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Advances in high-throughput single cell transcriptomics technologies have revolutionized the 

study of complex tissues. It is now possible to measure gene expression across thousands of 

individual cells to define cell types and states. While powerful computational and statistical 

frameworks are emerging to analyze these complex datasets, a gap exists between this data and 

a biologist’s insight. The CellView web application fills this gap by providing easy and intuitive 

exploration of single cell transcriptome data. 

 

Recent technological advances in single cell capture and nano-scale reactions have led to a major 

revolution in single cell transcriptomics1,2,3. Single cell datasets are analyzed using computational and 

statistical frameworks that enable feature (gene) selection, dimensionality reduction, clustering and 

differential gene expression. Multiple software packages exist that allow researchers well versed in 

computational analysis to perform this analysis4–6. However, identifying the exact parameters required for 

cell type identification is an iterative process greatly improved when informed by biology. In addition, 

interactive exploration of single cell datasets incorporating a biologist’s knowledge greatly improves data 

interpretation, yet often such experts do not have big data handling skills. 

 

Advances in web application frameworks and visualization methods for dense datasets facilitate the 

development of interactive applications to allow easy and intuitive exploration of single cell data. Here, 

we introduce an R Shiny7 web application, CellView, that allows knowledge-based and hypothesis-driven 

exploration of processed single cell transcriptomic data. The input into CellView is an R dataset (.Rds) file 
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with three pre-computed data frames containing expression, clustering, and gene symbol information. 

This file is agnostic of upstream computational approaches providing flexibility in algorithms used to 

calculate these data frames. This .Rds file can be shared with the end user, eliminating the need for 

hosting datasets, thereby decreasing the size of a virtual machine or cloud instance required to host and 

use CellView. Multiple tabs allow for easy access to the data and visualization of gene expression across 

and within clusters, aiding cell type identification. 

 

To illustrate the utility and power of CellView, we generated and analyzed single cell transcriptome data 

from peripheral blood mononuclear cells (PBMCs) using the 10X Genomics Chromium8. As defined by 

the CellRanger8 pipeline, this data consisted of 6,554 single cells sequenced to 90.1% saturation with, on 

average, 824 genes and 2,077 molecules detected per cell. Dimensionality reduction using tSNE9 was 

applied to genes selected by normalized dispersion, and with clustering by DBSCAN10. CellView 

automatically determines cluster numbers, updates the user interface, and renders a 3D scatter plot 

displaying cells clustered in tSNE space (Fig 1b) from the uploaded .rds file.  

 

The ‘Explore’ tab provides cluster-centric exploration through three panel views. Panel 1 displays a 3D 

plot of a chosen gene’s expression across all cells. Panel 2 displays a 2D plot of the same gene’s 

expression across all cells in a single cluster, which users can select via drop-down list. Within Panel 2 

users can download a .csv file of a gene-cell expression matrix by selecting cells with a square brush 

stroke. This provides convenient access to all genes expressed in a subset of cells. Panel 3 displays 

violin plots of the chosen gene’s cluster-specific expression and includes a total cell count for each 

cluster. CD79A (Fig 1c), a marker of B-cells, and CD3D, a marker of T-cells (Fig 1d), provide 

representative views of the ‘Explore’ tab. 

 

The ‘Co-expression’ tab enables the generation of heatmaps to visualize expression of multiple genes 

either across all clusters, in the ‘AllClusters’ sub-menu, or on selected cells within a cluster, in the 
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‘Selected cells’ sub-menu (Fig 2a). The number of genes analyzed is only limited by legibility of the gene 

symbols in the resulting heatmap. This feature facilitates the use of known markers to empirically 

determine cell (sub)cluster identity. 

 

The identification of doublets in single cell transcriptome data remains computationally challenging. The 

interactive nature of CellView aids in cell doublet identification. In the PBMC data, ‘Subcluster-analysis’ 

reveals a mixture of lymphoid and myeloid gene expression within cluster 7 suggesting this cluster 

consists of doublets. Cluster 7 represents 2.3% of all cells in this data set, reflecting the number of 

expected doublets for the quantity of cells processed in this experiment. Thus, CellView can be utilized 

as a tool to pre-process of single cell data and remove doublets prior to final visualization. 

 

The ‘Subcluster-analysis’ tab also provides a powerful tool to identify different cell types within clusters 

(where trade-offs between sensitivity and specificity in the chosen clustering algorithm may be insufficient 

to identify unique clusters) or a continuum of states within a cell type. For example, blood monocytes 

span a continuum of classical, intermediate, and non-classical subtypes in flow cytometry analysis of cell 

surface markers CD14 and CD1611. Two populations of cells within a cluster can be selected by square 

brush strokes for differential gene expression analyses (using a likelihood test) to identify biologically 

informative markers. For example, monocytes occupying cluster 4 in the PBMC data appear to contain 

two lobes (Fig.2b). Differential expression between these two lobes using the ‘Subcluster-analysis’ tool 

identified CD16/FCGR3A as the most differentially expressed gene marking the smaller lobe. This lobe 

also contained higher expression of MHC class II genes, an additional feature of non-classical blood 

monocytes. CD14 is among the top 10 up-regulated genes in the large lobe, which include other classical 

blood monocyte markers (e.g. S100A8, S100A9, S100A12). Thus, this blood monocyte continuum 

defined by two cell surface molecules is detected by this transcriptome cytometry approach and 

represented by 837 parameters (i.e. genes) per cell. CellView data visualization may enable 

immunologists to explore further underlying biology within the blood monocyte compartment, such as 
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investigating a subset of cells within the intermediate sub-cluster expressing C1QA, C1QB, and C1QC, 

markers of macrophage in tissue.  

 

Dendritic cells (DCs) occupy clusters 6 and 8 in the PBMC data. Cluster 6 represents plasmacytoid DCs, 

expressing CLEC4C/CD303, CD68, IL3RA/CD123 and LILRA4/CD85g. Myeloid DCs comprise cluster 8. 

CellView’s ‘Subcluster-analysis’ tool enables identification of both the common CD1C+ DC (Fig. 2c; 

113/215 cells expressing CLEC10A, CD1C) and less adundant CD141+ DCs (Fig. 2d; 12/215 cells 

expressing CLEC9A, IRF8). An additional layer of data we include in our .rds files are the genes and 

unique molecular identifiers (UMIs) detected per cell; this can enable identification of cell type biological 

features since RNA abundance (and therefore UMI count) often correlates with cell size12. Notably, non-

classical blood monocytes and myeloid dendritic cells have the greatest numbers of UMIs detected per 

cell, at 3,719 and 5,645 respectively. In contrast, remaining cells have 2,305 UMIs per cell. Myeloid DCs 

are not noticeably larger than other PBMCs and non-classical blood monocytes are somewhat smaller in 

size than classical blood monocytes11 suggesting the RNA content is reflective of an underlying biological 

feature of these cells rather than cell size and may reflect the precursor relationship between non-

classical monocytes and myeloid dendritic cells13.  

 

We next applied CellView to human pancreatic islet single cell transcriptome data we generated on the 

Chromium system from a nondiabetic normal donor, which resulted in 4,806 cells sequenced to 87.1% 

saturation and detecting, on average, 1,848 genes and 7,686 molecules detected per cell. Our pipeline 

identified eight distinct clusters (Fig 1e). Using CellView’s ‘AllClusters’, and marker genes we had 

previously used to cell type in human islets14, we identified endocrine alpha, beta, delta, and gamma cell 

clusters and exocrine acinar, ductal, and stellate cell clusters. An 8th cluster represented endothelial cells 

(Fig 1f). Visual inspection of the 3D scatter plot displaying cells in tSNE space indicated two sub-clusters 

within the defined stellate cell cloud. The ‘Sub-cluster’ tool revealed, in addition to the stellate cells, a 

sub-cluster expressing the pericyte marker RGS515. The close proximity of stellate cells and pericytes are 
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likely a result of their shared mesenchymal origin, as both express COL1A1 and ACTA2. Visual 

inspection of the ductal cell cluster identified a spread of cells suggestive of a continuum of cell states. 

Differential expression between cells at opposing ends of this continuum using the ‘Sub-cluster’ tool 

identified biologically meaningful differences. While all cells expressed KRT19, there was a transition 

from a REG1A/AMBP-positive (Fig 1g) to a TFF1/TFF2/TFF3/FGF19/CAECAM6-positive (Fig 1h) 

population. Whether these represent different spatially localized populations of epithelial cells within the 

pancreatic duct or different states of activation remains to be determined, but further highlights the utility 

of CellView to uncover putative novel biology.  

 

These examples illustrate how CellView provides a powerful complement to current command line 

approaches to cluster and identify cell types in single cell experiments. This intuitive web application 

enables collaboration between biologists and computational analysts and increases the value of each 

single cell dataset. Moreover, the CellView framework provides a useful format to present these data in 

an interactive manner and can be broadly applied to single cell and bulk genomics assays with count 

matrix and cluster information. Until a complete atlas of cell-type transcriptomes has been defined, where 

a reference-based approach may prove more powerful for clustering and cell type identification16, 

CellView provides a useful tool to explore and characterize single cell data. 

 
METHODS 

Single cell RNA-seq - PBMCs were purchased from AllCells, thawed quickly at 37oC and into DMEM 

supplemented with 10% FBS. Cells were quickly spun down at 400g, for 10min. Cells were washed once 

with 1 x PBS supplemented with 0.04% BSA and finally resuspended in 1 x PBS with 0.04% BSA. 

Viability was determined using trypan blue staining and measured on a Countess FL II. Briefly, 12000 

cells were loaded for capture onto the Chromium System using the v2 single cell reagent kit (10X 

Genomics). Following capture and lysis, cDNA was synthesized and amplified (12 cycles) as per 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2017. ; https://doi.org/10.1101/123810doi: bioRxiv preprint 

https://doi.org/10.1101/123810
http://creativecommons.org/licenses/by-nc-nd/4.0/


manufacturer's protocol (10X Genomics). The amplified cDNA was used to construct an Illumina 

sequencing library and sequenced on a single lane of a HiSeq 4000.  

 

Human islets from one nondiabetic deceased organ donor (UNOS ID ADIW417)	
  were purchased from 

ProdoLabs and processed to obtain a single cell suspension as previously described14. Briefly, islets 

were dissociated using Accutase and filtered through a prewet cell strainer (BD) to collect single cells. 

The single cell suspension was prepared and loaded onto the Chromium System as described above.  

  

FASTQ generation and Alignments - Illumina basecall files (*.bcl) were converted to fastqs using 

cellranger v1.3, which uses bcl2fastq v2.17.1.14. FASTQ files were then aligned to hg19 genome and 

transcriptome using the cellranger v1.3 pipeline, which generates a gene vs cell expression matrix. 

Clustering and marker gene identification - Cells with less than 500 total unique transcripts were removed 

prior to downstream analysis. Genes for clustering were selected based on normalized dispersion 

analysis. Cells were clustered using Barnes Hut t-SNE9 with the 1000 most over dispersed genes and 

clusters identified using DBSCAN (eps = 5.0, minpts=15). Differential gene expression was computed 

using edgeR17 and signature genes defined as genes upregulated 2 fold and FDR < 0.01 in all pairwise 

comparisons.  

 

Datasets and visualization – Access to CellView from: https://www.jax.org/CellOmics 
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Figure 1: CellView enables cell type identification of clusters and discovery of novel cell states in 

PBMC and pancreatic islet datasets. A. CellView’s graphical user interface has 3 different features that 

enables exploration of single cell RNA-seq datasets. B. Upon PBMC data upload, a 3D plot of cells 

clustered in t-SNE space is displayed in ‘overview’. Expression patterns of marker genes such as C. 

CD79A and D. CD3D can be visualized in multiple panels under the ‘Explore’ module assisting in cell 

type identification and to discover further heterogeneity. E. 3D display of cell type clusters identified in 
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human pancreatic islets. F. Analysis using the ‘Co-expression’ module of CellView with marker genes 

aids in the identification the major endocrine cell populations, alpha (cluster 2), beta (cluster 3), gamma 

(cluster 5), delta (cluster 4) along with exocrine cell types like ductal (cluster 1), stellate (cluster 6), acinar 

(cluster 7) and endothelial (cluster 8) cells. Cluster and gene specific views, G. REG1A and H. TPP1 

expression in the ductal cell cluster identifies cells in multiple states. 

 
 
 
 

 

 

Figure 2: Investigating gene expression patterns across and within clusters with CellView 

identifies different cell type populations. A. Analysis using the co-expression module of CellView with 

various immune cell markers identifies the major subpopulations present in PBMCs. B. Exploring gene 

expression of CD14 and CD68 expression identifies a continuum from classical to non-classical 

monocytes that are also characterized by difference in absolute transcript counts (UMI). C. CellView 
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allows for identification of sub-clusters by simple differential gene expression between groups of selected 

cells using a square brush stroke and displays a sortable and searchable table. D. Differential expression 

of two visually resolved populations in the dendritic cell cluster identifies less abundant CD141+ dendritic 

cells expressing the CLEC9A and DNASE1L3 marker genes. 
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