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Abstract

Fractal analysis represents a promising new approach to structural neuroimaging data, yet sys-

tematic evaluation of the fractal dimension (FD) as a marker of structural brain complexity is scarce.

Here we present in-depth methodological assessment of FD estimation in structural brain MRI. On

the computational side, we show that spatial scale optimization can signi�cantly improve FD estima-

tion accuracy, as suggested by simulation studies with known FD values. For empirical evaluation,

we analyzed two recent open-access neuroimaging data sets (MASSIVE and Midnight Scan Club),

strati�ed by fundamental image characteristics including registration, sequence weighting, spatial

resolution, segmentation procedures, tissue type, and image complexity. Deviation analyses showed

high repeated-acquisition stability of the FD estimates across both data sets, with di�erential devia-

tion susceptibility according to image characteristics. While less frequently studied in the literature,

FD estimation in T2-weighted images yielded robust outcomes. Importantly, we observed a signi�-

cant impact of image registration on absolute FD estimates. Applying di�erent registration schemes,

we found that unbalanced registration induced i) repeated-measurement deviation clusters around

the registration target, ii) strong bidirectional correlations among image analysis groups, and iii)

spurious associations between the FD and an index of structural similarity, and these e�ects were

strongly attenuated by reregistration in both data sets. Indeed, di�erences in FD between scans

did not simply track di�erences in structure per se, suggesting that structural complexity and struc-

tural similarity represent distinct aspects of structural brain MRI. In conclusion, scale optimization

can improve FD estimation accuracy, and empirical FD estimates are reliable yet sensitive to image

characteristics.
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1 Introduction

Fractal analysis has attracted increasing interest from the neuroscience community as a versatile new

tool for the analysis of structural brain data on a cellular as well as a macroscopic scale and in both

health and disease (Di Ieva et al., 2014a, 2015, 2016). Fractal geometry, prominently developed by Benoît

B. Mandelbrot (Mandelbrot, 1983), features the fundamental insight that real-world objects do not ad-

here to the smooth whole-integer dimensions of Euclidean geometry and are instead more adequately

described by the fractal dimension (FD), which is not limited to integers and can be regarded as a mea-

sure of morphometric complexity (Mandelbrot, 1967; Di Ieva et al., 2016). While natural objects are

constrained to �nite physical scales and their self-similarity is rather statistical than compositional, the

analysis of an object's fractal properties has proven insightful in a variety of �elds, from the inanimate

(e.g. coastlines, clouds, lightning) and the cellular (e.g. protein surfaces, viral receptor molecules, cellu-

lar shapes) up to the realm of higher-order organisms (e.g. human bronchial and vascular rami�cations)

(Di Ieva et al., 2014a, 2015, 2016; Mandelbrot, 1983, 1967). In biomedical neuroimaging, fractal analysis

has been applied in the anatomical description of cortical geometry (Kiselev et al., 2003; Im et al., 2006),

and the fractal dimension has shown promise as a biomarker in the detection of early tissue alterations

in multiple sclerosis (Esteban et al., 2007, 2009), brain abnormalities in infants with intrauterine growth

restriction (Esteban et al., 2010), atherosclerotic white matter lesions (Takahashi et al., 2006), morpho-

logical changes in multiple system atrophy of the cerebellar type (Wu et al., 2010), angioarchitecture of

cerebral arteriovenous malformations (Di Ieva et al., 2014b), the cortical features in Alzheimer's disease

(King et al., 2009, 2010; Ruiz de Miras et al., 2017), cerebral tumors (Iftekharuddin et al., 2009) as well

as age-related brain atrophy (Madan and Kensinger, 2016) and age-induced structural changes in white

matter tissue (Reishofer et al., 2018).

However, while fractal analysis is now being applied in both fundamental research and clinical investi-

gations, there is a relative scarcity of literature on the methodological evaluation of the fractal dimension

in structural brain MRI. On the computational side, one aspect that warrants further study regards

the optimal range of spatial scales for empirical estimation, i.e. the regression intervals applied to the

log-transformed data, speci�cally with respect to the commonly applied 3D box-counting procedure.

In this context, we here propose a simple spatial optimization algorithm that automatically selects the

optimal scale range for each individual estimation, and we present a series of simulation studies with

known expected fractal dimensions to examine performance against non-optimized estimation.

Empirically, further examination is warranted with regard to the impact of fundamental image char-

acteristics on the fractal dimension estimates, for instance regarding segmentation procedures, tissue

type, image complexity, image registration, and spatial resolution. Moreover, it is important to assess
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the stability of the fractal dimension over multiple repeated acquisitions, since a reasonable test-retest

reliability is an essential prerequisite for a biomarker's diagnostic capacity. Furthermore, T1-weighted

images (T1WI) have been the mainstay of neuroimaging studies implementing fractal analysis so that

systematic evaluation regarding the utility of T2-weighted images (T2WI) in fractal analysis is compara-

tively scarce, even though the latter are essential to both fundamental neuroimaging research and clinical

neuroradiological assessment.

To address these empirical questions, we analyzed structural MRI data from two independent openly

available neuroimaging datasets (see below for details). On the one hand, this includes the recently pub-

lished MASSIVE database (Multiple Acquisitions for Standardization of Structural Imaging Validation

and Evaluation, cf. Froeling et al. 2017), featuring ten repeated T1WI and T2WI acquisitions over a

short amount of time. We hypothesized that in such an acquisition procedure, it is reasonable to assume

that there was essentially no change in the underlying structural brain complexity and that, therefore,

the estimated fractal dimension values should show high stability across these short-interval measure-

ments, allowing for detailed parameter-dependent analyses. While this data set is thus well-suited to

examine the above questions, it also emanates from a single subject, potentially restricting the general-

ity of our �ndings. Therefore, we extended our analyses to the recently presented Midnight Scan Club

(MSC) data set (Gordon et al., 2017), featuring repeated short-interval acquisitions of T1WI and T2WI

in 10 subjects. Our approach to the points raised above then rests on an image processing procedure

di�erentiating between sequence weighting, spatial resolution, segmentation method, tissue type, and

image complexity. As detailed below, this leads to a strati�cation of 32 distinct image analysis groups as

a combination of image characteristics and processing parameters. We then apply fractality estimation

with spatial scale optimization on the 3-dimensional input volumes obtained from image processing and

implement a detailed and systematic analysis of the resulting fractal dimension estimates. The latter

features a combination of random and systematic resampling methods, deviation detection, assessment

of the sample distributions, similarity comparison, unsupervised machine learning techniques, correlation

analyses, and parameter-dependent group comparisons. Based on these analyses, we assess 1) parameter-

dependent repeated-sampling deviations, both within analysis groups and across the two data sets, 2)

the impact of image registration on the fractal dimension estimates, 3) the within- and across-subject FD

sample distributions, 4) the estimated optimal spatial scales across data sets, subjects, and processing

parameters, 5) the relationship between the fractal dimension and structural similarity, and 6) the impact

of image weighting, spatial resolution and processing parameters on the fractal dimension estimates.
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2 Methods

2.1 Image acquisition and processing

Structural MRI in the MASSIVE data set were acquired on a clinical 3 T system (Philips Achieva).

The data emanate from a healthy 25-year-old female subject scanned in �ve sessions occasions over

an interval of 2 weeks. Ten T1WI and T2WI were collected, each reconstructed with 1 mm3 isotropic

resolution, and data for both weightings were resampled to 2.5 mm3 isotropic resolution, resulting in the

four image categories T1 high resolution, T1 low resolution, T2 high resolution, and T2 low resolution

for further processing. Data were registered to a common space using a rigid registration algorithm

(http://elastix.isi.uu.nl, see Klein et al. 2010; Shamonin et al. 2014) with the �rst T1 volume as the

registration target. For additional details on the acquisition procedure, please refer to Froeling et al.

2017. The MASSIVE data set is openly available from www.massive-data.org.

Structural MRI in the MSC data set were obtained on a 3 T scanner (Siemens TRIO) across two

separate days, with each session starting at midnight. Four T1 and four T2 scans with 0.8 mm3 isotropic

resolution were acquired in each of the ten healthy subjects (5 female, 5 male; age range: 24-34 years).

Additionally, subject #8 had one extra T1 scan, and subject #6 had �ve T1 scans and six T2 scans in

total, which we included in our analyses wherever feasible. Similar to the above, data were resampled to

a 2.5 mm3 isotropic resolution, and subject-wise rigid-body registration to the respective subject's �rst

T1 volume was carried out. For further details on the data set, see Gordon et al. 2017. The MSC data

set is openly available from https://openneuro.org.

A standard FSL-based pipeline (Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012) was

used to preprocess the MR images for subsequent fractal analysis. Speci�cally, the brain extraction rou-

tine (BET) was applied to all individual 3D volumes with default fractional intensity threshold (Smith,

2002). The brain-extracted images entered the FAST routine for tissue segmentation into gray mat-

ter (GM), white matter (WM) and cerebrospinal �uid classes with default analysis parameters (Zhang

et al., 2001). Intensity inhomogeneity was accommodated by iterative bias-�eld correction. We estimated

partial volume maps for each of the three tissue classes, of which the GM and WM estimates entered

the fractal analysis. For qualitative comparison, we also included a forced-decision binary classi�cation

(�hard� segmentation), in which voxels are labeled as 0 or 1 for a speci�c tissue class. Based on these

segmentations, 3D image skeletons were estimated for each input volume. Image skeletons are the result

of iterative reduction process that computes a minimum complexity version of the input image. We here

apply a publicly available 3D parallel thinning algorithm to build the skeleton models of the respective

input volume (Lee et al., 1994; Kerschnitzki et al., 2013). Intuitively, image skeletons aim at capturing

the �essence� of an image and are thought to be more sensitive to pathological changes in some cases
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(Esteban et al., 2007, 2009, 2010; Jiménez et al., 2014), which is why we include them in the present

study. For every input volume, we thus obtain eight resulting models. In summary, this amounts to a

total of 32 analysis groups as a result of factorial combination, on which we base the taxonomy applied

throughout the manuscript: image weighting (T1 vs. T2), spatial resolution (low vs. high), segmenta-

tion procedure (partial volume estimates (pve) vs. binary segmentation (bin)), tissue type (gray matter

(GM) vs. white matter (WM)), and image complexity reduction (skeletonized vs. unskeletonized images,

where the former is abbreviated by �Skel�). Figure 1 summarizes the analysis strati�cation (panel A) and

provides an example of the processing results (panel B) as well as a 3D rendering of the corresponding

skeleton models (panel C).

2.2 Fractal estimation and spatial optimization

The volumes obtained from the above preprocessing provided the input for the estimation of the 3D

fractal dimension. In the empirical sciences, the fractal dimension of an object A is commonly estimated

by the box-counting dimension Db given by

Db(A) = lim
x→0

logN(x)

log 1
x

(1)

where x is the box edge length and N(x) the minimum number of boxes needed to cover the object under

scrutiny (cf. Di Ieva et al. 2014a). Box-counting was applied here based on a function from the openly

available calcFD toolbox (Madan and Kensinger, 2016). Due to the �nite physical scales of natural

objects, Db(A) is in practice calculated as the slope of the linear regression line over an interval of x in

the log-log plot (see Gneiting et al. 2012 for detailed treatment of the ordinary least squares regression

�t in box-counting). In terms of structural MR images, these intervals correspond to the range of voxel

unit edge sizes over which the box-counting dimension is computed. In this context, consider a �nite

sequence Xk of spatial scales de�ned as

Xk := (xk)k=0,1,...,n = (x0, x1, ..., xn), with n ∈ N, and xk := bk (2)

where b de�nes a scale base and k speci�es the exponents to be tested.

For instance, we here de�ne b = 2 and k = 0, 1, ..., 8, yielding Xk = (1, 2, 4, 8, 16, 32, 64, 128, 256).

Nonetheless, the above raises the question over which particular range of k (i.e. which subsequence

of Xk) one should compute the box-counting regression in order to obtain the best fractal dimension

estimate. One common solution is to simply de�ne the k-range for the estimation and keep it �xed
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over repeated estimations. This, however, entails the danger of introducing inaccuracies as it disregards

potential di�erences between subjects, scanning sessions, or processed input volumes. Another option is

to base the de�nition on prior validation studies suggesting an optimal range of k for a particular image

analysis group (see e.g. Esteban et al. 2009; Jiménez et al. 2014). Albeit an improvement, optimal spatial

scales may depend on the scanning equipment, image processing, or estimation algorithm applied, and

there is no principled reason to believe that the best regression intervals generalize uniformly from one

population to another. As such, a more �exible and data-driven decision criterion may be desirable. We

here apply a simple procedure to help alleviate this issue. Let |Xk| denote the number of elements in the

sequence of spatial scales resulting from eq. 2, and let ω ≤ |Xk| indicate the upper bound on regression

interval length, with ω = |Xk| representing the case in which we allow estimation over all spatial scales

in Xk (i.e. here, k = 0, ..., 8). However, we may also estimate the fractal dimension over a subsequence

of spatial scales (e.g. k = 2, ..., 5). Let τ ≥ 2 denote the lower bound on the number of elements in

this subsequence, i.e. the minimum length of the regression interval over which fractality estimation is

carried out. The number of spatial scales of at least length τ and at most length ω is then given by the

number of subsequences of Xk, i.e.

m =
n(n+ 1)

2
, where n = ω − τ + 1, and ω > τ. (3)

For a speci�ed lower and upper bound on the regression interval, we thus obtain m possible k-ranges

over which to carry out the estimation, yielding a set of m regression models. From this set, we may

then choose the best-�tting model as suggested by the highest adjusted coe�cient of determination R2
adj ,

where standard adjustment (Fritz et al., 2012) is applied due to the varying cardinality of the di�erent

tested k-ranges. The slope estimator of the thus selected model is then chosen as the optimal fractal

dimension estimate, in the sense of being the best guess in terms of approximating the true but unknown

underlying dimension value based on the box-counting results.

In this context, empirical estimation faces the challenge that there is no obvious ground truth regard-

ing the measure of interest. Speci�cally, as the true underlying fractal properties of the natural object

under scrutiny are unknown, it is intrinsically di�cult to judge estimation accuracy. As such, in order

to examine the performance of the outlined procedure, we ran a series of simulation studies, in which

we applied the estimation process to objects whose fractal dimension is known and can thus serve as a

benchmark. Speci�cally, we created a series of 3D random Cantor sets whose expected fractal dimension

is speci�ed by the probability of retaining a particular subset during iterative removal (Falconer and

Grimmett, 1992; Moisy, 2008). For each random Cantor set, we then estimate its fractal dimension over

both the respective optimal spatial scales and over a randomly chosen non-optimal interval. Following
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initial parameter search in �xed benchmarking objects, we here apply τ = 4 (i.e. computing the regres-

sion over at least four contiguous spatial scales; τ = 3 yielded similar outcome) and ω = |Xk| = 9 (i.e.

allowing a maximum interval over all examined spatial scales), leading to m = 21 di�erent models based

on eq. 3. Figure 2 relates the corresponding simulation results: panel A displays the exemplary estima-

tion of a non-fractal object (cube with expected FD = 3) and a fractal object (3D random Cantor set

with expected FD ≈ 2.7655). Compared to random non-optimal spatial scales, the outlined procedure

improved estimation accuracy by several orders of magnitude (e.g. the arbitrary k-range estimates the

Cantor set correctly to the �rst decimal, while the optimal k-range �rst deviates from the expected FD

only in the fourth decimal place), even though R2
adj was very high in both cases. We then conducted a

systematic simulation study, for which we created n = 100 distinct random Cantor sets for eight di�erent

retainment probabilities (from p = 0.6 to p = 0.95) yielding expected FD values in the range between

2 and 3 (with the aim of covering a biologically plausible range for fractal dimension estimates in brain

MRI). Panel B displays the results of the subsequent fractality estimation over optimized and random

non-optimal scales. Here, the proposed spatial optimization procedure produced improved estimation

results in virtually all simulation iterations and for all expected fractal dimension values. In contrast,

choosing a non-optimal spatial scale led to both pronounced over- and underestimation of the expected

FD, and comparing estimation variance with Levene's test suggested that optimized estimation precision

was superior to non-optimal spatial scales at p < 0.001 for all retainment probabilities (right subpanel).

In the following, we applied the same optimization procedure during fractal dimension estimation of the

empirical data, and we explicitly analyze the estimated optimal k-ranges in the two data sets below.

2.3 Data analysis

2.3.1 Deviation analysis

With the outlined processing strati�cation, we obtained a total of 320 fractal dimension estimates in the

MASSIVE data set (10 subject scans x 32 analysis groups) and 1344 fractal dimension estimates in the

MSC data set (42 subject scans x 32 analysis groups). In order to qualitatively assess the data within

each analysis group, we �rst applied a combination of random and systematic resampling procedures.

Speci�cally, we performed a bootstrapping procedure in order to randomly sample the mean and the 99 %

normal approximation con�dence interval (CI) of the FD over 2000 resampling iterations. Bootstrapping

provided an objective way of qualitative data assessment in terms of the tightness of the con�dence

interval, which served as an indicator for the deviations within the analysis group, and the presence or

absence of a skew in the clusters of the resampled means, indicative of important singular deviations in
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the raw estimates. Moreover, the bootstrapped CI was subsequently assessed as one of several criteria

to identify meaningful deviations in the sampled FDs within each analysis group. We then applied a

jackknife procedure, in which we systematically resampled the means by iteratively omitting each of the

scans within the group in order to see if the variance changed signi�cantly as assessed by Levene's tests.

We then made the explicit assumption that the FDs obtained within each analysis group were sampled

from a true but unknown normal distribution. We �tted a Gaussian distribution to the sampled FDs and

assessed the coherence to a corresponding theoretical distribution by means of a quantile-quantile plot.

In order to examine whether the sampled data was reasonably assumed to follow a normal distribution,

we furthermore computed the Shapiro-Wilk test (Shapiro and Wilk, 1965), applicable to assess composite

normality for smaller sample sizes.

As an example, �gure 3 visualizes these analysis steps for the exemplary group of binarized and skele-

tonized WM images in the T2 low resolution category (T2 low WM_Skel_bin) in the MASSIVE data

set. The same analysis steps were applied to all 32 analysis groups in both data sets. In doing so, we

sought to de�ne a sensible criterion of when to ��ag� an FD value due to a meaningful deviation within

an analysis group. To this end, we compared various measures to �nd a balanced trade-o� between

detection and discrimination ability. First, we assessed whether a single FD value was inside or outside

the bootstrapped con�dence interval. As a second method, we assessed whether a particular value was

within one or respectively two standard deviations (SD) of the sample mean. Third, we assessed whether

the variances of the jackknife means signi�cantly di�ered from one another by evaluating Levene's test.

Furthermore, we computed the Grubbs test to detect outliers within a given analysis group (Grubbs,

1969). The di�erent methods were then assessed in terms of the original data and the e�ect that re-

moving a �agged value had on the analysis in �g. 3. Speci�cally, we checked the �ags against whether

or not they occurred in groups in which the assumption of composite normality was �rst violated when

considering all raw estimates, whether the removal of the �agged volume changed this, and if a deviation

criterion would identify those analysis groups selectively. Based on the above points, the �rst method

was deemed too conservative because the CI was tighter than even the one standard deviation interval

of the sample mean and because it was sensitive to arbitrary choices regarding the type of computation

(normal approximation vs. percentile-based, studentized or not, etc.). Systematic resampling nicely

showed the qualitative e�ect that a single volume had on the overall mean and its variance but resulted

in limited sensitivity in multivariate testing, despite increased accuracy in case of non-normality. Jack-

knife resampling was thus considered too liberal for our purposes given the cases of deviation-induced

non-adherence to composite normality. When the 1 SD interval around the sample mean was considered,

volumes were more selectively �agged. However, this criterion does not account for the range of the data

scatter, which was generally very small within analysis groups. See for example �g. 3, where the data
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were sampled in the subdecimal scatter range of well under 0.03. As a result, scanning sessions were

�agged with relatively low selectivity, which was alleviated by choosing a 2 SD interval around the sam-

ple mean. Even more selective, the Grubbs test procedure closely �agged non-adherence to composite

normality, which was generally reversed after removal of the �ag. Therefore this method was deemed the

most appropriate criterion with the more conservative 2 SD method as a cross check. For an exemplary

identi�cation of a �ag see �g. 4 relating the results for T1 high GM_pve images in the MASSIVE data

set. Here, Grubbs testing �ags the FD that corresponds to the �rst scanning session (note that the more

conservative 2 SD criterion equivalently identi�es this �ag). Systematic resampling shows that omitting

the �agged value causes an upward shift of the mean and reduces its variance but this does not reach

signi�cance level in multivariate testing. The �agged FD causes the assumption of composite normality

to be invalid although the remaining samples tightly follow the reference for normality. Omitting the �ag

restores normality and clearly �tightens� the distribution (cf. panel D), while non-parametric distribution

comparison was insigni�cant. Based on the results of the deviation analysis within each analysis group,

we then examined the occurrence of �agged volumes by subjects, scanning session, image weighting, and

processing parameters across the MASSIVE and the MSC data sets (see sec. 3.1).

2.3.2 Impact of image registration

Based on the above analysis, we tested the e�ect of image registration and the ensuing interpolation

on the fractal analysis results. In the MASSIVE data set, images were originally registered to the �rst

T1 volume, and thus not all images were subject to the same transformations. To assess the impact of

registration, we therefore reregistered all images to the mean of the FLAIR images, also included in the

MASSIVE data set but independent of the presented analyses, and extended our analyses to the thus

reregistered data. For further examination, we moreover reregistered the MSC data using FSL's MNI152

structural template. We then compared the mean FDs in the 32 analysis groups between the respective

�rst volume registration and the reregistered data non-parametrically by a series of Wilcoxon rank sum

tests, with Bonferroni-Holm correction for multiple comparisons. E�ect sizes for these comparisons are

calculated based on the z value of the test statistic as rzval = z√
n1+n2

, where n1 and n2 are the compared

sample sizes, i.e. number of scans for the two respective registrations, cf. Fritz et al. 2012. Moreover,

we computed correlation matrices to examine if there were associations between the 32 image analysis

groups and whether image registration had an e�ect on potential associations.

2.3.3 Fractal dimension and structural similarity

Furthermore, we sought to investigate the relationship between structural complexity and structural

similarity. The motivation behind this was to examine if di�erences in fractal dimension essentially just
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track di�erences in structure, i.e. if two MRI volumes di�er little in their fractal dimensionality simply

if they are similar to one another. In this context, we computed the Structural Similarity Index (SSIM)

between two given 3D volumes and related it to the di�erence of their respective fractal dimensions. The

SSIM is a well-known reference metric of structural similarity between two images based on luminance,

contrast and structure, and is commonly applied in signal processing and image quality assessment (Wang

et al., 2004). The SSIM is bounded by [−1, 1], with SSIM(x, y) = 1 if the two images x and y to be

compared are identical. Furthermore, the SSIM exhibits symmetry, such that SSIM(x, y) = SSIM(y, x)

holds for any two images x and y (Wang et al., 2004; Østergaard et al., 2011; Brunet et al., 2012). We

here computed the SSIM in every possible pair-wise comparison of two volumes within an analysis group

(i.e. volume 1 vs. 2, volume 1 vs. 3, etc.) in both the MASSIVE and the MSC data set. The number

of total unique comparisons between any two out of n input volumes is given by the binomial coe�cient

m =
(
n
2

)
, and thus we compute

SSIM(xi, yi), i = 1, ...,m. (4)

For each of these comparisons, we calculate the di�erence of the corresponding fractal dimension values

of volume xi and yi, i.e.

∆FD(i) = |FD(xi)− FD(yi)| (5)

where we take the absolute di�erence to match the symmetry of the SSIM. In the MASSIVE data set,

there are n = 10 repeated scans of a single subject. For each of the 32 analysis groups, we thus obtain

m = 45 ∆FD/SSIM pairs, each belonging to one particular comparison of two 3D volumes. In the

MSC data set, there are n = 4 repeated scans in each of the 10 subjects, yielding m = 6 between-volume

comparisons in each analysis group. While the within-subject comparisons were thus considerably more

limited, the MSC data set allowed us to extend the above question to across-subject analyses. To this

end, we computed all possible session-wise comparisons between subject scans (i.e. session 1 subject 1

vs. session 1 subject 2, ..., session 4 subject 9 vs. session 4 subject 10), yielding m = 4 ×
(
10
2

)
= 180

comparisons for each of the 32 analysis groups.

As plotting ∆FD over SSIM was suggestive of data clusters in some cases, we carried out a group-

wise k −means clustering analysis. To this end, k was chosen agnostically based on range-constrained

silhouette optimization (see appendix for an example and further details), yielding k = 2 for most analysis

groups, followed by k = 3 in some instances. The clustering algorithm was run on the corresponding

∆FD/SSIM pairs with ten replicates to avoid convergence on non-global minima due to random initial

conditions. Clustering quality was generally very good across the data sets as indicated by high average
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silhouette values and reasonably balanced cluster sizes. We furthermore examined whether there were

signi�cant associations between ∆FD and SSIM by means of non-parametric Kendall's τ correlation,

and performed a linear regression for all signi�cant dependencies. In order to test if di�erences in fractal

dimension induced by varying interpolation (see above) were related to structural similarity, and if the

relationship between ∆FD and SSIM was altered due to di�erent image registration, we conducted the

above analysis in both the �rst volume and the reregistered data sets with identical optimization settings

and compared ∆FD, SSIM , and k −means clustering results between the di�erent registrations.

2.3.4 Fractal dimension by image characteristics

Finally, we assessed di�erences of the fractal estimates across analysis groups as a function of image

characteristics and analysis parameters. To this end, we compared the corresponding mean fractal di-

mensions by computing an analysis of variance (ANOVA), which invariably yielded signi�cant di�erences

in FDs across groups, and applied a post-hoc Tukey-Kramer test (Hayter, 1984) to investigate signi�cant

FD di�erences between analysis groups in pair-wise parameter-dependent comparisons. For all statistical

tests employed in the present work, we de�ned a minimum signi�cance level of α = 0.05.

Image processing was implemented with a set of Unix shell scripts. Skeletonization, spatial optimization

studies, fractality estimation, and data analysis were carried out based on custom-written Matlab code

(The MathWorks, Inc., Natick, MA, United States). For the interested reader wishing to retrace our

analyses, all �les are available from the Open Science Framework (http://osf.io/3mtqx).

Krohn et al. 12

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 13, 2018. ; https://doi.org/10.1101/124206doi: bioRxiv preprint 

http://osf.io/3mtqx
https://doi.org/10.1101/124206
http://creativecommons.org/licenses/by-nc/4.0/


3 Results

3.1 Deviation analysis

The procedure detailed in sec. 2.3.1 was applied to all 32 analysis groups across the MASSIVE and MSC

data sets, the result of which is shown in Figure 5. Generally, the overall robustness of the FD against

repeated-sampling deviations was very high across both data sets, with over 95 % un�agged volumes.

For the detected �ags, our analyses uniquely identi�ed a single scanning session that was responsible for

the majority of deviations in both the MASSIVE and the MSC data sets in original registration, in this

case volume 1 (�gure 5, panels A and C). As the �rst T1 volume served as the respective subject-wise

registration target, this �nding motivated further examination in the reregistered data sets (cf. sec.

2.3.2). Interestingly, reregistration consistently abolished the clustering of deviations in the �rst volume

in both the MASSIVE and the MSC data (panel B and D, respectively). Furthermore, reregistration

further reduced the absolute number of deviations in both data sets by around 1.5-2 %. Despite this

general reduction, reregistration also induced a few previously absent deviations in both data sets (e.g.

volume 6 in the MASSIVE data; subject 7, volume 4, in the MSC data). In terms of image parameters,

high resolution images were more susceptible to the e�ect of registration (with a slight predilection for

T1WI), and skeleton models were more prone to deviations than unskeletonized images, while deviations

were rather balanced between segmentation procedure and tissue type.

3.2 Impact of image registration on fractal dimension pro�le

Absolute fractal dimension estimates

For further characterization of registration e�ects, we compared the fractal dimension pro�les across all

analysis groups between the two respective registrations for both data sets. As summarized in table I,

image registration had a signi�cant impact on the mean fractal dimension estimates for most analysis

groups in T2WI for the MASSIVE data set, while the comparisons in T1WI were less often signi�cant.

For the MSC data set, all comparisons in the high resolution category for both T1WI and T2WI yielded

signi�cant results, while di�erences were less pronounced for low resolution volumes, especially in T1WI.

Notably, in both registrations and both data sets, standard deviations for skeleton models across most

analysis groups were up to one order of magnitude higher as compared to their unskeletonized counter-

parts (e.g. T1 low-resolution WM estimates). Moreover, data scatter was generally higher in the MSC

data (across-subject means) as compared to the MASSIVE data (within-subject means). Regarding the

direction of the e�ects, all signi�cant registration-induced changes of the skeleton models in the MAS-
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SIVE data resulted in a decreased mean fractal dimension, i.e. reregistration uniformly reduced FD

values in image skeletons. In contrast, the opposite pattern occurred in all but one of the unskeletonized

image groups, with reregistration yielding higher mean fractal dimension estimates. Across the MSC

data set, on the other hand, reregistration invariably resulted in decreased FD estimates for both T1 and

T2 high resolution volumes, while mean FDs of low resolution images were generally increased. While

registration-induced changes were thus quite consistent within each data set, the absolute mean values

and the direction of registration-induced changes did not generalize from one data set to another.

Sample distributions

We furthermore assessed the sample distributions of the repeated-acquisition fractal dimension estimates

in response to image registration across the two data sets. Speci�cally, table I summarizes the outcomes of

composite normality assessment (hn) both within-subject (MASSIVE and MSC data) and across-subject

samples (MSC data). Here, asterisks indicate the conversion cases, where composite normality was �rst

refuted but accepted upon removal of the within-group deviations as identi�ed by the deviation analysis

from sec. 2.3.1 (cf. �gs. 4 and 5). For the MSC data, the test decision refers to the sample across all

subject volumes, with subscripts indicating how many within-subject normality assumptions were refuted

without and respectively with these �agged volumes (a maximum of 10 for each analysis group based on

the 10 subjects). As a general result, the normality assumption in within-subject measurements was more

often refuted in �rst volume as compared to reregistration, although this reached signi�cance level only

for the MSC data (MASSIVE: 40.6% in �rst volume registration vs. 25% in FLAIR registration, χ2 = 1.1,

n = 32, p = 0.29; MSC: 25.3% in �rst volume registration, 17.2% in MNI registration, χ2 = 5.8, , n = 320,

p = 0.01). Furthermore, the repeated-sampling deviations constituted a main reason for a priori rejection

of composite normality in within-subject sampling: in the MASSIVE data set, 10/13 normality rejections

were restored by omitting deviations in �rst volume registration, and 4/8 in the reregistered data set.

Conversion rates were 28.4% in �rst volume registration and 29.1% in MNI registration for the MSC data

set. Considering the conversion cases, a total of 28/32 analysis groups adhered to composite normality

in the reregistered MASSIVE data (87.5 %), with similar results for the within-subject distributions

in the MNI-registered MSC data set (281/320 within-subject measurements, 87.8 %). While assuming

an underlying normal distribution for within-subject sampling was hence acceptable for most analysis

groups across both data sets, this did not transfer to the across-subject distributions in the MSC data

set. Here, normality was refuted in the vast majority of analysis groups in �rst volume registration, and

this was virtually unaltered by omitting within-subject deviations. MNI-registration yielded adherence

to composite normality in 25 % of the analysis groups, without any obvious distribution across image

categories, and this was again practically una�ected by within-subject deviations. Closer examination
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of the sample distributions suggested that reregistration had a discernible regularization e�ect on the

across-subject distributions in some analysis groups, but not in others, as exempli�ed in �g. 6 for

high-resolution gray matter partial volume estimates in T1WI and T2WI.

Across-group associations

Based on the complex impact of image registration on the fractal dimension estimates in both data sets,

we furthermore investigated whether there were any between-group associations across the 32 analysis

groups and whether image registration had an impact on these associations. Figure 7 reports the cor-

responding results for the MSC data set (results for the MASSIVE data set were similar but limited to

ten estimates in each group and only re�ective of within-subject associations). First volume registration

featured a large number of systematic, strong, bidirectional, and highly signi�cant between-group corre-

lations (panels A and C), re�ected in a �checkerboard� pattern of the correlation matrix. Interestingly,

reregistration to MNI space resulted in a pronounced overall across-group decorrelation, reducing both

the strength and the amount of associations between image analysis groups (panels B and D), while an

across-group association cluster was seen for some analysis groups in the T2 low-resolution category.

3.3 Optimal k-ranges

Building on the above results, we analyzed the optimization results across the two data sets in terms

of analysis parameters and image registration. Speci�cally, for each individual fractality estimation, we

tracked which spatial scale interval (i.e. which range of k in eq. 2) was selected as the optimal range for

that particular estimation according to the procedure in sec. 2.2. Based on eq. 3, there were m = 21

distinct spatial scale intervals, ranging from k = 0, ..., 3 to k = 0, ..., 8. Figure 8 visualizes the frequency

of the optimal k-ranges as estimated from the data. Panels A and B display the optimization results

across analysis groups for the MASSIVE data set in �rst volume and FLAIR registration, respectively.

As a general result, optimal k-ranges were highly selective in that they 1) displayed a clear preference for

a subset of all possible spatial scales (i.e. were far from a uniform distribution), 2) di�ered markedly over

the various analysis groups, and 3) showed a systematic tendency towards lower-cardinality over higher-

cardinality scale intervals. Furthermore, the k-ranges in �gure 8 are ordered from left to right by interval

length and lower to higher k-values within each of these groups (i.e. from k = 0, ..., 3 to k = 5, ..., 8 for a

cardinality of 4, from k = 0, ..., 4 to k = 4, ..., 8 for a cardinality of 5, and so on). From this it becomes

apparent that optimal spatial scales showed a further tendency towards lower k-values (i.e. smaller

box sizes) for a given interval length. For instance, considering a cardinality of 4, all estimations in the
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MASSIVE data set MSC data set

First volume FLAIR First volume MNI

Analysis group Mean FD ± SD hn Mean FD ± SD hn pcorr rzval Mean FD ± SD hn Mean FD ± SD hn pcorr rzval

T1 high
GM_pve 2.6394 ± 0.0158 n∗ 2.6489 ± 0.0098 y ns −0.28 2.6734 ± 0.0229 n1/1 2.6393 ± 0.0104 n0/1 1.9e− 11 0.78
GM_bin 2.6025 ± 0.0130 n∗ 2.6002 ± 0.0025 y ns 0.53 2.6187 ± 0.0427 n3/3 2.5530 ± 0.0234 n1/2 5.1e− 13 0.84
GM_Skel_pve 2.2805 ± 0.0762 n 2.2201 ± 0.0439 n ns 0.50 2.2744 ± 0.0377 n∗4/4 2.1185 ± 0.0919 n4/5 1.2e− 12 0.82

GM_Skel_bin 2.3146 ± 0.0536 n∗ 2.3437 ± 0.0064 y ns −0.55 2.3445 ± 0.0951 n9/9 2.1761 ± 0.0591 y2/2 2.1e− 11 0.78
WM_pve 2.5685 ± 0.0103 n∗ 2.5426 ± 0.0028 y 0.0330 0.68 2.6459 ± 0.0268 n0/1 2.6093 ± 0.0125 y0/0 6.7e− 11 0.76
WM_bin 2.4917 ± 0.0031 y 2.4878 ± 0.0089 n ns 0.08 2.5833 ± 0.0429 n1/1 2.5391 ± 0.0122 y1/2 2.0e− 09 0.70
WM_Skel_pve 2.2423 ± 0.0311 n∗ 2.0673 ± 0.0216 y 0.0058 0.84 2.1899 ± 0.0468 n2/2 1.9107 ± 0.0504 y0/0 9.9e− 14 0.86
WM_Skel_bin 2.2078 ± 0.0780 y 2.1530 ± 0.0171 y ns 0.62 2.2822 ± 0.0758 n2/2 1.9932 ± 0.0888 n0/2 9.9e− 14 0.86

T1 low
GM_pve 2.5265 ± 0.0080 y 2.5374 ± 0.0066 y ns −0.55 2.5280 ± 0.0888 n0/1 2.5070 ± 0.0452 n2/2 ns 0.17
GM_bin 2.3901 ± 0.0152 y 2.4539 ± 0.0039 y 0.0058 −0.84 2.3773 ± 0.1595 n1/2 2.4216 ± 0.0324 n0/0 ns −0.07
GM_Skel_pve 2.2087 ± 0.0073 y 1.9864 ± 0.0266 n∗ 0.0057 0.84 2.0784 ± 0.1697 n2/2 2.2745 ± 0.1090 n0/3 6.5e− 07 −0.59
GM_Skel_bin 2.2367 ± 0.0114 n∗ 2.2371 ± 0.0080 y ns −0.14 2.1512 ± 0.0957 n2/2 2.2587 ± 0.0925 n2/3 0.0009 −0.43
WM_pve 2.4137 ± 0.0028 y 2.4103 ± 0.0032 y ns 0.46 2.4444 ± 0.1949 n1/3 2.5162 ± 0.0308 n∗2/2 ns 0.03

WM_bin 2.2861 ± 0.0119 n 2.2795 ± 0.0045 y ns 0.33 2.3574 ± 0.1661 n2/5 2.4178 ± 0.0161 y1/1 ns −0.06
WM_Skel_pve 1.8732 ± 0.0350 y 1.7491 ± 0.0474 y 0.0055 0.84 1.8443 ± 0.1480 n2/3 1.7583 ± 0.1639 n2/2 0.0438 0.30
WM_Skel_bin 2.0148 ± 0.0219 y 1.8672 ± 0.0974 n 0.0053 0.84 1.9449 ± 0.1010 n0/0 1.9427 ± 0.1093 n1/1 ns 0.03

T2 high
GM_pve 2.6327 ± 0.0017 y 2.6352 ± 0.0018 y ns −0.57 2.6650 ± 0.0365 n0/1 2.6362 ± 0.0072 y0/0 8.9e− 07 0.59
GM_bin 2.5263 ± 0.0043 y 2.5539 ± 0.0043 y 0.0051 −0.84 2.6268 ± 0.0418 n1/2 2.5665 ± 0.0211 n∗1/1 6.8e− 12 0.80

GM_Skel_pve 2.2925 ± 0.0142 n 2.2419 ± 0.0149 y 0.0042 0.82 2.2700 ± 0.0509 n∗1/2 2.1373 ± 0.0589 n3/4 1.9e− 11 0.78

GM_Skel_bin 2.3437 ± 0.0229 y 2.2741 ± 0.0311 n 0.0161 0.74 2.3969 ± 0.0699 n2/2 2.3037 ± 0.0443 n0/1 7.0e− 09 0.68
WM_pve 2.6699 ± 0.0024 y 2.6727 ± 0.0036 y ns −0.40 2.7047 ± 0.0333 n0/1 2.6559 ± 0.0088 y0/1 2.0e− 13 0.85
WM_bin 2.5284 ± 0.0080 n∗ 2.5773 ± 0.0019 y 0.0049 −0.84 2.6455 ± 0.0471 n3/3 2.5422 ± 0.0237 n2/2 5.1e− 13 0.84
WM_Skel_pve 2.3031 ± 0.0319 y 2.2771 ± 0.0158 y ns 0.48 2.2768 ± 0.0509 y3/3 2.1982 ± 0.0574 n3/3 1.5e− 08 0.67
WM_Skel_bin 2.3808 ± 0.0130 n∗ 2.3340 ± 0.0056 y 0.0047 0.84 2.4624 ± 0.0900 n2/3 2.2730 ± 0.0332 y1/1 7.0e− 12 0.80

T2 low
GM_pve 2.4427 ± 0.0014 y 2.4696 ± 0.0120 n∗ 0.0046 −0.84 2.4760 ± 0.1729 n3/4 2.5023 ± 0.0159 n2/3 ns 0.14
GM_bin 2.4306 ± 0.0010 y 2.4597 ± 0.0046 y 0.0044 −0.84 2.3153 ± 0.2169 n3/4 2.4318 ± 0.0365 n3/3 0.0066 −0.37
GM_Skel_pve 2.1620 ± 0.0182 n∗ 1.8032 ± 0.0658 n∗ 0.0042 0.84 2.0175 ± 0.0837 n2/2 2.2725 ± 0.1170 n2/2 2.2e− 10 −0.74
GM_Skel_bin 2.3035 ± 0.0036 y 2.1593 ± 0.0076 y 0.0040 0.84 2.0624 ± 0.1015 n1/3 2.2635 ± 0.0800 n2/2 5.0e− 12 −0.80
WM_pve 2.5655 ± 0.0048 y 2.5595 ± 0.0049 y ns 0.53 2.4888 ± 0.2084 n1/3 2.5485 ± 0.0147 n∗1/1 ns −0.01

WM_bin 2.4405 ± 0.0011 y 2.4610 ± 0.0052 y 0.0038 −0.84 2.3456 ± 0.2081 n0/2 2.4651 ± 0.0269 n0/0 0.0029 −0.40
WM_Skel_pve 2.1466 ± 0.0146 n∗ 1.7757 ± 0.0562 n∗ 0.0037 0.84 2.0379 ± 0.1207 n1/1 2.3721 ± 0.1025 n0/2 6.7e− 12 −0.80
WM_Skel_bin 2.3265 ± 0.0034 y 2.0101 ± 0.0021 y 0.0035 0.84 2.1418 ± 0.1276 n3/4 2.3559 ± 0.0683 n1/1 1.0e− 13 −0.86

Table I: Impact of image registration on fractal dimension pro�le. The table summarizes the
mean fractal dimension values by image group for the �rst volume registration and the reregistered
data in both the MASSIVE and the Midnight Scan Club (MSC) data sets. Assessment of within-group
composite normality (hn) is indicated by `y' (yes) and `n' (no). Asterisks indicate those groups in which
composite normality was �rst violated but restored after removal of a within-group deviation, cf. sec. 3.1.
Mean fractal dimensions between registrations were compared non-parametrically by Wilcoxon signed
rank tests with Bonferroni-Holm-adjustment for multiple comparisons. E�ect sizes are calculated based
on the z value of the test statistic as rzval (cf. sec. 2.3.2). bin: binary segmentation; FD: fractal
dimension; GM: gray matter; ns: not signi�cant; pcorr: adjusted p-value; pve: partial volume estimates;
SD: standard deviation; Skel: skeleton model; WM: white matter.
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reregistered data set yielded optimal scales from k = 0, ..., 3 to k = 3, ..., 6, while the higher box edge sizes

of k = 4, ..., 7 and k = 5, ..., 8 were never selected as optimal (panel B). Interestingly, scale selectivity in

the MASSIVE data was even further increased by reregistration to the FLAIR images (in panel B, eleven

k-ranges contained all optimization results, while the remaining ten were never chosen as the optimal

spatial scales). Optimization outcome furthermore di�ered by image analysis groups. While there was no

obvious distribution of optimal scales by weighting, resolution, segmentation procedure, or tissue type, a

discernible pattern emerged as a function of skeletonization, on which we thus focus the visual comparison

(with unskeletonized volumes in colder colors, and skeleton models in warmer tones). Optimal scales

for image skeletons were systematically shifted to the right of unskeletonized images, i.e. intervals for

skeleton models were generally of the same length but over higher k-values. Furthermore, we examined

how consistently a particular k-range was selected in repeated estimations within the same image analysis

group. To this end, we track how many volumes in each analysis group yielded the same optimal scale,

regardless of the particular k-range. Panel C visualizes this scale dispersion for the MASSIVE data set.

For some analysis groups in �rst volume registration, estimation yielded the same optimal scales for all

ten input volumes, while there were nearly as many cases in which a k-range was only chosen once in

a particular analysis group. Interestingly, reregistration shifted this distribution to the right, i.e. more

analysis groups now consistently yielded the same optimization outcome over all ten input volumes. The

same analyses were carried out over the MSC data set, summarized in panels D-F. Results closely mirrored

the above �ndings in the MASSIVE data. Optimal k-ranges showed highly similar convergence on lower-

cardinality intervals as well as lower k-values for a given interval length, with high consistency across

subjects. Moreover, the same distribution of skeleton models and unskeletonized images was observed,

and this pattern as well as scale selectivity was equivalently augmented by reregistration (panel E).

Furthermore, the scale dispersion distribution in panel F was also right-shifted in the reregistered data

set, indicating increased optimization consistency. This e�ect, however, was more pronounced in some

subjects than in others, and absolute counts di�ered moderately among subjects, suggesting that despite

high qualitative consistency, there was also some between-subject variability in the numerical frequency

of individual optimization results.

3.4 Fractal dimension and structural similarity

The procedure in sec. 2.3.3 revealed an interesting relationship between the fractal dimension and

structural similarity. Generally, SSIM values were found in the range of 0.7 and 1 for both data sets,

indicating a high degree of similarity between any two MRI volumes across all image analysis groups.

With regard to ∆FD/SSIM pairs in within-subject comparisons, some cases were indicative of data
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clustering, and this was related to image registration. Figures 9 and 10 show the results for the exemplary

group of T1 high-resolution images in the MASSIVE data set. In �rst volume registration, k −means

clustering showed that the data was clearly separated into fractality-similarity clusters (panel A, �g.

9) across all analysis groups. Notably, this clustering was mainly driven by comparisons involving the

�rst volume, i.e. the registration target (indexed by 0, see caption). Consequently, a number of across-

cluster correlations were found in various analysis groups, suggesting a systematic negative association

between di�erences in fractal dimension and structural similarity (panel B). However, this relationship

was limited to clusters that were highly separated in both ∆FD and SSIM (cf. centroid location) and

that were most clearly induced by comparisons involving the registration target. Indeed, when the same

procedure was applied to high-resolution T1 images in the reregistered MASSIVE data, these associations

disappeared (�g. 10). Here, ∆FD/SSIM clusters as found by k−means were generally less separated,

mainly di�ered only by ∆FD in centroid location, and showed no systematic relationship between cluster

assignment and which of the MRI volumes entered the comparison (panel A). Similarly, the previous

associations between ∆FD and SSIM were strongly attenuated, and all but one vanished altogether

(panel B). In fact, no general systematic relationship between fractal dimensions and structural similarity

was observed in the reregistered MASSIVE data set. We then applied the same within-subject analysis

to the MSC data. While we observed similar target-induced clustering and cluster-driven ∆FD/SSIM

associations in �rst volume registration as well as the attenuation of these e�ects in the reregistered

images (see appendix for an example), within-subject analyses in the MSC data set were restricted to

only a few possible between-volumes comparisons due to the lower number of per-subject scans (cf. eq.

4). Nonetheless, the MSC data enabled us to compute extensive across-subject comparisons, as detailed

in sec. 2.3.3. Figure 11 summarizes the results for the exemplary case of high-resolution T1 images,

while similar results were found for T2WI. k − means clustering yielded two to three ∆FD/SSIM

clusters for each image analysis group, with low between-cluster separation and centroid locations driven

predominantly by di�erences in ∆FD or SSIM but not both (panel A). Furthermore, no systematic

relationship between ∆FD and SSIM was observed for across-subjects comparisons (panel B).

Further evidence against a systematic fractality-similarity association comes from between-registration

comparisons of ∆FD and SSIM (see appendix). While SSIM values in the MASSIVE data set were sig-

ni�cantly di�erent between �rst volume registration and the reregistered data across all analysis groups

(p < 0.001 for all comparisons, Bonferroni-Holm-adjusted), there was no signi�cant di�erence in ∆FD

values in the majority of the analysis groups (20/32 con�rmed null hypotheses, cf. table I in appendix).

This �nding was corroborated and indeed more pronounced in the MSC data set, in which SSIM values

for all analysis groups also showed a highly signi�cant between-registration di�erence, while there were

essentially no signi�cant di�erences in ∆FD values between the two image registrations (30/32 con�rmed
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null hypotheses, cf. table II in appendix).

3.5 Fractal dimension by image characteristics

Finally, we compare the mean fractal dimension estimates by image weighting and resolution in a

parameter-dependent fashion. Figure 12 reports the results for the MSC data set (but results for

the MASSIVE data were highly similar, see �g. 3 in the appendix). As a general result, fractal dimen-

sion estimates in both image weighting were sampled in the expected range, compatible with previous

reports, and T1WI and T2WI were a�ected by image registration, binarization, skeletonization, and

spatial resolution in a highly similar manner. While the results from sec. 3.2 highlight that registration

had a signi�cant impact on the absolute fractal dimension values, the in�uence of sequence weighting,

tissue type and image processing parameters within a given set of input images was essentially unaltered

by reregistration. As such, binary tissue segmentation consistently caused a moderate reduction of FD

values in the unskeletonized volumes across both registrations, while it led to a slight increase or no

signi�cant change in the skeleton models for both T1WI and T2WI, gray matter as well as white matter

segmentations and regardless of spatial resolution. Furthermore, skeleton models invariably resulted in

signi�cantly decreased FD values across all analysis groups and in both image registrations. Another

interesting pattern was observed with regard to tissue type: while gray matter and white matter fractal

dimensions showed no signi�cant di�erences for most comparisons in unskeletonized analysis groups,

skeleton models generally yielded signi�cantly higher gray matter fractal dimensions in T1WI as well as

slightly but signi�cantly higher white matter fractal dimensions for most comparisons in T2WI. More-

over, lower spatial resolution invariably resulted in signi�cantly decreased fractal dimension values for

all unskeletonized image groups in both the MASSIVE and the MSC data sets, regardless of image reg-

istration (see appendix, �g. 4). The same e�ect was observed in most image skeleton groups across both

data sets, with a few exceptions in the MNI-registered MSC data. Furthermore, comparing the standard

deviations in panels A and B of �g. 12, there was a marked reduction in between-subject variability by

reregistration to MNI space for all unskeletonized analysis groups, while within- and between-subject

variability were not equivalently reduced in skeleton models (cf. also by-subject averages in appendix,

�g. 5).
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4 Discussion

The current study presents a systematic and in-depth evaluation of the fractal dimension as a marker

of structural brain complexity in human brain MRI. To this end, we �rst consider some computational

aspects regarding fractal dimension estimation based on 3D box-counting, and we report a detailed em-

pirical analysis of two recently published open-access neuroimaging data sets.

As detailed above, the fractal dimension estimates obtained from box-counting numerically depend on

the spatial scale interval over which the linear regression of the log-transformed data is computed, high-

lighting the question which scale interval will most adequately capture the underlying fractal dimension

in the estimation process. We here applied an algorithmic scale optimization procedure to address this

issue. The outlined procedure led to a signi�cant improvement of estimation accuracy over randomly

chosen non-optimal scales, as suggested by simulation studies of random Cantor sets whose expected

fractal dimension values were known. Interestingly, these results also indicated that performance against

optimization was not uniform across all non-optimal spatial scales, i.e. that under- and overestimation

of the true fractal dimension varied from moderate to severe, depending on how non-optimal a randomly

chosen control interval was. This �nding illustrates that choosing inadequate spatial intervals for frac-

tality estimation may entail the danger of pronounced and systematic inaccuracies, potentially obscuring

utility in empirical estimation. In this regard, we suggest that the applied procedure provides improve-

ment over using �xed spatial scales, as is commonly done. In similar spirit, group-wise scale selection

based on correlation maximization has been applied by Esteban et al. 2010. Nonetheless, generalization

of optimal scales across distinct estimations may be limited by di�erences in populations, subjects, acqui-

sition sessions, scanning equipment, or estimation software, and thus a more data-driven approach o�ers

increasingly individualized optimization. In the current study, we apply scale optimization to individual

fractality estimations in a completely automatic fashion.

This procedure also enabled us to analyze which spatial scales were in fact selected as optimal from

the empirical data and relate optimization results to subjects and image characteristics. Indeed, the

results from sec. 3.3 show that optimal k-ranges were selective in terms of interval length, numerical

k-values (i.e. box edge sizes) and image analysis groups. Here, an interesting pattern emerged in function

of skeletonization, with remarkably similar optimization outcomes in the MASSIVE and the MSC data

sets and high consistency across repeated measurements and subjects. As such, it will be interesting

to see in future studies whether this represents a general property of the box-counting estimation in

brain MRI or if and to what extent it is speci�c to other factors, such as the preprocessing software, the

examined set of spatial scales, or the applied optimization decision criterion. With regard to the latter,
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scale selection here was based on the adjusted coe�cient of determination, a commonly used measure

of goodness of �t. While this perhaps represents the most natural approach to the box-counting re-

gression, other well-studied model selection criteria exist (e.g. the Bayesian Information Criterion), and

future studies may examine if applying a di�erent model selection criterion yields further improvement

of estimation accuracy. In this context, it is also interesting to note that the disadvantage of using all

spatial scales in the box-counting regression has been pointed out from an analytical perspective (cf.

e.g. Gneiting et al. 2012), and indeed avoidance of greater-length k-ranges was observed in our empiri-

cal optimization outcomes. Finally, further study is also warranted to examine if similar improvements

can be achieved in other methods of fractality estimation, such as dilation-based algorithms, which are

thought to possess several advantages over classical box-counting (e.g. Madan and Kensinger 2016, 2017).

With regard to our empirical results, deviation analyses suggested a high overall test-retest stability

of the fractal dimension estimates (approximately 95 %) across both the MASSIVE and the MSC data

sets. This is in accordance with a recent reliability study of brain morphology estimates in two open-

access data sets by Madan and Kensinger (Madan and Kensinger, 2017) who found that regional fractal

dimensionality as computed by both dilation and box-counting methods was generally very high and

comparable to the reliability of gyri�cation indices, while it was in fact superior to volumetric measures

such as cortical thickness. Similarly, Goñi and colleagues analyzed the fractal properties of the pial

surface, the gray matter / white matter boundary and the cortical ribbon and white matter volumes in

MRI data from di�erent imaging centers and found a high within-subject reproducibility with region-

speci�c patterns of individual variability (Goñi et al., 2013). While there is thus converging evidence

for the robustness of fractal analysis in neuroimaging, these studies used parcellation- and surface-

based methods, and T2WI were not analyzed. In this regard, the present study provides additional

information as our evaluation was strati�ed into 32 distinct analysis groups based on sequence weighting,

spatial resolution, segmentation procedure, tissue type, and image complexity, highlighting that the

di�erent image variables entail a di�erential susceptibility to repeated-sampling deviations, observed

here especially for high-resolution images and skeleton models.

In this context, one important �nding of the current study concerns the complex and profound

in�uence of image registration on the fractal dimension estimates. In both data sets, image registration

had a signi�cant impact on the absolute fractal dimension estimates, without obvious patterns across

the various analysis groups. Furthermore, we found that unbalanced registration targets can induce

test-retest deviations in the fractal dimension estimates that are reduced with reregistration, and this

was consistently observed in both data sets and across subjects in the MSC data. These test-retest

deviations were also found to render the assumption of composite normality to be invalid in repeated
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within-subject sampling. While a high proportion of analysis groups in balanced registration adhered to

composite normality for repeated within-subject measurements, this did not transfer to the across-subject

sample distributions. Instead, here the assumption of normality was refuted in a large majority of image

analysis groups, and di�erences between analysis groups appeared to be driven by a variable across-

subject sample regularization in balanced registration. This �nding (together with the test-inherent

limitation that accepting the null hypothesis does not prove composite normality but rather indicates it

should not be refuted) suggests that it may not be advisable to assume the fractal dimension estimates

over various subjects to be sampled from an underlying normal distribution. Measuring multiple subjects

with only one or a few respective samples is a very common empirical scenario, however. As such, it

appears that distributional assumptions in comparisons across populations (e.g. patients vs. controls)

may need to be relaxed, for instance by opting for non-parametric methods, or ought to be informed by

explicit assessment.

Furthermore, image registration also had an interesting e�ect on between-group ties within the data

sets: while unbalanced registration induced strong associations among various analysis groups, reregistra-

tion caused a pronounced overall decorrelation (indeed, the presence of strong across-groups associations

also seems biologically implausible, e.g. there is no principled reason to believe that structural com-

plexity of white matter will generally follow that of gray matter). In summary, our results point to an

important methodological question: given the profound impact of image registration of the fractality

estimates, which registration scheme should be applied for fractal analysis of structural brain MRI?

While our results clearly argue for balanced registration methods, it is at this point unclear if subject-

derived templates (that were found to increase between-scan structural similarity, see below) carry any

advantages over subject-independent templates. In any case, as the former may not always be feasible

(e.g. in single-acquisition scenarios), registration to commonly used subject-independent targets such as

the MNI template may currently be a reasonable solution, perhaps also in the interest of between-study

comparisons.

The latter point also concerns procedural standardization and technical variance. Both the MASSIVE

and the MSC data set provide highly standardized images, while this may not always be the case in

empirical reality. Motion artifacts, for instance, can be expected to obscure the utility of fractal analysis.

Similarly, just as reference values for blood tests may di�er depending on the laboratory where they are

measured, fractal analysis may be in�uenced by the type of scanning equipment, sequences, preprocessing

software or estimation method, as has been shown for other morphometric analyses, e.g. Wonderlick et al.

2009; Madan and Kensinger 2017; Duché et al. 2017. In this context, however, it is noteworthy that

the MASSIVE and the MSC data were acquired on scanning systems from two di�erent manufacturers.

While this provides some evidence that the results presented herein (which were very similar across the
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two data sets) were fairly independent of the scanning equipment, it may also constitute one reason why

the absolute numerical dimension estimates were not generally transferable from one data set to another.

One �nding with high consistency across the two data sets regards the impact of binary segmentation

on the fractal dimension estimates, which caused a moderate FD reduction in unskeletonized images but

no change or slight increases in skeleton models. In this context, it is noteworthy that image skeletons

invariably yielded decreased fractality estimates as compared to their unskeletonized counterparts across

both data sets. Since the skeleton models can be thought of as a minimum complexity version of the

input volume, it seems rather plausible that the fractal dimension as a marker of tissue complexity

was consistently reduced by skeletonization. Furthermore, it is interesting to note that the lower voxel

resolution invariably resulted in lower FD values in the unskeletonized images across both data sets.

For skeletonized images, a similar pattern was observed, with a few exceptions in the MNI-registered

MSC data set. Intuitively, a measure of structural brain complexity may be decreased in coarser spatial

resolution because structural information is blunted by partial volume e�ects.

Furthermore, the present study systematically evaluates the methodological characteristics of fractal-

ity estimation in structural T2WI. While T2-derived sequences have been used for fractal analysis in the

realm of functional MRI (albeit predominantly with respect to time series analysis, e.g. Bullmore et al.

2001; Thurner et al. 2003; Foss et al. 2006; Lai et al. 2010; Eke et al. 2012), T1WI have been the mainstay

of structural neuroimaging studies employing fractal analysis. Nonetheless, there has been some prior

indication that T2-based fractal analysis is both feasible and useful, especially in clinical assessment. For

instance, Iftekharuddin and colleagues successfully incorporated T2WI in fractality-based multimodal

feature extraction for tumor segmentation (Iftekharuddin et al., 2009), and Takahashi et al. used multi-

fractal analysis of deep white matter in T2WI to detect microstructural changes in early atherosclerotic

alterations (Takahashi et al., 2006). Furthermore, Di Ieva and colleagues characterized nidus angioar-

chitecture of brain arteriovenous malformations with fractal analysis of T2WI (Di Ieva et al., 2014b).

In the present study, we found T2WI to yield remarkably robust results, both in comparison to T1WI

and in terms of stability over repeated measurements. Furthermore, T1WI and T2WI were a�ected by

binarization, skeletonization, and spatial resolution in a similar manner, which may encourage further

research given the importance of T2WI in clinical neuroradiological practice.

Finally, perhaps one of the most interesting �ndings of this study concerns the relationship between

structural complexity and structural similarity. These analyses were motivated both by registration-

induced changes and by the general question of whether di�erences in fractal dimension essentially just

re�ect di�erences in structure per se. To our knowledge, the present study is the �rst to investigate the

relationship between the fractal dimension and the structural similarity index (SSIM) in MRI.

Structural similarity as captured by the SSIM was generally very high across the two data sets. In
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relating structural similarity to the corresponding di�erence in fractal dimensions (∆FD), we applied a

k−means clustering analysis, which provided a useful way to objectively assess data clusters, especially

since k was chosen automatically and the same optimization settings were used for both image regis-

trations and across both data sets. Due to the method's unsupervised character, it can be di�cult to

interpret qualitative di�erences in the clusters' features. However, based on the procedure in sec. 2.3.3,

each ∆FD/SSIM pair represented a particular comparison of two MRI volumes, thus enabling us to

check for systematic e�ects of between-volume comparisons as cluster features, and comparing the cluster

centroids was useful in describing whether clustering was mostly driven by di�erences in ∆FD, SSIM ,

or both. We furthermore conducted the analyses in two distinct ways: we �rst examined fractality-

similarity relationships over repeated acquisitions within subjects, and then extended the analyses to

comparisons across subjects.

In line with the results of sec. 3.2, we found considerable within-subject clustering in various analysis

groups for the MASSIVE data set in �rst volume registration, with a systematic e�ect of comparisons

involving the registration target that yielded pronounced between-cluster separation in both ∆FD and

SSIM and induced a number of strong fractality-similarity correlations. However, we interpret these

to be spurious correlations induced by unbalanced registration because 1) they were mostly limited to

analysis groups with strong target-induced clustering, 2) the direction of the association was not consis-

tent across analysis groups, 3) structural similarity across all analysis groups was signi�cantly di�erent

in the reregistered data set (as expected) while there was little di�erence in ∆FD, and 4) systematic

∆FD/SSIM clustering and fractality-similarity associations essentially disappeared with reregistration.

While we observed a similar tendency in the MSC data set towards target-induced clustering entailing

across-cluster associations in �rst volume registration and the attenuation thereof in MNI registration,

within-subject comparisons were numerically limited by the lower number of per-subject scans as com-

pared to the MASSIVE data. However, the MSC data allowed for extensive across-subject comparisons,

which showed no systematic ∆FD/SSIM clustering and no association between fractal dimension di�er-

ences and structural similarity. Furthermore, similar to the MASSIVE data, structural similarity across

all image groups was signi�cantly di�erent between �rst volume and MNI registration, while there was

essentially no di�erence in ∆FD. In this context, a closer examination of the numerical SSIM values

in the MASSIVE and the MSC data reveals a subtle but interesting corollary of our analyses: while

reregistration in the MASSIVE data set invariably caused a marked increase in the SSIM values to

above 0.9 in all analysis groups, reregistration in the MSC data caused a decrease in SSIM in all but

two analysis groups to values around 0.7 - 0.8 (cf. tables I and II in the appendix). Bearing in mind

that the MASSIVE data were reregistered to the mean FLAIR image (derived from the same subject)

while the MSC data were reregistered to the MNI template (i.e. not derived from the same subjects),
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these �ndings suggest that subject-speci�c common image registration increased between-scan structural

similarity while subject-independent common registration decreased between-scan similarity. Notably,

however, di�erences in fractal dimension did not simply track di�erences in structural similarity in either

case, i.e. regardless of whether scans were more or less similar to each other, and this applied to both

within- and across-subject analyses. In summary, the present results suggest that there is no general re-

lationship between structural complexity as measured by the fractal dimension and structural similarity

as captured by the structural similarity index and that, rather, they may represent two distinct aspects

of structural brain MRI.

4.1 Future directions

In the current study, we obtain several fractal dimension values for every input volume due to the

strati�cation of processing parameters (tissue type, segmentation procedure, image complexity). Thus,

instead of just mapping one fractal dimension to one image, we compute a fractal "pro�le" of eight

fractal dimension estimates per input image. Since the di�erent analysis groups seem to entail di�er-

ential susceptibility to deviations, such a fractal pro�le could perhaps be useful to optimize diagnostic

sensitivity-speci�city trade-o�s. Furthermore, we used a monofractal analysis approach, and it may be

useful to expand this to multifractal analysis. Moreover, we here compute fractal dimension estimates on

global tissue segmentations. Given the increasingly sophisticated brain parcellation methods, however,

region- and substructure-speci�c fractal analysis is also being developed and is likely to yield interesting

additional information, especially in the clinical context (see e.g. Goñi et al. 2013; Glasser et al. 2016;

Madan and Kensinger 2017; Ruiz de Miras et al. 2017; Madan 2018).
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Figures & Legends

T1 high resolution Extracted brain

GM_pve

GM_bin

WM_pve

WM_bin

Figure 1: Analysis strati�cation and image processing. Panel A represents a schematic of the applied
analysis strati�cation. An example of this procedure is visualized for the �rst volume of the T1 high
resolution images in the MASSIVE data set (panel B). Note the absence of gray voxels in the binary forced-
decision segmentations (bin) as compared to the partial volume estimates (pve). For each processed volume,
image skeleton models were estimated, a 3D rendering of which is visualized for the WM_pve and GM_pve
segmentations in panel C. The 3D volumes then entered the fractal dimension estimation. bin: binary
segmentations; GM: gray matter; pve: partial volume estimates; Skel: skeleton model; WM: white matter.
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Figure 2: Fractal dimension estimation with spatial scale optimization. Panel A contrasts estima-
tion results over optimal and arbitrary k-ranges for a non-fractal (cube) and a fractal object (3D random
Cantor set) whose expected fractal dimension values are known. In both examples, optimization increases
estimation accuracy by several orders of magnitude. Panel B displays the results of a random Cantor
set simulation over varying retainment probabilities, yielding di�erent expected fractal dimensions. Green
crosses correspond to the outlined optimization procedure, while red crosses indicate estimation results over
randomly chosen non-optimal spatial scales. The right subpanel relates the di�erence from the respective
expected fractal dimension values over all estimations for the di�erent retainment probabilities. Choosing
a non-optimal spatial scale led to both pronounced over- and underestimation of the expected FD, and
optimized estimation precision was superior to non-optimal spatial scales at p < 0.001 for all retainment
probabilities.
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Figure 3: Main steps of within-group deviation analysis. The �gure displays the deviation analysis
for the exemplary analysis group of low-resolution T2 WM partial volume estimates in the MASSIVE data
set. Panel A shows a near-uniform resampling distribution for bootstrapping, indicating the absence of a
priori weights. Panel B displays the bootstrapped mean fractal dimensions as well as the resulting 99 %
con�dence interval and average over all bootstrapped means. Panel C plots the raw estimates for the ten
scans in the data set and their sample mean, together with the bootstrapped con�dence interval and the
intervals spanning one and two standard deviations, respectively. Panel D represents the jackknife means,
i.e. systematic resampling, where each of the ten raw was iteratively omitted to compute the mean over
the remaining nine samples. Levene's test to see if the variances of the thus obtained means signi�cantly
di�ered from one another was insigni�cant. Panel E shows a quantile-quantile plot for the original data
vs. a �tted normal distribution, where a theoretical Gaussian would precisely follow the reference line. The
values of the current analysis group reasonably adhere to this reference, and the test decision suggested
that assuming composite normality was acceptable. Panel F shows the corresponding estimated normal
distribution together with the cluster of the sampled FDs. The same procedure was applied to all 32 analysis
groups in both the MASSIVE and the MSC data sets. CI: con�dence interval; FD: fractal dimension; PDF:
probability density function; SD: standard deviation.
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Figure 4: Exemplary identi�cation of a within-group deviation. The data presented here belongs
to the high-resolution T1 GM_pve images in the MASSIVE data set. If the fractal dimension of an image
was identi�ed to deviate from the remaining analysis group according to the chosen deviation criterion, the
corresponding volume was �agged (indicated here by #). In this case, the FD value belonging to the �rst
scan was �agged, and its deviation from the remaining samples is visible from panel A. Note that in panel
B, the variance of the jackknife mean without this �agged volume is notably smaller, although this did
not reach signi�cance level in multivariate variance comparison. Panel C shows the corresponding quantile-
quantile plot. Although the �agged FD only deviates by about 0.05 from the other FD estimates, normality
assessment suggests that assuming an underlying Gaussian distribution is not recommendable. Clearly,
however, the remaining samples tightly follow the normality reference and discarding the �agged FD indeed
restores the acceptance of composite normality. Furthermore, non-parametric comparison between the �tted
distributions with and without the �agged volume yielded insigni�cant results, exempli�ed here in panel D.
CI: con�dence interval; PDF: probability density function; SD: standard deviation.
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Figure 5: Deviation analysis across the MASSIVE and MSC data sets. Panels A and B depict
sampling deviations by volume and analysis group in the MASSIVE data set in the original �rst volume
registration and after reregistration to the mean FLAIR images. Panels C and D relate the results by
volumes and subjects in the Midnight Scan Club (MSC) data in �rst volume and MNI registration. Note
that only subjects 8 and 6 underwent acquisition runs 5 and 6, respectively (indicated by * and #), while all
other subjects had four acquisition runs. Panels E and F resolve the MSC deviations by analysis groups in
the two registrations. The original registration resulted in a deviation cluster around the registration target
in both the MASSIVE and the MSC data. This e�ect was abolished by reregistration in both data sets.
High-resolution images were more susceptible to the registration e�ect, and skeleton models were more prone
to deviations than unskeletonized images. GM: gray matter; bin: binary tissue segmentation; pve: partial
volume estimates; Skel: skeleton model; WM: white matter.
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A B

Figure 6: Exemplary across-subject distributions of fractal dimension estimates in the MSC
data set. The �gure reports the raw fractal dimension estimates by subjects, and the sample distributions
with kernel density estimations across image registrations for the exemplary analysis groups of high-resolution
gray matter partial volume estimates in T1WI (panel A) and T2WI (panel B), respectively. While MNI
registration of the T2WI resulted in a regularization of the across-subject sample (and composite normality
was acceptable), this was not the case for T1WI. GM: gray matter; pve: partial volume estimates.
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Figure 7: Across-group correlations in MSC data set. Panels A and B depict the correlation coe�-
cients across the 32 image analysis groups in the Midnight Scan Club (MSC) data set in �rst volume and
MNI registration, respectively. Panels C and D show the corresponding p-values below signi�cance threshold
after Bonferroni-Holm adjustment. While �rst volume registration induced strong systematic correlations
between analysis groups, both the amount and the strength of these associations were markedly attenuated
by reregistration. bin: binary tissue segmentation; pve: partial volume estimates; Skel: skeleton model.
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Figure 8: Optimal k-ranges in MASSIVE and MSC data sets. Panels A and B display the optimal
spatial scales across all fractal dimension estimations in the MASSIVE data set for �rst volume and FLAIR
registration. Panel C quanti�es how many of the ten volumes in each image analysis group yielded the same
respective optimal k-ranges as a measure of scale dispersion. Reregistration shifted this distribution to the
right, re�ecting increased consistency of repeated optimization results. Panels D and F show the absolute
frequencies of optimal spatial scales in the MSC data set for �rst volume and MNI registration (single bars
represent subjects and stacks represent image analysis groups for each subject). There was notable similarity
to the MASSIVE data in scale selectivity and distribution by image analysis groups, especially regarding
skeleton models vs. unskeletonized images. Panel F represents the consistency distribution over subjects in
the MSC data. Note that only subjects 8 and 6 underwent acquisition runs 5 and 6, respectively (indicated
by * and #), while all other subjects had four acquisition runs, and thus 4 represents the maximum repeated-
optimization consistency for those subjects. GM: gray matter; bin: binary tissue segmentation; pve: partial
volume estimates; Skel: skeleton model; WM: white matter.
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A B

MASSIVE: T1 high �rst volume registration

Figure 9: Fractal dimension di�erences and structural similarity in the MASSIVE high-
resolution T1 images (�rst volume registration). Panel A displays the k −means clustering results
within each analysis group. For all possible 45 comparisons, the Structural Similarity Index (SSIM) be-
tween two input volumes was computed and related to the di�erence in the corresponding fractal dimensions
(∆FD). Numbers indicate which of the ten volumes were compared, with indices running from 0 to 9 to
avoid triple digits. For �rst volume registration, ∆FD/SSIM pairs showed strong clustering, and there was
a systematic e�ect of comparisons involving the �rst volume (the original registration target, indexed by
0) for most image analysis groups. In these groups, clusters were driven by di�erences in both ∆FD and
SSIM , and this induced strong negative associations between di�erences in fractal dimension and structural
similarity (panel B). This e�ect, however, was attenuated by reregistration (see �g. 10 and main text).
∆FD: absolute di�erence in fractal dimension between two compared volumes; GM: gray matter; bin: bi-
nary tissue segmentation; pve: partial volume estimates; Skel: skeleton model; SSIM Structural Similarity
Index between two compared volumes; WM: white matter.
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MASSIVE: T1 high reregistered to FLAIR

BA

Figure 10: Fractal dimension di�erences and structural similarity in the MASSIVE high-
resolution T1 images (reregistered to FLAIR). Similar to �g. 9, panel A represents the ∆FD/SSIM
pairs and k −means clustering results for high-resolution T1 images after reregistration to FLAIR. Here,
∆FD/SSIM clusters as found by k −means clustering were generally less separated, mainly di�ered only
by ∆FD in centroid location, and showed no systematic relationship between cluster assignment and which
of the input volumes entered the comparison (panel A). The previous associations between ∆FD and SSIM
were strongly attenuated, and all but one vanished altogether (panel B). ∆FD: absolute di�erence in fractal
dimension between two compared volumes; GM: gray matter; bin: binary tissue segmentation; pve: partial
volume estimates; Skel: skeleton model; SSIM Structural Similarity Index between two compared volumes;
WM: white matter.
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Figure 11: Fractal dimension di�erences and structural similarity in across-subjects compar-
isons in the MSC data set. Panel A visualizes the results of across-subject comparisons for high-resolution
T1 images in MNI registration. Each subject had four scans, and all possible between-subject comparisons
were computed for each of those scanning sessions across all image analysis groups (where we omit the
comparison indices from above for visual coherence). Panel B relates the corresponding correlation results
by image analysis groups. There was no systematic ∆FD/SSIM data clustering in across-subject compar-
isons, and no systematic association between the fractal dimension and structural similarity was found. GM:
gray matter; bin: binary tissue segmentation; pve: partial volume estimates; Skel: skeleton model; SSIM
Structural Similarity Index between two compared volumes; WM: white matter.
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Figure 12: Parameter-dependent comparison of the fractal dimension estimates in the MSC
data set. Panels A and B visualize the comparisons of the mean fractal dimension estimates over image
analysis groups in �rst volume and MNI registration, respectively. Horizontal bars re�ect pair-wise signif-
icance levels. Comparisons for binary-segmented images (second bar in each subpanel) invariably yielded
the same signi�cance levels as the partial volume estimates (�rst bar) so they were omitted here for visual
coherence. Note that while image registration had a profound impact on the absolute fractal dimension
estimates, the relative impact of sequence weighting, spatial resolution, segmentation procedure, tissue type,
and skeletonization was essentially unaltered by registration. ns: not signi�cant; *: p < 0.05; **: p < 0.01;
***: p < 0.001; bin: binary tissue segmentation; GM: gray matter; pve: partial volume estimates; Skel:
skeleton model; WM: white matter.
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Appendix

The following provides some supporting material underlining aspects from the main text. While we here

limit ourselves to a selection of some relevant illustrations, the interested reader is encouraged to review

our implementation for further exploration of the method and the data sets (see http://osf.io/3mtqx).

The implementation package also includes a demo function that reiterates the presented analyses, creating

�gures and tables from the main text and the appendix.

Below, �g. 1 displays the silhouette optimization results for the across-subject ∆FD/SSIM k-

means analysis in the Midnight Scan Club (MSC) data set from the main text. Clustering analysis was

implemented with the Statistics and Machine Learning Toolbox for Matlab. We compared various ranges

of k over which to carry out silhouette optimization, with the range [1, 4] showing highest consistency

across image groups in terms of �nding the same clusters compared to other ranges while avoiding

overclustering. For silhouette optimization, each cluster contributed to the overall silhouette values in

proportion to its size. The squared euclidean distance was used as the metric for point-to-centroid

distance minimization. Initial centroid positions were chosen randomly from the data set, i.e. the k −

means++ heuristic was used to optimize time to convergence. We applied the clustering algorithm over

ten replicate iterations in every case to avoid convergence on non-global distance minima. Importantly,

the same settings for silhouette optimization and clustering were applied to both the MASSIVE and the

MSC data sets and in both image registrations.

Furthermore, �g. 2 displays an exemplary evaluation of within-subject ∆FD/SSIM k-means analysis

for high-resolution T1-weighted images of the �rst subject in the MSC data set, equivalent to �gures 9 and

10 in the MASSIVE data from the main text. While there was a similar tendency towards target-induced

∆FD/SSIM clustering entailing across-cluster associations in �rst volume registration as well as the

attenuation of these e�ects by reregistration, here the number of possible within-subject comparisons

was limited to
(
4
2

)
= 6 as opposed to

(
10
2

)
= 45 in the MASSIVE data set.

Moreover, tables I and II relate the between-registration comparisons of the mean ∆FD and SSIM

values for the MASSIVE and the MSC data sets, respectively. While image registration led to a signi�cant

change in SSIM values in both data sets, there was no equivalent change in ∆FD values. Interestingly,

registering images to a subject-derived target invariably augmented structural similarity (MASSIVE,

table I), while a common but subject-independent registration target generally decreased structural

similarity (MSC, table II).

In addition, �gure 3 displays the parameter-dependent comparisons of the mean fractal dimension

estimates in the MASSIVE data set, in analogy to the results presented for the MSC data set in �gure 12

of the main text. There was a remarkable similarity between the two data sets regarding the impact of
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sequence weighting, binarization, tissue type, and skeletonization. Image registration, while signi�cantly

a�ecting the absolute fractal dimension values (cf. table I in the main text), had little e�ect on the

relative in�uence of these analysis parameters (e.g. binarization a�ected FD estimates in a similar way

in both registrations, etc.), and this was equivalently observed in both the MASSIVE and the MSC data.

Similarly, the e�ect of spatial resolution was quite consistent across the two data sets and is summarized

in �gure 4. Lower spatial resolution invariably resulted in decreased fractal dimension estimates for

unskeletonized images across both data sets and registrations. A similar pattern was observed for skeleton

models, with a few exceptions in the MNI-registered MSC data set.

Furthermore, �gure 5 reports the by-subject average fractal dimension estimates across both image

registrations in the MSC data set. Between-subject variability was higher in �rst volume as compared

to MNI registration for unskeletonized image groups, while both between-subject and within-subject

variability were camparatively high in skeleton models for either image registration.
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T1 high across MSC subjects

Figure 1: Silhouette plots for k − means clustering analysis of ∆FD/SSIM pairs in across-
subject comparisons (MSC). The �gure relates the silhouette values belonging to the exemplary across-
subject comparisons in the T1 high-resolution images from the MSC data set, as presented in the main text.
Estimation outcome predominantly features positive observations, with most values ranging between 0.7 and
1, indicative of good clustering quality. The optimal number of clusters was determined automatically by
silhouette optimization, given here by k = 2 in �ve analysis groups and k = 3 in the remaining three cases.
Cluster sizes were reasonably balanced in most instances, and there was no indication of overclustering. GM:
gray matter; bin: binary tissue segmentation; pve: partial volume estimates; Skel: skeleton model; WM:
white matter.
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MSC subject # 1 : T1 high �rst volume registration 

MSC subject # 1 : T1 high MNI registration 

A B

C D

Figure 2: Exemplary within-subject analysis of fractal dimension and structural similarity in
the MSC data set. Panel A relates the k−means clustering of ∆FD/SSIM pairs for all possible within-
subject comparisons in the high-resolution T1 images of the �rst subject in the MSC data set. There was
an indication of target-induced clustering (panel A) entailing across-cluster associations (panel B) in �rst
volume registration as well as the attenuation thereof in MNI registration (panels C and D), similar to
the �ndings in the MASSIVE data. However, as there were only four repeated acquisitions, the number
of possible within-subject comparisons was limited to

(
4
2

)
= 6, as opposed to 45 per analysis group in the

MASSIVE data. GM: gray matter; bin: binary tissue segmentation; pve: partial volume estimates; SSIM:
structural similarity index; WM: white matter.
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MASSIVE data set

Analysis group ∆FDfirst ∆FDFLAIR pcorr SSIMfirst SSIMFLAIR pcorr

T1 high

GM_pve 0.0137 ± 0.0178 0.0113 ± 0.0079 ns 0.8994 ± 0.0256 0.9757 ± 0.0015 1.0e− 14

GM_bin 0.0115 ± 0.0145 0.0029 ± 0.0020 0.0109 0.8702 ± 0.0244 0.9664 ± 0.0016 7.0e− 15

GM_Skel_pve 0.0871 ± 0.0642 0.0482 ± 0.0395 0.0173 0.7590 ± 0.0031 0.9232 ± 0.0006 1.0e− 14

GM_Skel_bin 0.0442 ± 0.0622 0.0074 ± 0.0054 0.0023 0.7373 ± 0.0032 0.9172 ± 0.0007 8.9e− 15

WM_pve 0.0090 ± 0.0115 0.0030 ± 0.0025 ns 0.9490 ± 0.0140 0.9878 ± 0.0007 8.6e− 15

WM_bin 0.0035 ± 0.0027 0.0097 ± 0.0080 0.0227 0.9216 ± 0.0137 0.9791 ± 0.0008 8.2e− 15

WM_Skel_pve 0.0289 ± 0.0335 0.0249 ± 0.0179 ns 0.8826 ± 0.0088 0.9646 ± 0.0009 9.8e− 15

WM_Skel_bin 0.0862 ± 0.0696 0.0193 ± 0.0147 1.4e− 05 0.8439 ± 0.0074 0.9529 ± 0.0007 7.6e− 15

T1 low

GM_pve 0.0093 ± 0.0065 0.0075 ± 0.0056 ns 0.8916 ± 0.0205 0.9704 ± 0.0034 6.7e− 15

GM_bin 0.0170 ± 0.0133 0.0046 ± 0.0031 0.0038 0.8590 ± 0.0205 0.9585 ± 0.0039 7.9e− 15

GM_Skel_pve 0.0086 ± 0.0058 0.0228 ± 0.0303 ns 0.6975 ± 0.0121 0.9032 ± 0.0027 6.3e− 15

GM_Skel_bin 0.0107 ± 0.0123 0.0090 ± 0.0068 ns 0.6994 ± 0.0086 0.9045 ± 0.0030 6.0e− 15

WM_pve 0.0032 ± 0.0024 0.0039 ± 0.0025 ns 0.9524 ± 0.0102 0.9854 ± 0.0019 7.3e− 15

WM_bin 0.0129 ± 0.0109 0.0054 ± 0.0035 ns 0.9239 ± 0.0098 0.9754 ± 0.0025 9.5e− 15

WM_Skel_pve 0.0391 ± 0.0308 0.0570 ± 0.0356 ns 0.7946 ± 0.0124 0.9366 ± 0.0027 5.7e− 15

WM_Skel_bin 0.0264 ± 0.0165 0.1072 ± 0.0875 0.0022 0.7643 ± 0.0090 0.9236 ± 0.0035 2.5e− 15

T2 high

GM_pve 0.0020 ± 0.0012 0.0022 ± 0.0014 ns 0.9210 ± 0.0198 0.9779 ± 0.0058 5.4e− 15

GM_bin 0.0052 ± 0.0034 0.0051 ± 0.0033 ns 0.8948 ± 0.0215 0.9707 ± 0.0059 5.1e− 15

GM_Skel_pve 0.0143 ± 0.0142 0.0176 ± 0.0116 ns 0.7817 ± 0.0118 0.9348 ± 0.0034 4.8e− 15

GM_Skel_bin 0.0268 ± 0.0179 0.0333 ± 0.0291 ns 0.7475 ± 0.0134 0.9252 ± 0.0043 2.2e− 15

WM_pve 0.0028 ± 0.0019 0.0042 ± 0.0028 ns 0.9037 ± 0.0202 0.9735 ± 0.0055 4.4e− 15

WM_bin 0.0066 ± 0.0093 0.0022 ± 0.0016 ns 0.8707 ± 0.0239 0.9648 ± 0.0064 1.9e− 15

WM_Skel_pve 0.0379 ± 0.0248 0.0190 ± 0.0121 0.0023 0.7473 ± 0.0134 0.9242 ± 0.0041 1.6e− 15

WM_Skel_bin 0.0130 ± 0.0132 0.0064 ± 0.0048 ns 0.7183 ± 0.0166 0.9169 ± 0.0048 9.2e− 15

T2 low

GM_pve 0.0016 ± 0.0011 0.0104 ± 0.0136 2.6e− 06 0.9301 ± 0.0226 0.9784 ± 0.0072 1.3e− 15

GM_bin 0.0012 ± 0.0008 0.0052 ± 0.0038 2.0e− 07 0.9046 ± 0.0236 0.9711 ± 0.0072 4.1e− 15

GM_Skel_pve 0.0177 ± 0.0188 0.0525 ± 0.0776 ns 0.6991 ± 0.0291 0.9090 ± 0.0087 9.5e− 16

GM_Skel_bin 0.0041 ± 0.0030 0.0089 ± 0.0060 0.0037 0.6894 ± 0.0278 0.9055 ± 0.0077 3.8e− 15

WM_pve 0.0056 ± 0.0040 0.0059 ± 0.0037 ns 0.9240 ± 0.0213 0.9769 ± 0.0060 3.5e− 15

WM_bin 0.0012 ± 0.0009 0.0061 ± 0.0041 1.3e− 08 0.8800 ± 0.0270 0.9638 ± 0.0082 3.2e− 15

WM_Skel_pve 0.0158 ± 0.0134 0.0493 ± 0.0631 ns 0.6522 ± 0.0261 0.8921 ± 0.0076 2.9e− 15

WM_Skel_bin 0.0037 ± 0.0031 0.0024 ± 0.0016 ns 0.6650 ± 0.0315 0.8974 ± 0.0093 6.3e− 16

Table I: Between-registration comparison of fractal dimension di�erences and structural
similarity in the MASSIVE data set. The table represents the mean ∆FD and SSIM values in
the �rst volume and FLAIR-registered data set compared by the Wilcoxon rank sum test. All p-values
are Bonferroni-Holm-corrected for multiple comparisons (pcorr). GM: gray matter; bin: binary tissue
segmentation; pve: partial volume estimates; Skel: skeleton model; SSIM: structural similarity index;
WM: white matter.
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MSC data set

Analysis group ∆FDfirst ∆FDMNI pcorr SSIMfirst SSIMMNI pcorr

T1 high

GM_pve 0.0057 ± 0.0071 0.0077 ± 0.0090 ns 0.9475 ± 0.0165 0.8516 ± 0.0700 2.4e− 14

GM_bin 0.0139 ± 0.0121 0.0156 ± 0.0166 ns 0.9240 ± 0.0226 0.8332 ± 0.0609 9.8e− 15

GM_Skel_pve 0.0231 ± 0.0368 0.0616 ± 0.0617 0.0096 0.8778 ± 0.0253 0.8389 ± 0.0114 8.4e− 19

GM_Skel_bin 0.0868 ± 0.0920 0.0468 ± 0.0458 ns 0.8497 ± 0.0327 0.8226 ± 0.0145 1.9e− 08

WM_pve 0.0061 ± 0.0049 0.0057 ± 0.0072 ns 0.9612 ± 0.0119 0.8839 ± 0.0560 9.3e− 15

WM_bin 0.0128 ± 0.0128 0.0082 ± 0.0073 ns 0.9350 ± 0.0194 0.8691 ± 0.0468 7.0e− 14

WM_Skel_pve 0.0494 ± 0.0482 0.0368 ± 0.0363 ns 0.9111 ± 0.0250 0.9232 ± 0.0071 3.6e− 05

WM_Skel_bin 0.0896 ± 0.0750 0.0547 ± 0.0553 ns 0.8823 ± 0.0296 0.8952 ± 0.0086 3.6e− 05

T1 low

GM_pve 0.0211 ± 0.0719 0.0196 ± 0.0489 ns 0.9605 ± 0.0178 0.8388 ± 0.1048 1.7e− 17

GM_bin 0.0158 ± 0.0399 0.0196 ± 0.0317 ns 0.9448 ± 0.0215 0.8018 ± 0.0984 7.2e− 19

GM_Skel_pve 0.0397 ± 0.0524 0.0916 ± 0.0974 ns 0.8367 ± 0.0507 0.7311 ± 0.0333 7.1e− 20

GM_Skel_bin 0.0245 ± 0.0259 0.0524 ± 0.0677 ns 0.8216 ± 0.0447 0.7163 ± 0.0319 3.8e− 20

WM_pve 0.0654 ± 0.1719 0.0144 ± 0.0277 ns 0.9675 ± 0.0158 0.8634 ± 0.0870 1.3e− 17

WM_bin 0.0952 ± 0.1669 0.0096 ± 0.0086 ns 0.9530 ± 0.0193 0.8322 ± 0.0822 9.0e− 19

WM_Skel_pve 0.0803 ± 0.0899 0.1571 ± 0.1569 ns 0.9132 ± 0.0262 0.8654 ± 0.0229 2.4e− 15

WM_Skel_bin 0.0495 ± 0.0641 0.0677 ± 0.0907 ns 0.8777 ± 0.0353 0.8129 ± 0.0254 3.3e− 16

T2 high

GM_pve 0.0042 ± 0.0042 0.0042 ± 0.0038 ns 0.9190 ± 0.0287 0.8548 ± 0.0634 7.2e− 09

GM_bin 0.0069 ± 0.0077 0.0106 ± 0.0131 ns 0.9034 ± 0.0314 0.8395 ± 0.0578 9.0e− 10

GM_Skel_pve 0.0305 ± 0.0523 0.0336 ± 0.0379 ns 0.8767 ± 0.0272 0.8344 ± 0.0185 1.7e− 16

GM_Skel_bin 0.0230 ± 0.0395 0.0379 ± 0.0340 0.0005 0.8471 ± 0.0332 0.8119 ± 0.0220 9.0e− 10

WM_pve 0.0074 ± 0.0063 0.0052 ± 0.0046 ns 0.9158 ± 0.0274 0.8508 ± 0.0607 6.6e− 10

WM_bin 0.0122 ± 0.0140 0.0140 ± 0.0217 ns 0.8850 ± 0.0328 0.8247 ± 0.0539 8.2e− 10

WM_Skel_pve 0.0166 ± 0.0230 0.0380 ± 0.0577 ns 0.8664 ± 0.0364 0.8317 ± 0.0189 7.3e− 10

WM_Skel_bin 0.0388 ± 0.0543 0.0149 ± 0.0219 ns 0.8318 ± 0.0437 0.7923 ± 0.0249 7.3e− 09

T2 low

GM_pve 0.1076 ± 0.1886 0.0071 ± 0.0060 ns 0.9574 ± 0.0238 0.8713 ± 0.0884 6.8e− 13

GM_bin 0.0690 ± 0.1343 0.0163 ± 0.0182 ns 0.9388 ± 0.0294 0.8434 ± 0.0843 3.3e− 14

GM_Skel_pve 0.0179 ± 0.0192 0.0519 ± 0.0843 ns 0.8423 ± 0.0429 0.7795 ± 0.0364 1.7e− 12

GM_Skel_bin 0.0163 ± 0.0202 0.0389 ± 0.0586 ns 0.8177 ± 0.0456 0.7465 ± 0.0368 9.5e− 14

WM_pve 0.0816 ± 0.1741 0.0095 ± 0.0126 ns 0.9405 ± 0.0267 0.8456 ± 0.0905 2.7e− 13

WM_bin 0.0614 ± 0.1084 0.0096 ± 0.0112 ns 0.9176 ± 0.0358 0.8107 ± 0.0864 2.4e− 14

WM_Skel_pve 0.0369 ± 0.0374 0.0465 ± 0.0735 ns 0.8108 ± 0.0574 0.7296 ± 0.0376 3.3e− 14

WM_Skel_bin 0.0359 ± 0.0649 0.0131 ± 0.0243 ns 0.8137 ± 0.0526 0.7212 ± 0.0479 1.4e− 14

Table II: Between-registration comparison of fractal dimension di�erences and structural
similarity in the MSC data set. The table represents the mean ∆FD and SSIM values in the
�rst volume and MNI-registered data set compared by the Wilcoxon rank sum test. All p-values are
Bonferroni-Holm-corrected for multiple comparisons (pcorr). GM: gray matter; bin: binary tissue seg-
mentation; pve: partial volume estimates; Skel: skeleton model; SSIM: structural similarity index; WM:
white matter.
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Figure 3: Parameter-dependent comparison of the fractal dimension estimates in the MAS-
SIVE data set. Panels A and B summarize the comparisons of the mean fractal dimension estimates over
image analysis groups in �rst volume and FLAIR registration, respectively. Horizontal bars re�ect pair-wise
signi�cance levels. Comparisons for binary-segmented images invariably yielded the same signi�cance levels
as the partial volume estimates so they were omitted here for visual coherence, as in �g. 12. Note the
remarkably similar e�ects regarding binarization, tissue type, and skeletonization as compared to the results
from the MSC data in the main text. ns: not signi�cant; *: p < 0.05; **: p < 0.01; ***: p < 0.001; bin:
binary tissue segmentation; GM: gray matter; pve: partial volume estimates; Skel: skeleton model; WM:
white matter.
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MASSIVE reregistered (FLAIR)MASSIVE �rst volume registration

MSC �rst volume registration MSC MNI registration

High vs. low spatial resolution

A B

C D

ns *

Figure 4: Fractal dimension di�erences in high vs. low spatial resolution. Bars represent the
respective di�erence in the mean fractal dimensions of high and low resolution images for the MASSIVE
(panels A and B) and the MSC (panels C and D) data sets in both image registrations . Error bars correspond
to the di�erence's sampling distribution error. All high vs. low resolution comparisons were signi�cant at
p < 0.001 unless otherwise indicated (*: p < 0.05; ns: not signi�cant.). For unskeletonized images, the
fractal dimensions were signi�cantly decreased by lower spatial resolution in both data sets, regardless of
image registration or tissue type. The same was true for most comparisons concerning skeleton models with
a few exception in the MSC data in MNI registration (panel D). bin: binary tissue segmentation; ∆FD:
di�erence in mean fractal dimension in high vs. low spatial resolution; GM: gray matter; pve: partial volume
estimates; Skel: skeleton model; WM: white matter.

Krohn et al. 50

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 13, 2018. ; https://doi.org/10.1101/124206doi: bioRxiv preprint 

https://doi.org/10.1101/124206
http://creativecommons.org/licenses/by-nc/4.0/


MSC MNI registration

GM
pve

GM
bin

GM
Skel pve

GM
Skel bin

WM
pve

WM
bin

WM
Skel pve

WM
Skel bin

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

F
D

T1 high resolution

MSC01 MSC02 MSC03 MSC04 MSC05 MSC06 MSC07 MSC08 MSC09 MSC10

GM
pve

GM
bin

GM
Skel pve

GM
Skel bin

WM
pve

WM
bin

WM
Skel pve

WM
Skel bin

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

F
D

T1 low resolution

GM
pve

GM
bin

GM
Skel pve

GM
Skel bin

WM
pve

WM
bin

WM
Skel pve

WM
Skel bin

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

F
D

T2 high resolution

GM
pve

GM
bin

GM
Skel pve

GM
Skel bin

WM
pve

WM
bin

WM
Skel pve

WM
Skel bin

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

F
D

T2 low resolution

MSC �rst volume registrationA

B

Figure 5: Results of the fractal dimension estimation in the MSC data set. The �gure visualizes
the fractal estimation results across image registration (panel A: �rst volume registration; panel B: MNI
registration), subjects (grouped bars) and analysis groups. Note the higher between-subject variability in
�rst volume as compared to MNI registration and the higher within- and between-subject variability in
skeleton models as opposed to unskeletonized images. GM: gray matter; bin: binary tissue segmentation;
pve: partial volume estimates; Skel: skeleton model; WM: white matter.
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