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Abstract 10 

Due to their relatively small size and a limited number of components, cells are intrinsically 11 

subject to stochastic fluctuations. Whereas stochasticity in gene expression has been extensively 12 

investigated, much less is known about posttranslational noise arising from activity fluctuations 13 

within protein networks. The pathway controlling chemotaxis of Escherichia coli provides one 14 

of the few examples where signaling noise has been previously deduced from cellular behavior. 15 

Here we use direct single-cell FRET measurements of the pathway activity to directly confirm 16 

the existence of signaling noise in chemotaxis and to characterize its determinants. Our analysis 17 

confirms previously proposed role of chemoreceptor methylation enzymes as major contributors 18 

to the pathway noise. However, it also demonstrates that allosteric interactions and slow receptor 19 

rearrangements within clusters of chemoreceptors contribute largely to activity fluctuations. 20 

Resulting mathematical description of activity fluctuations illustrates the inherent relation 21 

between the noise in the signaling system and its sensitivity to perturbations.  22 

  23 
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Introduction 24 

 25 

It is well established that cellular processes are prone to fluctuations due to their intrinsic 26 

stochasticity combined with a small number of reactant molecules [1-3]. Best-characterized 27 

examples of such cellular noise relate to the variability in expression of genes or proteins, 28 

observed either across a population of genetically identical cells or within one cell over time [4, 29 

5]. Such stochastic variability may be further enhanced by feedbacks present in gene regulatory 30 

networks, in extreme cases causing genetically identical cells to exhibit distinctly different 31 

behaviors [6-8]. In most cases the effects of noise are detrimental, limiting the ability of cellular 32 

networks to precisely perform such functions as information processing [1, 9-12]. Therefore, 33 

cellular networks are believed to have evolved features that enable them to function robustly in 34 

presence of stochastic fluctuations in the levels of their components [13-16].  35 

In contrast to gene expression noise, much less is known about the origins, extent or effects of 36 

noise that can arise at the posttranslational level, although such noise is expected to be 37 

ubiquitous. Chemotaxis of Escherichia coli, a bacterial model for signal transduction, previously 38 

provided one of the few examples where signaling noise within the network has been indeed 39 

deduced from studies of cell motility and flagellar rotation [17-23]. Subsequent theoretical 40 

analysis suggested that such behavioral fluctuations might provide physiological benefit, by 41 

enhancing environmental exploration [18, 24-28].  42 

At the molecular level, these fluctuations were proposed to originate within the methylation-43 

based adaptation system [17, 29, 30]. Adaptation in chemotaxis is mediated by two enzymes, the 44 

methyltransferase CheR and the methylesterase CheB, which respectively add or remove methyl 45 

groups at four specific glutamate residues of the chemoreceptors [31-35]. Notably, for the major 46 
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chemoreceptors of E. coli, Tar and Tsr, two of these residues are initially encoded as glutamines 47 

that are functionally similar to methylated glutamates and subsequently deamidated to 48 

glutamates by CheB [35, 36]. Changes in receptor methylation control the activity of the sensory 49 

complexes which further include the receptor-associated kinase CheA and the scaffold protein 50 

CheW, such that methylation compensates effects of chemotactic stimulation via negative 51 

feedback loops [37-40]. This adaptation enables cells to robustly maintain intermediate CheA 52 

activity and thus intermediate phosphorylation of the response regulator CheY. Phosphorylated 53 

CheY (CheY-P) controls the rotation of flagellar motor and cell swimming. The adapted level of 54 

CheY-P falls into the most sensitive part of the motor response [41], ensuring that bacteria 55 

remains chemotactic in a wide range of background stimulation.  56 

Despite this importance of the adaptation system for robust maintenance of the average signaling 57 

output, the relatively small number of methylation enzymes [42] and their slow exchange rates at 58 

their receptor substrates [43, 44] may result in fluctuations of the level of phosphorylated CheY 59 

[17, 18, 20]. Further amplified by the cooperative response of flagellar motor [29, 41], these 60 

fluctuations were suggested to produce the observed large variation in the motor rotation [18, 23] 61 

and in the swimming behavior [17, 45] of individual cells over time.  62 

Besides amplification at the motor level, signals in the chemotaxis pathway are also amplified by 63 

cooperative interactions in signaling arrays (clusters) of chemoreceptors [46, 47]. These 64 

interactions have been previously described using either the Monod-Wyman-Changeux (MWC) 65 

model which assumes that receptors operate in units (signaling teams) of 10-20 dimers where 66 

activities of individual receptors are tightly coupled [48-50] or using an Ising model of a receptor 67 

lattice with intermediate coupling [51]. But despite the established importance of these 68 
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cooperative interactions for signal processing, the contribution of receptor clustering to the 69 

pathway noise remained untested.   70 

Here we directly monitored signaling noise in E. coli chemotaxis pathway using Förster 71 

(fluorescence) resonance energy transfer (FRET). Combining single-cell experiments with 72 

mathematical analysis, we show that pathway activity fluctuations arise from interplay of 73 

multiple factors. Besides the methylation system, these include previously observed slow 74 

rearrangements within receptor clusters [52] as well as the cooperative interactions between 75 

clustered chemoreceptors.  76 

 77 

Results 78 

 79 

Pathway activity fluctuations in adapting cells 80 

To perform time-resolved characterization of the chemotaxis pathway activity in individual E. 81 

coli cells, we adapted the microscopy-based ratiometric FRET assay that was previously used at 82 

the population level [53] . This assay relies on the phosphorylation-dependent interaction 83 

between CheY, fused to yellow fluorescent protein (CheY-YFP), and its phosphatase CheZ, 84 

fused to cyan fluorescent protein (CheZ-CFP). Whereas previous measurements of this FRET 85 

reporter relied on the signal collection from an area containing several hundred cells using 86 

photon counters [54], here we used imaging with the electron multiplication charge-coupled 87 

device (EM-CCD) camera (see Material and Methods). When integrated over the population, the 88 

chemoattractant response of E. coli cells that express the FRET pair and a major chemoreceptor 89 

Tar (Figure 1A) was very similar to the one observed previously [53, 55]. Upon stimulation with 90 

the chemoattractant α-methyl-aspartate (MeAsp) the ratio of the YFP to CFP fluorescence 91 
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decreased, consistent with the attractant-mediated inhibition of the kinase activity, and therefore 92 

of energy transfer from the donor (CFP) to the acceptor (YFP). Furthermore, the pathway 93 

subsequently adapted to the new background level of attractant via the CheR-dependent increase 94 

in receptor methylation, but as previously reported adaptation to high levels of MeAsp is only 95 

partial [55-57]. Subsequent removal of attractant resulted in a transient increase in kinase 96 

activity, followed by the CheB-mediated adaptation through the demethylation of receptors. 97 

Although the YFP/CFP ratio measured for individual cells during the same experiment was 98 

expectedly noisier than the population-averaged data, both the initial response and subsequent 99 

adaptation were clearly distinguishable (Figure 1B). In contrast to the population measurement, 100 

however, a majority of individual cells also exhibited large fluctuations in the YFP/CFP ratio 101 

(also Figure 1 – Figure Supplement 1), which were apparently different from the measurement 102 

noise that was observed in the negative control (receptorless cells with largely inactive pathway; 103 

Figure 1 – Figure Supplement 2). For cells adapted in buffer, these fluctuations could be as large 104 

as the response to attractant. Importantly, these long-term fluctuations were initially suppressed 105 

upon saturating inhibition of the pathway activity with 10 µM MeAsp but then (partly) recovered 106 

upon (imperfect) adaptation, confirming their relation to the pathway activity.   107 

To analyze these fluctuations in greater detail, the power spectral density (PSD) of the single-cell 108 

YFP/CFP ratio, �����, was computed for buffer- or attractant-adapted cells, as well as for the 109 

receptorless cells that do not activate CheA. The PSD enables to extract the average spectral 110 

content of the temporal variations of the single-cell ratio, i.e. to determine frequencies at which 111 

this ratio fluctuates. To rule out possible effects of the initial state of receptor modification on the 112 

observed fluctuations, we analyzed cells that express Tar in either the native half-modified 113 

(TarQEQE) state or in the unmodified (TarEEEE) state. We observed that at high frequency the PSD 114 
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kept a constant value independent of the condition or strain (Figure 1C), indicating that in this 115 

frequency range the shot noise of the measurements sets the lower bound of measurable kinase 116 

activity fluctuations. For the chemotactic cells adapted in buffer, the measured PSD increased 117 

dramatically at lower frequency (roughly as 1/�), reaching a low frequency plateau at 0.015 Hz. 118 

Cells expressing TarEEEE or TarQEQE showed essentially identical behavior. Similar increase of 119 

the PSD at low frequency was observed for cells adapted to either 10 or 25 µM MeAsp, although 120 

the amplitude of this increase was smaller than for the buffer-adapted cells. In contrast, the 121 

receptorless strain showed nearly constant noise level over the entire frequency range. 122 

The PSD was further used to calculate the average time autocorrelation function of the single-123 

cell ratio (Figure 1D), which reflects the characteristic time scale of activity fluctuations. For 124 

cells adapted in buffer, the autocorrelation time constant was 9.5 ± 0.5 s (as determined by a 125 

single exponential fit of the correlation function), which is similar to the characteristic time of 126 

the pathway activity fluctuation previously deduced from behavioral studies [17, 22]. Same 127 

characteristic time was observed in the MeAsp-adapted cells, although the amplitude of the 128 

correlation was considerably smaller in this case. Interestingly, on the longer time scale the 129 

autocorrelation function becomes weakly negative, indicating an overshoot that is likely caused 130 

by the negative feedback in the adaptation system [58]. No autocorrelation was observed for the 131 

receptorless cells, again confirming that the autocorrelation is due to fluctuations of the pathway 132 

activity.     133 

 134 
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 135 

Figure 1. Single-cell measurements of the pathway activity in CheR+ CheB+ cells. (A) Time course of the 136 

population-averaged YFP/CFP ratio for the CheR+ CheB+ strain expressing the FRET pair CheY-YFP and CheZ-137 

CFP and Tar as the sole receptor. Cells immobilized in a flow chamber under steady flow (see Materials and 138 

Methods) were initially adapted in buffer and subsequently stimulated by addition of indicated concentrations of a 139 

non-metabolizable chemoattractant MeAsp (blue arrows). The red arrow represents the removal of MeAsp. (B) Time 140 

course of the YFP/CFP ratio for representative single cells during the experiments depicted in (A). The measurement 141 

traces have been shifted along the y-axis to facilitate visualization. (C) Power spectral density (PSD) of the ratio 142 

measurements for single cells expressing TarEEEE or TarQEQE in buffer (dark and light blue curves) and TarQEQE cells 143 

adapted to 10 µM (orange curve) or 25 µM MeAsp (red curve), as well as for the receptorless strain in buffer (black 144 

curve). (D) The corresponding time autocorrelation functions of the single-cell ratio. The error bars represent 145 

standard errors (SEM), and the sample sizes are 103 (receptorless strain), 203 (TarEEEE in buffer), 265 (TarQEQE in 146 

buffer), 69 (10 µM) and 219 (25 µM) single cells coming from at least three biological repeats in each case. 147 

 148 

Activity fluctuations in adaptation-deficient cells 149 

We next tested whether the observed fluctuations could be solely explained by the action of the 150 

adaptation system, by measuring the single-cell pathway activity in a strain lacking CheR and 151 
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CheB. Given the observed dependence of the fluctuation on the level of the pathway activity, we 152 

first tested the ΔcheRcheB strain that was engineered to express Tar receptor in one-modified 153 

state (TarQEEE), which closely mimics the average modification state and intermediate activity of 154 

Tar in CheR+ CheB+ cells adapted in buffer [53, 59]. Expectedly, these cells showed a 155 

pronounced response but no adaptation to MeAsp, both at the population and single-cell level 156 

(Figure  2A). To our surprise, however, pathway activity in TarQEEE cells showed pronounced 157 

fluctuations despite the lack of adaptation system. In the strain expressing TarQEQE as the sole 158 

receptor, no fluctuations were observed in buffer, where TarQEQE is highly active and has low 159 

sensitivity to stimulation [59, 60]. Nevertheless, fluctuations were again observed when the 160 

activity of TarQEQE was partly inhibited by stimulating cells with an intermediate level of MeAsp 161 

(Figure 2B,C). In both cases, fluctuations were completely abolished upon saturating attractant 162 

stimulation, confirming their specificity. 163 

Thus, at the intermediate level of pathway activity where the receptors are highly sensitive to 164 

stimulation, signaling fluctuations can be observed even in absence of the methylation system. 165 

Their PSD rose above shot noise at low frequency (roughly as 1/�, see Figure 2C). Nevertheless, 166 

these methylation-independent fluctuations were slower than those observed in the CheR+ CheB+ 167 

strain (compare Figure 2C with Figure 1C), with a typical time scale of 34 ± 4 s (determined by 168 

single exponential fit of the curves of Figure 2D).  169 

 170 
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 171 

Figure 2. Pathway activity fluctuations in ΔcheRcheB cells. (A) Time course of the population-averaged (black) 172 

and typical single-cell (colors) YFP/CFP ratios for the ΔcheR cheB strain expressing TarQEEE as the sole receptor, in 173 

buffer and upon stimulation with 30 µM MeAsp, as indicated by the blue arrows. The red arrow represents the 174 

return to buffer condition. Measurements were performed as in Figure1. (B) Same as (A) but for the ΔcheR cheB 175 

strain expressing TarQEQE as the sole receptor and upon stimulation with 30 µM and then 100 µM MeAsp. (C) PSD 176 

of the single cell ratio for TarQEEE in buffer (blue) or in 30 µM MeAsp (cyan), TarQEQE in buffer (orange), in 30 µM 177 

MeAsp (red) or in 100 µM MeAsp (yellow). (D) Corresponding time autocorrelation functions of the single cell 178 

ratios. Error bars represent standard errors (SEM), and the sample sizes are 153 (TarQEEE, buffer), 65 (TarQEEE, 30 179 

µM), 471 (TarQEQE, buffer), 404 (TarQEQE, 30 µM) and 136 (TarQEQE, 100 µM) single cells coming from at least three 180 

biological repeats in each case. 181 

 182 

Role of receptor cooperativity in signaling noise 183 
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To investigate whether the observed fluctuations depend on cooperative interactions between 184 

chemotaxis receptors, we utilized a recently described CheW-X2 version of the adaptor protein 185 

CheW, which carries R117D and F122S amino acid replacements disrupting the formation of the 186 

receptor arrays without abolishing signaling [61]. Indeed, a ΔcheRcheB strain expressing CheW-187 

X2 and TarQEQE showed basal activity and response to MeAsp which were similar to the 188 

respective strain that has the native CheW (Figure 3A and Figure 3 – Figure Supplement 1). 189 

Nevertheless, this strain showed no long-term fluctuations in the pathway activity, even when its 190 

activity was tuned to an intermediate level (Figure 3B,C). Similarly, the array disruption allowed 191 

signaling (Figure 3D) but abolished the long-term activity fluctuations in CheR+ CheB+ cells 192 

(Figure 3E,F). These results demonstrate that long-term fluctuations in activity observed either 193 

with or without the receptor methylation system require cooperative interactions between 194 

receptors. 195 

 196 
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 197 

Figure 3. Fluctuation analysis in CheW-X2 cells. (A) Population averaged FRET ratio for adaptation deficient 198 

strain carrying CheW-X2 and TarQEQE as the sole receptor. The cells, which have a high activity in buffer, were first 199 

exposed to 100 µM MeAsp, which fully inhibited kinase activity, and then to 10 µM MeAsp to bring them to 200 

intermediate activity level. (B) Typical single cell FRET ratios for the same experiment as (A). The measurement 201 

traces have been shifted along the y-axis to facilitate visualization. (C) Power spectral density of the ratio 202 

fluctuations in CheW-X2 ΔcheRcheB strain (red) compared to the one in the equivalent strain carrying native CheW 203 

(black – same data as Figure 2C). Disruption of signal amplification through cooperativity eliminated the 204 

fluctuations. Error bars represent SEM, with sample sizes 404 (black) and 208 (red) cells. (D-E) Same as (A-B) in 205 

CheR+ CheB+ strain carrying CheW-X2 and TarQEEE as the sole receptor. The activity in buffer is intermediate level, 206 

300 µM MeAsp completely inhibited the kinase activity. (F) Power spectral density of the ratio fluctuations in this 207 

strain (red) compared to the native CheW case (black – same data as Figure 1C with receptor TarEEEE). Error bars 208 

represent SEM, with sample sizes 202 (black) and 191 (red) cells. (A-F) Disruption of signal amplification through 209 

cooperativity eliminated the fluctuations. 210 
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 211 

Fluctuation dissipation relation for receptor clusters  212 

To better understand the origin of the observed fluctuations and their relation to receptor 213 

cooperativity, we considered the fluctuation dissipation theorem (FDT).  It postulates that in 214 

systems at equilibrium, thermal fluctuations of a quantity are related, via the temperature, to its 215 

response to a small externally applied perturbation [62]. In out-of-equilibrium biological 216 

systems, the process generating the fluctuations can be characterized by introducing an effective 217 

temperature �	

���, which in this case describes the energy scale and frequency content of the 218 

underlying out-of-equilibrium noise generating the fluctuations [63-66].  219 

Such a fluctuation dissipation relation for the activity of a single receptor team can be used to 220 

predict a relation between the PSD and the average FRET response to stimulation. We first 221 

considered the simpler case of ΔcheRcheB cells, using an Ising-like model [51, 67, 68] to 222 

describe cooperative receptor interactions in a team (see Material and Methods). For 
����� 223 

signaling teams of strongly coupled signaling units in a cell, this yields: 224 

����� = −2 � ����
������ � 〈"〉�1 − 〈"〉� Re&g(���) +  +, ,                                        (1) 225 

where g is the normalized pathway response, 
 is the number of effective cooperative units in a 226 

team,  〈"〉 is the average activity around which fluctuations occur, R is the YFP/CFP ratio, - =227 

� " + . [54], and +,   is the measurement shot noise. Importantly, g could be experimentally 228 

determined by measuring the FRET response to stepwise attractant stimulation as /�0� =229 

∆-�0�/∆-�+∞� (Figure 4A). The values of λ could be estimated from experimental data (Figure 230 

1A and 2A-B) as ��34 ≃  0.1 and ��38 ≃  0.09.  231 

For ΔcheRcheB cells, we observed that Re&g(���) – the real part of the Fourier transform of / – 232 

was proportional to ����� for 〈"〉 ≃0.5, at low frequencies (Figure 4B), as predicted by 233 
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Equation 1, also yielding the shot noise +, ≃ 104:. Furthermore, the PSD of these cells followed 234 

the scaling 〈"〉�1 − 〈"〉� predicted by the FDT, as evident for subpopulations of cells sorted 235 

according to their activity (Figure 4 – Figure Supplement 1). Thus, our model appears to 236 

accurately describe the observed long-time  activity fluctuations in ΔcheRcheB cells, suggesting 237 

that these fluctuations could in principle be explained as the consequence of white noise driving 238 

an equilibrium system with the measured latency in the response to stimulation (Figure 4A). 239 

Notably, this latency in response has been previously observed and attributed to slow changes in 240 

packing of receptors within clusters [52]. Consistent with this interpretation, the CheW-X2 241 

ΔcheRcheB strain with disrupted receptor clustering showed no response latency (Figure 3 – 242 

Figure Supplement 2) and no long-term activity fluctuations (Figure 3B,C). 243 

Equation 1 further allowed us to estimate �	

, the energy scale of the white noise driving activity 244 

fluctuations in the adaptation-deficient cells, which was nearly independent of � (Figure 4D). 245 

For TarQEQE at our expression level, 
 ∼ 14 allosteric units [56, 59, 69, 70] yielded =�	

/246 


�����  =  5.5 104:=�. To accurately count the number of signaling teams, the dose-response 247 

curve of ΔcheRcheB CheW-X2 expressing TarQEQE (Figure 3 – Figure Supplement 1) was fitted 248 

using the MWC model, yielding a cooperativity number of N≃2. Since in this strain 249 

chemosensory complexes are believed to consist of two trimers of receptor dimers coupled to 250 

one CheA dimer [47, 61], this result suggests that 
 effectively accounts for the number of 251 

trimer of dimers (TD) in the signaling team. Assuming 
��? ∼  10@
 receptor dimers under our 252 

induction level [42, 59], we obtain 
�����  =  
��? 3
⁄ ≃  240 and =�	

 ∼ 1.3 =� (Figure 253 

4D). Thus, thermal fluctuations coupled to the long-term dynamics of the receptor cluster should 254 

in principle be strong enough to generate the observed activity fluctuations. 255 

 256 
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 257 

Figure 4. Fluctuation dissipation analysis of the pathway activity. (A) Normalized response function g(t) in the 258 

adaptation deficient case, evaluated in ΔcheR cheB + TarQEQE responding to a change from buffer condition to 30 259 

µM MeAsp. (B) The PSD of the activity in adaptation deficient strains at activity "	 � 	0.5 (black) was proportional 260 

to the response function in the frequency domain Re&g(���) in the low frequency range, and adjusted to Eq. 1 (red). 261 

(C) The PSDs in adaptation proficient cells at "	 � 	0.5 (black) were adjusted to Eq. 2, providing an estimate of the 262 

response function in adaptive cells (red). (D) Evaluated FDT ratios in both cases were constant, in the range of 263 

frequency where measurement noise is negligible. In all panels, error bars represent SEM, with sample sizes 540 264 

(ΔcheR cheB) and 203 + 265 (CheR+ CheB+) single cells in at least 5 biological repeats. 265 

 266 

Interestingly, we also observed that fluctuations were unaffected by the expression level of the 267 

receptors (Figure 4 – Figure Supplement 2). In the FDT framework, this would be the case only 268 

if N/Nteams = 3N2/NTar is constant. This indeed appears to agree with previous observation that the 269 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 4, 2017. ; https://doi.org/10.1101/123935doi: bioRxiv preprint 

https://doi.org/10.1101/123935
http://creativecommons.org/licenses/by/4.0/


15 

 

cooperativity rises with expression level of TarQEQE in a way that N2/NTar remains unchanged 270 

[59].  271 

In presence of the adaptation enzymes, an effective fluctuation dissipation relation could be 272 

predicted in the same theoretical framework, additionally including adaptation described 273 

according to the classical two-state models of receptors [13, 69, 71], as 274 

��
8��� � 2=|�	

|

�〈D〉�E4〈D〉�

������
  �  ��&F(�G�)8 GHI |F(�G�|J 

E8 GHI  ��&F(�G�)8 �GHI|F(�G�|�J + +, ,                     (2) 275 

where ��3 = 
〈"〉�1 − 〈"〉� =E�=� + =3�〈"〉� � is the activity-dependent rate of adaptation (see 276 

Material and Methods). The experimental ����� for CheR+ CheB+ cells was adjusted to 277 

Equation 2, using the function /(��� computed for ΔcheRcheB, the prefactor, +,  and ��3 being 278 

adjustable parameters. The adjusted curve and the experimental PSD were in excellent 279 

agreement for the whole range of frequencies (Figure 4C). The estimated value of the 280 

methylation-dependent memory was K�3  = 1 ��3⁄   =  7.1 �, consistent with previous estimates 281 

[22], and the effective temperature was =�	

  =  −3.7 =�, assuming � =  0.09 and other 282 

parameters as in the ΔcheRcheB case. We further considered that the adaptation enzymes are 283 

much fewer than their receptor substrates – only 15% of the receptors can be (de)methylated at 284 

any given time, since only 140 CheR and 240 CheB molecules [42] act on an assistance 285 

neighborhood of 7 and 5 receptor dimers respectively [43]. Given that the energy consumed by 286 

one methylation reaction is ΔN�~30 kT [72], our estimate of the effective temperature in CheR+ 287 

CheB+ cells is consistent with random methylation events being the main driving force behind 288 

the activity fluctuations (=�	

 − =� ≃ −0.15ΔN�).  Importantly, the sign of =�	

 for CheR+ 289 

CheB+ cells was negative, consistent with energy dissipation occurring during methylation-290 

driven activity fluctuations [72-74]: Adaptation actively translates activity changes into receptor 291 

free energy gains – since (de)methylation events increase the energy of the receptors, before their 292 
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activity eventually actuates [74] – the opposite of the passive behavior of the receptors. This 293 

reversal of causality translates into a negative effective temperature on the time scales 294 

considered, where adaptation is the dominant cause of activity changes. Within our model, the 295 

loss of slow fluctuations upon disruption of clusters in CheR+ CheB+ cells (Figure 3F) could be 296 

easily explained by the dependence of ����� on the size N of signaling teams (Equation 2), 297 

meaning that reduction of N to 2 should largely abolish fluctuations in activity even in presence 298 

of the methylation system.    299 

 300 

Discussion 301 

 302 

The bacterial chemotaxis pathway has been extensively used as a model for quantitative analysis 303 

of signal transduction [10, 37, 46]. One fascinating feature of the chemotaxis pathway is the 304 

amplification of chemotactic signals through cooperative interactions within teams of clustered 305 

receptors, where ~10-20 receptor dimers show concerted transitions between active and inactive 306 

states [48-51, 75, 76]. Another much celebrated property of the pathway is robustness against 307 

external and internal perturbations, which largely relies on its methylation-based adaptation 308 

system [13, 14, 16, 40, 60]. At the same time, the stochastic activity of the adaptation enzymes 309 

was also proposed to induce variability in the signaling output on the time scale of tens of 310 

seconds [17, 18, 30], which might enhance environmental exploration [18, 23, 25, 27, 28]. 311 

Here we combine experimental and mathematical analyses to demonstrate that both, the 312 

adaptation system and receptor clustering contribute to the signaling noise in the chemotaxis 313 

pathway. Our single-cell FRET measurements reveal that large pathway activity fluctuations 314 

occur both in presence and in absence of the adaptation system, clearly showing that the 315 
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stochasticity of receptor methylation is not the sole cause of the pathway noise. The observed 316 

fluctuations could be analyzed using the fluctuation dissipation theorem (FDT) and deviations 317 

thereof. Multiple factors were accounted for, which apparently contribute to the overall pathway 318 

noise: (i) an input white noise, (ii) the amplification of this noise by cooperative interactions 319 

among receptors, (iii) the delayed response function of receptor clusters, and (iv) the dynamics of 320 

the methylation system.  321 

Our analysis suggests that, in adaptation deficient strains, the input noise likely originates from 322 

thermal fluctuations of receptor activity, and it is converted into long-term pathway activity 323 

fluctuations because of the latency observed in the response of clustered receptors. This observed 324 

latency of response is consistent with the previous work that attributed it to changes in packing 325 

of receptors within clusters [52]. Indeed, in our experiments it was abolished by mutations that 326 

disrupt clustering. Notably, on the studied range of time scales the proposed contribution of the 327 

high-frequency ligand binding noise [77] to overall fluctuations must be very small, since the 328 

observed power spectral densities depended on activity but not on the absolute ligand 329 

concentration. Our analysis also suggests that an effective subunit of the allosteric signaling 330 

teams corresponds to one trimer of dimers, rather than a dimer itself as assumed in previous 331 

computational models [59, 71]. This might be explained by the finite receptor-kinase coupling 332 

within signaling teams, and it is consistent with a previous biochemical demonstration that a 333 

trimer is necessary to activate CheA [78]. Notably, it could be easily reconciled with the 334 

previous formulations of the MWC models by rescaling the free-energy change per methylated 335 

glutamate by a factor of three.  336 

In presence of the adaptation system this first source of noise seems to be added to the noise 337 

coming from the stochasticity of methylation events. The adaptation system not only shifts the 338 
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frequency spectrum of fluctuations but also eliminates the latency of the response to stimuli, thus 339 

likely accelerating the response through its negative feedback activity. However, receptor 340 

clustering is required for the observed activity fluctuations even in presence of the adaptation 341 

system, likely because of signal amplification and accelerated adaptation dynamics within 342 

clusters [61]. Thus, although the receptor methylation system is clearly important for shaping the 343 

overall pathway noise, the resulting picture of the signaling noise in the native chemotaxis 344 

pathway is more complex than previously suggested. Altogether, our analysis shows that at least 345 

two sources of noise, with fairly comparable strengths, get first processed though a slow 346 

responding amplifier (the chemoreceptor cluster) and then fed back through the methylation 347 

system, resulting in complex colored fluctuations of the pathway activity and therefore of the 348 

swimming behavior.  349 

More generally, our study provides another example of the general relation between fluctuations 350 

and response in biological systems [63-65, 79]. In these systems, the fluctuations are commonly 351 

shaped by active, non-equilibrium processes, the properties of which can be inferred from the 352 

deviations from the FDT. The approach of quantifying such deviations by means of an effective 353 

temperature, or fluctuation dissipation ratio, has been used in a variety of out-of-equilibrium 354 

systems [66], from glasses to biological systems. Although in some systems, e.g. glasses, this 355 

ratio can have indeed properties normally associated with the thermodynamic temperature, in 356 

biological systems it rather relates to the energy scale and frequency content of the underlying 357 

out-of-equilibrium processes, as demonstrated in the earing system [64] or in the active transport 358 

in eukaryotic cells [63, 65, 79]. For the chemotaxis pathway, our analysis indeed enabled us to 359 

distinguish between passive and active sources of noise, and also provided energy scale for the 360 

active process shaping the fluctuations that is well in agreement with the biochemical estimates. 361 
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Thus, fluctuation analyses may in general provide a valuable tool for studying cell signaling 362 

processes, from bacteria to mammals.  363 

  364 

 365 

Material and Methods 366 

 367 

Cell growth, media and sample preparation 368 

E. coli strains and plasmids are described in Table S1 and Table S2, respectively. Cells carrying 369 

plasmids that encode indicated receptors and the FRET pair were grown at 30°C overnight in 370 

tryptone broth (TB) supplemented with appropriate antibiotics. The culture was subsequently 371 

diluted 17:1000 in TB containing antibiotics, 2 µM salicylate (unless otherwise stated) for 372 

induction of Tar and 200 µM isopropyl β-D-1-thiogalactopyranoside (IPTG) for induction of the 373 

FRET pair, and grown at 34°C under vigorous shaking (275 rpm) to an OD600 = 0.55. Bacteria 374 

were harvested by centrifugation, washed thrice in tethering buffer (10 mM KPO4, 0.1 mM 375 

EDTA, 1 µM methionine, 10 mM lactic acid, pH 7) and stored at least 20 minutes at 4°C prior to 376 

the experiments.  377 

 378 

Microscopy 379 

Bacterial cells were attached to poly-lysine coated slides which were subsequently fixed at the 380 

bottom of a custom-made, air-tight flow chamber, which enables a constant flow of fresh 381 

tethering buffer using a syringe pump (Pump 11 Elite, Harvard Apparatus, Holliston, 382 

Massachusetts, United States) at 0.5 ml/min. This flow was further used to stimulate cells with 383 

indicated concentrations of α-methyl-D,L-aspartate (MeAsp). The cells were observed at 40x 384 
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magnification (NA = 0.95) using an automated inverted microscope (Nikon Ti Eclipse, Nikon 385 

Instruments, Tokyo, Japan) controlled by the NIS-Elements AR software (Nikon Instruments). 386 

The cells were illuminated using a 436/20 nm filtered LED light (X-cite exacte, Lumen 387 

Dynamics, Mississauga, Canada), and images were continuously recorded at a rate of 1 frame 388 

per second in two spectral channels corresponding to CFP fluorescence (475/20 nm) and YFP 389 

fluorescence (542/27 nm) using an optosplit (OptoSplit II, CAIRN Research, Faversham, United 390 

Kingdom) and the Andor Ixon 897-X3 EMCCD camera (Andor Technology, Belfast, UK) with 391 

EM Gain 300 and exposure time of 1 s. For each measurement, the field of view was chosen to 392 

contain both a small region of high density with confluent cells and a few hundred well-393 

separated single cells. During our approximately 30 min long measurements, the focus was 394 

maintained using the Nikon perfect focus system. 395 

 396 

Image processing and data analysis 397 

The image analysis was performed using the NIS-Elements AR software. The CFP and YFP 398 

images, each recorded by a half of the camera chip (256 x 512 px2, 1 px = 0.40 µm), were 399 

aligned with each other by manual image registration. A gray average of the two channels was 400 

then delineated to enhance contrast and create binary masks with a user-defined, experiment-401 

specific threshold. Individual cells were detected by segmentation of the thresholded image into 402 

individual objects, filtered according to size (3-50 µm2) and shape (excentricity < 0.86). This 403 

step resulted in a collection of distinct regions of interest (ROIs) for each frame of the movie. 404 

The ROIs were then tracked from frame to frame, using the NIS build-in tracking algorithm. 405 

Only ROIs that could be tracked over the entire duration of the experiment were further 406 

analyzed. The selected ROIs were then inspected manually and those not representing individual 407 
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single cells well attached to the cover glass were discarded. Each individual measurement 408 

contained on the order of 100 tracked single cells.  409 

All further analyses were carried out using MATLAB 8.4 R2014b (The MathWorks, Inc., 410 

Natick, Massachusetts, United States). For each tracked cell, the average CFP and YFP values 411 

over the ROI were extracted as a function of time. These values were also extracted for an ROI 412 

corresponding to the confluent population of cells. The ratio R of the YFP signal to the CFP 413 

signal was computed for both the single cells and the population, with the population response 414 

being used as a reference. Cells with a ratio change of less than 10% of the population response 415 

were discarded as unresponsive. The PSD was computed over T=400-frames long segments as 416 

                                                     ����� �
E

�
〈�O
P�G��OP

∗�G�

�ORRR
J 〉S ,                                                                 �3� 417 

where -TU ��� is the discrete Fourier transform of the ratio of cell V at frequency �/2W , -TU ∗
 its 418 

complex conjugate,   .  RRR represents a temporal average over the given time interval and 〈⋅〉S an 419 

average over all single cells considered. The error for the PSD was evaluated as 420 

E
�Y� var ]�OP�G��OP∗�G�

�ORRRJ ^S , where 
_ is the number of cells. The time autocorrelation function is 421 

simply the inverse Fourier transform of the PSD. 422 

 423 

Modeling activity fluctuations in the framework of fluctuation dissipation relation  424 

Ising model for the chemoreceptor cluster 425 

The chemosensory complexes are described using an Ising model, in which the receptors can be 426 

in two states (OFF, which inhibits kinase, and ON, which actives kinase). The receptors and 427 

kinases are coupled, and the free energy difference between ON and OFF state is ∆ ,̀ = a�b� +428 

c�d� for a single receptor, with c�d� = ln ]]1 + _
ghii^ ]1 + _

ghj^k ^ being the contribution of 429 
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attractant binding and a�b� � =, − =Eb being the contribution of the receptor methylation. The 430 

Hamiltonian of the whole sensory cluster is N =  NSl� +  ∑noE�p�q rn ∆ ,̀, with rn being the 431 

Boolean state of the receptor k and NSl� describing the coupling between and among receptors 432 

and kinases. The interaction term NSl� does not need to be specified for the following analysis, 433 

but it would be of the form NSl� = −s�� ∑ �"S − 0.5�tS,u&"u − 0.5)S,u − s�? ∑ �"S −S,n434 

0.5�vS,n�rn − 0.5� − s?? ∑ �rw − 0.5�xw,n�rn − 0.5�w,n , where the s are the coupling strengths 435 

and t, v and x describe the network by determining whether two components are coupled and 436 

"S is the Boolean activity of kinase i.  437 

 438 

Phenomenological MWC description of the average response 439 

Since analytical solutions for Ising models exist only in certain specific cases, an effective 440 

Monod-Wyman-Changeux (MWC) description of the system, extended to include the observed 441 

long-term response dynamics (see main text), was used to describe the average response of the 442 

system. The MWC model is known to well describe the pathway response, similarly to the Ising 443 

model [48, 50, 71, 80]. It considers that the cluster is divided in teams in which N allosteric units 444 

are coupled with infinite strength. Each team is then a two-state binary system, which can be 445 

either fully active or fully inactive. The probability of observing a team in the active state is 446 

given by " = E
E8	yz�� ∆{|�, with ∆ ,̀ as above. The average methylation state of the team evolves 447 

under the action of CheR and CheB according to 
}�
}�  =  =�  �1 − "� – =3 ", with =� and =3 448 

being the rates of methylation and de-methylation, respectively [69]. In the classical MWC 449 

formulation, the basic subunit of the allosteric team is a receptor dimer. In contrast, our analysis 450 

suggests that, although N remains a measure of the extent of correlations, the allosteric subunits 451 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 4, 2017. ; https://doi.org/10.1101/123935doi: bioRxiv preprint 

https://doi.org/10.1101/123935
http://creativecommons.org/licenses/by/4.0/


23 

 

rather consist of three dimers, which might be due to the actual finite coupling between the 452 

kinases and associated receptor dimers.  453 

 454 

Phenomenological response function model for ��������� cells 455 

The dynamic susceptibility of the state of a single receptor ���0� in response to a perturbation 456 

++ of the free energy difference ∆ ,̀ is defined as 〈�r(0)〉 = � −+(K) ��(0 − K) �K
�

4�
, where 〈⋅〉 457 

is an ensemble average. In the case of a constant perturbation +, starting at t = 0, 〈�r(0)〉 =458 

−+, � ��(K) �K
�

,
. It is expected that 〈�r(0)〉 = 〈�"(0)〉 on the time scales of our experiments. In 459 

the MWC framework, the same perturbation reduces the average activity by �"���  =460 

 −
 〈"〉 (1 − 〈"〉) +,, and ��(K) is then a delta function. In order to account for the long-term 461 

response dynamics observed in the experiments, we constructed a phenomenological model in 462 

which the activity can differ from the MWC expectation but evolves in time towards it, leading 463 

to a more complex form of ��(K). The MWC model was assumed to describe the static 464 

properties of the system, so that 〈�r(+∞)〉 = 〈�"(+∞)〉 = �"���, which 465 

yields � ��(K) �K
8�

,
= 
〈"〉(1 − 〈"〉). We experimentally defined the function /(0), measured 466 

as the response of a ∆dℎ�-dℎ�� strain to step-like attractant stimulation, as /(0) =467 

 ∆-(0)/∆-(+∞) = 〈�"(0)〉/〈�"(+∞)〉, which goes from 0 at 0 = 0 to 1 at 0 = +∞.  468 

The theoretical identification and the experimental definition were then combined to form the 469 

phenomenological model of the dynamic susceptibility of a receptor in the ∆dℎ�-dℎ�� strain 470 

as � ��(K) �K
�

,
= 
"(1 − ")/(0), which is expressed in Fourier space as 471 

�̂�(�) = 
"(1 − ")V�/((�)                                                      (4) 

Here the Fourier transform of x is defined as 472 
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�(��� �  � ��0��4SG�8�
4�

�0                                                         �5� 

 473 

Phenomenological response function model for CheR+ CheB+ cells 474 

We assumed that in presence of the adaptation system the receptor cluster responds to free 475 

energy perturbations in the same way as in the adaptation-deficient cells, but this response 476 

induces a methylation change adding up to the free energy perturbation. For a small sinusoidal 477 

perturbation of the free energy difference +���, the resulting perturbations for the average 478 

activity and methylation are then given in Fourier space by the set of equations  479 

〈�r���〉   =  
"�1 − "�V�/(����−+��� +  =E 〈�b���〉�                               �6� 
V � 〈�b〉  =  − �=� + =3� 〈�r���〉                                                     �7� 

Defining ΧD�  =  
"�1 − "� and ��3 = ΧD�=E�=� + =3�, this set of equations is easily solved 480 

as 481 

〈�r���〉   = ΧD� V� /(���
1 + ��3  /(��� &−+���)                                                  �8� 

We thus defined the dynamic susceptibility in this case as  482 

�̂�8��� = ΧD� V� /(���
1 + ��3 /(���                                                             �9� 

Note that the ∆dℎ�-dℎ�� case is obtained again if ��3 = 0. 483 

 484 

Fluctuation dissipation relation 485 

For the allosteric chemosensory complexes described by the Ising model, the fluctuation 486 

dissipation relation associated to the state r of a chemoreceptor is given by ����� =487 
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−   n�
G �b �̂����, where �̂���� is defined as above [62], assuming the system is in equilibrium. 488 

The power spectral density of the state of the receptor is then 489 

����� = −2 =� Im � ΧD� V /(���
1 + ��3  /(����

= −2=� ΧD�  -�&/(���) + ��3  |/(���|  
1 + 2 ��3   -�&/(���) +  ���3|/(���|�       �7� 

We then assumed that 
? neighboring receptors constitute a signaling team where all receptors 490 

and associated kinases are in the same state (either OFF/inactive or ON/active) at a given time. 491 

There are therefore 
�����  =  
��?/
? teams. The PSD of the average activity of the cell is 492 

then �DY������ =  �����/
�����. This yields the PSD of the YFP/CFP ratio, the fluctuations of 493 

which are proportional to the ones of "_�ww with the factor �, ����� = �  �DY������, leading to 494 

equations 1 and 2, which also account for a constant value of ratio shot noise +, . In the case 495 

where the origin of the noise is an out-of-equilibrium white noise, deviations to the equilibrium 496 

FDT were quantified by introducing an effective temperature �	

, normalized as the fluctuation 497 

dissipation ratio �	

/�, which characterizes the energy scale of the underlying noise in activity. 498 

Note that although we expressed the fluctuation dissipation relation in terms of activity, which 499 

allows us to directly compare the analysis with experimental data, this relation can be formulated 500 

for any variable (e.g., receptor conformation) that itself determines the activity.   501 

 502 

Evaluation of � 503 

In the non-adapting TarQEQE strain, the value of ��34 was estimated as the difference, averaged 504 

over all cells, between the YFP/CFP ratio in buffer, where the activity should be maximal (i.e., 505 

equal to one), and the ratio upon saturating stimulation with 100 µM MeAsp as ��34 =506 
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〈-R �0�〉 − 〈-R�100 .��〉. In the adaptation-proficient strains, ��38 was evaluated as the 507 

difference between the ratio value during the brief stimulation with 100 µM MeAsp and the peak 508 

of the ratio upon removal of the stimulation (assuming that this value corresponds to maximal 509 

activity) averaging the ratio value over single cells.  510 

 511 

Activity sorting 512 

For TarQEQE receptors in non-adapting strains, we assumed that all the receptors are fully active 513 

in buffer conditions and fully inactive upon stimulation with 100 µM MeAsp. The pathway 514 

activity in each cell was thus evaluated as " =  1 − �R��?���S�4:, ��4 �R�:,  ��
�R ��?���S�4E,,  �� 4�R�E,,  ��. The use of the 515 

two different prestimulus values in buffer enables to minimize the effect of FRET baseline 516 

variation due to bleaching of fluorophores during image acquisition. Cells were then sorted 517 

according to their activity and divided into ¡ equal subpopulations, and for each subpopulation 518 

the average PSD 〈�����〉D at average activity A of the subpopulation was evaluated for the set of 519 

frequencies displayed in Figure 4 – Figure Supplement 1. This procedure was implemented for 520 

several values of n, namely ¡ = 10, 9, 6, 5 and 4, and the whole resulting data was used to plot 521 

〈�����〉D as a function of A. 522 

 523 
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 770 

 771 

Supplementary Figures 772 

 773 

Figure 1 – Figure Supplement 1. Additional typical FRET ratios in adapting strain. 774 

Population averaged ratio (top) and corresponding single cell ratios (bottom), in two typical 775 

experiments, with adaptation proficient strain expressing TarQEQE as the sole receptor. Blue 776 

arrows indicate stimulation with 25 µM MeAsp, and red ones return to buffer condition. Ratios 777 

have been shifted to facilitate visualization. 778 
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 780 

 781 

Figure 1 – Figure Supplement 2. FRET ratios in the receptorless strain. (A) Population 782 

averaged ratio is mostly constant and exhibit no change in kinase activity upon stimulation with 783 

25 µM MeAsp (arrow). (B) The single cell ratios were unresponsive and non-fluctuating. Only 784 

shot noise, in a similar strength to the Tar positive strains, was observed. 785 
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 786 

Figure 3 – Figure Supplement 1. Dose response to MeAsp of strain ΔcheRcheB CheW-X2 787 

expressing TarQEQE. (A) Example of the YFP/CFP ratio (R) decreasing as increasing amounts of 788 

MeAsp were delivered to the cells. (B) The activity averaged over two biological replicates was 789 

estimated as (R(c) – Rmin) / (Rmax – Rmin), plotted as a function of MeAsp concentration c, and 790 

fitted using the Monod-Wyman-Changeux model, assuming a free energy difference in absence 791 

of ligand a�b � 2) = −1, yielding a cooperativity number N =1.73 and an inactive binding 792 

constant KOFF = 3.92 µM. Fitting with a Hill function yields a Hill exponent H=1.4  and a 793 

concentration of half response EC50 = 8.3 µM. Error bars indicate SEM. Measurements were 794 

carried out on confluent populations of cells. 795 
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 797 

Figure 3 – Figure Supplement 2. Response function for the strain ΔcheRcheB CheW-X2 798 

expressing TarQEQE as sole receptor. The strain was subjected to an increase of 10 µM MeAsp 799 

to measure the response. The long term dynamics observed in WT CheW strain is absent, the 800 

response being almost immediate (response time 4.5 ± 0.5 s, similar to the time necessary to 801 

achieve homogeneous concentration in the field of view). Error bars indicate SEM and sample 802 

size is 120 single cells, in 3 biological replicates. 803 
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 805 

 806 

Figure 4 – Figure Supplement 1. Power spectral density computed on subsets of the cell 807 

populations sorted according to their activity, as a function of the average activity of the 808 

subsets, for the indicated frequencies (dots) in the ΔcheRcheB strain expressing TarQEQE. The 809 

lines correspond to best adjustments by 〈�����〉D 	� 	£���"�30�&1 − "�30�) for each 810 

frequency considered. The error bars correspond to SEM, sample sizes are as described in 811 

supplementary methods, varying from 54 to 135 cells depending on the point, taken from at least 812 

5 biological replicates. 813 
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 815 

 816 

Figure 4 – Figure Supplement 2. Effect of the receptor expression level on the noise in non-817 

adaptive strains. The ΔcheR cheB strain expressing TarQEQE as the sole receptor, from a plasmid 818 

under salicylate induction, was exposed to either 0.75 µM or 2 µM (standard experimental 819 

condition in the main text) salicylate, resulting in a factor of two between the protein numbers in 820 

the cell [59]. The power spectral density under 30 µM MeAsp, with average activity A =0.5, was 821 

the same in both conditions. Error bars indicate SEM and sample sizes are 540 (2 µM) or 187 822 

(0.75 µM) cells. 823 
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Supplementary Tables 827 

Table S1. Strain list 828 

Strain Genotype Background Ref. 

VS181 Δ(tar,tsr,trg,tap,aer) Δ(cheY,cheZ) RP437 [75] 

VH1 Δ(tar,tsr,trg,tap,aer) Δ(cheY,cheZ) Δ(cheR,cheB) RP437 [59] 

VF7 Δ(tar,tsr,trg,tap,aer) Δ(cheY,cheZ) Δ(cheR,cheB) 

cheW(R117D,F122S) 

RP437 [61] 

VF8 Δ(tar,tsr,trg,tap,aer) Δ(cheY,cheZ) cheW(R117D,F122S) RP437 [61] 

 829 

Table S2. Plasmid list 830 

Plasmid Genotype Antibiotic Induction Ref. 

pVS88 cheY-YFP/cheZ-CFP, 

pTRC99a derivative 

Ampicillin 

100µg/ml 

IPTG 200 µM, [75] 

pVS1092 TarQEQE,  

pKG110 derivative 

Chloramphenicol  

17 µg/ml 

Salicylate 2 µM, 

If not otherwise stated 

[75] 

pVS1087 TarQEEE,  

pKG110 derivative 

Chloramphenicol 

17 µg/ml 

Salicylate 2 µM, 

If not otherwise stated 

[81] 

pVS1086 TarEEEE,  

pKG110 derivative 

Chloramphenicol 

17 µg/ml 

Salicylate 2 µM, 

If not otherwise stated 

[82] 

831 
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