favouring higher takeoff velocity, but less so in reduced gravity).10

Measured vertical takeoff velocity scaled with the square root of gravitational acceleration, fol-11

lowing energetic optimality predictions and explaining why ballistic height decreases in lower12

gravity. The success of work-based costs in predicting this behaviour challenges the notion13

that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the14

relationship between takeoff velocity and swing cost changes in reduced gravity; the energetic15

cost of the down-to-up transition for a given vertical takeoff velocity does not change with16

gravity. Because lower gravity allows an elongated swing phase for a given takeoff velocity,17

the motor control system can relax the vertical momentum change in the stance phase, so18

reducing ballistic height, without great energetic penalty to leg swing work. While it may19

seem counterintuitive, using less “bouncy” gaits in reduced gravity is a strategy to reduce20

energetic costs, to which humans seem extremely sensitive.21

Introduction22

Under normal circumstances, why do humans and animals select particular steady gaits from the myriad pos-23

sibilities available? One theory is that the chosen gaits minimize metabolic energy expenditure (Alexander24

and Jayes, 1983; Ruina et al., 2005). To test this theory, one can subject organisms to abnormal circum-25

stances. If the gait changes to a new energetic optimum, it can be inferred that energetics also govern gait26

choice under normal conditions (Bertram and Ruina, 2001; Long and Srinivasan, 2013; Selinger et al., 2015).27
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One “normal” gait is the bipedal run, and one abnormal circumstance is that of reduced gravity. Movie28

1 demonstrates the profound effect reducing gravity has on running kinematics. A representative subject29

runs at 2 m s-1 in both Earth-normal and simulated lunar gravity (about one-sixth of Earth-normal). The30

change in kinematics is apparent; the gait in normal gravity involves pronounced center-of-mass undulations31

compared to the near-flat trajectory of the low-gravity gait. While center-of-mass vertical excursions during32

stance are known to decrease in reduced gravity (Donelan and Kram, 2000), we observed that the height33

achieved in the flight phase also decreases. This gait modification seems paradoxical: in reduced gravity,34

people are free to run with much higher leaps. Instead, they seem to flatten their gait. Why should this be?35

A simple explanation posits that the behaviour is energetically beneficial. To explore the energetic36

consequences of choosing to run with lower leaps in reduced gravity, we first considered the impulsive model37

of running, following Rashevsky (1948) and Bekker (1962), which treats a human runner as a point mass38

body bouncing off rigid vertical limbs (Fig. 1). Stance is treated as an inelastic, impulsive collision with39

the ground. In reality, stance occurs in finite time, and elastic mechanisms exist. However, the inelastic40

approximation is remarkably productive in explaining gait choice (Ruina et al., 2005). When we use the41

term “energetic cost of collisions”, we are generally referring to non-recoverable energy loss during stance42

resulting from some interaction of the center of mass with the ground (Bertram and Hasaneini, 2013). Such43

losses may arise from damping, active negative work or discontinuous velocity profiles. In any case, modelling44

these interactions as an inelastic collision provides a simple estimation of the net cost.45

During this collision, all vertical velocity is lost while horizontal velocity is conserved (Fig. 1b). The46

total kinetic energy lost per step is therefore Ecol = mV 2/2, where m is the runner’s mass and V is their47

vertical takeoff velocity1. Lost energy must be recovered through muscular work to maintain a periodic gait,48

and so an energetically-optimal gait will minimize these losses. If center-of-mass kinetic energy loss were the49

only source of energetic cost, then the optimal solution would always be to minimize vertical takeoff velocity.50

However, such a scenario would require an infinite stepping frequency as V approaches zero (Alexander,51

1992; Ruina et al., 2005), as step frequency (ignoring stance time and air resistance) is f = g/(2V ), where52

g is gravitational acceleration.53

Let us suppose there is an energetic penalty that scales with step frequency, as Efreq ∝ fk ∝ gk/V k,54

where k > 0. Such a penalty may arise from work-based costs associated with swinging the leg, which55

are frequency-dependent (k = 2; Alexander, 1992; Doke et al., 2005), or from short muscle burst durations56

recruiting less efficient, fast-twitch muscle fibres (k ≈ 3; Kram and Taylor, 1990; Kuo, 2001). Notably, this57

penalty increases with gravity, since the non-contact duration will be shorter for any given takeoff velocity58

in higher gravity. The penalty also has minimal cost when V is maximal; smaller takeoff velocities require59

more frequent steps, which is costly. Therefore, the two sources of cost act in opposite directions: collisional60

loss promotes lower takeoff velocities, while frequency-based cost promotes higher takeoff velocities.61

If these two effects are additive, then it follows that the total cost per step is62

Etot = Ecol + Efreq63

= mV 2/2 +Agk/V k (1)64
65

where A is an unknown proportionality constant relating frequency to energetic cost. As the function is66

continuous and smooth for V > 0, a minimum can only occur either at the boundaries of the domain, or67

1 In this paper, we are taking the vertical takeoff velocity as the maximum vertical velocity during the gait cycle, following
Cavagna (2006). However, this is not always equal to the vertical velocity at toe-off, and this distinction complicates the
analysis. These complications are addressed in the discussion.
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when ∂Etot

∂V = 0. Solving the latter equation for V yields68

V ∗ ∝ gk/(k+2) (2)69

as the unique critical value. Here the asterisk denotes a predicted (optimal) value. Since Etot approaches70

infinity as V approaches 0 and infinity (Eqn 1), the critical value must be the global minimum in the domain71

V > 0. As k > 0, it follows from Eqn 2 that the energetically-optimal solution is to reduce the vertical72

takeoff velocity as gravity decreases.73

The observation2 of He et al. (1991) that V ∝ √g implies k = 2, a finding consistent with frequency costs74

arising from the work of swinging the limb (Alexander, 1992; Doke et al., 2005). However, their empirical75

assessment of the relationship used a small sample size, with only four subjects. We tested the prediction of76

Eqn 2 by measuring the maximum vertical velocity over each running stride, as a proxy for takeoff velocity,77

in ten subjects using a harness that simulates reduced gravity. We also measured the maximum vertical78

displacement in the ballistic phase to verify whether the counter-intuitive observation of lowered ballistic79

center-of-mass height in hypogravity, as exemplified in Movie 1, is a consistent feature of reduced gravity80

running.81

Materials and Methods82

We asked ten healthy subjects to run on a treadmill for two minutes at 2 m s-1 in five different gravity levels83

(0.15, 0.25, 0.35, 0.50 and 1.00 G, where G is 9.8 m s-2). A belt speed of 2 m s-1 was chosen as a comfortable,84

intermediate jogging pace that could be accomplished at all gravity levels. Reduced gravities were simulated85

using a harness-pulley system similar to that used by Donelan and Kram (2000), but differing in the use of a86

spring-pendulum system to generate near-constant force for a large range of motion. Hasaneini et al. (201787

preprint) provide more details of the apparatus. The University of Calgary Research Ethics Board approved88

the study protocol and informed consent was obtained from all subjects. Leg length for each subject was89

measured during standing from the base of the shoe to the greater trochanter on one leg.90

Due to the unusual experience of running in reduced gravity, subjects were allowed to acclimate at their91

leisure before indicating they were ready to begin each two-minute measurement trial. In each case, the92

subject was asked to simply run in any way that felt comfortable. Data from 30 to 90 s from trial start93

were analyzed, providing a buffer between acclimating to experimental conditions at trial start and initiating94

slowdown at trial end.95

Implementation and measurement of reduced gravity96

Gravity levels were chosen to span a broad range. Of particular interest were low gravities, at which the97

model predicts unusual body trajectories. Thus, low levels of gravity were sampled more thoroughly than98

others. The order in which gravity levels were tested was randomized for each subject, so as to minimize99

sequence conditioning effects.100

For each gravity condition, the simulated gravity system was adjusted in order to modulate the force101

pulling upward on the subject. In this particular harness, variations in spring force caused by support spring102

stretch during cyclic loading over the stride were virtually eliminated using an intervening lever (see Figs 3103

and 4 in Hasaneini et al., 2017, preprint). The lever moment arm was adjusted in order to set the upward104

2 In reality, He et al. (1991) measured vertical speed at initial foot contact, but for the impulsive model in its simplest form,
this is indistinguishable from takeoff velocity.
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force applied to the harness, and was calibrated with a known set of weights prior to all data collection.105

A linear interpolation of the calibration was used to determine the moment arm necessary to achieve the106

desired upward force, given subject weight and targeted effective gravity. Using this system, the standard107

deviation of the upward force during a trial (averaged across all trials) was 3% of the subject’s Earth-normal108

body weight.109

Achieving exact target gravity levels was not possible since the lever’s moment arm is limited by discrete110

force increments (approximately 15 N). Thus, each subject received a slight variation of the targeted gravity111

conditions, depending on their weight. A real-time data acquisition system allowed us to measure tension112

forces at the gravity harness and calculate the effective gravity level at the beginning of each new condition.113

The force-sensing system consisted of an analog strain gauge (Micro-Measurements CEA-06-125UW-350),114

mounted to a C-shaped steel hook connecting the tensioned cable and harness. The strain gauge signal115

was passed to a strain conditioning amplifier (National Instruments SCXI-1000 amp with SCXI-1520 8-116

channel universal strain gauge module connected with SCXI-1314 terminal block), digitized (NI-USB-6251117

mass termination) and acquired in a custom virtual instrument in LabView. The tension transducer was118

calibrated with a known set of weights once before and once after each data collection trial to correct119

for modest drift error in the signal. The calibration used was the mean of the pre- and post-experiment120

calibrations.121

Center of mass kinematic measurements122

A marker was placed at the lumbar region of the subject’s back, approximating the position of the center123

of mass. Each trial was filmed at 120 Hz using a Casio EX-ZR700 digital camera. The marker position was124

digitized in DLTdv5 (Hedrick, 2008). Position data were differentiated using a central differencing scheme125

to generate velocity profiles, which were further processed with a 4th-order low-pass Butterworth filter at 7126

Hz cutoff. The vertical takeoff velocity was defined as the maximum vertical velocity during each gait cycle127

(V in Fig. 1). This definition corresponds to the moment at the end of stance where the net vertical force128

on the body is null, in accordance with a definition of takeoff proposed by Cavagna (2006).129

Vertical takeoff velocities were identified as local maxima in the vertical velocity profile. Filtering and130

differentiation errors occasionally resulted in some erroneous maxima being identified. To rectify this, first131

any maxima within ten time steps of data boundaries were rejected. Second, the stride period was measured132

as time between adjacent maxima. If any stride period was 25% lower than the median stride period or less,133

the maxima corresponding to that stride period were compared and the largest maximum kept, with the134

other being rejected. This process was repeated until no outliers remained.135

Position data used to determine ballistic height were processed with a 4th-order low-pass Butterworth136

filter at 9 Hz cutoff. Ballistic height was defined as the vertical displacement from takeoff to the maximum137

height within each stride. No outlier rejection was used to eliminate vertical position data peaks, since the138

filtering was slight and no differentiation was required. If a takeoff could not be identified prior to the point139

of maximum height within half the median stride time, the associated measurement of ballistic height was140

rejected; this strategy prevented peaks from being associated with takeoff from a different stride.141

Statistical methods142

Takeoff velocities and ballistic heights were averaged across all gait cycles in each trial for each subject. To143

test whether ballistic height varied with gravity, a linear model between ballistic height and gravitational144
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acceleration was fitted to the data using least squares regression, and the validity of the fit was assessed145

using an F -test. A linear model was also tested for log(V ) against log(g) using the same methods. Since146

the proportionality coefficient between V ∗ and
√
g is unknown a priori, we derived its value from a least147

squares best fit of measured vertical takeoff velocity against the square root of gravitational acceleration,148

setting the intercept to zero. Given a minimal correlation coefficient of 0.5 and sample size of 50, a post-hoc149

power analysis yields statistical power of 0.96, with type I error margin of 0.05. Data were analyzed using150

custom scripts written in MATLAB (v. 2016b).151

Results152

Response of Ballistic Height and Takeoff Velocity to Gravity153

Data from all trials are shown in Fig. 2. Ballistic height increases with gravity (Fig. 2A, linear vs constant154

model, p = 4 × 10−4, R2 = 0.24, N = 50), validating the counter-intuitive result exemplified in Movie 1 as155

a consistent feature of running in hypogravity.156

Takeoff velocity also increases with gravitational acceleration (Fig. 2B), and a least-squares fit of Eqn 2157

using k = 2 follows empirical measurements well (R2 = 0.73, N = 50). Other values of k were also tested (Fig158

3). If the impulsive model is accurate, then the best-fit slope of a scatter plot of log(V ) against log(g) should159

correspond to k/(k + 2) (Eqn 2), that is, slopes of 0.33, 0.50 or 0.60 for k = 1, 2 and 3 respectively. Only160

the slope predicted by k = 2 falls within the 95% confidence interval of the least squares slope (0.47± 0.09;161

Fig. 3).162

A best fit at k = 2 implies a frequency-based cost arising primarily from the work of leg swing. However,163

since only the center of mass is offloaded by the harness, the natural frequency of limb swing remains164

unchanged for all target gravity levels (Donelan and Kram, 2000). Since metabolic energy of swing is165

minimal at natural frequency (Doke et al., 2005), it is necessary to adjust the predictions from the impulsive166

model (Appendix A). An adjusted model exhibits a fit with R2 = 0.745 (N = 50, Fig. A1), only marginally167

better than the simple model with k = 2 (R2 = 0.73, Fig. 2B). The predictions do not change greatly,168

because time spent in the air is affected by gravity, and more air time requires less work to swing the legs,169

regardless of natural frequency3.170

Predicting Ballistic Height Trends171

The impulsive model with k = 2 predicts that the ballistic height should remain constant (dash line in Fig.172

2A). This constant value agrees with empirical data at low g, but exhibits increasing error towards normal173

g.174

We defined “takeoff” as occurring when the net force on the body was null and velocity was maximal;175

however, this does not equate to the moment when the stance foot leaves the ground. After the point176

of maximal velocity, upward ground reaction forces decay to zero. During this time, the net downward177

acceleration on the body is less than gravitational acceleration. Thus, the body travels higher than would178

be expected if maximal velocity corresponded exactly to the point where the body entered a true ballistic179

phase, as in the model (Fig. 1).180

We can account for the missing impulse with the spring-mass model. This model describes the kinematics181

and dynamics of running well (McMahon and Cheng, 1990; He et al., 1991; Blickhan and Full, 1993), and182

3 As long as stride frequency is greater than natural frequency, which is very likely the case for the present study (Appendix
A)
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provides a way to estimate stance time from takeoff velocity (though it lacks the ability to predict takeoff183

velocity; McMahon and Cheng, 1990). Notably, correcting the prediction V ∝ √g with spring-mass model184

estimates of finite stance yields the following relationship for ballistic height (Appendix B):

H =
g

2ω2
0

+
A2

2
, (3)185

where ω0 is the natural angular frequency of vertical oscillation, and A is a constant in the relationship186

V = A
√
g. Note that Eqn 3 is linear in g, and approaches the predictions from the impulsive model alone187

as g → 0. Taking ω0 ≈ 18 rad s-1 from He et al. (1991), and A from the best-fit in Fig. 2B, Eqn 3 gives188

the dot-dash line shown in Fig. 2A. The predicted relationship (Eqn 3) has a slope of 0.015 m G-1 and an189

intercept of 0.03 m, and is within the 95% confidence interval of the best-fit slope (0.021± 0.01 m G-1) and190

intercept (0.029 ± 0.006 m), indicating that finite stance accounts for the discrepancy within error, though191

it underpredicts the true slope somewhat.192

Discussion193

Human runners lower the height achieved in the ballistic phase as gravity decreases. This adaptation requires194

pronounced modification of the takeoff velocity, since maintaining the latter parameter in all conditions would195

result in substantially increased ballistic height in reduced gravity. Why human runners would modify their196

gait so greatly was initially unclear.197

A simple work-based model of energetic cost explains the trends well. The fit in Fig. 2B exhibits an198

R2 value of 0.73, indicating that a simple energetic model can explain over two thirds of the variation in199

maximum vertical velocity resulting from changes in gravity. Human runners seem to be sensitive to these200

energetic costs and adjust their takeoff velocity accordingly. However, the model has its limitations, and an201

accounting of finite stance (which was initially neglected in the model) was necessary to explain the trend of202

increasing ballistic height with gravity. Despite the updated model matching the general trend of the data,203

the slope in Eqn 3 is reduced compared to the empirically-derived slope.204

The use of the external lumbar point as a center of mass approximation may explain some of the remaining205

difference between Eqn 3 and observation. At lower gravity, the body maintained a relatively erect, rigid206

posture (as exemplified by Movie 1), and so the lumbar marker likely follows the center of mass closely.207

However, at higher gravity, the legs move through larger excursions and the torso exhibits slight rotation,208

making the lumbar estimate less accurate. At normal gravity, Slawinski et al. (2004) showed that the lumbar209

point overestimates vertical oscillations of the flight phase (by less than 1 cm)– though their trials were at a210

high belt speed (5 m s-1). If the same results hold in our case, we would expect that the measured ballistic211

height in Fig. 2A should be slightly lower at higher levels of gravity, reducing the actual slope and possibly212

improving the agreement to Eqn 3. Future work could use a multisegment model to improve center of mass213

and ballistic height measurements, but such a technique is unlikely to reverse the trend of increasing ballistic214

height with gravitational acceleration.215

The present results indicate that the cost of step frequency is a key factor in locomotion. Although the216

exact value of the optimal takeoff velocity depends on both frequency-based penalties and collisional costs,217

the former penalties change with gravity while the latter do not (Fig. 4). The collisional cost landscape218

is independent of gravity because the final vertical landing velocity is alone responsible for the lost energy.219

Regardless of gravitational acceleration, vertical landing speed must equal vertical takeoff speed in the model;220

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2017. ; https://doi.org/10.1101/123745doi: bioRxiv preprint 

https://doi.org/10.1101/123745
http://creativecommons.org/licenses/by/4.0/


so a particular takeoff velocity will have a particular, unchanging collisional cost.221

However, taking off at a particular vertical velocity results in greater flight time at lower levels of gravity;222

thus, the frequency-based cost curves are decreased as gravity decreases (Fig. 4). Frequency-based costs,223

particularly limb-swing work, appear to be an important determinant of the effective movement strategies224

available to the motor control system. Their apparent influence warrants further investigation into the extent225

of their contribution to metabolic expenditure.226

While the present study corroborates others in finding that a work-based cost (k = 2) predicts locomotion227

well (Alexander, 1980, 1992; Hasaneini et al., 2013), other authors have favoured a higher-order “force/time”228

cost (Kuo, 2001; Doke et al., 2005; Doke and Kuo, 2007). Interestingly, a higher-order model in frequency229

cost (k = 3) did not fit the present data; however, our simple model with k = 3 only approximates the230

force/time cost in the swing phase, and does not account for a rate cost during stance. Further research231

must be done to distinguish the predictive value of work-based cost to its alternatives; however, for the232

present results, a work-based model is sufficient, at least for takeoff velocity.233

The present results challenge the notion that metabolic cost of running is determined largely by the cost234

of generating force during stance (Kram and Taylor, 1990; Arellano and Kram, 2014), purportedly supported235

by the observation that metabolic cost is proportional to gravity (Farley and McMahon, 1992). According236

to the best-fit model presented here, the net cost (Eqn 1) at optimal takeoff velocity (Eqn 2) is expected to237

increase in proportion to gravitational acceleration (that is, Etot(V
∗) ∝ g), as Farley and McMahon observed238

(1992). The cost of vertical acceleration of the center of mass can decrease as gravity is reduced only because239

the relationship between takeoff velocity and swing cost changes; this allows the subject to settle on a lower240

stance cost, whose relationship to takeoff velocity does not change as a function of gravity (Fig. 4). These241

trends can be explained simply from muscular work, and do not rely on any independent force-magnitude242

cost.243

The model presented in this article is admittedly simple and makes unrealistic assumptions, including244

impulsive stance, no horizontal muscular force, non-distributed mass, and a simple relationship between245

step frequency and energetic cost. Further, horizontal accelerations will incur a larger portion of energetic246

losses as horizontal speed increases (Willems et al., 1995), and the tradeoff between swing and stance costs247

may change. The present model would not be able to anticipate any such trend, as it has no dependence248

on horizontal speed. Future investigations could evaluate work-based costs using more advanced optimal249

control models (Srinivasan and Ruina, 2006; Hasaneini et al., 2013), eliminating some of these assumptions250

and allowing for an investigation into horizontal speed dependence. Despite its simplicity, the impulsive251

model with work-based swing cost is able to correctly predict the observed trends in takeoff velocity with252

gravity, and demonstrates that understanding the energetic cost of both swing and stance is critical to253

evaluating why the central nervous system selects specific running motions in different circumstances.254

Although many running conditions are quite familiar, running in reduced gravity is outside our general255

experience. Surprisingly, releasing an individual from the downward force of gravity does not result in higher256

leaps between foot contacts. Rather, humans use less bouncy gaits with slow takeoff velocities in reduced257

gravity, taking advantage of a reduced collisional cost while balancing a stride-frequency penalty.258

List of Symbols259

θ leg angle (radians)

ω0 vertical natural angular frequency in the spring-mass model (radians s-1)
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A proportionality constant in the relationship Efreq = Afk (J sk)

B proportionality constant in the relationship Eswing = Bml2(f2 − f2n)

Ecol energetic cost of collisions (J)

Efreq energetic cost related to step-frequency (J)

Eswing energetic cost of leg swing work (J)

Etot total energetic cost (Ecol + Efreq or Ecol + Eswing, in J)

f step frequency (Hz)

fn natural pendular frequency (Hz)

g gravitational acceleration (m s-2)

G Earth-normal gravitational acceleration (9.8 m s-2)

Gr Groucho number (≡ vω0/g)

H ballistic height (m)

I leg moment of inertia about the hip (kg m2)

k exponent in proportionality Efreq ∝ fk
l leg length (m)

m total subject mass (kg)

r length change from leg rest length (m)

t time after toe-down (s)

t∗ time at which maximum vertical speed is achieved (s)

tm time at which maximum vertical velocity is achieved (s)

ts stance period (s)

U average horizontal speed (m s-1)

v vertical velocity at toe-off (m s-1)

V vertical velocity at takeoff (maximum vertical velocity, in m s-1)

V ∗ optimal and predicted vertical takeoff velocity (m s-1)
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Figure legends335

High V , low f

U

V

m

U

V
m U m

U

V

Stance Stance + dtStance � dt

A

B

+ muscular work )
+ muscular work )+ muscular work )+ muscular work )

Low V , high f

336

Figure 1: Schematics explaining the energetic model. (A) In the impulsive model of running, a point
mass bounces off vertical, massless legs during an infinitesimal stance phase. As the horizontal velocity U
is conserved, the vertical takeoff velocity V dictates the step frequency and stride length. Smaller takeoff
velocities (light grey) result in more frequent steps that incur an energetic penalty, while larger takeoff
velocities (dark grey) reduce the frequency penalty but increase losses during stance. The small box represents
a short time around stance that is expanded in panel B. (B) We assume that the center-of-mass speed at
landing is equal to the takeoff speed. The vertical velocity V and its associated kinetic energy are lost during
an impulsive foot-ground collision of infinitessimally short duration. The lost energy must be resupplied
through muscular work. Horizontal acceleration is assumed small and is neglected in the model.
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Figure 2: Human subjects lower both ballistic height and takeoff velocity during running in
reduced gravity. (A) Mean ballistic height (data points) increases with gravity (p of linear vs constant
model under two-tailed F -test: 4 × 10−4, N = 50). The dashed line is the prediction for ballistic height
from the impulsive model, which deviates from observation at high g. The dash-dot line adds a correction
factor for finite stance time from the spring mass model (Eqn 3). This second prediction lies within the
95% CI of the least-squares linear fit (grey area). Both predictions use takeoff velocities from the best fit in
panel B. (B) Measured vertical takeoff velocities increase proportionally with the square root of gravitational
acceleration, following work-based energetic optimality. The least squares fit of the impulsive model with
k = 2 is shown as a dashed line. The fit has an R2 value of 0.73 (N = 50). Each data point is a mean value
measured in one subject (ten subjects total) across multiple steps (n ≥ 50) during a one-minute period at a
given gravity level. For both panels, if error bars (twice the s.e.m.) are smaller than the markers, then they
are not shown. Data used for creating these graphics are given in Table S1.
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Figure 3: A log-log plot of vertical takeoff velocity against gravitational acceleration shows that
the impulsive model yields the best fit when Efreq ∝ f2. The least squares linear fit is shown in red
as a solid line, with 95% confidence interval as a grey area. The linear fit exhibits R2 = 0.70 and a slope of
0.47±0.09 (best estimate ± 95% CI, N = 50), which is not significantly different from the predicted slope of
0.5 for k = 2 (black solid line), where k is the exponent relating frequency to cost (Efreq ∝ fk). Both k = 1
and k = 3 (shallow and steep dashed lines, respectively) yield predicted slopes (0.33 and 0.60, respectively)
that lie outside the 95% CI, indicating that a work-based swing cost at k = 2 is a superior fit to the data,
while a simple linear frequency cost (k = 1) and an approximate force/time cost (k = 3, see Kuo 2001) do
not represent these data well. Data points are from ten subjects running at five gravity conditions each, and
each point is the mean of at least 64 takeoffs measured during each trial.
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370

Figure 4: The energetic costs according to the model are plotted as a function of vertical takeoff
velocity (V ) for the five levels of gravity tested. The hypothetical subject has a mass of 65 kg and
a frequency-based proportionality constant (A in Efreq = Af2) derived from the best fit in Fig. 2B. Labels
of gravity levels (g) are placed over the colours they represent. The collisional cost curve (Ecol = mV 2/2,
black dot-dash line) does not change with gravity, while the frequency-based energetic cost curve (Efreq,
dotted lines) is sensitive to gravity, leading to an effect on total energy per step (Etot, solid lines). In lower
gravity, a runner can stay in the air longer for a given takeoff velocity, so the associated frequency-based cost
goes down. However, the cost of collisions at that same velocity is unchanged, since it depends only on the
velocity itself. The relaxation of frequency-based cost allows the runner settle on a lower, optimal takeoff
velocity (yellow stars) with both a lower frequency-based and collisional cost, compared to higher gravity.
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Figure A1: Vertical takeoff velocity scales with the square root of gravitational acceleration
times leg length during running. The least squares fit for the model given by Eqn A4 is shown as a
dashed line. The fit exhibits R2= 0.745, using all fifty data points. Error bars (twice standard error of the
mean takeoff velocity measured during a trial, n ≥ 64) are smaller than the marker size.
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Appendices386

A Cost of swing work in partial reduced gravity387

The experimental apparatus (Hasaneini et al., 2017, preprint) unloads a subject’s center of mass, but does388

not act directly on their limbs. Consequently, while their center of mass might experience reduced weight,389

the limbs swing under the influence of normal gravity. It is prudent to check how this affects the predictions390

of the impulsive model.391

The work required to swing a limb is (Doke et al., 2005)

Eswing ∝ I(f2 − f2n), (A1)

where I is the moment of inertia of the limb about the hip, f is the frequency of oscillation and fn is the392

natural frequency (equal to
√
g/l for a simple pendulum, where l is leg length). Here we are assuming that393

the limb changes configuration little during the swing phase, and so I is approximately constant. Note that394

Eqn A1 is only valid when f > fn (Doke et al., 2005), since if sufficient time is available the limb can swing395

passively. The swing frequency is slightly greater than the stride frequency4, which in the present study396

ranged from trial-mean values of 0.69 to 1.47 Hz over all subjects and conditions (Table S1). Doke et al.397

(2005) found the natural frequency of swinging legs to be 0.64± 0.02 Hz (mean ± s.d.) for a subject group398

with mean leg length of 0.88 ± 0.07 m (mean ± s.d., N = 12). Our subject group exhibited larger mean399

leg length (0.92 ± 0.06 m, mean ± s.d., N = 10), so would very likely have smaller natural frequencies.400

Therefore, the assumption that f > fn very likely holds in this case.401

The leg moment of inertia about the hip scales approximately as I ∝ ml2, where m is body mass and l402

is the leg length (Winter, 2009). Assuming f = g/(2V ), and invoking Etot = Ecol + Eswing, we have

Etot = mV 2/2 +Bml2
(( g

2V

)2
− f2n

)
, (A2)403

where B is some proportionality constant. To achieve the energetically optimal takeoff velocity, we take the404

derivative of Eqn A2 with respect to V , yielding

∂Etot

∂V

∣∣∣∣V=V ∗

= mV ∗ −Bml2 g2

2(V ∗)3
= 0, (A3)405

where we note that any dependence on fn has disappeared. However, there is a new dependence on l. Solving406

Eqn A3 for V ∗, we find

V ∗ ∝
√
gl. (A4)407

Empirical V is plotted against gl in Fig. A1 with the least square fit of Eqn A4. The fit exhibits R2=408

0.745, only a slight improvement compared to the simple impulsive model (R2 = 0.73). Eqn A4 depends on409

l, but if the variation in l is small, then Eqn A4 is indistinguishable from the simple swing-cost model (Eqn410

2 with k = 2). Indeed, the leg lengths of our subject group varied only by a factor of 1.3 (range 0.81 to 1.04411

m), while the highest experimental g was six times the smallest value. Since the variation in leg length was412

comparatively small, it has little impact on the results.413

4 Swing period is two flight phases and one stance phase, or one stance phase shorter than stride period.
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B Ballistic height corrections from the spring-mass model414

We seek to predict the vertical center-of-mass displacement achieved between takeoff (maximum vertical415

velocity) and the maximum height during the flight phase. We know the maximum height from ballistics to416

be v2/(2g), where v is the vertical velocity at toe-off. However, we do not know the displacement between417

takeoff and toe off, nor do we know how to relate the velocity at takeoff to the velocity at toe-off. Both of418

these unknowns could be calculated using the ground reaction force during stance, but this was not measured419

empirically.420

Instead, we can rely on the spring-mass model, which gives a decent approximation of the ground reaction421

forces assuming the velocity at toe-off and natural angular frequency (ω0) are given (McMahon and Cheng,422

1990). In our case, the toe-off velocity is unknown, but the spring-mass model allows us to relate it to the423

maximum vertical velocity, which can in turn be predicted by the impulsive model. ω0 is defined as
√
k/m,424

where k is the “spring” stiffness and m is mass. k is not actually the tendon stiffness, but is the virtual425

stiffness generated by the motor control system during stance (Farley and Ferris, 1998; Donelan and Kram,426

2000); that is, the muscle and tendon forces combine to generate ground reaction forces as if there were427

one linear spring acting on the center of mass. The complicated interplay between muscles, tendons and428

energetics makes the angular frequency hard to predict.429

Fortunately, the vertical spring stiffness is held more-or-less constant through changes in gravity (He430

et al., 1991), so we can use the empirically derived value5 of ω0 ∼ 18 rad s-1. It remains simply to find the431

displacement between takeoff and toe-off, and the vertical toe-off velocity, in terms of the vertical takeoff432

velocity and gravity.433

We follow McMahon and Cheng (1990) in assuming a point-mass body of mass m and massless legs.434

We assume that the ground reaction force is well-approximated by the compression of a spring with angular435

frequency ω0. For simplicity, we use a hopping model, which assumes that a person exhibits a small excursion436

angle (i.e. θ ∼ 0). The leg length minus resting length is r, and so the dynamics of the system are

r̈ + ω2
0r + g = 0, (B1)437

where g is gravitational acceleration. Setting the vertical landing velocity to ṙ(0) = −v, and the initial438

position as r(0) = 0, the solution to the ordinary differential equation is (McMahon and Cheng, 1990)

ω2
0r(t) = −ω0v sin(ω0t) + g cos(ω0t)− g. (B2)439

The instantaneous velocity is thus

ṙ = −v cos(ω0t)−
g

ω0
sin(ω0t). (B3)440

Eqns B1-B3 are valid for 0 ≤ t ≤ ts, where ts = (2π − 2 arctan(Gr))/ω0 is the stance period, and441

we have introduced the non-dimensional Groucho number Gr ≡ vω0/g (McMahon and Cheng, 1990). For442

ts < t < ts + 2v/g, the body is in a ballistic phase.443

We can now determine the timing and magnitude of the peak vertical velocity. Let t∗ correspond to any444

time at which a maximum speed is acheived. Since Eqn B3 is continuous and periodic, local maxima and445

5 This value was calculated by taking the average value of vertical stiffness data in Fig. 7 of He et al. (1991), dividing by
average mass of subjects in the same study and taking the square root. 18 rad s-1 falls within all the error bars of Fig. 7, so
seems representative of the natural angular frequency at all levels of gravity.
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minima in velocity must satisfy r̈ = 0. Therefore, from Eqn B1,

r(t∗) = − g

ω2
0

. (B4)446

Combining Eqn B4 with B2 and solving for 0 ≤ t∗ ≤ ts yields

t∗ =
(
arctan(Gr−1) + nπ

)
/ω0, n = 0, 1447

corresponding to the points of maximal speed during stance. The second point (n = 1), corresponds to the448

time at which maximal velocity is achieved,

tm =
(
arctan(Gr−1) + π

)
/ω0. (B5)449

To determine the peak velocity V , we insert Eqn B5 into B3. Using the relations cos(arctan(x)) = 1/
√
x2 + 1450

and sin(arctan(x)) = x/
√
x2 + 1, we find

V =
g

ω0

√
Gr2 + 1, and451

v2 = V 2 − (g/ω0)2 (B6)452
453

In the main manuscript, we define the ballistic height (H) as the vertical displacement from the time of454

maximal vertical velocity to the maximum height achieved during a stride, that is,

H =
v2

2g
− r(tm). (B7)455

We need only insert Eqns B4 and B6 into Eqn B7 to find

H =
V 2

2g
+

g

2ω2
0

.456

Note that the first term is identical to the prediction of the impulsive model (i.e. V = v), while the second457

term gives a correction from the spring mass model, due to finite stance time. Since we have established458

that V = A
√
g, the prediction for H in terms of g alone is

H(g) =
A2

2
+

g

2ω2
0

. (B8)459
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