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Abstract We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis9

system that reveal pervasive signaling variability, both across cells in isogenic populations and10

within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response,11

as well as steady-state output level, and analyze the role of network design in shaping this diversity12

from gene expression noise. In the absence of changes in gene expression, we find that single cells13

demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise14

from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase15

dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can16

generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state17

switching regime. Our findings underscore the importance of molecular noise, arising not only in18

gene expression but also in protein networks.19

20
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Introduction21

Cellular physiology is deeply shaped by molecular fluctuations, resulting in phenotypic variability22

that can be both detrimental and beneficial (Rao et al., 2002). One of the most important and well-23

studied sources of intracellular fluctuations is stochastic gene expression (Elowitz et al., 2002; Eldar24

and Elowitz, 2010; Raj and Van Oudenaarden, 2008), which can generate substantial cell-to-cell25

variability in protein levels within isogenic populations under invariant environmental conditions.26

Such heterogeneity in protein counts are readily measurable by fluorescent-protein reporters27

(Elowitz et al., 2002; Ozbudak et al., 2002) , but mechanistically tracing the consequences of such28

molecular noise to the level of complex cellular phenotypes such as signaling and motility remains29

a significant challenge, in part due to the multitude of interactions between gene products, but30

also because each of those interactions can, in principle, become an additional source of noise.31

In this paper, we study how multiple sources of molecular noise, arising in both gene expression32

and protein-protein interactions, affect performance of the E. coli chemotaxis network, a canonical33

signaling pathway.34

In bacteria, gene-expression noise tends to manifest itself as stable cell-to-cell differences in35

phenotypes that persist over the cell’s generation time, because typical protein lifetimes are longer36

than the cell cycle (Li et al., 2014). The architecture of signaling networks can have a profound37

influence on their sensitivity to such noise-induced differences in protein levels, and it has been38

shown that the design of the E. coli chemotaxis network confers robustness of a number of signaling39

parameters, such as precision of adaptation, against variability in gene expression (Barkai and40

Leibler, 1997; Kollmann et al., 2005). On the other hand, cell-to-cell differences in behavior can also41

be advantageous for isogenic populations under uncertain and/or time-varying environments, and42

it has been argued that the manner in which the chemotaxis network filters gene expression noise43

to shape phenotype distributions could be under selective pressure (Frankel et al., 2014; Waite44

et al., 2016).45

In principle, molecular noise arising in processes other than gene expression, such as protein-46

protein interactions within signaling pathways, can also contribute to cellular variability. How-47

ever, such noise sources tend to be harder to study experimentally because, in contrast to gene-48

expression noise, which can be characterized by measuring fluorescent reporter levels (Elowitz49

et al., 2002; Raser and O’Shea, 2004), requirements for in vivo measurements of protein-protein50

interactions tend to be more demanding and no generically applicable strategies exist. The E. coli51

chemotaxis system provides a compelling experimental paradigm for addressing protein-signaling52

noise, because a powerful technique for in vivo measurements of protein signaling, based on53

Förster resonance energy transfer (FRET), has been successfully developed (Sourjik and Berg,54

2002b; Sourjijk et al., 2007).55

The chemotaxis network controls the motile behavior of E. coli, a run-and-tumble random56
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walk that is biased by the signaling network to achieve net migrations toward favorable directions.57

The molecular mechanisms underlying this pathway have been studied extensively (for recent58

reviews, see refs. Wadhams and Armitage (2004); Tu (2013); Parkinson et al. (2015)). In brief,59

transmembrane chemoreceptors bind to ligand molecules, inhibiting the autophosphorylation of a60

central kinase, CheA. When active, CheA transfers its phosphate to CheY to form CheY-P. Meanwhile,61

the phosphatase CheZ degrades CheY-P to limit the signal lifetime. CheY-P binds to a flagellar62

motor, which in turn increases the chance of the motor to turn clockwise, leading to a tumble.63

An adaptation module consisting of the enzymes CheR and CheB implements negative integral64

feedback by tuning the sensitivity of the chemoreceptors via reversible covalent modifications that65

restore the kinase activity (and CheY-P level).66

Despite its relative simplicity, this pathway exhibits many interesting network-level functionalities,67

such as cooperative signal amplification (Segall et al., 1986; Sourjik and Berg, 2002b; Bray et al.,68

1998), sensory adaptation (Barkai and Leibler, 1997; Alon et al., 1999) and fold-change detection69

(Mesibov et al., 1973; Lazova et al., 2011), and FRET microscopy has proven extremely powerful in70

characterizing such signal processing of the chemotaxis pathway, especially in E. coli (Sourjik and71

Berg, 2002b, 2004; Shimizu et al., 2010; Oleksiuk et al., 2011), but also in Salmonella (Lazova et al.,72

2012) and B. subtilis (Yang et al., 2015). It has been implemented in various ways (Sourjik and Berg,73

2002b,a; Shimizu et al., 2006; Kentner and Sourjik, 2009), but most commonly by using CFP and YFP74

as the FRET donor-acceptor pair, fused to CheY and CheZ, respectively. To date, however, nearly all75

applications of FRET in the bacterial chemotaxis system have been population-level measurements76

in which signals from hundreds to thousands of cells are integrated to achieve a high signal-to-noise77

ratio. A pioneering study applied FRET at the single-cell level to study spatial heterogeneities in78

CheY-CheZ interactions (Vaknin and Berg, 2004), but those measurements were limited to relatively79

short times due to phototoxicity and bleaching.80

By exploring a range of fluorescent proteins as FRET pairs, and improving measurement pro-81

tocols, we have developed a robust method for single-cell FRET measurements of chemotactic82

signaling dynamics in single bacteria over extended times. The data reveal extensive cell-to-cell83

variability, as well as temporal fluctuations that are masked in population-level FRET measure-84

ments. In contrast to previous single-cell experiments that relied on measurements of motor85

output or swimming behavior (Berg and Brown, 1972; Spudich and Koshland, 1976; Segall et al.,86

1986; Korobkova et al., 2004; Park et al., 2010; Masson et al., 2012), FRET alleviates the need to87

make indirect inferences about intracellular molecular interactions through the highly noisy 2-state88

switching of the flagellar motor, whose response function can vary over time due to adaptive89

remodeling (Yuan et al., 2012). In a typical experiment, we are able to obtain dozens of (up to90

∼100) single-cell FRET time series simultaneously, to efficiently collect statistics of phenotypic and91

temporal variability.92
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Results93

Single-cell FRET reveals pervasive cell-to-cell variability in intracellular signaling94

To measure variability in intracellular signaling, we adapted a FRET assay for chemotaxis widely95

used for population-level measurements with fluorescent fusions to CheY and its phosphatase96

CheZ (Sourjik and Berg, 2002b). On timescales longer than the relaxation of CheY’s phosphoryla-97

tion/dephosphorylation cycle, the FRET level reflects the phosphorylation rate of CheY by the CheA98

kinase, thus providing an efficient in vivomeasurement of the network activity (Fig. 1 - Supplement99

1). Instead of the conventional CFP/YFP FRET pair we used the fluorophores YFP and mRFP1 to avoid100

excitation with blue light, which induces considerably stronger photoxicity and also perturbs the101

chemotaxis system as a repellent stimulus (Taylor and Koshland, 1975; Taylor et al., 1979;Wright102

et al., 2006). A field of E. coli cells expressing this FRET pair were immobilized on a glass surface103

imaged in two fluorescence channels, and segmented offline to compute a FRET time series for104

each cell in the field of view (see Materials and Methods).105

For wild-type cells (Fig. 1a) we found that the ensemble mean of single-cell FRET responses,106

⟨FRET⟩(t), agrees well with previous population-level measurements (Sourjik and Berg, 2002b). Upon107

prolonged stimulation with a saturating dose of attractant �-methylaspartate (MeAsp), ⟨FRET⟩(t)108

rapidly fell to zero before gradually returning to the pre-stimulus level due to adaptation. Upon109

removal of attractant, ⟨FRET⟩(t) rapidly increased to amaximum before returning to the pre-stimulus110

baseline. Single-cell FRET time series, FRETi(t), had qualitatively similar profiles, but the kinetics111

of adaptation and response amplitudes demonstrate differences from cell to cell. For each cell,112

FRETi(t) is limited by the slow autophosphorylation of CheA and hence is proportional to a[CheA]T,i113

(provided [CheY] and [CheZ] are sufficiently high, see Materials and Methods), in which a is the114

activity per kinase and [CheA]
T,i the total amount of kinases part of the receptor-kinase complex.115

Hence from the FRETi(t) the activity per kinase a can be readily determined by normalizing each116

FRET timeseries by its maximum response a = FRETi∕FRETi,max (Figure 1b). The steady-state activity117

a0,i is then defined as the activity before the addition of attractant. The baseline activity per cell118

varies from cell-to-cell a0 (quantified by the coefficient of variation, CV = 0.22, Fig. 1c). The network119

activity controls the flagellar motor rotation, and hence this is consistent with the observation that120

cells in isogenic population exhibit a variable steady-state tumble frequency (Spudich and Koshland,121

1976; Dufour et al., 2016).122

The adaptation precision is defined as its post-adaptational activity level (Π = aadapted,i∕a0,i), hence123

a precision of 1 refers to perfect adaptation. The adaptation kinetics are quantified by the recovery124

time �recovery, the time required for each cell to recover to 50% of its post-adaptational activity level125

(aadapted,i). When observing the distributions of these parameters we noted that the cell-to-cell126

variability is high in the precision Π (Fig. 1d, CV =0.40) but the average precision (0.79) agrees well127

with population measurements (Neumann et al., 2014). The variation is also substantial in �recovery128
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(Fig. 1d, CV =0.20). This falls within the range of ∼20-50% from previous reports, in which single-cell129

recovery times were estimated from motor-rotation or swimming-behavior measurements (Berg130

and Tedesco, 1975; Spudich and Koshland, 1976; Min et al., 2012). The time required to recover131

from a saturating amount of attractant is determined not only by the stimulus size, but also the132

methylation rate of receptor modification sites catalyzed by CheR and the number of such sites that133

need to be methylated. Variability in the recovery time is thus likely to reflect cell-to-cell variability in134

the ratio between the expression level of CheR and that of the chemoreceptor species responding135

to ligand (Tar for the experiment in Fig. 1a).136

Thus, single-cell FRET allows efficient measurement of single-cell signaling dynamics that, on137

average, agree well with previous population-level FRET experiments and single-cell flagellar-based138

experiments, thereby revealing variability in a wide variety of signaling parameters.139

Diversity in the ligand response is modulated during population growth140

The chemoreceptor clusters in E. coli are the central processing units and are responsible for signal141

integration and amplification. The sensory output of the cluster, the activity of the kinase CheA,142

is activated by a mixture of chemoreceptors. Cooperative interactions within the kinase-receptor143

complex leads to amplifications of small input stimuli and weighting different input signals. It has144

been shown that the composition of the receptor-kinase complexes can affect both the amplification145

as well as the weighting of different input signals (Ames et al., 2002; Sourjik and Berg, 2004; Kalinin146

et al., 2010), but how the amplification and integration varies across a population has not been147

characterized. To bridge the gap between collective behavior and its underlying single-cell motility148

it is essential to determine the variability of these important signaling parameters, as well as the149

origin of the variability. Also, current estimates of the apparent gain in the response (defined as the150

fractional change in output divided by fractional change in input) are based on population-averaged151

measurements which may may not reflect single-cell cooperativity levels. In population averaged152

measurements, the largest gain is observed in adaptation-deficient (CheRB-) cells (Sourjik and153

Berg, 2004), in which the receptor population is homogeneous with respect to their adaptational154

modification state and hence in these cells variability in ligand sensing can be studied separately155

from variability induced by the adaptation enzymes.156

We probed the ligand sensitivity of CheRB- cells (TSS58) at the single-cell level by FRET dose-157

response measurements in which step stimuli of successively larger amplitudes were applied over158

time (Fig. 2). Considerable variability in the response to the attractant L-serine were observed159

across the population of immobilized cells simultaneously experiencing the same stimulus, with160

response magnitudes often ranging from virtually zero to full response (Fig. 2a). The resulting161

dose-response data were analyzed by fitting each individual cell’s FRET response by a Hill curve of162

the form [1 + ([L]∕K)H ]−1, where the parameters (1∕K) and H are defined as the sensitivity and163

steepness, respectively, of the response. The family of dose response curves constructed from164
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this ensemble of fit parameters reveals considerable variability from cell to cell in the shape of the165

response curve (Fig. 2b).166

What could be the cause of the diversity in ligand response in the absence of adaptation-induced167

heterogeneity? We reasoned that expression-level variability of the five chemoreceptor species of168

E. coli, which are known to form mixed clusters with cooperative interactions (Ames et al., 2002;169

Sourjik and Berg, 2004), could endow isogenic populations with sensory diversity. In line with this170

idea, CheRB- cells expressing only a single chemoreceptor species (Tsr) demonstrated not only171

higher cooperativity, but also attenuated variability in the dose-response profile from cell to cell172

(Figure 2b-c), showing that the composition of the receptor population is important not only to173

tune the average ligand response of a population, but also in generating a wide range of sensory174

phenotypes within an isogenic population.175

It has been shown that expression level of chemoreceptors changes during growth of E. coli176

batch cultures: concomitant with the slowing of growth upon the transition from the exponential177

phase towards early stationary phase, the relative expression level ratio Tar/Tsr, the two most178

abundant chemoreceptors, increases from majority Tsr (Tar/Tsr< 1) to majority Tar (Tar/Tsr> 1)179

(Salman and Libchaber, 2007; Kalinin et al., 2010). To probe the consequence of such changes for180

ligand-sensing diversity, we measured single-cell dose response curves in populations harvested181

at different cell densities during batch growth (Figure 2d). The resulting population-averaged182

responses show a dependence of dose-response parameters on the optical density (O.D.) of the183

culture, shifting from highly sensitive (low K) and highly cooperative (highH ) at low cell densities184

(OD≈ 0.3) to less sensitive (high K) and less cooperative (lowH ) at increased cell densities (OD≈ 0.45,185

and OD ≈ 0.6) (Fig. 2d, open triangles, and Fig. 2 - Supplement 1). This trend is also visible at the186

level of single cells, but we found the responses to be highly variable under each condition (Fig. 2d,187

filled points). Remarkably, both K andH varied by over an order of magnitude, far exceeding the188

uncertainty in parameter estimates due to experimental noise (Fig. 2 - Supplement 2).189

To further test the idea that ligand-response diversity is governed by differences in receptor190

expression levels, we considered the pattern of covariation between the fitted sensitivity K and191

cooperativity H in single cells (Figure 2b, blue). In contrast to cells expressing Tsr as the only192

chemoreceptor, in which the variability in K is only 20 % (Figure 2b, orange), single cells expressing193

a wildtype complement of chemoreceptors demonstrated strong variation in K . This variation was194

negatively correlated with the cooperativityH (Figure 2d). Noting that this overall pattern of covari-195

ation agrees well with dose response parameters obtained from population-level FRET experiments196

in which the Tar/Tsr ratio was experimentally manipulated via plasmid-based expression control197

(Figure 2d, open triangles; data from Sourjik and Berg (2004)), we proceeded to quantitatively198

estimate the diversity in the Tar/Tsr ratio via fits of a multi-species MWC model (Mello and Tu, 2005;199

Keymer et al., 2006) to single-cell FRET data (see Materials and Methods). The resulting distribution200

of single-cell Tar/Tsr estimates (Figure 2e) was dominated by Tsr in cells harvested early (OD≈ 0.3)201
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but the relative contribution of Tar increased in cells harvested at later stages of growth (OD≈ 0.45202

and OD≈ 0.6). Interestingly, in addition to this increase in the mean of the Tar/Tsr distribution203

during batch growth, which confirms previous reports that found increased Tar/Tsr ratios at the204

population level (Salman and Libchaber, 2007; Kalinin et al., 2010), we find that the breadth of205

the distribution also increases at later stages of growth. Thus, modulation of receptor expression206

during growth provides a means of tuning not only response sensitivity and cooperativity, but207

also single-cell diversity in the response of cell populations experiencing identical changes in their208

common environment.209

The large variability in the Tar/Tsr ratio (CV ≈ 0.5 at O.D.=0.45) is somewhat surprising given that210

the mean expression level of both receptors are known to be high and of order 103-104 copies per211

cell (Li and Hazelbauer, 2004). At such high expression, intrinsic noise in expression levels (i.e. due212

to the production and degradation process of proteins, expected to scale as the square root of the213

mean) could be as low as a few percent of the mean, and gene-expression fluctuations are expected214

to be dominated by extrinsic noise components (i.e. those affecting regulation of gene expression,215

which do not scale with the mean). In E. coli, a global survey of gene expression noise established216

an empirical lower bound to extrinsic noise at CV ≈ 0.3 (Taniguchi et al., 2010), and measurements217

within the chemotaxis system also indicate that between a subset of chemotaxis genes, the extrinsic218

component of covariation does approach this limit (Kollmann et al., 2005). Interestingly, however,219

a recent study (Yoney and Salman, 2015) found using single-cell flow-cytometry a high degree of220

variability in the ratio of Tar/Tsr promotor activities (CV ≈ 0.45 at O.D.=0.51) comparable to the221

range of ratios extracted from our analysis of dose response data. Given that cell-to-cell variability222

in the Tar/Tsr ratio is much greater than achievable lower bounds of gene-expression noise in223

bacteria, it would be interesting to investigate the mechanistic sources of this variability, such as224

operon organization, RBS strength, and promotor stochasticity (Frankel et al., 2014).225

Variability in receptor expression could also explain the distribution of adaptation precision226

we observed in wildtype cells (Figure 1d). In a previous population-level study, it has been shown227

that adaptation precision depends strongly on the expression-level ratio between the multiple228

chemoreceptor species, with the highest adaptation precision being achieved when the ligand-229

binding receptor is a minority within the total receptor population (Neumann et al., 2014). Thus,230

the substantial heterogeneity in adaptation precision we observed (CV = 0.40) upon a saturating231

MeAsp stimulus is consistent with strong variability in the Tar/Tsr ratio.232

CheB phosphorylation feedback attenuates cell-to-cell variability233

While bacteria can exploit molecular noise for beneficial diversification, variability can also limit234

reliable information transfer and degrade sensory performance. In the framework of E. coli’s run-235

and-tumble navigation strategy, chemotactic response to gradients requires that cells maintain a236

finite tumble bias, the fraction of time a bacterium spends tumbling, and avoids extreme values237
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zero and one. The latter cases would correspond to unresponsive phenotypes that fail to switch238

between run and tumble states in response to the environmental inputs. One important mechanism239

that ensures responsiveness to stimuli over a broad range of input levels is sensory adaptation240

mediated by the methyltransferase/methylesterase pair CheR/CheB. These receptor-modifying241

enzymes provide negative feedback through the dependence of their catalytic activity on the242

receptor’s signaling state: the rate of methylation (demethylation) by CheR (CheB) is a decreasing243

(increasing) function of receptor-kinase activity (Borczuk et al., 1986; Amin and Hazelbauer, 2010).244

This dependence of enzyme activity on the substrate conformation provides negative integral245

feedback that ensures precise adaptation (Barkai and Leibler, 1997) toward the pre-stimulus steady-246

state activity a0.247

Interestingly, one of the two adaptation enzymes, CheB, can be phosphorylated by CheA, the248

kinase whose activity CheB controls through its catalytic (demethylation) activity on receptors.249

Effectively, this adds an additional negative feedback loop to the network, but the role of this250

phosphorylation-dependent feedback has remained elusive since it has been shown to be dispens-251

able for precise adaptation (Alon et al., 1999). Through theoretical analysis, it has been conjectured252

that this secondary feedback loop might play a role in attenuating effects of gene-expression noise253

(Kollmann et al., 2005), but experimental verification has been lacking. We therefore sought to254

investigate the influence of perturbations to this network topology on the variability of chemotactic255

signaling activity.256

CheB consists of two domains connected by a flexible linker (Figure 3a). A regulatory domain,257

with structural similarity to CheY, can be phosphorylated at residue Asp56 (Djordevic et al., 1998;258

Stewart et al., 1990). A catalytic domain mediates binding to specific residues on chemoreceptor259

cytoplasmic domains and removes a methyl group added by the counterbalancing activity of260

CheR. Phosphorylation induces a conformational change and activates CheB (CheB*) (Djordevic261

et al., 1998; Lupas and Stock, 1989). Several mutants of CheB lack phosphorylation feedback while262

retaining catalytic activity. Here, we focus on two specific mutants: CheBD56E, which bears a point263

mutation at the phosphorylation site, and CheB
c
, which expresses only the catalytic domain of CheB264

(Stewart et al., 1990; Alon et al., 1999). Cells expressing these mutants have an altered network265

topology (Figure 3b) which lacks CheB phosphorylation feedback.266

To study the influence of network topology on cell-to-cell variability, we expressed different forms267

of CheB (CheBWT, CheBD56E, CheB
c
) from an inducible promoter in a ΔcheB strain and measured268

the response to a saturating amount of attractant (500 µMMeAsp). The expression levels of each269

mutant are tuned such that they approximate the wild-type steady state activity level. The response270

variability of CheBWT was, as expected, very similar to cells in which CheB is expressed from its271

native chromosomal position (compare Fig. 3 - Supplement 1a and Fig. 1a). By contrast, cells272

expressing either of the two CheB mutants defective in phosphorylation demonstrated increased273

cell-to-cell variability in the steady-state activity compared to cells expressing CheBWT. The increased274
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variability of the CheB phosphorylation-deficient mutants (CheBD56E and CheB
c
) was manifested275

not only in a higher coefficient of variation in a0 (1.07 and 1.10, respectively, and WT 0.7), but also a276

qualitatively different shape of the distribution of a0 across the population (Figure 3c). Whereas277

the distribution demonstrated a single peak in CheBWT cells with phosphorylation feedback, the278

distribution for the phosphorylation-feedback mutants demonstrated a bimodal shape with peaks279

close to the extreme values a0 = {0, 1}.280

We tested whether these strong differences in cell-to-cell variability might be the result of gene281

expression noise, by comparing expression-level distributions of the CheB mutants. We constructed282

fluorescent fusions of each cheB allele to the yellow fluorescent protein mVenus and quantified283

the distribution of single-cell fluorescence levels under the same induction conditions as in the284

FRET experiments (figure 3 - Supplement 1). The ratio between the measured expression-levels285

(CheBc:WT:D56E≈0.7:1:2.5) was compatible with expectations from the hierarchy of reported in286

vitro catalytic rates of CheB (kD56Eb < kW T
b < kcb) (Anand and Stock, 2002; Simms et al., 1985; Stewart,287

1993), and expression-level variability was very similar between the three strains (CV ’s of 0.87,0.90288

and 0.82). These findings suggest that the differences in cell-to-cell variability observed in FRET289

are not due to differences between the expression-level distributions of the three cheB alleles, but290

rather to the differences they impose on the signaling network topology.291

What feature of the signaling network could generate such broad (and even bimodal) distri-292

butions of a0? It has been conjectured (Barkai and Leibler, 1997; Emonet and Cluzel, 2008) and293

demonstrated (Shimizu et al., 2010) that in vivo the enzymes CheR and CheB operate at or near294

saturation. An important consequence of enzyme saturation in such reversible modification cycles295

is that the steady-state activity of the substrate becomes highly sensitive to the expression level296

ratio of the two enzymes, a phenomenon known as zero-order ultrasensitivity (Goldbeter and297

Koshland (1981); see Materials and Methods). Within the chemotaxis system, saturation of both298

CheR and CheB can thus render the receptor modification level, and in turn, the CheA activity a0,299

ultrasensitive to the [CheR]/[CheB] concentration ratio. If we view this ultrasensitive mapping as a300

transfer function f between the ratio [CheR]/[CheB] and the steady-state activity a0,301

a0 = f ([CheR]∕[CheB])

then its characteristic steep sigmoidal profile can impose bimodality in the methylation level, and

hence also in the activity of steady-state CheA activity, a0, even at quite modest input variances

for distributions of the ratio PRB([CheR]∕[CheB]). This is because the manner in which the transfer

function f filters the [CheR]/[CheB] distribution,

P (a0) =
PRB(f−1(a0))
|

|

f ′(f−1(a0))||
.

spreads the narrow range in the [CheR]/[CheB] distribution PRB([CheR]∕[CheB]) over which f ([CheR]∕[CheB])302
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is steep across a broad range in a0. Thus, even if expression-level noise for both CheR and CheB are303

modest, an ultrasensitive transfer function f can effectively amplify the variation in [CheR]/[CheB],304

and if the distribution of the latter ratio, PRB([CheR]∕[CheB]) extends below and above the narrow305

region over which f is steep, the decreased slope of f (i.e. lower f ′([CheR]∕[CheB])) in those flank-306

ing regions will tend to increase the weight on both sides of the broad P (a0) distribution to produce307

a bimodal profile. On the other hand, if the network topology effectively reduces the steepness of f ,308

the resulting P (a0) will have a reduced variance for the same input PRB([CheR]∕[CheB]) (Figure 3d).309

Could the known biochemical differences between the three forms of CheB (CheBWT, CheBD56E,310

CheB
c
) explain the contrasting patterns of a0 variability observed in our single-cell FRET experiments?311

In the absence of any feedback, the steepness of f (CℎeR∕CℎeB) is solely determined by the low312

Michaelis-Menten constants KB,R, which corresponds to saturated kinetics of the enzymatic activity313

of CheRB and hence ultransensitivity of the steady-state substrate activity. The expression ratio314

of CheR/CheB which determines the crossover point (a0=0.5) is set by the ratio of catalytic rates315

of CheR and CheB (kr,b). Hence the phosphorylation deficient mutants CheBD56E and CheBc both316

have steep curves but are shifted along the R/B axis due to very different catalytic rates. However,in317

the case of phosphorylation feedback, CheBWT, the same enzyme can be in two states, each318

with equal Kr,b but one low and one high kr. Whether CheB is in the one state or the other is319

determined by the activity-dependent phosphorylation feedback. As a result, the curve of CheBWT320

is activity dependent (f (a, CℎeR∕CℎeB)) and changes with activity by shifting between the two321

curves corresponding to the extremes of all phosphorylated or all unphosphorylated. Effectively,322

this makes the resulting curve f less steep. The mean of the distributions PRB are tuned such323

to get the same mean activity level (⟨a0⟩), but the same variance in PRB leads to very wide P (a0)324

distributions in absence of phosphorylation, while phosphorylation feedback ensures a much325

smaller, single-peaked distrubtion.326

It has also been conjectured that the CheB phosphorylation feedback is responsible for the327

highly nonlinear kinetics of recovery from repellent (or attractant removal) responses Shimizu et al.328

(2010). Indeed, in cells expressing CheBc , the kinetics of recovery from the response to removal329

of 500 µM MeAsp after adaptation appeared qualitatively different from that in cells expressing330

wildtype CheB, lacking the characteristic rapid recovery and instead appearing more symmetric with331

the CheR-mediated recovery upon addition of a saturating dose of attractant (Fig. 3 - Supplement332

3). By contrast, CheBD56E was found to still possesses a fast component, despite being defective333

in phosphorylation, albeit also with somewhat slower kinetics than wt. In summary, the clearest334

difference between wildtype and phosphorylation-defective CheB mutants is found in the variability335

of the steady-state signal output (i.e. kinase activity).336

The bimodal distribution in kinase activity we observed in the phosphorylation-deficient CheB337

mutants implies that a large fraction of cells have a CheY-P concentration far below or far above the338

motor’s response threhold and hence will impair chemotactic responses to environmental gradients.339
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Consistent with this idea, in motility-plate experiments (Supplementary Figure 3 - Supplement 4) we340

found that chemotactic migration on soft-agar plates was severely compromised for both CheBD56E341

and CheB
c
compared to CheB

WT
, indicating that the phosphorylation feedback is important for342

efficient collective motility.343

Protein-signaling noise generates large temporal fluctuations in network output344

The slow kinetics of the adaptation enzymes CheR and CheB have been hypothesized to play a345

role not only in determining the steady-state kinase activity a0, but also in generating temporal346

fluctuations of the intracellular signal (Korobkova et al., 2004; Emonet and Cluzel, 2008; Park et al.,347

2010; Celani and Vergassola, 2012). We found substantial differences between wildtype (CheRB+)348

and adaptation-deficient (CheRB-) cells in the variability of their FRET signals across time (Fig. 4).349

The effect is clearly visible upon comparing long (∼1h) FRET time series obtained from cells of these350

two genotypes (Figure 4a). The FRET signal in wildtype cells demonstrated transient excursions351

from the mean level that were far greater in amplitude than those in CheRB- cells. This amplitude352

� ≡ �a∕⟨a⟩ was quantified by computing the variance of each single-cell time series, low-pass filtered353

with a moving average filter of 10s, and shows that the fluctuation amplitudes are much larger354

in wildtype cells compared to adaptation-deficient cells (⟨�⟩ =0.09 and 0.44, Fig. 4b). Importantly,355

these experiments were carried out under conditions in which no protein synthesis can occur due356

to auxotrophic limiation (see Materials and Methods), thus ruling out gene-expression processes as357

the source of these fluctuations.358

Power spectral density (PSD) estimates computed from such time series confirm a nearly359

flat noise spectrum for CheRB- cells, whereas CheRB+ cells demonstrated elevated noise at low360

frequencies (Fig. 4c). The amplitude of these low-frequency noise components do clearly vary from361

cell to cell, as can be gleaned in the diversity of single-cell power spectra. To quantify this protein-362

level noise due to CheR/CheB activity, we describe the fluctuating signal as an Ornstein-Uhlenbeck363

(O-U) process, with relaxation timescale � and diffusion constant c, which can be interpreted as364

a linear-noise approximation (Van Kampen, 1981) to the full stochastic chemical kinetics of the365

network controlling the mean kinase activity a (Emonet and Cluzel, 2008):366

da
dt

= − 1
�m
a(t) +

√

cΓ(t) (1)

where Γ(t) is a Gaussian white noise process. The parameters �m and c for each cell are readily367

extracted via the power-spectrum solution of the O-U process:368

Sa(!) =
2c�2

1 + (2�!�m)2
+ E (2)

where we have added to the standard Lorentzian solution (Gillespie, 1996) a white-noise term E369

that may vary from cell to cell to account for experimental shot noise in the photon-limited FRET370
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signal. Single-cell PSD data were well fit by Eq. 2 (Figure 4d), and the average of extracted single-cell371

fluctuation timescales (⟨�m⟩ = 12.6s) (Figure 4e) are in good agreement with previously reported372

correlation times of flagellar motor switching (Park et al., 2010; Korobkova et al., 2004), as well373

as the kinetics of CheRB-mediated changes in receptor modification from in vivomeasurements374

using radioactively labeled methyl groups (Lupas and Stock, 1989; Terwilliger et al., 1986). The375

variance of the fluctuations obtained from the fits of the PSD, �a =
√

c�m∕2 yielded very similar noise376

amplitudes �OU ≡ �a,OU∕⟨a⟩ as calculated from the time series (⟨�OU ⟩ = 0.42, Fig. 4 - Supplement377

3). We note that these noise levels are larger than expected - in a considerable fraction of cells,378

the standard deviation of fluctuations is comparable to the mean level of activity, and the steady-379

state fluctuations span the full range of kinase activity (see e.g. that represented by the red curve380

in Fig. reffig:results4a). Previous studies had predicted a value of ∼ 10 − 20%, based either on381

reported fluctuation amplitudes of motor switching (Korobkova et al., 2004; Tu and Grinstein, 2005)382

or biochemical parameters of the intracellular signaling network (Emonet and Cluzel, 2008; Shimizu383

et al., 2010) and is also highly variable (�� = 0.24) from cell to cell.384

In summary, we confirmed the presence of strong temporal fluctuations in single-cell chemo-385

taxis signaling attributable to the stochastic kinetics of the adaptation enzymes CheR/CheB, and386

further found that the amplitude of these fluctuations vary considerably across cells in an isogenic387

population.388

Receptor-kinase fluctuations in the absence of adaptation reveal two-level switch-389

ing390

The fluctuation amplitude � in CheRB+ cells (Fig. 4b) is much greater than previous estimates from391

pathway-based models that considered zero-order ultrasensitivity in the enzymatic activities of392

CheR and CheB (Emonet and Cluzel, 2008) and receptor cooperativity (Shimizu et al., 2010) as393

possible mechanisms that amplify noise originating in the stochastic kinetics of receptor methyla-394

tion/demethylation. A plausible explanation for the latter discrepancy is that receptor cooperativity,395

which can amplify not only ligand signals but also fluctuations in receptor methylation levels (Duke396

and Bray, 1999; Shimizu et al., 2003;Mello et al., 2004), is actually much stronger at the single-cell397

level than was previously estimated from population-level FRET measurements. The dose-response398

data for CheRB- cells presented in this study (Fig. 2) clearly demonstrate that single-cell dose-399

response curves tend to be steeper than those obtained from fits to the population average. Yet400

another (though not exclusive) possibility is that there exist significant sources of signaling noise401

that are independent of enzymatic receptor modification. Although we found that the noise am-402

plitude � was much lower than wildtype in unstimulated CheRB- cells (Fig. 4), if the cooperative403

switch-like signaling response of these cells to chemoattractant stimulation (Fig. 2) apply also to404

other perturbations, it is possible that the strong activity bias in the absence of chemoeffectors405

(a0 ≈ 1) masks noise contributions that would be observable if receptors were tuned to the more406
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responsive regime of intermediate activity. In wildtype cells, such a tuning is achieved by the407

balance between CheR and CheB activities, which sets the steady-state receptor-kinase activity to408

an intermediate value (a0 ≈ 0.2-0.5; see Fig. 1).409

We reasoned that in CheRB- cells, tuning the activity to an intermediate level by adding and410

sustaining a sub-saturating dose of attractant could reveal additional noise sources, if present and411

of significant strength. To maximize detection sensitivity, we focused on cells expressing Tsr as the412

sole chemoreceptor in a CheRB- background, which demonstrate the highest cooperativity in ligand413

responses and hence could be expected to strongly amplify also noise sources relevant to signaling414

(Fig. 2b). To test the effect of bringing the system to the responsive regime, we applied first a large415

saturating dose of Tsr’s cognate ligand L-serine, followed by a prolonged stimulus of a magnitude416

close to the dose-response parameter K , eliciting a half-maximal population-level response (Fig. 5a).417

During the second stimulus, which was sustained for several minutes, the population-level response418

remained approximately constant. Strikingly, however, the time series of single-cell responses419

demonstrated strong deviations from the population average (Fig. 5b). Whereas all cells responded420

identically to the saturating dose of attractant, the behavior during the sub-saturating step was421

highly diverse. Some cells (11/141) showed no apparent response in kinase activity, whereas in422

others (32/141) complete inhibition was observed (Fig. 5b, yellow curves). The majority cells (98/141),423

however, had an intermediate level of activity when averaged over time, but demonstrated strong424

temporal fluctuations, often with magnitudes exceeding those observed in wildtype cells.425

We further noted that within this subset of cells with large temporal fluctuations, a large fraction426

(54/98) demonstrated fluctuations that resemble rapid step-like transitions between discrete levels427

of relatively stable activity that could be identified as peaks in the distribution of activity values428

across time (Fig. 5b, marginal histograms). Among these "stepper" cells, the majority (37/54)429

appeared to transition between 3 or more discrete activity levels (Fig. 5b, brown curve), whereas the430

remaining sizable minority of steppers (17/54) demonstrated binary switching between two discrete431

levels corresponding to to the maximum (a ≈ 1) and minimum (a ≈ 0) receptor-kinase activity states432

(Fig. 5b, red curve). The remaining fraction of cells (44/98) demonstrated fluctuations that were also433

often large but in which discrete levels could not be unambiguously assigned (Fig. 5b, black curve).434

The numbers of cells corresponding to each of the categories described above are summarized in435

Fig. 5c.436

The observation of cells that demonstrate spontaneous two-level switching is particularly surpris-437

ing, given the large number of molecules involved in receptor-kinase signaling. The expression level438

of each protein component of the chemoreceptor-CheW-CheA signaling complex in our background439

strain (RP437) and growth medium (TB) has been estimated (by quantitative Western Blots) to be440

of order 104 copies/cell (Li and Hazelbauer, 2004). Considering that the core unit of signaling has441

a stoichiometric composition of receptor:W:A = 12:2:2 (monomers) (Li and Hazelbauer, 2011), the442

number of core units is likely limited by the number of receptors, leading to an estimate 104∕12 ∼ 103443
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core units for a typical wildtype cell. This estimate does not apply directly to the experiments of444

Fig. 5 because receptors are expressed from a plasmid in a strain deleted for all receptors. But the445

FRET response amplitudes of these cells were similar to those of cells with a wildtype complement446

of receptors, and we thus expect the number of active core units per cell in the experiments of447

Fig. 5 to be similar to or greater than that in wildtype cells.448

We analyzed further the temporal statistics of the discrete transitions in the subset of cells449

exhibiting two-level switching (Fig. 5d-f). We first quantified the duration of time over which such450

transitions in activity occur by fitting segments of the activity time series over which these switches451

occured (Fig. 5d) with a symmetrized exponential decay function (see Materials and Methods)452

to obtain switch durations �+ and �− for upward and downward transitions, respectively. The453

fitted values for �+ and �− correspond to the duration over which the activity trajectory traverses a454

fraction 1 − e−1 of the transition’s full extent, and were found to be similar between switches in both455

directions: ⟨�+⟩ ± ��+ = 4.2 ± 2.2 s and ⟨�−⟩ ± ��− = 3.5 ± 3.2 s (Fig. 5e).456

We then considered the duration of time between switching events. We defined Δtup,k and457

Δtdown,k as the duration of the k-th time interval between transitions with high- and low-activities,458

respectively (Fig. 5d), and computed the average over all k of Δtup∕down,k for each individual cell to459

estimate its residence timescales �up∕down for states of high/low activity, respectively. From each460

cell’s set of intervals {Δtup∕down,k} we also computed a parameter a1∕2, defined as the fraction of461

time the cell spent in the high activity level, as a measure of its time-averaged activity during the462

sub-saturating (20µM) L-serine stimulus that yielded a population-averaged response ⟨a⟩ ≈ 1∕2463

(see Materials and Methods).464

We found that the logarithms of the residence times scale approximately linearly with ln[a1∕2∕(1−465

a1∕2)] (Fig. 5f). The latter can be considered a free-energy difference (−ΔG) = Gdown−Gup between the466

inactive and active states of an equilibrium two-state switching process in which the time-averaged467

activity a1∕2 is given by the probability of being in the active state, a1∕2 = p(active) = [1 + eΔG]−1. The468

residence time in each state can then be described by an Arrhenius-type relation with attempt rate469

for barrier crossing �r and the height of the energy barrier,470

�down = �r exp [−
downΔG∕kBT ]

�up = �r exp [−
upΔG∕kBT ]
(3)

in which the constants 
down and 
up describe how the barrier heights of the down and up states471

depend on the free-energy difference ΔG = ln[(1−a1∕2)∕a1∕2]. We find 
down = −0.4±0.1, 
up = 0.6±0.1,472

and the attempt timescale �r, defined here as equivalent to �up = �down when a1∕2 = 1∕2, was found473

to be 110 ± 10 s.474

In summary, these data demonstrate the existence of a signaling noise source that is indepen-475

dent of the adaptation enzymes CheR/CheB. The fluctuations they generate can be very strong in476
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cells expressing Tsr as the sole chemoreceptor, leading to two-level switching in a subset of cells.477

The latter observation suggests that cooperativity among signaling units in chemoreceptor arrays478

can reach extremely high values, with up to ∼ 103 units switching in a cooperative fashion. The479

temporal statistics of these two-level switches are consistent with a barrier-crossing model in which480

the residence time of both states depend on the activity bias a1∕2.481

Discussion482

The single-cell FRET measurements described here allowed us to quantify variability in a variety483

of signaling parameters of the bacterial chemotaxis system, both across cells in a population484

and within individual cells over time. By imaging many (up to ∼ 100) cells simultaneously, we are485

able to collect single-cell statistics at high throughput to build up single-cell statistics. Although486

single-cell experiments have a long history in studies of bacterial chemotaxis (Berg and Brown,487

1972; Spudich and Koshland, 1976; Block et al., 1982; Korobkova et al., 2004; Dufour et al., 2016),488

nearly all examples to date have relied on measurements of flagellar motor output (in either489

tethered or swimming cells). A major advantage of the FRET approach is that it provides a direct490

measurement of intracelluar signaling that bypasses the noisy behavior of the flagellar motor (a491

stochastic two-state switch), thereby enabling accurate and efficient determination of signaling492

parameters.493

From gene-expression noise to network-level diversity494

A key feature of bacterial chemotaxis as an experimental system is that one can study in vivo495

signaling and behavior in a manner that is decoupled from gene expression and growth. Being an496

entirely protein-based signaling network, chemotaxis signaling responses do not require changes in497

gene expression, and the relatively short timescales of signaling reactions (subsecond to minutes)498

are well separated from those of changes in protein counts due to gene expression noise (minutes499

to hours). The ensemble of single-cell FRET time series measured in each of our experiments500

thus provide a snapshot of cell-to-cell variability due to stochastic gene expression in a variety of501

signaling parameters.502

Our data revealed high variability in important signaling parameters connected to the adaptation503

system (Fig. 1). In the case of the variability in recovery times (CV =0.20), this is likely due to variability504

in the CheR/receptor ratio from cell to cell. What consequences might such variability have on505

chemotactic behavior? A recent theoretical study has established that long (short) adaptation times506

are better suited for maximizing chemotactic migration rates in shallow (steep) gradients (Frankel507

et al., 2014). Thus, variability in adaptation times could partition the population into cells that will be508

more efficient in running up steep gradients, while others are specialists in climbing shallow ones.509

Interestingly, it was also found that optimal performance at each gradient involves tuning not only510

the adaptation time, but also other parameters such as swimming speed or tumble bias, leading511
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to a selective pressure not only for the distribution of individual parameters, but also correlations512

among them (Frankel et al., 2014; Waite et al., 2016). Whether such correlated variation exists513

among signaling parameters would be a fruitful avenue for future single-cell FRET studies.514

In the ligand response of the network, we observed large cell-to-cell variability in the sensitivity515

(1∕K) and steepness (H) of dose-response relations, for cells with a wildtype receptor population516

(Fig. 2). Using amixed-species MWCmodel (Mello and Tu, 2005), we were able to estimate the Tar/Tsr517

ratio in single cells, which spans a broad range from nearly zero to more than two. This strong518

variability in the receptor-cluster composition has the potential to dramatically impact behavior.519

In their natural habitats, cells likely experience a variety chemoeffector gradients simultaneously,520

each associated with an unknown fitness payoff for chemotactic pursuit. Generating diversity in the521

chemoreceptor ratio, which has been shown to determine which gradient to climb when challenged522

with such conflicting possibilities (Kalinin et al., 2010), could allow the isogenic population to hedge523

its bets to maximize net fitness gains. The Tar/Tsr ratio has also been shown to play an important524

role in setting the preferred temperature for thermotaxis (Salman and Libchaber, 2007; Yoney and525

Salman, 2015). Variability in Tar/Tsr would allow diversification of the preferred temperature across526

cells in the population, which will promote spreading of bacteria in environments with temperature527

gradients. Finally, when chemotactic bacteria colonize an initially nutrient-rich environment, they528

are known to successively exploit resources by emitting multiple traveling waves of chemotactic529

bacteria, each of which consumes and chases by chemotaxis a different nutrient component530

outward from the colony origin (Adler, 1966). Our observation that the population diversity in531

receptor ratios, and hence chemotactic preference, varies concomitantly with population growth532

could provide a means to tune the population fractions that engage in such excursions into virgin533

territory, and those that remain for subsequent exploitation of remaining resources. Thus, the534

diversity in ligand response and preference generated by variability in the Tar/Tsr ratio could have535

nontrivial consequences in a variety of behavioral contexts encountered by isogenic chemotactic536

(and thermotactic) populations.537

Suppression of gene expression noise by CheB phosphorylation feedback538

The role of phosphorylation feedback has been a long standing open question in the field of539

bacterial chemotaxis signaling, ever since its presumed role in providing precise adaptation was540

decisively ruled out by Alon et al. (1999). In the ensuing years, a diverse set of hypotheses have541

been proposed to explain its purpose. Apart from precise adaptation, CheB phosphorylation has542

been suggested as possibly responsible for the non-linear response of CheB activity to changes543

in CheA kinase activity (Shimizu et al., 2010; Clausznitzer et al., 2010), ligand sensitivity of wild-544

type cells (Barkai et al., 2001), and has been implicated theoretically as a possible mechanism to545

buffer gene-expression noise to suppress detrimental variability in the steady-state kinase activity546

(Kollmann et al., 2005). Here, we tested the latter hypothesis, by severing the phosphorylation547
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feedback loop as a possible noise-reduction mechanism. Our single-cell FRET data revealed that,548

not only does CheB phosphorylation feedback strongly attenuate the magnitude of variability in549

the steady-state kinase activity a0, it also qualitatively changes the shape of the distribution P (a0)550

across cells to convert an otherwise bimodal distribution into a unimodal one (Fig 3d). The highly551

polarized bimodal distribution of steady-state activities in CheB phosphorylation mutants are likely552

detrimental, as they could drive a0 of a large fraction of the population too far from the flagellar553

motor’s steep response threshold (Cluzel et al., 2000; Yuan and Berg, 2013) to effectively control554

swimming. The observation of a bimodal P (a0) in the absence of phosphorylation feedback is555

consistent with a previous modeling study by Emonet and Cluzel (2008) in that the parameters of556

the CheR- and CheB-catalyzed covalent modification cycle appear to satisfy conditions for zero-order557

ultrasensitivity (Goldbeter and Koshland, 1981), which has been hypothesized to provide a source558

of slow and large amplitude temporal fluctuations with possible benefits for chemotaxis in certain559

environments (see below). The fact that CheB phosphorylation seems to strongly attenuate the560

steepness of the ultrasensitive relationship a0 = f ([R]∕[B]) between kinase activity and the [R]/[B]561

ratio suggests that zero-order might not suffice to explain the large amplitude temporal fluctuations562

we observed in wildtype cells (see below).563

Diversity in temporal noise: bet-hedging across exploration and exploitation strate-564

gies565

In addition to cell-to-cell variability in signaling parameters, single-cell FRET allowed us to resolve566

temporal fluctuations in signaling about the steady-state output within individual cells. In wild-type567

cells, we found that the steady-state activity fluctuates slowly (Fig. 4,correlation time � ≈ 10s) with568

a large amplitude (� = �a∕⟨a⟩ ≈ 40%), but this amplitude also varies significantly from cell to cell569

(CV ≈ 0.6). Fluctuations on this timescale were absent in CheRB- cells defective in receptor methy-570

lation/demethylation, indicating that these fluctuations are generated by stochastic processes in571

the activity of the adaptation enzymes CheR and CheB. Whereas the fluctuation correlation time572

� in our FRET experiments was in close agreement with those from previously reported flagellar573

motor switching experiments (Korobkova et al., 2004; Park et al., 2010), the fluctuation amplitude574

⟨�⟩ ≈ 40% was surprisingly large. Theoretical analysis of the motor-based noise measurements (Tu575

and Grinstein, 2005) had predicted a more modest noise level of intracellular noise, at 10-20% of576

the mean. The discrepancy is likely due, at least in part, to the recently discovered adaptation at577

the level of the flagellar motor (Yuan et al., 2012), which must effectively act as a highpass filter578

that attenuates frequencies near or below a cutoff frequency determined by its own characteristic579

timescale for adaptation. The fluctuation amplitude � was also much greater than previous esti-580

mates from pathway-based models. A possible explanation is the amplification of noise by receptor581

cluster cooperativiy, which our results show to be much higher compared to previous estimates582

based on population-averaged measurements. Another possibility is an additional source of noise.583
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In cells with a pure cluster composition we clearly demonstrate this possibility. Investigating how584

both noise sources contribute in the case of mixed receptor clusters (e.g. CheRB- cells) and the585

amplification magnitude (dose response curves in CheRB+ cells) should be an interesting direction586

for future study.587

The temporal noise we observed could have profound implications for E. coli’s random-walk588

motility strategy, because slow fluctuations in the intracellular signal can enhance the likelihood of589

long run events and stretch the tail of the run-length distribution to yield power-law-like switching-590

time distributions over a range of time scales (Korobkova et al., 2004; Tu and Grinstein, 2005).591

Such non-exponential statistics are known to yield superior foraging performance in environments592

where resource distribution is sparse (Viswanathan et al., 1999), and temporal fluctuations in593

run-tumble behavior has also been shown theoretically to enhance climbing of shallow gradients594

by generating runs that are long enough to integrate over the faint gradient a detectable difference595

in ligand input (Flores et al., 2012; Sneddon and Emonet, 2012). Hence, the noise generated by the596

adaptation system can be advantageous in resource-poor environments (deserts) in which efficient597

exploration of space for sparsely distributed sources (oases) is of utmost importance. By contrast,598

strong temporal noise clearly degrades response fidelity in rich environments where the gradient599

signal is strong enough for detection with short runs, and might also complicate coordination of600

cells in collective behaviors such as the aforementioned traveling-wave exploitation of nutrients.601

Our finding that the noise amplitude varies strongly from cell to cell thus suggests that isogenic602

populations might be hedging their bets by partitioning themselves between specialists for local603

exploitation of identified resource patches and those for long-range exploration in search for new604

ones.605

Giant fluctuations and digital switching in adaptation deficient cells606

We found the most dramatic temporal fluctuations in adaptation-deficient (CheRB-) cells expressing607

Tsr as the sole chemoreceptor species (Fig. 5). When brought close to their dose-response transition608

point (K) by attractant stimulation, these cells demonstrated strong temporal fluctuations, revealing609

that there exist sources of signal fluctuations that are independent of CheR and CheB activity.610

The origin of these adaptation-independent fluctuations remain unknown, but in broad terms,611

one can envisage that they are due to either intrinsic sources (i.e. fluctuations arising within612

the components of the receptor-kinase complex), extrinsic sources (i.e. fluctuations in other613

cellular processes / environmental variables), or both. Possible to intrinsic sources include coupled614

fluctuations in protein conformations (Duke and Bray, 1999; Shimizu et al., 2003;Mello et al., 2004;615

Skoge et al., 2011), the slow-timescale changes in receptor "packing" that have been observed by616

fluorescence anisotropy measurements(Frank and Vaknin, 2013; Vaknin, 2014), and the stochastic617

assembly dynamics of receptor clusters (Greenfield et al., 2009). Possible extrinsic sources include618

fluctuations in metabolism, membrane potential, or active transport/consumption of ligand. Many619
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of these possibilities could be tested by experiments of the type presented here with appropriate620

mutant strains and environmental controls, and present promising directions for future research.621

The adaptation-independent fluctuations we observed were not only large in amplitude but622

often (though not always) took the form of discrete steps in activity, in some cases between623

only two levels. Two-state descriptions of receptor signaling are a common feature of nearly all624

mechanistic models of bacterial chemotaxis signaling addressing both cooperativity (Duke and625

Bray, 1999; Shimizu et al., 2003; Mello et al., 2004; Mello and Tu, 2005; Keymer et al., 2006) and626

adaptation (Asakura and Honda, 1984; Barkai and Leibler, 1997;Morton Firth et al., 1999; Endres627

and Wingreen, 2006; Tu et al., 2008), yet direct evidence for two-state switching by receptor-kinase628

complexes has been lacking. Although as noted above, it is yet possible that the two-level switching629

we observed (Fig. 5a,b) is due to extrinsic noise sources (e.g. metabolism or transport), the temporal630

statistics we observed (Fig. 5d-f) are compatible with a simple model in which two stable signaling631

states are separated by an energy barrier sensitive to both environmental stimuli and internal cell632

variables.633

Regarding cells that exhibited step-like transitions among more than two stable states, a plausi-634

ble interpretation is that the underlying transitions are actually two-level, but the receptor-kinase635

population is partitioned into two or more disjoint signaling arrays, and that the observed FRET636

signals represent the sum of the stochastic two-level activities of these independently switching637

arrays. For cells in which there is sufficient spatial separation between chemoreceptor clusters, it638

could be possible to test this hypothesis by conducting on the same set of cells both FRET measure-639

ments and receptor-cluster imaging to relate the number of distinct step sizes to the number of640

observed clusters.641

If the stochastic two-level switching we observed is indeed due to intrinsic sources of noise, it642

would strongly suggest (as discussed in Results) that at least many hundreds, if not thousands of643

receptor-kinase units are switching in a cooperative fashion. The rather long timescale associated644

with intervals between switches (≈ 102 s) is indicative of their large size, and is also clearly distinct645

from the methylation-dependent fluctuation timescale (≈ 10 s) observed in CheRB+ cells. The646

switching duration (≈ 4 s) , is also much slower than the sub-second response to attractant stimuli647

(Segall et al., 1982; Sourjik and Berg, 2002a). Interestingly, these timescales (∼ 102 s and ∼ 100 s for648

inter-switch intervals and switch durations, respectively) are approximately 102-fold longer than649

those measured by Bai et al. (2010) for the two-state switching of the flagellar motor (∼ 100 s and650

∼ 10−2 s for inter-switch intervals and switch durations, respectively), whose C-ring is composed of651

∼ 101 allosteric units, approximately 102-fold less than the ∼ 103 units we estimate for the number652

of receptor-kinase units per cell in our experiments. The study of Bai et al. (2010) demonstrated653

impressive agreement between those temporal statistics and predictions of a "conformational654

spread" model (Duke et al., 2001; Bray and Duke, 2004), an adaptation of the equilibrium Ising655

model for ferromagnetism (Ising, 1925). It would be interesting to investigate whether similar656
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Ising-type models for the receptor lattice (Duke and Bray, 1999; Shimizu et al., 2003; Mello et al.,657

2004; Skoge et al., 2006) can explain the timescales observed in our receptor-kinase switching data.658

Although our results indicate that, at least to a first approximation, receptor-kinase switching659

can be treated as a thermally driven barrier-crossing process, we note that our data do not rule out660

the possibility of non-equilibrium switching mechanisms (Tu, 2008). Indeed, despite the success of661

equilibrium models in closely matching a wealth of data on the flagellar motor switch (Bai et al.,662

2010), recent experiments have revealed new evidence that switching of the motor C-ring likely663

includes also an active component, effectively utilizing part of the energy dissipated in motor torque664

generation to enhance sensitivity (Wang et al., 2017). Like the motor C-ring switch, whose state is665

only observable when coupled to rotation driven by dissipative proton conduction, essentially all666

experimental methods available to study receptor-kinase signaling involve coupling to a dissipative667

process (ATP hydrolysis by CheA) for readout. The experimental access to receptor-kinase temporal668

statistics afforded by single-cell FRET holds promise to help discriminate possible equilibrium and669

non-equilibrium mechanisms for signal processing within this remarkable protein circuit.670

Concluding remarks671

We described a new single-cell FRET technique capable of resolving intracellular signaling dynamics672

in live bacteria over extended times. Our results highlight how a protein-based signaling network673

can either generate or attenuate variability, by amplifying or filtering molecular noise of different674

molecular origins. Gene expression noise is harnessed, on the one hand, to generate diversity in675

the ligand response of isogenic populations, or attenuated, on the other the hand, in the control676

of steady-state signal output. In addition, we showed that signaling noise generated at the level677

of interacting gene products can have a profound impact. Stochastic protein-protein interactions678

within the signaling network, as well as other "extrinsic" fluctuations, can be amplified by the679

signaling network to generate strong temporal temporal fluctuations in the network activity.680
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Materials and Methods681

Strains and Plasmids682

All strains used are descendants of E. coli K-12 HCB33 (RP437). Growth conditions were kept uniform683

by transforming all strains with two plasmids. All strains and plasmids are shown in Tables 1 and 2.684

The FRET acceptor-donor pair (CheY-mRFP and CheZ-YFP) is expressed in tandem from a IPTG685

inducible pTrc99A plasmid, pSJAB12 or pSJAB106, with respective induction levels of 100 and 50686

µM IPTG. The differences between pSJAB12 and pSJAB106 are i) the presence of a noncoding687

spacer in pSJAB106 to modify the ribosome binding site of CheZ Salis et al. (2009), such that CheZ688

is expressed approximately 3 fold less, and ii) a A206K mutation in YFP to enforce monomerity.689

We also used pVS52 (CheZ-YFP) and pVS149 (CheY-mRFP1) to express the fusions from separate690

plasmids with induction levels of 50 uM IPTG and 0.01 % arabinose, respectively. We transformed691

the FRET plasmids in adaptation-proficient strain (VS104) to yield CheRB+ and adaptation- (VS149)692

to get CheRB-. For attachment with sticky flagella from pZR1 we used the equivalent strains in fliC693

background (VS115 and TSS58).694

Experiments with Tsr as the sole chemoreceptor were performed in UU2567 or TSS1964, in695

which the native FliC gene is changed to sticky FliC (FliC*). Tsr is expressed from pPA114 Tsr, a696

pKG116 derivative, at with an induction of 0.6 µM NaSal.697

For the experiments with the CheB mutants, pSJAB12 was transformed into VS124 together with698

plasmids expressing CheBW T , CheBD56E and truncated mutant CheBc (plasmids pVS91, pVS97 and699

pVS112, respectively, with induction levels of 1.5E-4, 6E-4 and 3E-4 % arabinose.700

Abbreviation Strain Source Relevant Genotype plasmid 1 plasmid 2

WT / CheRB+ VS115 V. Sourjik ΔYZ ΔFliC pSJAB106 pZR1

WT / CheRB+ VS104 Sourjik and Berg (2002b) ΔCheYZ pVS52 pVS149

WT / CheRB+ VS104 ΔCheYZ pSJAB12 pBAD33

WT / CheRB+ VS104 ΔCheYZ pSJAB106 pBAD33

CheRB- TSS58 this work ΔRBYZ ΔFliC pSJAB106 pZR1

CheRB- VS149 Sourjik and Berg (2004) ΔRBYZ pVS52 pVS149

CheRB- VS149 ΔCheRBYZ pSJAB12 pBAD33

CheRB- VS149 ΔCheRBYZ pSJAB106 pBAD33

CheBc VS124 Clausznitzer et al. (2010) ΔCheBYZ pSJAB12 pVS112

D56E VS124 ΔCheBYZ pSJAB12 pVS97

WT CheB VS124 ΔCheBYZ pSJAB12 pVS91

Tsr only UU2567 Kitanovic et al. (2015) ΔCheRBYZ,ΔMCPa pSJAB106 pPA114 Tsr

Tsr only TSS1964 this work ΔCheRBYZ,ΔMCP FliC* pSJAB106 pPA114 Tsr

ΔCheB UU2614 J.S. Parkinson CheB Δ(4-345) pTrc99a pVS91,97,112

All strains are descendants of E. coli K-12 HCB33 (RP437). In all FRET experiments, strains carry two

plasmids and have resistance for chloramphenicol and ampicillin.

Table 1. Strains used in this study.
aall five chemoreceptor genes tar tsr tap trg aer deleted
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Name Product System Ind Res Source

pVS52 CheZ-5G-YFP pBAD33 ara cam Sourjik and Berg (2002b)
pVS149 CheY-5G-mRFP1 pTrc99a IPTG amp Sourjik and Berg (2002b)
pSJAB12 CheZ-5G-YFP / CheY-5G-mRFP1 PTrc99a IPTG amp This work

pSJAB106 CheZ-5G-YFP a/ CheY-5G-mRFP1 PTrc99a IPTG amp This work

pVS91 CheB b pTrc99a ara cam Liberman et al. (2004)
pVS97 CheB-D56E c pBAD33 ara cam Clausznitzer et al. (2010)
pVS112 CheBc d pBAD33 ara cam V. Sourjik

pSJAB 122 CheBc-GS4G-mVenus pBAD33 ara cam This work

pSJAB 123 CheB(D56E)-GS4G-mVenus pBAD33 ara cam This work

pSJAB 124 CheB-GS4G-mVenus pBAD33 ara cam This work

pZR 1 FliC* e pKG116 NaSal cam This work

pPA114 Tsr Tsr pPA114 NaSal cam Ames et al. (2002)
Table 2. Plasmids used in this study.

aContains a A206K mutation to enforce monomerity.bexpresses WT CheBccarries a point mutation D56E in CheBdexpresses only residues 147-349 of CheB, preceded by a start codon (Met)eexpresses sticky FliC element Scharf et al. (1998)

FRET Microscopy701

Föster Resonance Energy Transfer [FRET] microscopy was performed as previously reported (Sour-702

jijk et al., 2007; Vaknin and Berg, 2004). Cells were grown to OD=0.45-0.5 in Tryptone Broth (TB)703

medium from a saturated overnight culture in TB, both with 100 µg/mL ampicillin and 34 µg/mL704

chloramphenicol and appropriate inducers in the day culture. For the FRET experiments we used705

Motility Media (MotM) (Shimizu et al., 2006), in which cells do not grow and protein expression is706

absent. Cells were washed in 50 mL MotM, and then stored 0.5-6 h before experiment. In the707

dose-response curve experiments and the temporal fluctuation measurements, cells were stored up708

to three hours at room temperature to allow for further red fluorescence maturation. A biological709

replicate or independent FRET experiment was defined as a measurement from separately grown710

cultures, each grown on a separate day.711

Cells were attached by expressing sticky FliC elements from a pKG116 plasmid, induced with712

2µM Sodium Salicylate (NaSal), or with Poly-L-Lysine (Sigma), or with anti-FliC antibodies column713

purified (Using Protein A sepharose beads, Amersham Biosciences) from rabbit blood serum and714

pre-absorbed to FliC- cells (HCB137, gifts from Howard Berg). We found FRET experiments with715

sticky FliC to have the highest signal-to-noise ratio.716

Fluorescent images of the cells were obtained with a magnification of 40-100x (Nikon instru-717

ments). For excitation of YFP, we either used 514 nm laser excitation set to 30 mW for 2 ms or an718

LED system (CoolLED, UK) with an approximate exposure time of 40 ms to approximate the same719

illumination intensity per frame. The sample was illuminated stroboscopically with a frequency720
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between 1 and 0.2 Hz. RPF excitation was performed by 2ms exposure of 60 mW 568 nm laser or721

equivalent with LED to measure acceptor levels independently from FRET.722

Excitation light was sent through a 519 nm dichroic mirror (Semrock, USA). Epifluorescent723

emission was led into an Optosplit (Cairn Research, UK) with a second dichroic mirror 580 nm and724

two emission filters (527/42 nm and 641/75 nm, Semrock, USA) to project the RFP and YFP emission725

side by side on an EM-CCD (Princeton Instruments, USA) with multiplication gain 100. All devices726

were controlled through custom-written software.727

Image processing728

Images were loaded and analyzed by means of in-house written scripts in MATLAB and Python.729

Images were corrected for inhomogeneous illumination. Single cells were selected by image730

segmentation on the donor emission with appropriate filter steps to remove clusters of cells or731

cells improperly attached to the coverslip. At the position of each cell a rectangular ROI is defined in732

which all fluorescence intensity is integrated. For experiments in which the concentration of donor733

molecules may influence the FRET signal, the experiments on the CheB mutants, segmentation734

was done separately for each frame to determine the cell shape and then linking these segmented735

images with a tracking algorithm (Crocker and Grien, 1996), afterwards, fluorescence intensities736

are normalized for the cell size (mask surface area) in segmentation and cells with low acceptor737

intensities were excluded from the analysis. The ROI for the donor intensity were subsequently used738

to obtain the acceptor intensity per cell, both in photon-count per pixel. Fluorescence intensities739

were corrected for bleaching by fitting a linear, single exponential or double exponential function to740

the fluorescence decay, separately for both donor and acceptor. Cells in which the intensity decay741

cannot accurately be corrected were excluded from the analysis.742

FRET analysis743

The FRET signal is calculated from fluorescent time series. We observe changes in the ratio R = A∕D,744

in which A and D are the fluorescence intensities of the acceptor and donor. In previous population-745

averaged FRET experiments the FRET per donor molecule (ΔD∕D0) is calculated as (Sourjik and746

Berg, 2002b; Sourjijk et al., 2007):747

ΔD
D0

= ΔR
� + R0 + ΔR

(4)

in which R0 is the ratio in absence of FRET, � = |ΔA∕ΔD| is a constant that depends on the748

experimental system (in our case � = 0.30) and the change in ratio as a result of energy transfer749

ΔR. ΔR and R0 are obtained through observing the ratio just after adding and removing saturated750

attractant stimuli. This expression is convenient for population FRET since is invariant to attachment751

densities of a population. However, in single-cell FRET this expression may generate additional752

variability in FRET due to variable donor levels from cell to cell. Hence it is more convenient to753

define the FRET levels in terms of the absolute change in donor level ΔD, since this reflects the754
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number of resonance energy transfer pairs755

FRET(t) = ΔD = D0
ΔR

� + R0 + ΔR
(5)

Since FRET occurs only when CheY-P and CheZ interact, the FRET level is proportional to the756

concentration of complex [Yp-Z]. If we assume the CheY-P dephosphorylation by CheZ follows757

Michaelis-Menten kinetics we can describe the [Yp-Z] concentration in terms of the activity of the758

kinase CheA. For this, we assume the system is in steady-state for timescales much larger than759

CheY phosphorylation-dephosphorylation cycle (≈ 100 ms). In that case, the destruction rate should760

equal the rate of CheA phosphorylation and hence the FRET signal is proportional to the activity761

per kinase a and the amount of CheA in the kinase-receptor complex (Sourjik and Berg, 2002b;762

Oleksiuk et al., 2011):763

FRET ∝ [Yp-Z] = a
kA
kZ
[CheA] ≈ a

kA
kZ
[CheA]

T
(6)

This last step is only valid if we further assume CheA autophosphorylation being the rate-limiting764

step. This is the case only if sufficient amounts of CheZ and CheY present in the cell. We have765

found that the FRET level initially increases with donor (CheZ) levels, but then saturates and remains766

constant for CheY and CheZ (see Fig. 3 - Supplement 2).767

In many cases the most relevant parameter is the normalized FRET response. The FRET level768

reaches maximum if all kinases are active (a ≈ 1). In case of CheRB+ cells, this is the case when769

removing a saturating amount of attractant after adaptation (Sourjik and Berg, 2002b). For CheRB-770

cells the baseline activity is (Sourjik and Berg, 2002b; Shimizu et al., 2010) close to 1. Hence771

the normalized FRET FRET(t)∕FRET
max
represents the activity per kinase a(t) and is the relevant772

parameter for many quantitative models for chemoreceptor activity (Tu, 2013).773

a(t) = FRET(t)
FRETmax

(7)

and from a(t) the steady-state activity a0 can be determined by averaging a(t) over baseline values774

before adding attractant stimuli.775

Power Spectral Density Estimates776

From FRET time series of length T and acquisition frequency f we calculated Power Spectral Density777

[PSD] estimates as778

S
FRET

(!) = 1
T
|F (!)|2 (8)

in whichF (!) is the discrete-time Fourier transform. We only consider positive frequencies and779

multiply by two to conserve power.780

To study the influence of experimental noise and the effect of estimating � and c from a finite781
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time window, we generated O-U time series using the update formula (Gillespie, 1996)782

X(t + Δt) = X(t) − �−1Δt + c1∕2n(Δ(t))1∕2 (9)

in which n denotes a sample value from a normal variable. To the generated time series Gaussian783

white noise was added to simulate experimental noise. The experimental noise amplitude was784

obtained from the average power at high frequencies.785

Two-state switching analysis786

We obtained switching durations by fitting the function787

a(t) = 1
2
± 1
2
t − t0
|t − t0|

(1 − e−2|t−t0|∕�± ) (10)

to the normalized FRET time series in a 30-second time window, approximately ±15 s from t0. The788

residence times Δtup,i,k and Δtdown,i,k of event k in cell i were defined by the time between transitions789

or the beginning/end of the 20 µM stimulus time window. The steady-state activity during activity790

was then calculated as791

a1∕2,i =
∑

k Δtup,i,k
∑

k Δtup,k +
∑

k Δtup,i,k
(11)

and for the residence times we take the mean over k to get �down and �up. If we treat the system as792

an equilibrium process we can use the Arrhenius equations that describe the residence times as a793

function of the distance to the energy barrier794

�down = �r exp
[


down ln [a1∕2∕(1 − a1∕2)]∕kBT
]

�up = �r exp
[


up ln [a1∕2∕(1 − a1∕2)]∕kBT
]

(12)

in which 
down and 
up are constants corresponding to the slopes of ln �down and ln �up against795

ln [a1∕2∕(1 − a1∕2)], respectively. The fit parameters and standard error are obtained with the robustfit796

function in Matlab (statistics toolbox).797

Dose Response Curve Analysis798

Normalized FRET responses to different levels of ligand are fit to a hill curve of the form799

a = [L]H

[L]H + [K]H
(13)

This can be connected to an MWC-type model (Monod et al., 1965) of receptor cluster activity
(Shimizu et al., 2010) in the regime KI << [L] << KA, resulting in the correspondence key

H = N

K = KIe
fm(m)
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which relates the Hill slope directly to the cluster sizeN , and sensitivity K to the methylation energy800

of the receptor. We plot K on a logarithmic scale to scale linearly with energy.801

To obtain expression level estimates of different receptor species we use a different MWCmodel.802

Following Mello and Tu (2005), we use as an expression for the normalized response of cells to803

ligand [L] serine804

a =
�0�

NS
S �NAA (1 + C[L]∕K̃)Ns

(1 + [L]∕K̃)Ns + �0�
NS
S �NAA (1 + C[L]∕K̃)Ns

(14)

in which NA is the number of Tar receptors in the cluster and NS is the number of Tsr receptors.805

Parameters �A, �S , �0 are the energies corresponding to binding of ligand to Tar, Tsr and the other806

three receptors and are the same for each cell, like C and K̃ which describe the disassociation807

constant for the active state as KA = K̃∕C , while NA and NT may vary from cell to cell. This yields808

the minimization problem for all 128 cells809

min

Ncells
∑

i

Nstim
∑

j
(mi,j − ai,j)2 (15)

in which mi,j the measured FRET response normalized to the response amplitude of cell i to stimulus810

Lj . This function was minimized using the matlab function fmincon (optimization toolbox). The811

total number NT = NA +NS is limited to 32. When fitting the model used the energy parameters �812

from referenceMello and Tu (2005) where used as initial guess with a maximum of ±5% deviation.813

This yielded an estimate of NA and NS for each cell. Under the assumption that receptor clusters814

are well-mixed, this yields a Tar/Tsr ratio of NA∕NS .815

Parameter Start ValueMello and Tu (2007) Final Value

C 0.314 0.29

�0 0.80 0.84

�A 1.23 1.29

�S 1.54 1.61

K̃ – 21.2 µM

Table 3. List of global parameters used for model of Mello and Tu. In these fits, K̃ is a free
parameter while others are constrained ±5% by published values.

Ultrasensitive adaptation model of phoshorylation feedback816

We model the methylation-demethylation cycle of the receptors as a Goldbeter-Koshland cycle

(Goldbeter and Koshland, 1981; Emonet and Cluzel, 2008). For simplicity, we do not explicitly
describe the methylation and demethylation of the receptors explicitly but instead assume that

CheR (R) activates the receptor-kinase complex directly (A∗), and that CheB (B) deactivates it (A).

A + R → A∗ + R

A∗ + B → A + B
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We now assume that these reactions follow Michaelis-Menten kinetics and the total amount of817

kinase complexes is constant (AT = A∗ + A). Hence the change in A = A∗∕A
T
can be described as818

dA
dt

= vr
1 −A

Kr + 1 −A
− vb

A
A +Kb

(16)

in which vr and vb are the rates for the reactions mediated by R and B, respectively. The Michaelis-819

Menten constants Kb and Kr are in units of AT and are therefore dimensionless numbers. We are820

interested in the steady-state level A0 and its dependence on the kinetic parameters in equation 16.821

This is described by the Goldbeter-Koshland function Tyson et al. (2003), an exact solution to the822

system in case [R] and [B] are much smaller than [A]
T
.823

A0[vr, vb, Kr, Kb] =
2vrKr

(vb − vr + vbKb + vrKr +
√

(vb − vr + vbKb + vrKr)2 − 4(vb − vr)vrKr

(17)

The shape of this curve is sigmodal if the Michaelis-Menten constants Kr and Kb are much smaller824

than one. For CheB phosphorylation, we assume the phosphorylation rate depends linearly on825

active CheA and write826

d[Bp]
dt

= kp[B]A (vr, vb, Kb, Kr) − kdp[Bp] (18)

with the corresponding conservation law BT=BP+B. For the case for wild-type CheB, with phosphory-827

lation feedback, the rates can be described in terms of catalytic rate times the enzyme (subspecies)828

concentration829

vb = kb([BT ] − [Bp]) +Mkb[Bp]

vr = kr[R]
(19)

in whichM stands for the ratio of demethylation rates of unphosphorylated and phosphorylated

CheB. The fraction of the phosphorylated CheB, [Bp]/[B]
T
, which is given by kdp∕(kp + kdp) then

determines the effective activity of CheB. Equation 18 is solved numerically using Mathematica for

[Bp] and the result is substituted in equation 17. In the absence of feedback, the activity can be

directly calculated from equation 17 with the rates being simply

vb = kb[B]

vr = kr[R]

We only need to consider the ratio of rate constants kr and kb which determines at which expression830

ratio [CheR]/[CheB] the activity equals 1/2. We assume kr = kb for simplicity, since the shape of the831

curve from Eq. 17 is not affected, it only shifts the the curve along the horizontal axis. Similarly, we832

only consider the ratio of phosphorylation and dephosphorylation rates. This leaves the system of833

equations above only has a few parameters: Kb,r; M; and the ratios kr∕bb and kp∕kdp,M . In table 4,834

the parameters used for the calculations are listed.835

We first fixed the phosphorylation rates kp>2kdp. This means that the steady-state phospho-836
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rylated level of CheB [Bp]/[BT ] at activity ≈ 1∕3 is around 15 %. This parameter is not constrained837

by any direct observation, but it is clear the system benefits from a relatively low fraction of838

phosphorylation, to be able to up and down regulate the levels effectively upon changes in activity.839

Generally, we assume D56E to behave like unphosphorylated CheB. The gain in catalytic rate of840

activated CheB is estimated to be nearly a 100 fold, but this does not agree with the expression841

level differences between the different CheB mutants so we made a conservative estimate of 15842

(the attenuating effect increases with the gain). CheBc behaves approximately like phosphorylated843

CheB (albeit with increase of only 7 compared to D56E), qualitatively consistent with measured844

in vitro rates for CheBc and phosphorylated intact CheB Anand and Stock (2002). The difference845

between predicted rates and might be due to the fact that the rate experiments were performed846

in vitro. Michaelis Menten constants used in the model are lower than 1, but how low is not well847

constrained by data, and estimations do not take into account the possible attenuating effect of848

phosphorylation. Our experimental data on the distribution of a0 implies the sigmodial curve is849

steep in the absence of phosphorylation and hence that Kb and Kr are quite small. The variability in850

a0 for CheBc is lower than D56E, implying that the curve is less steep and hence we have chosen851

are Kr which is not quite as low as D56E.852

To simulate gene expression noise, we simulated [CheR]/[CheB] log-normal distributions with � =853

0.18 for all three strains. The mean of the distribution was chosen to yield an average steady-state854

network activity (a0) of 0.4. The resulting distribution of a0 was calculated using the corresponding855

Goldbeter-Koshland function for each genotype.

Parameter Value Literature Source

kr∕kp 1 0.75 Shimizu et al. (2010)
kdp∕kp 2 kp = 0.37 −1 Kentner and Sourjik (2009)
Kr 0.03 «1 Emonet and Cluzel (2008)
Kb 0.03 «1 Emonet and Cluzel (2008)

Kb(CℎeBc) 0.2 «1

M (WT) 15 100 Anand and Stock (2002)
M (CheBc) 7 15 Simms et al. (1985)

Table 4. List of parameters used for Goldbeter-Koshland description of CheB phosphorylation
feedback.

856
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Figure 1. Single-cell FRET over extended times reveals cell-to-cell variability in signaling
response. (a) Step-response experiment on wildtype cells (CheRB+; VS115). (Top) The ligand
time series [L](t) indicates the applied temporal protocol for addition and removal of 500 µM
MeAsp. (Bottom) FRET response of 54 cells (grey) with the ensemble-averaged time series (dark

red) overlaid from a representative single experiment. Single-cell time series were lowpass

filtered with a 14s moving-average filter. (b) Heatmap representation of the normalized FRET
response time series, with each row representing a single cell, and successive columns

representing the 10s time bins in which the color-indicated activity was computed from the FRET

time series. Activity was computed by normalizing FRET to the total response amplitude

(Max-Min for each time series). Rows are sorted by the corresponding cell’s recovery time (grey

curve), defined as the time at which the activity recovered to 50 % of the activity level after
adaptation (see panel e). Single-cell FRET assay schematic and image processing pipeline are

shown in Figure 1 - Supplement 1. (c) Steady-state activity a0 of the cells shown in panels (a-b).
Also shown are the mean steady-state activity (red vertical line) and the steady-state activity of

the population averaged time series (blue vertical line). (d) Adaptation precision Π obtained
from the FRET data. An adaptation precision of 1 denotes perfect adaptation. Also shown are

the mean precision (red vertical line) and the precision of the population averaged time series

(blue vertical line). The mean and std of the distribution is 0.79 ± 0.32. All colored shaded areas
refer to 95 % confidence intervals obtained through bootstrapping. (e) Recovery time of cells
defined as recovery to 50% of the post-adaptational activity level (red, 54 cells) or 50% of
pre-stimulus activity (black dashed, 44 cells with precision >0.5) and simulated effect of

experimental noise for a population with identical recovery times (grey). The latter was obtained

from a simulated data set in which 55 time series were generated as described in Figure 1 -

Supplement 2. The width of the bar is defined by the mean plus (minus) the std of the simulated

distribution. The mean and std of the distributions for the experimental and simulated data

sets are respectively 416 ± 83 and 420 ± 35.Figure 1 - Supplement 1 Single-cell FRET assay schematic and workflow.Figure 1 - Supplement 2 Influence of experimental noise on estimating recovery times.
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Figure 2. Ligand dose-response parameters vary strongly across cells in an isogenic population,
even in the absence of adaptation, and depend on receptor-complex composition. (a)
Single-cell dose-response experiment on adaptation deficient (CheRB-; TSS58) cells with a

wildtype complement of receptors. (Top) Temporal protocol of stimulation [L](t) by the
attractant L-serine. (Middle) The ensemble-averaged FRET response of the population (blue) and

single cells (gray) in signaling activity of 59 cells from a single experiment, normalized to the

full-scale FRET response amplitude. (Bottom) Heatmap representation of the single-cell FRET

timeseries, with the rows sorted by the sensitivity K of the corresponding cell obtained from
Hill-curve fits. (b) Family of dose response curves (gray) obtained from the Hill-curve fits to
single-cell dose-response data. CheRB- cells with a wildtype complement of receptors (TSS58).

The blue curve was obtained from fitting a hill function to the population-averaged time series

shown in panel (a), yielding fit values K=50 µM andH=2.7. The fitted single-cell K values are
shown in the histogram on top (blue). (c) CheRB- cells expressing only the serine receptor Tsr
(UU2567). The orange curve was obtained from fits to the population average, yielding K=20 µM
andH=22. The fitted single-cell K values are shown in the histogram in panel (b) (orange). (d)
Cells from a single overnight culture were innoculated into three flasks harvested at different

times during batch-culture growth growth to sample the state of the population at three points

along the growth curve: at OD600=0.31 (green), 0.45 (blue) and 0.59 (purple). The fits to the
population-averaged time series are shown in Figure 2 - Supplement 1. Shown are Hill-curve

sensitivity (1∕K) and cooperativityH obtained from fits to the single-cell time series, at different
OD’s (filled dots) together with the fit values from the population-average (triangles). Also shown

are population-FRET results in which Tar and Tsr levels were controlled artificially (red

circles,(Sourjik and Berg, 2004)). Shown are 25 out of 28 cells harvested at OD=0.31, 59 out of
64 cells at OD=0.45, 34 out of 40 cells at OD=0.59. The excluded cells had fits with a mean

squared error higher then 0.05. The influence of experimental noise on the fit parameters is

shown in Figure 2 - Supplement 2. e) Histograms of Tar/Tsr ratio obtained from fit of
multi-species MWC model from referenceMello and Tu (2005) to single-cell FRET time series.
The mean Tar/Tsr ratios (low to high OD) are 0.4, 0.9, and 1.2 with coefficients of variance of

respectively 1.1, 0.5, and 0.4. Inset: average cluster size of Tar (grey) and Tsr (black) at different

harvesting OD’s obtained from the fit results in panel d.Figure 2 - Supplement 1 Dose response curves from population averaged time series at
different harvesting OD’s.Figure 2 - Supplement 2 Influence of experimental noise on fit parameters K andH .
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Figure 3. CheB phosphorylation feedback attenuates
variability in steady-state kinase activity. (a) Schematic
depiction of CheB activation by phosphorylation. (Top)

CheB consists of two domains connected by a flexible

linker. The aspartate at residue 56 can be phosphorylated.

(Middle) CheBc lacks the receiver domain with the

phosphorylation site. (Bottom) CheB-D56E carries a point

mutation at the phosphorylation site. (b) Effective network
topology of cells expressing WT CheB (top), CheBc (middle)

and CheB-D56E (bottom). All network topologies can have

perfect adaptation. Using population FRET, we found that

phosphorylation feedback is not required for fast removal

adaptation kinetics (Figure 3 - Supplement 3). (c) Heatmap
representation of histograms of activity a(t) around
steady-state of single-cells, from experiments as shown in

Figure 3 - Supplement 1. Each colum represents a single

cell, for each CheB mutant in a cheB background (VS124,
colors as in panel (a)). The single cells are ordered by the

steady-state activity a0, which is superimposed. (right)
Histograms with a0 for each CheB mutant. All histograms
contain the results for cells with a signal-to-noise ratio

higher than 1 from at least 3 independent FRET

experiments, which corresponds to 322 out of 373 cells

(WT), 225 out of 279 cells (CheBc) and 226 out of 359 cells

(D56E). Shaded regions represent bootstrapped 95%
confidence intervals. We verified that the bistability was

caused by clipping of extreme values due to potential FRET

pair saturation, by working in a regime where the

response amplitude cannot be saturated by the FRET pair

(Figure 3 - Supplement 2). Furthermore, we established

that the defect in phosphorylation leads to impared

chemotaxis in soft agar plates (Figure 3 - Supplement 4).(d) A simple kinetic model of the chemotaxis network
illustrates the crucial role of CheB phosphorylation

feedback in circumventing detrimental bimodality in a0.
Due to saturated enzyme kinetics in the adaptation

system, the transfer function between [CheR]/[CheB]

expression ratio and steady-state network output a0 can
be highly nonlinear (main panel). The shape of this

transfer function determines the distribution of a0 (right
panel) by transforming the distribution of [CheR]/[CheB]

expression ratios (bottom panel). Shown are a CheB

version with lower activity as WT (purple) and higher than

WT (green), both without feedback, and one CheB species

with phosphorylation feedback (orange).

Figure 3 - Supplement 3 Phosphorylation feedback is not
a necessary condition for fast removal adaptation

dynamics.Figure 3 - Supplement 1 Example FRET time series and
CheB localization.Figure 3 - Supplement 2 Relation between maximum
FRET response and FRET fluorophore expression levels.Figure 3 - Supplement 4 Phosphorylation defective
mutants show impaired chemotaxis on soft agar.
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Figure 4. Temporal signal fluctuations in the absence of ligand stimulation are generated by
stochastic activity of the adaptation enzymes CheR/CheB. (a) Representative single-cell FRET
time series of steady-state fluctuations in the presence (CheRB+, VS115, red) and absence

(RB-,TSS58,blue) of adaptation kinetics in normalized activity units. (b) Histogram of fluctuation
amplitude � for both CheRB+ (89 cells, red, from 3 independent experiments) and CheRB- (33
cells, blue, from two independent experiments), extracted from calculating the standard

deviation of a low-pass filtered FRET time series over a 10s window divided by the mean FRET

level of a single cell. The shaded areas represents the 95% confidence interval obtained from
bootstrapping. (c) Power spectral density (PSD) computed from single-cell FRET time series of 31
CheRB+ cells (red, from single experiment) and 17 CheRB- cells (blue, from single experiment),

each from a single experiment. Thin curves in the lighter shade of each color represent

Single-cell spectra, and the thick curves in the darker shade are the average of all single-cell

spectra for each genotype. Note that if the PSD is calculated from the population average the

effect of fluctuations are lost Figure 4 - Supplement 1. (d) Representative single-cell PSDs and
fits by an Ornstein-Uhlenbeck (O-U) process. Shown are O-U fits (Lorentzian with constant noise

floor; dashed curves) to three single-cell PSDs (solid curves). The shaded area represents the

standard error of the mean for PSDs computed from nine non-overlapping segments of each

single-cell time series. Fits to all cells from the same experiment are shown in (Figure 4 -

Supplement 2). From the OU fit parameters the noise amplitude can be calculated (Figure 4 -

Supplement 3). (e) Histogram of fluctuation timescales � extracted from single-cell PSD fits (red,
75 out of 89 cells). Cells without a clear noise plateau were excluded from the analysis (Figure 4 -

Supplement 3). The shaded areas represents the 95% confidence interval obtained from
bootstrapping. The grey shaded area refers to the variability (mean±std) that can be explained
by experimental noise and a finite time window, obtained through simulated O-U time series

(see Materials and Methods).

Figure 4 - Supplement 1 PSD estimates from population-averaged time series.Figure 4 - Supplement 2 Fits of OU process to PSD estimates from single-cell FRET time series
from a representative single experiment.Figure 4 - Supplement 3 Comparison between noise amplitudes obtained from time series and
power spectra.
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Figure 5. Temporal fluctuations in adaptation-deficient cells expressing Tsr as the sole
chemoreceptor (TSS1964). (a) (Top) Step response protocol with L-serine. At the start of the
experiment, a high (1mM) step response is applied for a rshort time (black). After flushing buffer

for several minutes (white) a 20 µM step is applied for ±10 minutes (grey). (Middle)
Population-averaged time series of 58 cells responding to the step response protocol. (b)
Selected single-cell time series of the population shown in panel (a), each normalized to its

baseline activity level before adding the first stimulus. To the unfiltered data (grey) a 7s moving

average filter is applied and superimposed (colored according to categories in panel (c)). All time

series and corresponding activity histograms of the same experiment are shown in Figure 5 -

Supplement 1 and 5 - Supplement 2. (c) Categorization of the single-cell responses by the
number of stable activity levels during the application of the stimulus near K of the population.
Many cells show only one stable activity level (yellow), corresponding to either a full or none

response. Some cells show two stable states (red) or more (purple). In other cells stable states

did not show stable states (black). (d) Analysis on cells showing two-state switching to
characterize transition times to and residence times in the stable states. Only two-state

switchers are analysed in at least 75% of the activity level changed. Transition times t+ and t−
are determined by fitting a sigmodial function (see main text) to the transient part of the time

series. Residence times were defined as the interval between two successive transitions, at 50%
activity. (e) Histogram of transition times, �+ (4.2 ± 2.2s, 26 events, cyan) and �− (3.5 ± 3.2, 29
events, purple) from in total 10 cells of a single experiment with 1 Hz acquisition frequency. (f)
Residence times �up and �down as a function of the average activity level a1∕2∕(1 − a1∕2). a1∕2 is
defined as the fraction of time spend in the high activity state. The crossover point, obtained

from linear fits of a1∕2∕(1 − a1∕2) to log(�), is at 110 ± 10 and the slopes are 
up = 0.4 ± 0.1 and

down = −0.6 ± 0.1. All fit results are ± the standard error from the fit. In total 17 cells are
analyzed from 3 independent experiments (one at 1 Hz sampling, two at 0.2 Hz sampling).

Figure 5 - Supplement 1 All single-cell FRET time series from a single representative
experiment.Figure 5 - Supplement 2 Histograms of activity during attractant stimulus for all single cells
from a representative single experiment.
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Figure 1 - Supplement 1. Single-cell FRET assay schematic and workflow. a) Schematic of
CheY-CheZ FRET assay. In absence of ligand stimuli, receptors are activating CheA. When active,

CheA phosphorylates CheY, increasing interaction between CheY and phosphatase CheZ and

thereby increasing FRET through the labeled fluorophores. Ligand-receptor binding shuts down

the kinase, which ceases phosphate transfer and FRET levels decrease. b) False-color images of
donor (CheZ-YFP) and acceptor (CheY-mRFP1) fluorescence, channels projected on the same

EM-CCD camera chip. c) Example time series fluorescence from a single cell
(CheRB-,VS149/pVS149/52). In grey raw data is shown, with a fit to a single exponential function

with offset overlaid for donor (top, green) and acceptor channel (middle, red). From the

corrected fluorescence intensities the ratio RFP/YFP is calculated (bottom).
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Figure 1 - Supplement 2. Influence of experimental noise on estimating recovery times.
Simulated time series for are calculated by integrating the linearized MWC model with

adaptation kinetics (Tu et al., 2008) with parameters chosen to closely approximate the
population averaged response (grey-dashed line). To the simulated time series of each cell

gaussian white noise (� = 0; � = 0.15, 55 cells) is added to approximate the noise level of the
experiment. Also shown are the baseline and recovery levels (blue dashed lines) of the

experimental population.
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Figure 2 - Supplement 1. Dose response curves from population-averaged time series at
harvesting OD’s 0.31 (green), 0.45 (blue) and 0.59 (purple). The K/H fit value pairs are

respectively 30/4.3, 50 /2.7 and 53/1.8.
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Figure 2 - Supplement 2. Influence of experimental noise on fit parameters K andH from Hill
curve fits to single-cell dose-response experiment. Colored points and lines indicate fits to

measurement data, gray lines and points are from a simulation in which gaussian white noise is

added to a dose response curve with K andH obtained from a fit to the population averaged
time series. The noise level of the simulation is chosen such to approximate the average

mean-squared error [MSE] of the dose response curve fits. Experimental data with a MSE

exceeding a determined threshold are removed from the analysis. For the experiment on cells

with WT receptor complement (TSS58) a maximum mse of 0.05 is used, excluding 5 cells for (b)
for the experiment at OD=0.45, this excludes 5 cells, at (d) OD=0.31, 3 cells and at (c) OD=0.59, 6
cells. (d) For the experiment on Tsr-WT (UU2567) 11 cells are removed by the same criterion. All
shaded areas indicate 95 % confidence intervals obtained through bootstrapping.
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Figure 3 - Supplement 1. a Example
time FRET time series for cells

expressing CheBWT (top, pink),
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background. b Localization of CheB in
the cell probed by mVenus fusions to
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µm. c Histograms fluorescence
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CheB genotypes.
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Figure 3 - Supplement 2. Relation between maximum FRET response and FRET fluorophore
expression levels. a) (Left) Scatter plot with donor intensity (D0, green) versus FRET response to
500 µM MeAsp (ΔD) and (right) acceptor intensity (A, red, measured by direct excitation) with
marginal distributions for A, D and ΔD in VS104/pSJAB12. For the donor intensity we measured
at low induction (10 µM IPTG, dark green) and high induction (100 µM IPTG, light green). The

acceptor intensities were only measured at high induction. In the scatter plots the mean FRET

response is plotted with the error bars (blue), the horizontal line indicating the average for the

binned data as described in panel (b). The yellow curve is a fit to a gamma distribution with

corresponding values and 95% confidence intervals of k = 2.0 ± 0.4 and � = 10.2 ± 2.5. All
fluorescent intensities are measured in photons/pixel. All histograms are normalized to the

number of cells. b) Gating of the data. Scatter plot of donor intensity versus acceptor intensity.
All data with fluorescent intensities (in photons/pixel) lower than D=750 or A=175 are excluded

from the analysis since the FRET response depends on donor and acceptor intensity levels below

these levels. The distribution of the FRET response (extreme left) is only for the gated data.
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Figure 3 - Supplement 3. Phosphorylation feedback is not a necessary condition for fast
removal adaptation dynamics. Population FRET time series of cells expressing CheBWT (orange),

CheBD56E (purple) , CheBc (green) in ΔCheB (VS124) background as well as WT (CheB from native
chromosome position, VS104, brown) are shown after removal of 500 µM to which cells have

adapted. The strain expressing CheBD56E lacks phosphorylation feedback but has a fast removal

response. The population FRET experiment is performed as described previously (Sourjik and
Berg, 2002b). The strains and induction levels are the same as in the single-cell FRET
experiments on the CheB mutants.

Figure 3 - Supplement 4. Phosphorylation defective mutants show impaired chemotaxis on
soft agar. Dark-field images after 14 h of growth and motility on soft agar plates (0.26 % agar in
TB with appropriate antibiotics, kept at 33.5 o C). The different strains express either WT CheB,
CheB-D56E and CheBc from an arabinose inducable pBAD plasmid in Δ CheB strain (UU2614).
The arabinose concentration is varied from 0 % to 0.001 %
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Figure 4 - Supplement 1. Power spectral density estimates from population averaged time
series of CheRB+ (red) and CheRB- cells (blue). The time series are from the same experiment as

shown in Figure 3b
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Figure 4 - Supplement 2. PSD estimates obtained from single-cell FRET time series (red dashed
curve) with fits of O-U process to PSD estimates to 25 out of 31 cells (black dashed curve) from a

single experiment shown in Figure 3b. The cells are sorted by variance calculated from the fit

(c�∕2), with top-left having the highest. Cells without a clear low frequency plateau, higher than
five times the standard deviation of the high frequency noise, were excluded from the analysis.
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Figure 4 - Supplement 3. Comparison between noise amplitudes obtained from time series
and power spectra. a Noise amplitude �OU =√

c�m∕2∕⟨a⟩ for 75 CheRB+ cells time series (from 3
experiments) obtained with mean noise level of 0.42. 14 cells without a clear low frequency

noise plateau, at least five times the standard deviation of the high frequency noise floor of the

power spectrum, were excluded from the analysis because � could not be constrained by the fit.
The grey shaded area indicates the expected noise amplitude variability based on a finite time

window and experimental noise in the experiment (see Materials and Methods). The width is

defined as the mean plus (minus) one standard deviation of the distribution of noise amplitudes

obtained from simulated OU time series. b Noise amplitude �OU obtained from fits of
Ornstein-Uhlenbeck process to power spectra versus the noise amplitude �TS obtained through
calculating the standard deviation of the FRET time series after 10s average filtering. Also shown

is the diagonal �OU = �TS . c The noise amplitude of the first (�TS,1) and second half (�TS,2) of the
time series show high correlation, indicating that fluctuations are constant throughout the

experiment. All noise amplitudes are defined as coefficient of variance.
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Figure 5 - Supplement 1. Single-cell activity time series from a step response FRET experiment.
Shown are 58 cells with Tsr as the only chemoreceptor in CheRB- background (TSS1964)

exposed to a step stimulus of 20 µM L-serine, each normalized to their own response amplitude.
Time 0 is set to the time at which the population-averaged signal starts responding to a stimulus.

The panels are ordered by the average activity level over the plot range.
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Figure 5 - Supplement 2. Single-cell activity histograms series from a step response FRET
experiment. Shown are 58 cells with Tsr as the only chemoreceptor in CheRB- background

(TSS1964) exposed to a step stimulus of 20 µM L-serine. The order of the plots is the same as in
Figure 5 - Supplement 1
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